ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ovmpoga GIF version

Theorem ovmpoga 5971
Description: Value of an operation given by a maps-to rule. (Contributed by Mario Carneiro, 19-Dec-2013.)
Hypotheses
Ref Expression
ovmpoga.1 ((𝑥 = 𝐴𝑦 = 𝐵) → 𝑅 = 𝑆)
ovmpoga.2 𝐹 = (𝑥𝐶, 𝑦𝐷𝑅)
Assertion
Ref Expression
ovmpoga ((𝐴𝐶𝐵𝐷𝑆𝐻) → (𝐴𝐹𝐵) = 𝑆)
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐵,𝑦   𝑥,𝐶,𝑦   𝑥,𝐷,𝑦   𝑥,𝑆,𝑦
Allowed substitution hints:   𝑅(𝑥,𝑦)   𝐹(𝑥,𝑦)   𝐻(𝑥,𝑦)

Proof of Theorem ovmpoga
StepHypRef Expression
1 elex 2737 . 2 (𝑆𝐻𝑆 ∈ V)
2 ovmpoga.2 . . . 4 𝐹 = (𝑥𝐶, 𝑦𝐷𝑅)
32a1i 9 . . 3 ((𝐴𝐶𝐵𝐷𝑆 ∈ V) → 𝐹 = (𝑥𝐶, 𝑦𝐷𝑅))
4 ovmpoga.1 . . . 4 ((𝑥 = 𝐴𝑦 = 𝐵) → 𝑅 = 𝑆)
54adantl 275 . . 3 (((𝐴𝐶𝐵𝐷𝑆 ∈ V) ∧ (𝑥 = 𝐴𝑦 = 𝐵)) → 𝑅 = 𝑆)
6 simp1 987 . . 3 ((𝐴𝐶𝐵𝐷𝑆 ∈ V) → 𝐴𝐶)
7 simp2 988 . . 3 ((𝐴𝐶𝐵𝐷𝑆 ∈ V) → 𝐵𝐷)
8 simp3 989 . . 3 ((𝐴𝐶𝐵𝐷𝑆 ∈ V) → 𝑆 ∈ V)
93, 5, 6, 7, 8ovmpod 5969 . 2 ((𝐴𝐶𝐵𝐷𝑆 ∈ V) → (𝐴𝐹𝐵) = 𝑆)
101, 9syl3an3 1263 1 ((𝐴𝐶𝐵𝐷𝑆𝐻) → (𝐴𝐹𝐵) = 𝑆)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  w3a 968   = wceq 1343  wcel 2136  Vcvv 2726  (class class class)co 5842  cmpo 5844
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-pow 4153  ax-pr 4187  ax-setind 4514
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-ral 2449  df-rex 2450  df-v 2728  df-sbc 2952  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-br 3983  df-opab 4044  df-id 4271  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-iota 5153  df-fun 5190  df-fv 5196  df-ov 5845  df-oprab 5846  df-mpo 5847
This theorem is referenced by:  ovmpoa  5972  ovmpog  5976  elovmpo  6039  offval  6057  offval3  6102  xaddval  9781  fzoval  10083  eucalgval2  11985  pcval  12228  setsvalg  12424  ressid2  12454  ressval2  12455  restval  12562  txvalex  12904  txval  12905  cnmpt12  12937  cnmpt22  12944  hmeofvalg  12953  bdmetval  13150  xmetxp  13157  xmetxpbl  13158  txmetcnp  13168  limccl  13278  ellimc3apf  13279  lgsval  13555
  Copyright terms: Public domain W3C validator