ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ovmpoga GIF version

Theorem ovmpoga 6075
Description: Value of an operation given by a maps-to rule. (Contributed by Mario Carneiro, 19-Dec-2013.)
Hypotheses
Ref Expression
ovmpoga.1 ((𝑥 = 𝐴𝑦 = 𝐵) → 𝑅 = 𝑆)
ovmpoga.2 𝐹 = (𝑥𝐶, 𝑦𝐷𝑅)
Assertion
Ref Expression
ovmpoga ((𝐴𝐶𝐵𝐷𝑆𝐻) → (𝐴𝐹𝐵) = 𝑆)
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐵,𝑦   𝑥,𝐶,𝑦   𝑥,𝐷,𝑦   𝑥,𝑆,𝑦
Allowed substitution hints:   𝑅(𝑥,𝑦)   𝐹(𝑥,𝑦)   𝐻(𝑥,𝑦)

Proof of Theorem ovmpoga
StepHypRef Expression
1 elex 2783 . 2 (𝑆𝐻𝑆 ∈ V)
2 ovmpoga.2 . . . 4 𝐹 = (𝑥𝐶, 𝑦𝐷𝑅)
32a1i 9 . . 3 ((𝐴𝐶𝐵𝐷𝑆 ∈ V) → 𝐹 = (𝑥𝐶, 𝑦𝐷𝑅))
4 ovmpoga.1 . . . 4 ((𝑥 = 𝐴𝑦 = 𝐵) → 𝑅 = 𝑆)
54adantl 277 . . 3 (((𝐴𝐶𝐵𝐷𝑆 ∈ V) ∧ (𝑥 = 𝐴𝑦 = 𝐵)) → 𝑅 = 𝑆)
6 simp1 1000 . . 3 ((𝐴𝐶𝐵𝐷𝑆 ∈ V) → 𝐴𝐶)
7 simp2 1001 . . 3 ((𝐴𝐶𝐵𝐷𝑆 ∈ V) → 𝐵𝐷)
8 simp3 1002 . . 3 ((𝐴𝐶𝐵𝐷𝑆 ∈ V) → 𝑆 ∈ V)
93, 5, 6, 7, 8ovmpod 6073 . 2 ((𝐴𝐶𝐵𝐷𝑆 ∈ V) → (𝐴𝐹𝐵) = 𝑆)
101, 9syl3an3 1285 1 ((𝐴𝐶𝐵𝐷𝑆𝐻) → (𝐴𝐹𝐵) = 𝑆)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  w3a 981   = wceq 1373  wcel 2176  Vcvv 2772  (class class class)co 5944  cmpo 5946
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-14 2179  ax-ext 2187  ax-sep 4162  ax-pow 4218  ax-pr 4253  ax-setind 4585
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ne 2377  df-ral 2489  df-rex 2490  df-v 2774  df-sbc 2999  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-br 4045  df-opab 4106  df-id 4340  df-xp 4681  df-rel 4682  df-cnv 4683  df-co 4684  df-dm 4685  df-iota 5232  df-fun 5273  df-fv 5279  df-ov 5947  df-oprab 5948  df-mpo 5949
This theorem is referenced by:  ovmpoa  6076  ovmpog  6080  elovmpo  6145  offval  6166  offval3  6219  xaddval  9967  fzoval  10270  eucalgval2  12375  pcval  12619  setsvalg  12862  restval  13077  prdsex  13101  pwsval  13123  xpsfval  13180  xpsval  13184  ismhm  13293  eqgfval  13558  isrhm  13920  mplvalcoe  14452  txvalex  14726  txval  14727  cnmpt12  14759  cnmpt22  14766  hmeofvalg  14775  bdmetval  14972  xmetxp  14979  xmetxpbl  14980  txmetcnp  14990  limccl  15131  ellimc3apf  15132  sgmval  15455  lgsval  15481
  Copyright terms: Public domain W3C validator