ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ovmpoga GIF version

Theorem ovmpoga 6134
Description: Value of an operation given by a maps-to rule. (Contributed by Mario Carneiro, 19-Dec-2013.)
Hypotheses
Ref Expression
ovmpoga.1 ((𝑥 = 𝐴𝑦 = 𝐵) → 𝑅 = 𝑆)
ovmpoga.2 𝐹 = (𝑥𝐶, 𝑦𝐷𝑅)
Assertion
Ref Expression
ovmpoga ((𝐴𝐶𝐵𝐷𝑆𝐻) → (𝐴𝐹𝐵) = 𝑆)
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐵,𝑦   𝑥,𝐶,𝑦   𝑥,𝐷,𝑦   𝑥,𝑆,𝑦
Allowed substitution hints:   𝑅(𝑥,𝑦)   𝐹(𝑥,𝑦)   𝐻(𝑥,𝑦)

Proof of Theorem ovmpoga
StepHypRef Expression
1 elex 2811 . 2 (𝑆𝐻𝑆 ∈ V)
2 ovmpoga.2 . . . 4 𝐹 = (𝑥𝐶, 𝑦𝐷𝑅)
32a1i 9 . . 3 ((𝐴𝐶𝐵𝐷𝑆 ∈ V) → 𝐹 = (𝑥𝐶, 𝑦𝐷𝑅))
4 ovmpoga.1 . . . 4 ((𝑥 = 𝐴𝑦 = 𝐵) → 𝑅 = 𝑆)
54adantl 277 . . 3 (((𝐴𝐶𝐵𝐷𝑆 ∈ V) ∧ (𝑥 = 𝐴𝑦 = 𝐵)) → 𝑅 = 𝑆)
6 simp1 1021 . . 3 ((𝐴𝐶𝐵𝐷𝑆 ∈ V) → 𝐴𝐶)
7 simp2 1022 . . 3 ((𝐴𝐶𝐵𝐷𝑆 ∈ V) → 𝐵𝐷)
8 simp3 1023 . . 3 ((𝐴𝐶𝐵𝐷𝑆 ∈ V) → 𝑆 ∈ V)
93, 5, 6, 7, 8ovmpod 6132 . 2 ((𝐴𝐶𝐵𝐷𝑆 ∈ V) → (𝐴𝐹𝐵) = 𝑆)
101, 9syl3an3 1306 1 ((𝐴𝐶𝐵𝐷𝑆𝐻) → (𝐴𝐹𝐵) = 𝑆)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  w3a 1002   = wceq 1395  wcel 2200  Vcvv 2799  (class class class)co 6001  cmpo 6003
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-14 2203  ax-ext 2211  ax-sep 4202  ax-pow 4258  ax-pr 4293  ax-setind 4629
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-ral 2513  df-rex 2514  df-v 2801  df-sbc 3029  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-br 4084  df-opab 4146  df-id 4384  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-iota 5278  df-fun 5320  df-fv 5326  df-ov 6004  df-oprab 6005  df-mpo 6006
This theorem is referenced by:  ovmpoa  6135  ovmpog  6139  elovmpo  6204  offval  6226  offval3  6279  xaddval  10041  fzoval  10344  eucalgval2  12575  pcval  12819  setsvalg  13062  restval  13278  prdsex  13302  pwsval  13324  xpsfval  13381  xpsval  13385  ismhm  13494  eqgfval  13759  isrhm  14122  mplvalcoe  14654  txvalex  14928  txval  14929  cnmpt12  14961  cnmpt22  14968  hmeofvalg  14977  bdmetval  15174  xmetxp  15181  xmetxpbl  15182  txmetcnp  15192  limccl  15333  ellimc3apf  15334  sgmval  15657  lgsval  15683
  Copyright terms: Public domain W3C validator