Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > topgrpplusgd | GIF version |
Description: The additive operation of a constructed topological group. (Contributed by Mario Carneiro, 29-Aug-2015.) (Revised by Jim Kingdon, 9-Feb-2023.) |
Ref | Expression |
---|---|
topgrpfn.w | ⊢ 𝑊 = {〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx), + 〉, 〈(TopSet‘ndx), 𝐽〉} |
topgrpfnd.b | ⊢ (𝜑 → 𝐵 ∈ 𝑉) |
topgrpfnd.p | ⊢ (𝜑 → + ∈ 𝑊) |
topgrpfnd.j | ⊢ (𝜑 → 𝐽 ∈ 𝑋) |
Ref | Expression |
---|---|
topgrpplusgd | ⊢ (𝜑 → + = (+g‘𝑊)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | plusgslid 12490 | . 2 ⊢ (+g = Slot (+g‘ndx) ∧ (+g‘ndx) ∈ ℕ) | |
2 | topgrpfn.w | . . 3 ⊢ 𝑊 = {〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx), + 〉, 〈(TopSet‘ndx), 𝐽〉} | |
3 | topgrpfnd.b | . . 3 ⊢ (𝜑 → 𝐵 ∈ 𝑉) | |
4 | topgrpfnd.p | . . 3 ⊢ (𝜑 → + ∈ 𝑊) | |
5 | topgrpfnd.j | . . 3 ⊢ (𝜑 → 𝐽 ∈ 𝑋) | |
6 | 2, 3, 4, 5 | topgrpstrd 12546 | . 2 ⊢ (𝜑 → 𝑊 Struct 〈1, 9〉) |
7 | 1 | simpri 112 | . . . . 5 ⊢ (+g‘ndx) ∈ ℕ |
8 | opexg 4206 | . . . . 5 ⊢ (((+g‘ndx) ∈ ℕ ∧ + ∈ 𝑊) → 〈(+g‘ndx), + 〉 ∈ V) | |
9 | 7, 4, 8 | sylancr 411 | . . . 4 ⊢ (𝜑 → 〈(+g‘ndx), + 〉 ∈ V) |
10 | tpid2g 3690 | . . . 4 ⊢ (〈(+g‘ndx), + 〉 ∈ V → 〈(+g‘ndx), + 〉 ∈ {〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx), + 〉, 〈(TopSet‘ndx), 𝐽〉}) | |
11 | 9, 10 | syl 14 | . . 3 ⊢ (𝜑 → 〈(+g‘ndx), + 〉 ∈ {〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx), + 〉, 〈(TopSet‘ndx), 𝐽〉}) |
12 | 11, 2 | eleqtrrdi 2260 | . 2 ⊢ (𝜑 → 〈(+g‘ndx), + 〉 ∈ 𝑊) |
13 | 1, 6, 4, 12 | opelstrsl 12491 | 1 ⊢ (𝜑 → + = (+g‘𝑊)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1343 ∈ wcel 2136 Vcvv 2726 {ctp 3578 〈cop 3579 ‘cfv 5188 1c1 7754 ℕcn 8857 9c9 8915 ndxcnx 12391 Slot cslot 12393 Basecbs 12394 +gcplusg 12457 TopSetcts 12463 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-pow 4153 ax-pr 4187 ax-un 4411 ax-setind 4514 ax-cnex 7844 ax-resscn 7845 ax-1cn 7846 ax-1re 7847 ax-icn 7848 ax-addcl 7849 ax-addrcl 7850 ax-mulcl 7851 ax-addcom 7853 ax-addass 7855 ax-distr 7857 ax-i2m1 7858 ax-0lt1 7859 ax-0id 7861 ax-rnegex 7862 ax-cnre 7864 ax-pre-ltirr 7865 ax-pre-ltwlin 7866 ax-pre-lttrn 7867 ax-pre-apti 7868 ax-pre-ltadd 7869 |
This theorem depends on definitions: df-bi 116 df-3or 969 df-3an 970 df-tru 1346 df-fal 1349 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ne 2337 df-nel 2432 df-ral 2449 df-rex 2450 df-reu 2451 df-rab 2453 df-v 2728 df-sbc 2952 df-dif 3118 df-un 3120 df-in 3122 df-ss 3129 df-nul 3410 df-pw 3561 df-sn 3582 df-pr 3583 df-tp 3584 df-op 3585 df-uni 3790 df-int 3825 df-br 3983 df-opab 4044 df-mpt 4045 df-id 4271 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-rn 4615 df-res 4616 df-ima 4617 df-iota 5153 df-fun 5190 df-fn 5191 df-f 5192 df-fv 5196 df-riota 5798 df-ov 5845 df-oprab 5846 df-mpo 5847 df-pnf 7935 df-mnf 7936 df-xr 7937 df-ltxr 7938 df-le 7939 df-sub 8071 df-neg 8072 df-inn 8858 df-2 8916 df-3 8917 df-4 8918 df-5 8919 df-6 8920 df-7 8921 df-8 8922 df-9 8923 df-n0 9115 df-z 9192 df-uz 9467 df-fz 9945 df-struct 12396 df-ndx 12397 df-slot 12398 df-base 12400 df-plusg 12470 df-tset 12476 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |