ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  topgrpplusgd GIF version

Theorem topgrpplusgd 12886
Description: The additive operation of a constructed topological group. (Contributed by Mario Carneiro, 29-Aug-2015.) (Revised by Jim Kingdon, 9-Feb-2023.)
Hypotheses
Ref Expression
topgrpfn.w 𝑊 = {⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), + ⟩, ⟨(TopSet‘ndx), 𝐽⟩}
topgrpfnd.b (𝜑𝐵𝑉)
topgrpfnd.p (𝜑+𝑊)
topgrpfnd.j (𝜑𝐽𝑋)
Assertion
Ref Expression
topgrpplusgd (𝜑+ = (+g𝑊))

Proof of Theorem topgrpplusgd
StepHypRef Expression
1 plusgslid 12801 . 2 (+g = Slot (+g‘ndx) ∧ (+g‘ndx) ∈ ℕ)
2 topgrpfn.w . . 3 𝑊 = {⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), + ⟩, ⟨(TopSet‘ndx), 𝐽⟩}
3 topgrpfnd.b . . 3 (𝜑𝐵𝑉)
4 topgrpfnd.p . . 3 (𝜑+𝑊)
5 topgrpfnd.j . . 3 (𝜑𝐽𝑋)
62, 3, 4, 5topgrpstrd 12884 . 2 (𝜑𝑊 Struct ⟨1, 9⟩)
71simpri 113 . . . . 5 (+g‘ndx) ∈ ℕ
8 opexg 4262 . . . . 5 (((+g‘ndx) ∈ ℕ ∧ +𝑊) → ⟨(+g‘ndx), + ⟩ ∈ V)
97, 4, 8sylancr 414 . . . 4 (𝜑 → ⟨(+g‘ndx), + ⟩ ∈ V)
10 tpid2g 3737 . . . 4 (⟨(+g‘ndx), + ⟩ ∈ V → ⟨(+g‘ndx), + ⟩ ∈ {⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), + ⟩, ⟨(TopSet‘ndx), 𝐽⟩})
119, 10syl 14 . . 3 (𝜑 → ⟨(+g‘ndx), + ⟩ ∈ {⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), + ⟩, ⟨(TopSet‘ndx), 𝐽⟩})
1211, 2eleqtrrdi 2290 . 2 (𝜑 → ⟨(+g‘ndx), + ⟩ ∈ 𝑊)
131, 6, 4, 12opelstrsl 12803 1 (𝜑+ = (+g𝑊))
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1364  wcel 2167  Vcvv 2763  {ctp 3625  cop 3626  cfv 5259  1c1 7883  cn 8993  9c9 9051  ndxcnx 12686  Slot cslot 12688  Basecbs 12689  +gcplusg 12766  TopSetcts 12772
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4152  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-cnex 7973  ax-resscn 7974  ax-1cn 7975  ax-1re 7976  ax-icn 7977  ax-addcl 7978  ax-addrcl 7979  ax-mulcl 7980  ax-addcom 7982  ax-addass 7984  ax-distr 7986  ax-i2m1 7987  ax-0lt1 7988  ax-0id 7990  ax-rnegex 7991  ax-cnre 7993  ax-pre-ltirr 7994  ax-pre-ltwlin 7995  ax-pre-lttrn 7996  ax-pre-apti 7997  ax-pre-ltadd 7998
This theorem depends on definitions:  df-bi 117  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rab 2484  df-v 2765  df-sbc 2990  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3452  df-pw 3608  df-sn 3629  df-pr 3630  df-tp 3631  df-op 3632  df-uni 3841  df-int 3876  df-br 4035  df-opab 4096  df-mpt 4097  df-id 4329  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-fv 5267  df-riota 5878  df-ov 5926  df-oprab 5927  df-mpo 5928  df-pnf 8066  df-mnf 8067  df-xr 8068  df-ltxr 8069  df-le 8070  df-sub 8202  df-neg 8203  df-inn 8994  df-2 9052  df-3 9053  df-4 9054  df-5 9055  df-6 9056  df-7 9057  df-8 9058  df-9 9059  df-n0 9253  df-z 9330  df-uz 9605  df-fz 10087  df-struct 12691  df-ndx 12692  df-slot 12693  df-base 12695  df-plusg 12779  df-tset 12785
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator