| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > lmodplusgd | GIF version | ||
| Description: The additive operation of a constructed left vector space. (Contributed by Mario Carneiro, 2-Oct-2013.) (Revised by Jim Kingdon, 6-Feb-2023.) |
| Ref | Expression |
|---|---|
| lvecfn.w | ⊢ 𝑊 = ({〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx), + 〉, 〈(Scalar‘ndx), 𝐹〉} ∪ {〈( ·𝑠 ‘ndx), · 〉}) |
| lmodstr.b | ⊢ (𝜑 → 𝐵 ∈ 𝑉) |
| lmodstr.g | ⊢ (𝜑 → + ∈ 𝑋) |
| lmodstr.s | ⊢ (𝜑 → 𝐹 ∈ 𝑌) |
| lmodstr.m | ⊢ (𝜑 → · ∈ 𝑍) |
| Ref | Expression |
|---|---|
| lmodplusgd | ⊢ (𝜑 → + = (+g‘𝑊)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | plusgslid 12988 | . 2 ⊢ (+g = Slot (+g‘ndx) ∧ (+g‘ndx) ∈ ℕ) | |
| 2 | lvecfn.w | . . 3 ⊢ 𝑊 = ({〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx), + 〉, 〈(Scalar‘ndx), 𝐹〉} ∪ {〈( ·𝑠 ‘ndx), · 〉}) | |
| 3 | lmodstr.b | . . 3 ⊢ (𝜑 → 𝐵 ∈ 𝑉) | |
| 4 | lmodstr.g | . . 3 ⊢ (𝜑 → + ∈ 𝑋) | |
| 5 | lmodstr.s | . . 3 ⊢ (𝜑 → 𝐹 ∈ 𝑌) | |
| 6 | lmodstr.m | . . 3 ⊢ (𝜑 → · ∈ 𝑍) | |
| 7 | 2, 3, 4, 5, 6 | lmodstrd 13040 | . 2 ⊢ (𝜑 → 𝑊 Struct 〈1, 6〉) |
| 8 | 1 | simpri 113 | . . . . 5 ⊢ (+g‘ndx) ∈ ℕ |
| 9 | opexg 4276 | . . . . 5 ⊢ (((+g‘ndx) ∈ ℕ ∧ + ∈ 𝑋) → 〈(+g‘ndx), + 〉 ∈ V) | |
| 10 | 8, 4, 9 | sylancr 414 | . . . 4 ⊢ (𝜑 → 〈(+g‘ndx), + 〉 ∈ V) |
| 11 | tpid2g 3748 | . . . 4 ⊢ (〈(+g‘ndx), + 〉 ∈ V → 〈(+g‘ndx), + 〉 ∈ {〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx), + 〉, 〈(Scalar‘ndx), 𝐹〉}) | |
| 12 | elun1 3341 | . . . 4 ⊢ (〈(+g‘ndx), + 〉 ∈ {〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx), + 〉, 〈(Scalar‘ndx), 𝐹〉} → 〈(+g‘ndx), + 〉 ∈ ({〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx), + 〉, 〈(Scalar‘ndx), 𝐹〉} ∪ {〈( ·𝑠 ‘ndx), · 〉})) | |
| 13 | 10, 11, 12 | 3syl 17 | . . 3 ⊢ (𝜑 → 〈(+g‘ndx), + 〉 ∈ ({〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx), + 〉, 〈(Scalar‘ndx), 𝐹〉} ∪ {〈( ·𝑠 ‘ndx), · 〉})) |
| 14 | 13, 2 | eleqtrrdi 2300 | . 2 ⊢ (𝜑 → 〈(+g‘ndx), + 〉 ∈ 𝑊) |
| 15 | 1, 7, 4, 14 | opelstrsl 12990 | 1 ⊢ (𝜑 → + = (+g‘𝑊)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1373 ∈ wcel 2177 Vcvv 2773 ∪ cun 3165 {csn 3634 {ctp 3636 〈cop 3637 ‘cfv 5276 1c1 7933 ℕcn 9043 6c6 9098 ndxcnx 12873 Slot cslot 12875 Basecbs 12876 +gcplusg 12953 Scalarcsca 12956 ·𝑠 cvsca 12957 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-sep 4166 ax-pow 4222 ax-pr 4257 ax-un 4484 ax-setind 4589 ax-cnex 8023 ax-resscn 8024 ax-1cn 8025 ax-1re 8026 ax-icn 8027 ax-addcl 8028 ax-addrcl 8029 ax-mulcl 8030 ax-addcom 8032 ax-addass 8034 ax-distr 8036 ax-i2m1 8037 ax-0lt1 8038 ax-0id 8040 ax-rnegex 8041 ax-cnre 8043 ax-pre-ltirr 8044 ax-pre-ltwlin 8045 ax-pre-lttrn 8046 ax-pre-apti 8047 ax-pre-ltadd 8048 |
| This theorem depends on definitions: df-bi 117 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-nel 2473 df-ral 2490 df-rex 2491 df-reu 2492 df-rab 2494 df-v 2775 df-sbc 3000 df-dif 3169 df-un 3171 df-in 3173 df-ss 3180 df-nul 3462 df-pw 3619 df-sn 3640 df-pr 3641 df-tp 3642 df-op 3643 df-uni 3853 df-int 3888 df-br 4048 df-opab 4110 df-mpt 4111 df-id 4344 df-xp 4685 df-rel 4686 df-cnv 4687 df-co 4688 df-dm 4689 df-rn 4690 df-res 4691 df-ima 4692 df-iota 5237 df-fun 5278 df-fn 5279 df-f 5280 df-fv 5284 df-riota 5906 df-ov 5954 df-oprab 5955 df-mpo 5956 df-pnf 8116 df-mnf 8117 df-xr 8118 df-ltxr 8119 df-le 8120 df-sub 8252 df-neg 8253 df-inn 9044 df-2 9102 df-3 9103 df-4 9104 df-5 9105 df-6 9106 df-n0 9303 df-z 9380 df-uz 9656 df-fz 10138 df-struct 12878 df-ndx 12879 df-slot 12880 df-base 12882 df-plusg 12966 df-sca 12969 df-vsca 12970 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |