![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > lmodplusgd | GIF version |
Description: The additive operation of a constructed left vector space. (Contributed by Mario Carneiro, 2-Oct-2013.) (Revised by Jim Kingdon, 6-Feb-2023.) |
Ref | Expression |
---|---|
lvecfn.w | ⊢ 𝑊 = ({〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx), + 〉, 〈(Scalar‘ndx), 𝐹〉} ∪ {〈( ·𝑠 ‘ndx), · 〉}) |
lmodstr.b | ⊢ (𝜑 → 𝐵 ∈ 𝑉) |
lmodstr.g | ⊢ (𝜑 → + ∈ 𝑋) |
lmodstr.s | ⊢ (𝜑 → 𝐹 ∈ 𝑌) |
lmodstr.m | ⊢ (𝜑 → · ∈ 𝑍) |
Ref | Expression |
---|---|
lmodplusgd | ⊢ (𝜑 → + = (+g‘𝑊)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | plusgslid 11753 | . 2 ⊢ (+g = Slot (+g‘ndx) ∧ (+g‘ndx) ∈ ℕ) | |
2 | lvecfn.w | . . 3 ⊢ 𝑊 = ({〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx), + 〉, 〈(Scalar‘ndx), 𝐹〉} ∪ {〈( ·𝑠 ‘ndx), · 〉}) | |
3 | lmodstr.b | . . 3 ⊢ (𝜑 → 𝐵 ∈ 𝑉) | |
4 | lmodstr.g | . . 3 ⊢ (𝜑 → + ∈ 𝑋) | |
5 | lmodstr.s | . . 3 ⊢ (𝜑 → 𝐹 ∈ 𝑌) | |
6 | lmodstr.m | . . 3 ⊢ (𝜑 → · ∈ 𝑍) | |
7 | 2, 3, 4, 5, 6 | lmodstrd 11791 | . 2 ⊢ (𝜑 → 𝑊 Struct 〈1, 6〉) |
8 | 1 | simpri 112 | . . . . 5 ⊢ (+g‘ndx) ∈ ℕ |
9 | opexg 4079 | . . . . 5 ⊢ (((+g‘ndx) ∈ ℕ ∧ + ∈ 𝑋) → 〈(+g‘ndx), + 〉 ∈ V) | |
10 | 8, 4, 9 | sylancr 406 | . . . 4 ⊢ (𝜑 → 〈(+g‘ndx), + 〉 ∈ V) |
11 | tpid2g 3576 | . . . 4 ⊢ (〈(+g‘ndx), + 〉 ∈ V → 〈(+g‘ndx), + 〉 ∈ {〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx), + 〉, 〈(Scalar‘ndx), 𝐹〉}) | |
12 | elun1 3182 | . . . 4 ⊢ (〈(+g‘ndx), + 〉 ∈ {〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx), + 〉, 〈(Scalar‘ndx), 𝐹〉} → 〈(+g‘ndx), + 〉 ∈ ({〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx), + 〉, 〈(Scalar‘ndx), 𝐹〉} ∪ {〈( ·𝑠 ‘ndx), · 〉})) | |
13 | 10, 11, 12 | 3syl 17 | . . 3 ⊢ (𝜑 → 〈(+g‘ndx), + 〉 ∈ ({〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx), + 〉, 〈(Scalar‘ndx), 𝐹〉} ∪ {〈( ·𝑠 ‘ndx), · 〉})) |
14 | 13, 2 | syl6eleqr 2188 | . 2 ⊢ (𝜑 → 〈(+g‘ndx), + 〉 ∈ 𝑊) |
15 | 1, 7, 4, 14 | opelstrsl 11754 | 1 ⊢ (𝜑 → + = (+g‘𝑊)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1296 ∈ wcel 1445 Vcvv 2633 ∪ cun 3011 {csn 3466 {ctp 3468 〈cop 3469 ‘cfv 5049 1c1 7448 ℕcn 8520 6c6 8575 ndxcnx 11655 Slot cslot 11657 Basecbs 11658 +gcplusg 11720 Scalarcsca 11723 ·𝑠 cvsca 11724 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 582 ax-in2 583 ax-io 668 ax-5 1388 ax-7 1389 ax-gen 1390 ax-ie1 1434 ax-ie2 1435 ax-8 1447 ax-10 1448 ax-11 1449 ax-i12 1450 ax-bndl 1451 ax-4 1452 ax-13 1456 ax-14 1457 ax-17 1471 ax-i9 1475 ax-ial 1479 ax-i5r 1480 ax-ext 2077 ax-sep 3978 ax-pow 4030 ax-pr 4060 ax-un 4284 ax-setind 4381 ax-cnex 7533 ax-resscn 7534 ax-1cn 7535 ax-1re 7536 ax-icn 7537 ax-addcl 7538 ax-addrcl 7539 ax-mulcl 7540 ax-addcom 7542 ax-addass 7544 ax-distr 7546 ax-i2m1 7547 ax-0lt1 7548 ax-0id 7550 ax-rnegex 7551 ax-cnre 7553 ax-pre-ltirr 7554 ax-pre-ltwlin 7555 ax-pre-lttrn 7556 ax-pre-apti 7557 ax-pre-ltadd 7558 |
This theorem depends on definitions: df-bi 116 df-3or 928 df-3an 929 df-tru 1299 df-fal 1302 df-nf 1402 df-sb 1700 df-eu 1958 df-mo 1959 df-clab 2082 df-cleq 2088 df-clel 2091 df-nfc 2224 df-ne 2263 df-nel 2358 df-ral 2375 df-rex 2376 df-reu 2377 df-rab 2379 df-v 2635 df-sbc 2855 df-dif 3015 df-un 3017 df-in 3019 df-ss 3026 df-nul 3303 df-pw 3451 df-sn 3472 df-pr 3473 df-tp 3474 df-op 3475 df-uni 3676 df-int 3711 df-br 3868 df-opab 3922 df-mpt 3923 df-id 4144 df-xp 4473 df-rel 4474 df-cnv 4475 df-co 4476 df-dm 4477 df-rn 4478 df-res 4479 df-ima 4480 df-iota 5014 df-fun 5051 df-fn 5052 df-f 5053 df-fv 5057 df-riota 5646 df-ov 5693 df-oprab 5694 df-mpt2 5695 df-pnf 7621 df-mnf 7622 df-xr 7623 df-ltxr 7624 df-le 7625 df-sub 7752 df-neg 7753 df-inn 8521 df-2 8579 df-3 8580 df-4 8581 df-5 8582 df-6 8583 df-n0 8772 df-z 8849 df-uz 9119 df-fz 9574 df-struct 11660 df-ndx 11661 df-slot 11662 df-base 11664 df-plusg 11733 df-sca 11736 df-vsca 11737 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |