![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > srngplusgd | GIF version |
Description: The addition operation of a constructed star ring. (Contributed by Mario Carneiro, 20-Jun-2015.) (Revised by Jim Kingdon, 5-Feb-2023.) |
Ref | Expression |
---|---|
srngstr.r | ⊢ 𝑅 = ({〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx), + 〉, 〈(.r‘ndx), · 〉} ∪ {〈(*𝑟‘ndx), ∗ 〉}) |
srngstrd.b | ⊢ (𝜑 → 𝐵 ∈ 𝑉) |
srngstrd.p | ⊢ (𝜑 → + ∈ 𝑊) |
srngstrd.m | ⊢ (𝜑 → · ∈ 𝑋) |
srngstrd.s | ⊢ (𝜑 → ∗ ∈ 𝑌) |
Ref | Expression |
---|---|
srngplusgd | ⊢ (𝜑 → + = (+g‘𝑅)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | plusgslid 12565 | . 2 ⊢ (+g = Slot (+g‘ndx) ∧ (+g‘ndx) ∈ ℕ) | |
2 | srngstr.r | . . 3 ⊢ 𝑅 = ({〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx), + 〉, 〈(.r‘ndx), · 〉} ∪ {〈(*𝑟‘ndx), ∗ 〉}) | |
3 | srngstrd.b | . . 3 ⊢ (𝜑 → 𝐵 ∈ 𝑉) | |
4 | srngstrd.p | . . 3 ⊢ (𝜑 → + ∈ 𝑊) | |
5 | srngstrd.m | . . 3 ⊢ (𝜑 → · ∈ 𝑋) | |
6 | srngstrd.s | . . 3 ⊢ (𝜑 → ∗ ∈ 𝑌) | |
7 | 2, 3, 4, 5, 6 | srngstrd 12598 | . 2 ⊢ (𝜑 → 𝑅 Struct 〈1, 4〉) |
8 | 1 | simpri 113 | . . . . 5 ⊢ (+g‘ndx) ∈ ℕ |
9 | opexg 4228 | . . . . 5 ⊢ (((+g‘ndx) ∈ ℕ ∧ + ∈ 𝑊) → 〈(+g‘ndx), + 〉 ∈ V) | |
10 | 8, 4, 9 | sylancr 414 | . . . 4 ⊢ (𝜑 → 〈(+g‘ndx), + 〉 ∈ V) |
11 | tpid2g 3706 | . . . 4 ⊢ (〈(+g‘ndx), + 〉 ∈ V → 〈(+g‘ndx), + 〉 ∈ {〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx), + 〉, 〈(.r‘ndx), · 〉}) | |
12 | elun1 3302 | . . . 4 ⊢ (〈(+g‘ndx), + 〉 ∈ {〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx), + 〉, 〈(.r‘ndx), · 〉} → 〈(+g‘ndx), + 〉 ∈ ({〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx), + 〉, 〈(.r‘ndx), · 〉} ∪ {〈(*𝑟‘ndx), ∗ 〉})) | |
13 | 10, 11, 12 | 3syl 17 | . . 3 ⊢ (𝜑 → 〈(+g‘ndx), + 〉 ∈ ({〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx), + 〉, 〈(.r‘ndx), · 〉} ∪ {〈(*𝑟‘ndx), ∗ 〉})) |
14 | 13, 2 | eleqtrrdi 2271 | . 2 ⊢ (𝜑 → 〈(+g‘ndx), + 〉 ∈ 𝑅) |
15 | 1, 7, 4, 14 | opelstrsl 12567 | 1 ⊢ (𝜑 → + = (+g‘𝑅)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1353 ∈ wcel 2148 Vcvv 2737 ∪ cun 3127 {csn 3592 {ctp 3594 〈cop 3595 ‘cfv 5216 1c1 7811 ℕcn 8917 4c4 8970 ndxcnx 12453 Slot cslot 12455 Basecbs 12456 +gcplusg 12530 .rcmulr 12531 *𝑟cstv 12532 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-13 2150 ax-14 2151 ax-ext 2159 ax-sep 4121 ax-pow 4174 ax-pr 4209 ax-un 4433 ax-setind 4536 ax-cnex 7901 ax-resscn 7902 ax-1cn 7903 ax-1re 7904 ax-icn 7905 ax-addcl 7906 ax-addrcl 7907 ax-mulcl 7908 ax-addcom 7910 ax-addass 7912 ax-distr 7914 ax-i2m1 7915 ax-0lt1 7916 ax-0id 7918 ax-rnegex 7919 ax-cnre 7921 ax-pre-ltirr 7922 ax-pre-ltwlin 7923 ax-pre-lttrn 7924 ax-pre-apti 7925 ax-pre-ltadd 7926 |
This theorem depends on definitions: df-bi 117 df-3or 979 df-3an 980 df-tru 1356 df-fal 1359 df-nf 1461 df-sb 1763 df-eu 2029 df-mo 2030 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ne 2348 df-nel 2443 df-ral 2460 df-rex 2461 df-reu 2462 df-rab 2464 df-v 2739 df-sbc 2963 df-dif 3131 df-un 3133 df-in 3135 df-ss 3142 df-nul 3423 df-pw 3577 df-sn 3598 df-pr 3599 df-tp 3600 df-op 3601 df-uni 3810 df-int 3845 df-br 4004 df-opab 4065 df-mpt 4066 df-id 4293 df-xp 4632 df-rel 4633 df-cnv 4634 df-co 4635 df-dm 4636 df-rn 4637 df-res 4638 df-ima 4639 df-iota 5178 df-fun 5218 df-fn 5219 df-f 5220 df-fv 5224 df-riota 5830 df-ov 5877 df-oprab 5878 df-mpo 5879 df-pnf 7992 df-mnf 7993 df-xr 7994 df-ltxr 7995 df-le 7996 df-sub 8128 df-neg 8129 df-inn 8918 df-2 8976 df-3 8977 df-4 8978 df-n0 9175 df-z 9252 df-uz 9527 df-fz 10007 df-struct 12458 df-ndx 12459 df-slot 12460 df-base 12462 df-plusg 12543 df-mulr 12544 df-starv 12545 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |