| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > srngplusgd | GIF version | ||
| Description: The addition operation of a constructed star ring. (Contributed by Mario Carneiro, 20-Jun-2015.) (Revised by Jim Kingdon, 5-Feb-2023.) |
| Ref | Expression |
|---|---|
| srngstr.r | ⊢ 𝑅 = ({〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx), + 〉, 〈(.r‘ndx), · 〉} ∪ {〈(*𝑟‘ndx), ∗ 〉}) |
| srngstrd.b | ⊢ (𝜑 → 𝐵 ∈ 𝑉) |
| srngstrd.p | ⊢ (𝜑 → + ∈ 𝑊) |
| srngstrd.m | ⊢ (𝜑 → · ∈ 𝑋) |
| srngstrd.s | ⊢ (𝜑 → ∗ ∈ 𝑌) |
| Ref | Expression |
|---|---|
| srngplusgd | ⊢ (𝜑 → + = (+g‘𝑅)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | plusgslid 12800 | . 2 ⊢ (+g = Slot (+g‘ndx) ∧ (+g‘ndx) ∈ ℕ) | |
| 2 | srngstr.r | . . 3 ⊢ 𝑅 = ({〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx), + 〉, 〈(.r‘ndx), · 〉} ∪ {〈(*𝑟‘ndx), ∗ 〉}) | |
| 3 | srngstrd.b | . . 3 ⊢ (𝜑 → 𝐵 ∈ 𝑉) | |
| 4 | srngstrd.p | . . 3 ⊢ (𝜑 → + ∈ 𝑊) | |
| 5 | srngstrd.m | . . 3 ⊢ (𝜑 → · ∈ 𝑋) | |
| 6 | srngstrd.s | . . 3 ⊢ (𝜑 → ∗ ∈ 𝑌) | |
| 7 | 2, 3, 4, 5, 6 | srngstrd 12833 | . 2 ⊢ (𝜑 → 𝑅 Struct 〈1, 4〉) |
| 8 | 1 | simpri 113 | . . . . 5 ⊢ (+g‘ndx) ∈ ℕ |
| 9 | opexg 4262 | . . . . 5 ⊢ (((+g‘ndx) ∈ ℕ ∧ + ∈ 𝑊) → 〈(+g‘ndx), + 〉 ∈ V) | |
| 10 | 8, 4, 9 | sylancr 414 | . . . 4 ⊢ (𝜑 → 〈(+g‘ndx), + 〉 ∈ V) |
| 11 | tpid2g 3737 | . . . 4 ⊢ (〈(+g‘ndx), + 〉 ∈ V → 〈(+g‘ndx), + 〉 ∈ {〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx), + 〉, 〈(.r‘ndx), · 〉}) | |
| 12 | elun1 3331 | . . . 4 ⊢ (〈(+g‘ndx), + 〉 ∈ {〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx), + 〉, 〈(.r‘ndx), · 〉} → 〈(+g‘ndx), + 〉 ∈ ({〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx), + 〉, 〈(.r‘ndx), · 〉} ∪ {〈(*𝑟‘ndx), ∗ 〉})) | |
| 13 | 10, 11, 12 | 3syl 17 | . . 3 ⊢ (𝜑 → 〈(+g‘ndx), + 〉 ∈ ({〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx), + 〉, 〈(.r‘ndx), · 〉} ∪ {〈(*𝑟‘ndx), ∗ 〉})) |
| 14 | 13, 2 | eleqtrrdi 2290 | . 2 ⊢ (𝜑 → 〈(+g‘ndx), + 〉 ∈ 𝑅) |
| 15 | 1, 7, 4, 14 | opelstrsl 12802 | 1 ⊢ (𝜑 → + = (+g‘𝑅)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1364 ∈ wcel 2167 Vcvv 2763 ∪ cun 3155 {csn 3623 {ctp 3625 〈cop 3626 ‘cfv 5259 1c1 7882 ℕcn 8992 4c4 9045 ndxcnx 12685 Slot cslot 12687 Basecbs 12688 +gcplusg 12765 .rcmulr 12766 *𝑟cstv 12767 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4152 ax-pow 4208 ax-pr 4243 ax-un 4469 ax-setind 4574 ax-cnex 7972 ax-resscn 7973 ax-1cn 7974 ax-1re 7975 ax-icn 7976 ax-addcl 7977 ax-addrcl 7978 ax-mulcl 7979 ax-addcom 7981 ax-addass 7983 ax-distr 7985 ax-i2m1 7986 ax-0lt1 7987 ax-0id 7989 ax-rnegex 7990 ax-cnre 7992 ax-pre-ltirr 7993 ax-pre-ltwlin 7994 ax-pre-lttrn 7995 ax-pre-apti 7996 ax-pre-ltadd 7997 |
| This theorem depends on definitions: df-bi 117 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-reu 2482 df-rab 2484 df-v 2765 df-sbc 2990 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3452 df-pw 3608 df-sn 3629 df-pr 3630 df-tp 3631 df-op 3632 df-uni 3841 df-int 3876 df-br 4035 df-opab 4096 df-mpt 4097 df-id 4329 df-xp 4670 df-rel 4671 df-cnv 4672 df-co 4673 df-dm 4674 df-rn 4675 df-res 4676 df-ima 4677 df-iota 5220 df-fun 5261 df-fn 5262 df-f 5263 df-fv 5267 df-riota 5878 df-ov 5926 df-oprab 5927 df-mpo 5928 df-pnf 8065 df-mnf 8066 df-xr 8067 df-ltxr 8068 df-le 8069 df-sub 8201 df-neg 8202 df-inn 8993 df-2 9051 df-3 9052 df-4 9053 df-n0 9252 df-z 9329 df-uz 9604 df-fz 10086 df-struct 12690 df-ndx 12691 df-slot 12692 df-base 12694 df-plusg 12778 df-mulr 12779 df-starv 12780 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |