ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  srngplusgd GIF version

Theorem srngplusgd 12765
Description: The addition operation of a constructed star ring. (Contributed by Mario Carneiro, 20-Jun-2015.) (Revised by Jim Kingdon, 5-Feb-2023.)
Hypotheses
Ref Expression
srngstr.r 𝑅 = ({⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), + ⟩, ⟨(.r‘ndx), · ⟩} ∪ {⟨(*𝑟‘ndx), ⟩})
srngstrd.b (𝜑𝐵𝑉)
srngstrd.p (𝜑+𝑊)
srngstrd.m (𝜑·𝑋)
srngstrd.s (𝜑𝑌)
Assertion
Ref Expression
srngplusgd (𝜑+ = (+g𝑅))

Proof of Theorem srngplusgd
StepHypRef Expression
1 plusgslid 12730 . 2 (+g = Slot (+g‘ndx) ∧ (+g‘ndx) ∈ ℕ)
2 srngstr.r . . 3 𝑅 = ({⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), + ⟩, ⟨(.r‘ndx), · ⟩} ∪ {⟨(*𝑟‘ndx), ⟩})
3 srngstrd.b . . 3 (𝜑𝐵𝑉)
4 srngstrd.p . . 3 (𝜑+𝑊)
5 srngstrd.m . . 3 (𝜑·𝑋)
6 srngstrd.s . . 3 (𝜑𝑌)
72, 3, 4, 5, 6srngstrd 12763 . 2 (𝜑𝑅 Struct ⟨1, 4⟩)
81simpri 113 . . . . 5 (+g‘ndx) ∈ ℕ
9 opexg 4257 . . . . 5 (((+g‘ndx) ∈ ℕ ∧ +𝑊) → ⟨(+g‘ndx), + ⟩ ∈ V)
108, 4, 9sylancr 414 . . . 4 (𝜑 → ⟨(+g‘ndx), + ⟩ ∈ V)
11 tpid2g 3732 . . . 4 (⟨(+g‘ndx), + ⟩ ∈ V → ⟨(+g‘ndx), + ⟩ ∈ {⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), + ⟩, ⟨(.r‘ndx), · ⟩})
12 elun1 3326 . . . 4 (⟨(+g‘ndx), + ⟩ ∈ {⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), + ⟩, ⟨(.r‘ndx), · ⟩} → ⟨(+g‘ndx), + ⟩ ∈ ({⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), + ⟩, ⟨(.r‘ndx), · ⟩} ∪ {⟨(*𝑟‘ndx), ⟩}))
1310, 11, 123syl 17 . . 3 (𝜑 → ⟨(+g‘ndx), + ⟩ ∈ ({⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), + ⟩, ⟨(.r‘ndx), · ⟩} ∪ {⟨(*𝑟‘ndx), ⟩}))
1413, 2eleqtrrdi 2287 . 2 (𝜑 → ⟨(+g‘ndx), + ⟩ ∈ 𝑅)
151, 7, 4, 14opelstrsl 12732 1 (𝜑+ = (+g𝑅))
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1364  wcel 2164  Vcvv 2760  cun 3151  {csn 3618  {ctp 3620  cop 3621  cfv 5254  1c1 7873  cn 8982  4c4 9035  ndxcnx 12615  Slot cslot 12617  Basecbs 12618  +gcplusg 12695  .rcmulr 12696  *𝑟cstv 12697
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-setind 4569  ax-cnex 7963  ax-resscn 7964  ax-1cn 7965  ax-1re 7966  ax-icn 7967  ax-addcl 7968  ax-addrcl 7969  ax-mulcl 7970  ax-addcom 7972  ax-addass 7974  ax-distr 7976  ax-i2m1 7977  ax-0lt1 7978  ax-0id 7980  ax-rnegex 7981  ax-cnre 7983  ax-pre-ltirr 7984  ax-pre-ltwlin 7985  ax-pre-lttrn 7986  ax-pre-apti 7987  ax-pre-ltadd 7988
This theorem depends on definitions:  df-bi 117  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rab 2481  df-v 2762  df-sbc 2986  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3447  df-pw 3603  df-sn 3624  df-pr 3625  df-tp 3626  df-op 3627  df-uni 3836  df-int 3871  df-br 4030  df-opab 4091  df-mpt 4092  df-id 4324  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672  df-iota 5215  df-fun 5256  df-fn 5257  df-f 5258  df-fv 5262  df-riota 5873  df-ov 5921  df-oprab 5922  df-mpo 5923  df-pnf 8056  df-mnf 8057  df-xr 8058  df-ltxr 8059  df-le 8060  df-sub 8192  df-neg 8193  df-inn 8983  df-2 9041  df-3 9042  df-4 9043  df-n0 9241  df-z 9318  df-uz 9593  df-fz 10075  df-struct 12620  df-ndx 12621  df-slot 12622  df-base 12624  df-plusg 12708  df-mulr 12709  df-starv 12710
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator