| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ipsaddgd | GIF version | ||
| Description: The additive operation of a constructed inner product space. (Contributed by Stefan O'Rear, 27-Nov-2014.) (Revised by Jim Kingdon, 7-Feb-2023.) |
| Ref | Expression |
|---|---|
| ipspart.a | ⊢ 𝐴 = ({〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx), + 〉, 〈(.r‘ndx), × 〉} ∪ {〈(Scalar‘ndx), 𝑆〉, 〈( ·𝑠 ‘ndx), · 〉, 〈(·𝑖‘ndx), 𝐼〉}) |
| ipsstrd.b | ⊢ (𝜑 → 𝐵 ∈ 𝑉) |
| ipsstrd.p | ⊢ (𝜑 → + ∈ 𝑊) |
| ipsstrd.r | ⊢ (𝜑 → × ∈ 𝑋) |
| ipsstrd.s | ⊢ (𝜑 → 𝑆 ∈ 𝑌) |
| ipsstrd.x | ⊢ (𝜑 → · ∈ 𝑄) |
| ipsstrd.i | ⊢ (𝜑 → 𝐼 ∈ 𝑍) |
| Ref | Expression |
|---|---|
| ipsaddgd | ⊢ (𝜑 → + = (+g‘𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | plusgslid 12886 | . 2 ⊢ (+g = Slot (+g‘ndx) ∧ (+g‘ndx) ∈ ℕ) | |
| 2 | ipspart.a | . . 3 ⊢ 𝐴 = ({〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx), + 〉, 〈(.r‘ndx), × 〉} ∪ {〈(Scalar‘ndx), 𝑆〉, 〈( ·𝑠 ‘ndx), · 〉, 〈(·𝑖‘ndx), 𝐼〉}) | |
| 3 | ipsstrd.b | . . 3 ⊢ (𝜑 → 𝐵 ∈ 𝑉) | |
| 4 | ipsstrd.p | . . 3 ⊢ (𝜑 → + ∈ 𝑊) | |
| 5 | ipsstrd.r | . . 3 ⊢ (𝜑 → × ∈ 𝑋) | |
| 6 | ipsstrd.s | . . 3 ⊢ (𝜑 → 𝑆 ∈ 𝑌) | |
| 7 | ipsstrd.x | . . 3 ⊢ (𝜑 → · ∈ 𝑄) | |
| 8 | ipsstrd.i | . . 3 ⊢ (𝜑 → 𝐼 ∈ 𝑍) | |
| 9 | 2, 3, 4, 5, 6, 7, 8 | ipsstrd 12950 | . 2 ⊢ (𝜑 → 𝐴 Struct 〈1, 8〉) |
| 10 | 1 | simpri 113 | . . . . 5 ⊢ (+g‘ndx) ∈ ℕ |
| 11 | opexg 4271 | . . . . 5 ⊢ (((+g‘ndx) ∈ ℕ ∧ + ∈ 𝑊) → 〈(+g‘ndx), + 〉 ∈ V) | |
| 12 | 10, 4, 11 | sylancr 414 | . . . 4 ⊢ (𝜑 → 〈(+g‘ndx), + 〉 ∈ V) |
| 13 | tpid2g 3746 | . . . 4 ⊢ (〈(+g‘ndx), + 〉 ∈ V → 〈(+g‘ndx), + 〉 ∈ {〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx), + 〉, 〈(.r‘ndx), × 〉}) | |
| 14 | elun1 3339 | . . . 4 ⊢ (〈(+g‘ndx), + 〉 ∈ {〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx), + 〉, 〈(.r‘ndx), × 〉} → 〈(+g‘ndx), + 〉 ∈ ({〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx), + 〉, 〈(.r‘ndx), × 〉} ∪ {〈(Scalar‘ndx), 𝑆〉, 〈( ·𝑠 ‘ndx), · 〉, 〈(·𝑖‘ndx), 𝐼〉})) | |
| 15 | 12, 13, 14 | 3syl 17 | . . 3 ⊢ (𝜑 → 〈(+g‘ndx), + 〉 ∈ ({〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx), + 〉, 〈(.r‘ndx), × 〉} ∪ {〈(Scalar‘ndx), 𝑆〉, 〈( ·𝑠 ‘ndx), · 〉, 〈(·𝑖‘ndx), 𝐼〉})) |
| 16 | 15, 2 | eleqtrrdi 2298 | . 2 ⊢ (𝜑 → 〈(+g‘ndx), + 〉 ∈ 𝐴) |
| 17 | 1, 9, 4, 16 | opelstrsl 12888 | 1 ⊢ (𝜑 → + = (+g‘𝐴)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1372 ∈ wcel 2175 Vcvv 2771 ∪ cun 3163 {ctp 3634 〈cop 3635 ‘cfv 5270 1c1 7925 ℕcn 9035 8c8 9092 ndxcnx 12771 Slot cslot 12773 Basecbs 12774 +gcplusg 12851 .rcmulr 12852 Scalarcsca 12854 ·𝑠 cvsca 12855 ·𝑖cip 12856 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-13 2177 ax-14 2178 ax-ext 2186 ax-sep 4161 ax-pow 4217 ax-pr 4252 ax-un 4479 ax-setind 4584 ax-cnex 8015 ax-resscn 8016 ax-1cn 8017 ax-1re 8018 ax-icn 8019 ax-addcl 8020 ax-addrcl 8021 ax-mulcl 8022 ax-addcom 8024 ax-addass 8026 ax-distr 8028 ax-i2m1 8029 ax-0lt1 8030 ax-0id 8032 ax-rnegex 8033 ax-cnre 8035 ax-pre-ltirr 8036 ax-pre-ltwlin 8037 ax-pre-lttrn 8038 ax-pre-apti 8039 ax-pre-ltadd 8040 |
| This theorem depends on definitions: df-bi 117 df-3or 981 df-3an 982 df-tru 1375 df-fal 1378 df-nf 1483 df-sb 1785 df-eu 2056 df-mo 2057 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-ne 2376 df-nel 2471 df-ral 2488 df-rex 2489 df-reu 2490 df-rab 2492 df-v 2773 df-sbc 2998 df-dif 3167 df-un 3169 df-in 3171 df-ss 3178 df-nul 3460 df-pw 3617 df-sn 3638 df-pr 3639 df-tp 3640 df-op 3641 df-uni 3850 df-int 3885 df-br 4044 df-opab 4105 df-mpt 4106 df-id 4339 df-xp 4680 df-rel 4681 df-cnv 4682 df-co 4683 df-dm 4684 df-rn 4685 df-res 4686 df-ima 4687 df-iota 5231 df-fun 5272 df-fn 5273 df-f 5274 df-fv 5278 df-riota 5898 df-ov 5946 df-oprab 5947 df-mpo 5948 df-pnf 8108 df-mnf 8109 df-xr 8110 df-ltxr 8111 df-le 8112 df-sub 8244 df-neg 8245 df-inn 9036 df-2 9094 df-3 9095 df-4 9096 df-5 9097 df-6 9098 df-7 9099 df-8 9100 df-n0 9295 df-z 9372 df-uz 9648 df-fz 10130 df-struct 12776 df-ndx 12777 df-slot 12778 df-base 12780 df-plusg 12864 df-mulr 12865 df-sca 12867 df-vsca 12868 df-ip 12869 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |