| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ipsvscad | GIF version | ||
| Description: The scalar product operation of a constructed inner product space. (Contributed by Stefan O'Rear, 27-Nov-2014.) (Revised by Jim Kingdon, 8-Feb-2023.) |
| Ref | Expression |
|---|---|
| ipspart.a | ⊢ 𝐴 = ({〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx), + 〉, 〈(.r‘ndx), × 〉} ∪ {〈(Scalar‘ndx), 𝑆〉, 〈( ·𝑠 ‘ndx), · 〉, 〈(·𝑖‘ndx), 𝐼〉}) |
| ipsstrd.b | ⊢ (𝜑 → 𝐵 ∈ 𝑉) |
| ipsstrd.p | ⊢ (𝜑 → + ∈ 𝑊) |
| ipsstrd.r | ⊢ (𝜑 → × ∈ 𝑋) |
| ipsstrd.s | ⊢ (𝜑 → 𝑆 ∈ 𝑌) |
| ipsstrd.x | ⊢ (𝜑 → · ∈ 𝑄) |
| ipsstrd.i | ⊢ (𝜑 → 𝐼 ∈ 𝑍) |
| Ref | Expression |
|---|---|
| ipsvscad | ⊢ (𝜑 → · = ( ·𝑠 ‘𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vscaslid 13182 | . 2 ⊢ ( ·𝑠 = Slot ( ·𝑠 ‘ndx) ∧ ( ·𝑠 ‘ndx) ∈ ℕ) | |
| 2 | ipspart.a | . . 3 ⊢ 𝐴 = ({〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx), + 〉, 〈(.r‘ndx), × 〉} ∪ {〈(Scalar‘ndx), 𝑆〉, 〈( ·𝑠 ‘ndx), · 〉, 〈(·𝑖‘ndx), 𝐼〉}) | |
| 3 | ipsstrd.b | . . 3 ⊢ (𝜑 → 𝐵 ∈ 𝑉) | |
| 4 | ipsstrd.p | . . 3 ⊢ (𝜑 → + ∈ 𝑊) | |
| 5 | ipsstrd.r | . . 3 ⊢ (𝜑 → × ∈ 𝑋) | |
| 6 | ipsstrd.s | . . 3 ⊢ (𝜑 → 𝑆 ∈ 𝑌) | |
| 7 | ipsstrd.x | . . 3 ⊢ (𝜑 → · ∈ 𝑄) | |
| 8 | ipsstrd.i | . . 3 ⊢ (𝜑 → 𝐼 ∈ 𝑍) | |
| 9 | 2, 3, 4, 5, 6, 7, 8 | ipsstrd 13195 | . 2 ⊢ (𝜑 → 𝐴 Struct 〈1, 8〉) |
| 10 | 1 | simpri 113 | . . . . 5 ⊢ ( ·𝑠 ‘ndx) ∈ ℕ |
| 11 | opexg 4313 | . . . . 5 ⊢ ((( ·𝑠 ‘ndx) ∈ ℕ ∧ · ∈ 𝑄) → 〈( ·𝑠 ‘ndx), · 〉 ∈ V) | |
| 12 | 10, 7, 11 | sylancr 414 | . . . 4 ⊢ (𝜑 → 〈( ·𝑠 ‘ndx), · 〉 ∈ V) |
| 13 | tpid2g 3780 | . . . 4 ⊢ (〈( ·𝑠 ‘ndx), · 〉 ∈ V → 〈( ·𝑠 ‘ndx), · 〉 ∈ {〈(Scalar‘ndx), 𝑆〉, 〈( ·𝑠 ‘ndx), · 〉, 〈(·𝑖‘ndx), 𝐼〉}) | |
| 14 | elun2 3372 | . . . 4 ⊢ (〈( ·𝑠 ‘ndx), · 〉 ∈ {〈(Scalar‘ndx), 𝑆〉, 〈( ·𝑠 ‘ndx), · 〉, 〈(·𝑖‘ndx), 𝐼〉} → 〈( ·𝑠 ‘ndx), · 〉 ∈ ({〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx), + 〉, 〈(.r‘ndx), × 〉} ∪ {〈(Scalar‘ndx), 𝑆〉, 〈( ·𝑠 ‘ndx), · 〉, 〈(·𝑖‘ndx), 𝐼〉})) | |
| 15 | 12, 13, 14 | 3syl 17 | . . 3 ⊢ (𝜑 → 〈( ·𝑠 ‘ndx), · 〉 ∈ ({〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx), + 〉, 〈(.r‘ndx), × 〉} ∪ {〈(Scalar‘ndx), 𝑆〉, 〈( ·𝑠 ‘ndx), · 〉, 〈(·𝑖‘ndx), 𝐼〉})) |
| 16 | 15, 2 | eleqtrrdi 2323 | . 2 ⊢ (𝜑 → 〈( ·𝑠 ‘ndx), · 〉 ∈ 𝐴) |
| 17 | 1, 9, 7, 16 | opelstrsl 13133 | 1 ⊢ (𝜑 → · = ( ·𝑠 ‘𝐴)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1395 ∈ wcel 2200 Vcvv 2799 ∪ cun 3195 {ctp 3668 〈cop 3669 ‘cfv 5314 1c1 7988 ℕcn 9098 8c8 9155 ndxcnx 13015 Slot cslot 13017 Basecbs 13018 +gcplusg 13096 .rcmulr 13097 Scalarcsca 13099 ·𝑠 cvsca 13100 ·𝑖cip 13101 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4201 ax-pow 4257 ax-pr 4292 ax-un 4521 ax-setind 4626 ax-cnex 8078 ax-resscn 8079 ax-1cn 8080 ax-1re 8081 ax-icn 8082 ax-addcl 8083 ax-addrcl 8084 ax-mulcl 8085 ax-addcom 8087 ax-addass 8089 ax-distr 8091 ax-i2m1 8092 ax-0lt1 8093 ax-0id 8095 ax-rnegex 8096 ax-cnre 8098 ax-pre-ltirr 8099 ax-pre-ltwlin 8100 ax-pre-lttrn 8101 ax-pre-apti 8102 ax-pre-ltadd 8103 |
| This theorem depends on definitions: df-bi 117 df-3or 1003 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-nel 2496 df-ral 2513 df-rex 2514 df-reu 2515 df-rab 2517 df-v 2801 df-sbc 3029 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-pw 3651 df-sn 3672 df-pr 3673 df-tp 3674 df-op 3675 df-uni 3888 df-int 3923 df-br 4083 df-opab 4145 df-mpt 4146 df-id 4381 df-xp 4722 df-rel 4723 df-cnv 4724 df-co 4725 df-dm 4726 df-rn 4727 df-res 4728 df-ima 4729 df-iota 5274 df-fun 5316 df-fn 5317 df-f 5318 df-fv 5322 df-riota 5947 df-ov 5997 df-oprab 5998 df-mpo 5999 df-pnf 8171 df-mnf 8172 df-xr 8173 df-ltxr 8174 df-le 8175 df-sub 8307 df-neg 8308 df-inn 9099 df-2 9157 df-3 9158 df-4 9159 df-5 9160 df-6 9161 df-7 9162 df-8 9163 df-n0 9358 df-z 9435 df-uz 9711 df-fz 10193 df-struct 13020 df-ndx 13021 df-slot 13022 df-base 13024 df-plusg 13109 df-mulr 13110 df-sca 13112 df-vsca 13113 df-ip 13114 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |