ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ipsvscad GIF version

Theorem ipsvscad 12564
Description: The scalar product operation of a constructed inner product space. (Contributed by Stefan O'Rear, 27-Nov-2014.) (Revised by Jim Kingdon, 8-Feb-2023.)
Hypotheses
Ref Expression
ipspart.a 𝐴 = ({⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), + ⟩, ⟨(.r‘ndx), × ⟩} ∪ {⟨(Scalar‘ndx), 𝑆⟩, ⟨( ·𝑠 ‘ndx), · ⟩, ⟨(·𝑖‘ndx), 𝐼⟩})
ipsstrd.b (𝜑𝐵𝑉)
ipsstrd.p (𝜑+𝑊)
ipsstrd.r (𝜑×𝑋)
ipsstrd.s (𝜑𝑆𝑌)
ipsstrd.x (𝜑·𝑄)
ipsstrd.i (𝜑𝐼𝑍)
Assertion
Ref Expression
ipsvscad (𝜑· = ( ·𝑠𝐴))

Proof of Theorem ipsvscad
StepHypRef Expression
1 vscaslid 12550 . 2 ( ·𝑠 = Slot ( ·𝑠 ‘ndx) ∧ ( ·𝑠 ‘ndx) ∈ ℕ)
2 ipspart.a . . 3 𝐴 = ({⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), + ⟩, ⟨(.r‘ndx), × ⟩} ∪ {⟨(Scalar‘ndx), 𝑆⟩, ⟨( ·𝑠 ‘ndx), · ⟩, ⟨(·𝑖‘ndx), 𝐼⟩})
3 ipsstrd.b . . 3 (𝜑𝐵𝑉)
4 ipsstrd.p . . 3 (𝜑+𝑊)
5 ipsstrd.r . . 3 (𝜑×𝑋)
6 ipsstrd.s . . 3 (𝜑𝑆𝑌)
7 ipsstrd.x . . 3 (𝜑·𝑄)
8 ipsstrd.i . . 3 (𝜑𝐼𝑍)
92, 3, 4, 5, 6, 7, 8ipsstrd 12559 . 2 (𝜑𝐴 Struct ⟨1, 8⟩)
101simpri 112 . . . . 5 ( ·𝑠 ‘ndx) ∈ ℕ
11 opexg 4213 . . . . 5 ((( ·𝑠 ‘ndx) ∈ ℕ ∧ ·𝑄) → ⟨( ·𝑠 ‘ndx), · ⟩ ∈ V)
1210, 7, 11sylancr 412 . . . 4 (𝜑 → ⟨( ·𝑠 ‘ndx), · ⟩ ∈ V)
13 tpid2g 3697 . . . 4 (⟨( ·𝑠 ‘ndx), · ⟩ ∈ V → ⟨( ·𝑠 ‘ndx), · ⟩ ∈ {⟨(Scalar‘ndx), 𝑆⟩, ⟨( ·𝑠 ‘ndx), · ⟩, ⟨(·𝑖‘ndx), 𝐼⟩})
14 elun2 3295 . . . 4 (⟨( ·𝑠 ‘ndx), · ⟩ ∈ {⟨(Scalar‘ndx), 𝑆⟩, ⟨( ·𝑠 ‘ndx), · ⟩, ⟨(·𝑖‘ndx), 𝐼⟩} → ⟨( ·𝑠 ‘ndx), · ⟩ ∈ ({⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), + ⟩, ⟨(.r‘ndx), × ⟩} ∪ {⟨(Scalar‘ndx), 𝑆⟩, ⟨( ·𝑠 ‘ndx), · ⟩, ⟨(·𝑖‘ndx), 𝐼⟩}))
1512, 13, 143syl 17 . . 3 (𝜑 → ⟨( ·𝑠 ‘ndx), · ⟩ ∈ ({⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), + ⟩, ⟨(.r‘ndx), × ⟩} ∪ {⟨(Scalar‘ndx), 𝑆⟩, ⟨( ·𝑠 ‘ndx), · ⟩, ⟨(·𝑖‘ndx), 𝐼⟩}))
1615, 2eleqtrrdi 2264 . 2 (𝜑 → ⟨( ·𝑠 ‘ndx), · ⟩ ∈ 𝐴)
171, 9, 7, 16opelstrsl 12514 1 (𝜑· = ( ·𝑠𝐴))
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1348  wcel 2141  Vcvv 2730  cun 3119  {ctp 3585  cop 3586  cfv 5198  1c1 7775  cn 8878  8c8 8935  ndxcnx 12413  Slot cslot 12415  Basecbs 12416  +gcplusg 12480  .rcmulr 12481  Scalarcsca 12483   ·𝑠 cvsca 12484  ·𝑖cip 12485
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-sep 4107  ax-pow 4160  ax-pr 4194  ax-un 4418  ax-setind 4521  ax-cnex 7865  ax-resscn 7866  ax-1cn 7867  ax-1re 7868  ax-icn 7869  ax-addcl 7870  ax-addrcl 7871  ax-mulcl 7872  ax-addcom 7874  ax-addass 7876  ax-distr 7878  ax-i2m1 7879  ax-0lt1 7880  ax-0id 7882  ax-rnegex 7883  ax-cnre 7885  ax-pre-ltirr 7886  ax-pre-ltwlin 7887  ax-pre-lttrn 7888  ax-pre-apti 7889  ax-pre-ltadd 7890
This theorem depends on definitions:  df-bi 116  df-3or 974  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-nel 2436  df-ral 2453  df-rex 2454  df-reu 2455  df-rab 2457  df-v 2732  df-sbc 2956  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-nul 3415  df-pw 3568  df-sn 3589  df-pr 3590  df-tp 3591  df-op 3592  df-uni 3797  df-int 3832  df-br 3990  df-opab 4051  df-mpt 4052  df-id 4278  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-res 4623  df-ima 4624  df-iota 5160  df-fun 5200  df-fn 5201  df-f 5202  df-fv 5206  df-riota 5809  df-ov 5856  df-oprab 5857  df-mpo 5858  df-pnf 7956  df-mnf 7957  df-xr 7958  df-ltxr 7959  df-le 7960  df-sub 8092  df-neg 8093  df-inn 8879  df-2 8937  df-3 8938  df-4 8939  df-5 8940  df-6 8941  df-7 8942  df-8 8943  df-n0 9136  df-z 9213  df-uz 9488  df-fz 9966  df-struct 12418  df-ndx 12419  df-slot 12420  df-base 12422  df-plusg 12493  df-mulr 12494  df-sca 12496  df-vsca 12497  df-ip 12498
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator