![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > lssuni | GIF version |
Description: The union of all subspaces is the vector space. (Contributed by NM, 13-Mar-2015.) |
Ref | Expression |
---|---|
lssss.v | ⊢ 𝑉 = (Base‘𝑊) |
lssss.s | ⊢ 𝑆 = (LSubSp‘𝑊) |
lssuni.w | ⊢ (𝜑 → 𝑊 ∈ LMod) |
Ref | Expression |
---|---|
lssuni | ⊢ (𝜑 → ∪ 𝑆 = 𝑉) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lssuni.w | . . 3 ⊢ (𝜑 → 𝑊 ∈ LMod) | |
2 | lssss.v | . . . . . . 7 ⊢ 𝑉 = (Base‘𝑊) | |
3 | lssss.s | . . . . . . 7 ⊢ 𝑆 = (LSubSp‘𝑊) | |
4 | 2, 3 | lssssg 13673 | . . . . . 6 ⊢ ((𝑊 ∈ LMod ∧ 𝑥 ∈ 𝑆) → 𝑥 ⊆ 𝑉) |
5 | 4 | ralrimiva 2563 | . . . . 5 ⊢ (𝑊 ∈ LMod → ∀𝑥 ∈ 𝑆 𝑥 ⊆ 𝑉) |
6 | rabid2 2667 | . . . . 5 ⊢ (𝑆 = {𝑥 ∈ 𝑆 ∣ 𝑥 ⊆ 𝑉} ↔ ∀𝑥 ∈ 𝑆 𝑥 ⊆ 𝑉) | |
7 | 5, 6 | sylibr 134 | . . . 4 ⊢ (𝑊 ∈ LMod → 𝑆 = {𝑥 ∈ 𝑆 ∣ 𝑥 ⊆ 𝑉}) |
8 | 7 | unieqd 3835 | . . 3 ⊢ (𝑊 ∈ LMod → ∪ 𝑆 = ∪ {𝑥 ∈ 𝑆 ∣ 𝑥 ⊆ 𝑉}) |
9 | 1, 8 | syl 14 | . 2 ⊢ (𝜑 → ∪ 𝑆 = ∪ {𝑥 ∈ 𝑆 ∣ 𝑥 ⊆ 𝑉}) |
10 | 2, 3 | lss1 13675 | . . 3 ⊢ (𝑊 ∈ LMod → 𝑉 ∈ 𝑆) |
11 | unimax 3858 | . . 3 ⊢ (𝑉 ∈ 𝑆 → ∪ {𝑥 ∈ 𝑆 ∣ 𝑥 ⊆ 𝑉} = 𝑉) | |
12 | 1, 10, 11 | 3syl 17 | . 2 ⊢ (𝜑 → ∪ {𝑥 ∈ 𝑆 ∣ 𝑥 ⊆ 𝑉} = 𝑉) |
13 | 9, 12 | eqtrd 2222 | 1 ⊢ (𝜑 → ∪ 𝑆 = 𝑉) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1364 ∈ wcel 2160 ∀wral 2468 {crab 2472 ⊆ wss 3144 ∪ cuni 3824 ‘cfv 5235 Basecbs 12511 LModclmod 13600 LSubSpclss 13665 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2162 ax-14 2163 ax-ext 2171 ax-sep 4136 ax-pow 4192 ax-pr 4227 ax-un 4451 ax-cnex 7931 ax-resscn 7932 ax-1re 7934 ax-addrcl 7937 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1472 df-sb 1774 df-eu 2041 df-mo 2042 df-clab 2176 df-cleq 2182 df-clel 2185 df-nfc 2321 df-ral 2473 df-rex 2474 df-reu 2475 df-rmo 2476 df-rab 2477 df-v 2754 df-sbc 2978 df-csb 3073 df-un 3148 df-in 3150 df-ss 3157 df-pw 3592 df-sn 3613 df-pr 3614 df-op 3616 df-uni 3825 df-int 3860 df-br 4019 df-opab 4080 df-mpt 4081 df-id 4311 df-xp 4650 df-rel 4651 df-cnv 4652 df-co 4653 df-dm 4654 df-rn 4655 df-res 4656 df-iota 5196 df-fun 5237 df-fn 5238 df-fv 5243 df-riota 5851 df-ov 5898 df-inn 8949 df-2 9007 df-3 9008 df-4 9009 df-5 9010 df-6 9011 df-ndx 12514 df-slot 12515 df-base 12517 df-plusg 12599 df-mulr 12600 df-sca 12602 df-vsca 12603 df-0g 12760 df-mgm 12829 df-sgrp 12862 df-mnd 12875 df-grp 12945 df-lmod 13602 df-lssm 13666 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |