![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > lssuni | GIF version |
Description: The union of all subspaces is the vector space. (Contributed by NM, 13-Mar-2015.) |
Ref | Expression |
---|---|
lssss.v | ⊢ 𝑉 = (Base‘𝑊) |
lssss.s | ⊢ 𝑆 = (LSubSp‘𝑊) |
lssuni.w | ⊢ (𝜑 → 𝑊 ∈ LMod) |
Ref | Expression |
---|---|
lssuni | ⊢ (𝜑 → ∪ 𝑆 = 𝑉) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lssuni.w | . . 3 ⊢ (𝜑 → 𝑊 ∈ LMod) | |
2 | lssss.v | . . . . . . 7 ⊢ 𝑉 = (Base‘𝑊) | |
3 | lssss.s | . . . . . . 7 ⊢ 𝑆 = (LSubSp‘𝑊) | |
4 | 2, 3 | lssssg 13859 | . . . . . 6 ⊢ ((𝑊 ∈ LMod ∧ 𝑥 ∈ 𝑆) → 𝑥 ⊆ 𝑉) |
5 | 4 | ralrimiva 2567 | . . . . 5 ⊢ (𝑊 ∈ LMod → ∀𝑥 ∈ 𝑆 𝑥 ⊆ 𝑉) |
6 | rabid2 2671 | . . . . 5 ⊢ (𝑆 = {𝑥 ∈ 𝑆 ∣ 𝑥 ⊆ 𝑉} ↔ ∀𝑥 ∈ 𝑆 𝑥 ⊆ 𝑉) | |
7 | 5, 6 | sylibr 134 | . . . 4 ⊢ (𝑊 ∈ LMod → 𝑆 = {𝑥 ∈ 𝑆 ∣ 𝑥 ⊆ 𝑉}) |
8 | 7 | unieqd 3847 | . . 3 ⊢ (𝑊 ∈ LMod → ∪ 𝑆 = ∪ {𝑥 ∈ 𝑆 ∣ 𝑥 ⊆ 𝑉}) |
9 | 1, 8 | syl 14 | . 2 ⊢ (𝜑 → ∪ 𝑆 = ∪ {𝑥 ∈ 𝑆 ∣ 𝑥 ⊆ 𝑉}) |
10 | 2, 3 | lss1 13861 | . . 3 ⊢ (𝑊 ∈ LMod → 𝑉 ∈ 𝑆) |
11 | unimax 3870 | . . 3 ⊢ (𝑉 ∈ 𝑆 → ∪ {𝑥 ∈ 𝑆 ∣ 𝑥 ⊆ 𝑉} = 𝑉) | |
12 | 1, 10, 11 | 3syl 17 | . 2 ⊢ (𝜑 → ∪ {𝑥 ∈ 𝑆 ∣ 𝑥 ⊆ 𝑉} = 𝑉) |
13 | 9, 12 | eqtrd 2226 | 1 ⊢ (𝜑 → ∪ 𝑆 = 𝑉) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1364 ∈ wcel 2164 ∀wral 2472 {crab 2476 ⊆ wss 3154 ∪ cuni 3836 ‘cfv 5255 Basecbs 12621 LModclmod 13786 LSubSpclss 13851 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-sep 4148 ax-pow 4204 ax-pr 4239 ax-un 4465 ax-cnex 7965 ax-resscn 7966 ax-1re 7968 ax-addrcl 7971 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ral 2477 df-rex 2478 df-reu 2479 df-rmo 2480 df-rab 2481 df-v 2762 df-sbc 2987 df-csb 3082 df-un 3158 df-in 3160 df-ss 3167 df-pw 3604 df-sn 3625 df-pr 3626 df-op 3628 df-uni 3837 df-int 3872 df-br 4031 df-opab 4092 df-mpt 4093 df-id 4325 df-xp 4666 df-rel 4667 df-cnv 4668 df-co 4669 df-dm 4670 df-rn 4671 df-res 4672 df-iota 5216 df-fun 5257 df-fn 5258 df-fv 5263 df-riota 5874 df-ov 5922 df-inn 8985 df-2 9043 df-3 9044 df-4 9045 df-5 9046 df-6 9047 df-ndx 12624 df-slot 12625 df-base 12627 df-plusg 12711 df-mulr 12712 df-sca 12714 df-vsca 12715 df-0g 12872 df-mgm 12942 df-sgrp 12988 df-mnd 13001 df-grp 13078 df-lmod 13788 df-lssm 13852 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |