Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > elrab3 | GIF version |
Description: Membership in a restricted class abstraction, using implicit substitution. (Contributed by NM, 5-Oct-2006.) |
Ref | Expression |
---|---|
elrab.1 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) |
Ref | Expression |
---|---|
elrab3 | ⊢ (𝐴 ∈ 𝐵 → (𝐴 ∈ {𝑥 ∈ 𝐵 ∣ 𝜑} ↔ 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elrab.1 | . . 3 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) | |
2 | 1 | elrab 2886 | . 2 ⊢ (𝐴 ∈ {𝑥 ∈ 𝐵 ∣ 𝜑} ↔ (𝐴 ∈ 𝐵 ∧ 𝜓)) |
3 | 2 | baib 914 | 1 ⊢ (𝐴 ∈ 𝐵 → (𝐴 ∈ {𝑥 ∈ 𝐵 ∣ 𝜑} ↔ 𝜓)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 104 = wceq 1348 ∈ wcel 2141 {crab 2452 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-ext 2152 |
This theorem depends on definitions: df-bi 116 df-tru 1351 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-rab 2457 df-v 2732 |
This theorem is referenced by: unimax 3830 undifexmid 4179 frind 4337 ordtriexmidlem2 4504 ordtriexmid 4505 ontriexmidim 4506 ordtri2orexmid 4507 onsucelsucexmid 4514 0elsucexmid 4549 ordpwsucexmid 4554 ordtri2or2exmid 4555 ontri2orexmidim 4556 canth 5807 acexmidlema 5844 acexmidlemb 5845 isnumi 7159 genpelvl 7474 genpelvu 7475 cauappcvgprlemladdru 7618 cauappcvgprlem1 7621 caucvgprlem1 7641 sup3exmid 8873 supinfneg 9554 infsupneg 9555 supminfex 9556 ublbneg 9572 negm 9574 hashinfuni 10711 infssuzex 11904 gcddvds 11918 dvdslegcd 11919 bezoutlemsup 11964 uzwodc 11992 lcmval 12017 dvdslcm 12023 isprm2lem 12070 |
Copyright terms: Public domain | W3C validator |