ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elrab3 GIF version

Theorem elrab3 2917
Description: Membership in a restricted class abstraction, using implicit substitution. (Contributed by NM, 5-Oct-2006.)
Hypothesis
Ref Expression
elrab.1 (𝑥 = 𝐴 → (𝜑𝜓))
Assertion
Ref Expression
elrab3 (𝐴𝐵 → (𝐴 ∈ {𝑥𝐵𝜑} ↔ 𝜓))
Distinct variable groups:   𝜓,𝑥   𝑥,𝐴   𝑥,𝐵
Allowed substitution hint:   𝜑(𝑥)

Proof of Theorem elrab3
StepHypRef Expression
1 elrab.1 . . 3 (𝑥 = 𝐴 → (𝜑𝜓))
21elrab 2916 . 2 (𝐴 ∈ {𝑥𝐵𝜑} ↔ (𝐴𝐵𝜓))
32baib 920 1 (𝐴𝐵 → (𝐴 ∈ {𝑥𝐵𝜑} ↔ 𝜓))
Colors of variables: wff set class
Syntax hints:  wi 4  wb 105   = wceq 1364  wcel 2164  {crab 2476
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2175
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-rab 2481  df-v 2762
This theorem is referenced by:  unimax  3869  undifexmid  4222  frind  4383  ordtriexmidlem2  4552  ordtriexmid  4553  ontriexmidim  4554  ordtri2orexmid  4555  onsucelsucexmid  4562  0elsucexmid  4597  ordpwsucexmid  4602  ordtri2or2exmid  4603  ontri2orexmidim  4604  canth  5871  acexmidlema  5909  acexmidlemb  5910  isnumi  7242  genpelvl  7572  genpelvu  7573  cauappcvgprlemladdru  7716  cauappcvgprlem1  7719  caucvgprlem1  7739  sup3exmid  8976  supinfneg  9660  infsupneg  9661  supminfex  9662  ublbneg  9678  negm  9680  hashinfuni  10848  infssuzex  12086  gcddvds  12100  dvdslegcd  12101  bezoutlemsup  12146  uzwodc  12174  lcmval  12201  dvdslcm  12207  isprm2lem  12254
  Copyright terms: Public domain W3C validator