ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elrab3 GIF version

Theorem elrab3 2883
Description: Membership in a restricted class abstraction, using implicit substitution. (Contributed by NM, 5-Oct-2006.)
Hypothesis
Ref Expression
elrab.1 (𝑥 = 𝐴 → (𝜑𝜓))
Assertion
Ref Expression
elrab3 (𝐴𝐵 → (𝐴 ∈ {𝑥𝐵𝜑} ↔ 𝜓))
Distinct variable groups:   𝜓,𝑥   𝑥,𝐴   𝑥,𝐵
Allowed substitution hint:   𝜑(𝑥)

Proof of Theorem elrab3
StepHypRef Expression
1 elrab.1 . . 3 (𝑥 = 𝐴 → (𝜑𝜓))
21elrab 2882 . 2 (𝐴 ∈ {𝑥𝐵𝜑} ↔ (𝐴𝐵𝜓))
32baib 909 1 (𝐴𝐵 → (𝐴 ∈ {𝑥𝐵𝜑} ↔ 𝜓))
Colors of variables: wff set class
Syntax hints:  wi 4  wb 104   = wceq 1343  wcel 2136  {crab 2448
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-tru 1346  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-rab 2453  df-v 2728
This theorem is referenced by:  unimax  3823  undifexmid  4172  frind  4330  ordtriexmidlem2  4497  ordtriexmid  4498  ontriexmidim  4499  ordtri2orexmid  4500  onsucelsucexmid  4507  0elsucexmid  4542  ordpwsucexmid  4547  ordtri2or2exmid  4548  ontri2orexmidim  4549  canth  5796  acexmidlema  5833  acexmidlemb  5834  isnumi  7138  genpelvl  7453  genpelvu  7454  cauappcvgprlemladdru  7597  cauappcvgprlem1  7600  caucvgprlem1  7620  sup3exmid  8852  supinfneg  9533  infsupneg  9534  supminfex  9535  ublbneg  9551  negm  9553  hashinfuni  10690  infssuzex  11882  gcddvds  11896  dvdslegcd  11897  bezoutlemsup  11942  uzwodc  11970  lcmval  11995  dvdslcm  12001  isprm2lem  12048
  Copyright terms: Public domain W3C validator