![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > elrab3 | GIF version |
Description: Membership in a restricted class abstraction, using implicit substitution. (Contributed by NM, 5-Oct-2006.) |
Ref | Expression |
---|---|
elrab.1 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) |
Ref | Expression |
---|---|
elrab3 | ⊢ (𝐴 ∈ 𝐵 → (𝐴 ∈ {𝑥 ∈ 𝐵 ∣ 𝜑} ↔ 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elrab.1 | . . 3 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) | |
2 | 1 | elrab 2916 | . 2 ⊢ (𝐴 ∈ {𝑥 ∈ 𝐵 ∣ 𝜑} ↔ (𝐴 ∈ 𝐵 ∧ 𝜓)) |
3 | 2 | baib 920 | 1 ⊢ (𝐴 ∈ 𝐵 → (𝐴 ∈ {𝑥 ∈ 𝐵 ∣ 𝜑} ↔ 𝜓)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 105 = wceq 1364 ∈ wcel 2164 {crab 2476 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2175 |
This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-rab 2481 df-v 2762 |
This theorem is referenced by: unimax 3869 undifexmid 4222 frind 4383 ordtriexmidlem2 4552 ordtriexmid 4553 ontriexmidim 4554 ordtri2orexmid 4555 onsucelsucexmid 4562 0elsucexmid 4597 ordpwsucexmid 4602 ordtri2or2exmid 4603 ontri2orexmidim 4604 canth 5871 acexmidlema 5909 acexmidlemb 5910 isnumi 7242 genpelvl 7572 genpelvu 7573 cauappcvgprlemladdru 7716 cauappcvgprlem1 7719 caucvgprlem1 7739 sup3exmid 8976 supinfneg 9660 infsupneg 9661 supminfex 9662 ublbneg 9678 negm 9680 hashinfuni 10848 infssuzex 12086 gcddvds 12100 dvdslegcd 12101 bezoutlemsup 12146 uzwodc 12174 lcmval 12201 dvdslcm 12207 isprm2lem 12254 |
Copyright terms: Public domain | W3C validator |