| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > elrab3 | GIF version | ||
| Description: Membership in a restricted class abstraction, using implicit substitution. (Contributed by NM, 5-Oct-2006.) |
| Ref | Expression |
|---|---|
| elrab.1 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) |
| Ref | Expression |
|---|---|
| elrab3 | ⊢ (𝐴 ∈ 𝐵 → (𝐴 ∈ {𝑥 ∈ 𝐵 ∣ 𝜑} ↔ 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elrab.1 | . . 3 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) | |
| 2 | 1 | elrab 2920 | . 2 ⊢ (𝐴 ∈ {𝑥 ∈ 𝐵 ∣ 𝜑} ↔ (𝐴 ∈ 𝐵 ∧ 𝜓)) |
| 3 | 2 | baib 920 | 1 ⊢ (𝐴 ∈ 𝐵 → (𝐴 ∈ {𝑥 ∈ 𝐵 ∣ 𝜑} ↔ 𝜓)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 = wceq 1364 ∈ wcel 2167 {crab 2479 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-rab 2484 df-v 2765 |
| This theorem is referenced by: unimax 3873 undifexmid 4226 frind 4387 ordtriexmidlem2 4556 ordtriexmid 4557 ontriexmidim 4558 ordtri2orexmid 4559 onsucelsucexmid 4566 0elsucexmid 4601 ordpwsucexmid 4606 ordtri2or2exmid 4607 ontri2orexmidim 4608 canth 5875 acexmidlema 5913 acexmidlemb 5914 isnumi 7249 genpelvl 7579 genpelvu 7580 cauappcvgprlemladdru 7723 cauappcvgprlem1 7726 caucvgprlem1 7746 sup3exmid 8984 supinfneg 9669 infsupneg 9670 supminfex 9671 ublbneg 9687 negm 9689 infssuzex 10323 hashinfuni 10869 gcddvds 12130 dvdslegcd 12131 bezoutlemsup 12176 uzwodc 12204 lcmval 12231 dvdslcm 12237 isprm2lem 12284 |
| Copyright terms: Public domain | W3C validator |