ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elrab3 GIF version

Theorem elrab3 2921
Description: Membership in a restricted class abstraction, using implicit substitution. (Contributed by NM, 5-Oct-2006.)
Hypothesis
Ref Expression
elrab.1 (𝑥 = 𝐴 → (𝜑𝜓))
Assertion
Ref Expression
elrab3 (𝐴𝐵 → (𝐴 ∈ {𝑥𝐵𝜑} ↔ 𝜓))
Distinct variable groups:   𝜓,𝑥   𝑥,𝐴   𝑥,𝐵
Allowed substitution hint:   𝜑(𝑥)

Proof of Theorem elrab3
StepHypRef Expression
1 elrab.1 . . 3 (𝑥 = 𝐴 → (𝜑𝜓))
21elrab 2920 . 2 (𝐴 ∈ {𝑥𝐵𝜑} ↔ (𝐴𝐵𝜓))
32baib 920 1 (𝐴𝐵 → (𝐴 ∈ {𝑥𝐵𝜑} ↔ 𝜓))
Colors of variables: wff set class
Syntax hints:  wi 4  wb 105   = wceq 1364  wcel 2167  {crab 2479
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-rab 2484  df-v 2765
This theorem is referenced by:  unimax  3874  undifexmid  4227  frind  4388  ordtriexmidlem2  4557  ordtriexmid  4558  ontriexmidim  4559  ordtri2orexmid  4560  onsucelsucexmid  4567  0elsucexmid  4602  ordpwsucexmid  4607  ordtri2or2exmid  4608  ontri2orexmidim  4609  canth  5878  acexmidlema  5916  acexmidlemb  5917  isnumi  7260  genpelvl  7596  genpelvu  7597  cauappcvgprlemladdru  7740  cauappcvgprlem1  7743  caucvgprlem1  7763  sup3exmid  9001  supinfneg  9686  infsupneg  9687  supminfex  9688  ublbneg  9704  negm  9706  infssuzex  10340  hashinfuni  10886  gcddvds  12155  dvdslegcd  12156  bezoutlemsup  12201  uzwodc  12229  lcmval  12256  dvdslcm  12262  isprm2lem  12309
  Copyright terms: Public domain W3C validator