| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > elrab3 | GIF version | ||
| Description: Membership in a restricted class abstraction, using implicit substitution. (Contributed by NM, 5-Oct-2006.) |
| Ref | Expression |
|---|---|
| elrab.1 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) |
| Ref | Expression |
|---|---|
| elrab3 | ⊢ (𝐴 ∈ 𝐵 → (𝐴 ∈ {𝑥 ∈ 𝐵 ∣ 𝜑} ↔ 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elrab.1 | . . 3 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) | |
| 2 | 1 | elrab 2928 | . 2 ⊢ (𝐴 ∈ {𝑥 ∈ 𝐵 ∣ 𝜑} ↔ (𝐴 ∈ 𝐵 ∧ 𝜓)) |
| 3 | 2 | baib 920 | 1 ⊢ (𝐴 ∈ 𝐵 → (𝐴 ∈ {𝑥 ∈ 𝐵 ∣ 𝜑} ↔ 𝜓)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 = wceq 1372 ∈ wcel 2175 {crab 2487 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-ext 2186 |
| This theorem depends on definitions: df-bi 117 df-tru 1375 df-nf 1483 df-sb 1785 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-rab 2492 df-v 2773 |
| This theorem is referenced by: unimax 3883 undifexmid 4236 frind 4398 ordtriexmidlem2 4567 ordtriexmid 4568 ontriexmidim 4569 ordtri2orexmid 4570 onsucelsucexmid 4577 0elsucexmid 4612 ordpwsucexmid 4617 ordtri2or2exmid 4618 ontri2orexmidim 4619 canth 5896 acexmidlema 5934 acexmidlemb 5935 isnumi 7288 genpelvl 7624 genpelvu 7625 cauappcvgprlemladdru 7768 cauappcvgprlem1 7771 caucvgprlem1 7791 sup3exmid 9029 supinfneg 9715 infsupneg 9716 supminfex 9717 ublbneg 9733 negm 9735 infssuzex 10374 hashinfuni 10920 gcddvds 12226 dvdslegcd 12227 bezoutlemsup 12272 uzwodc 12300 lcmval 12327 dvdslcm 12333 isprm2lem 12380 |
| Copyright terms: Public domain | W3C validator |