ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elrab3 GIF version

Theorem elrab3 2921
Description: Membership in a restricted class abstraction, using implicit substitution. (Contributed by NM, 5-Oct-2006.)
Hypothesis
Ref Expression
elrab.1 (𝑥 = 𝐴 → (𝜑𝜓))
Assertion
Ref Expression
elrab3 (𝐴𝐵 → (𝐴 ∈ {𝑥𝐵𝜑} ↔ 𝜓))
Distinct variable groups:   𝜓,𝑥   𝑥,𝐴   𝑥,𝐵
Allowed substitution hint:   𝜑(𝑥)

Proof of Theorem elrab3
StepHypRef Expression
1 elrab.1 . . 3 (𝑥 = 𝐴 → (𝜑𝜓))
21elrab 2920 . 2 (𝐴 ∈ {𝑥𝐵𝜑} ↔ (𝐴𝐵𝜓))
32baib 920 1 (𝐴𝐵 → (𝐴 ∈ {𝑥𝐵𝜑} ↔ 𝜓))
Colors of variables: wff set class
Syntax hints:  wi 4  wb 105   = wceq 1364  wcel 2167  {crab 2479
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-rab 2484  df-v 2765
This theorem is referenced by:  unimax  3874  undifexmid  4227  frind  4388  ordtriexmidlem2  4557  ordtriexmid  4558  ontriexmidim  4559  ordtri2orexmid  4560  onsucelsucexmid  4567  0elsucexmid  4602  ordpwsucexmid  4607  ordtri2or2exmid  4608  ontri2orexmidim  4609  canth  5878  acexmidlema  5916  acexmidlemb  5917  isnumi  7262  genpelvl  7598  genpelvu  7599  cauappcvgprlemladdru  7742  cauappcvgprlem1  7745  caucvgprlem1  7765  sup3exmid  9003  supinfneg  9688  infsupneg  9689  supminfex  9690  ublbneg  9706  negm  9708  infssuzex  10342  hashinfuni  10888  gcddvds  12157  dvdslegcd  12158  bezoutlemsup  12203  uzwodc  12231  lcmval  12258  dvdslcm  12264  isprm2lem  12311
  Copyright terms: Public domain W3C validator