Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > elrab3 | GIF version |
Description: Membership in a restricted class abstraction, using implicit substitution. (Contributed by NM, 5-Oct-2006.) |
Ref | Expression |
---|---|
elrab.1 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) |
Ref | Expression |
---|---|
elrab3 | ⊢ (𝐴 ∈ 𝐵 → (𝐴 ∈ {𝑥 ∈ 𝐵 ∣ 𝜑} ↔ 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elrab.1 | . . 3 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) | |
2 | 1 | elrab 2882 | . 2 ⊢ (𝐴 ∈ {𝑥 ∈ 𝐵 ∣ 𝜑} ↔ (𝐴 ∈ 𝐵 ∧ 𝜓)) |
3 | 2 | baib 909 | 1 ⊢ (𝐴 ∈ 𝐵 → (𝐴 ∈ {𝑥 ∈ 𝐵 ∣ 𝜑} ↔ 𝜓)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 104 = wceq 1343 ∈ wcel 2136 {crab 2448 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-rab 2453 df-v 2728 |
This theorem is referenced by: unimax 3823 undifexmid 4172 frind 4330 ordtriexmidlem2 4497 ordtriexmid 4498 ontriexmidim 4499 ordtri2orexmid 4500 onsucelsucexmid 4507 0elsucexmid 4542 ordpwsucexmid 4547 ordtri2or2exmid 4548 ontri2orexmidim 4549 canth 5796 acexmidlema 5833 acexmidlemb 5834 isnumi 7138 genpelvl 7453 genpelvu 7454 cauappcvgprlemladdru 7597 cauappcvgprlem1 7600 caucvgprlem1 7620 sup3exmid 8852 supinfneg 9533 infsupneg 9534 supminfex 9535 ublbneg 9551 negm 9553 hashinfuni 10690 infssuzex 11882 gcddvds 11896 dvdslegcd 11897 bezoutlemsup 11942 uzwodc 11970 lcmval 11995 dvdslcm 12001 isprm2lem 12048 |
Copyright terms: Public domain | W3C validator |