| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > elrab3 | GIF version | ||
| Description: Membership in a restricted class abstraction, using implicit substitution. (Contributed by NM, 5-Oct-2006.) |
| Ref | Expression |
|---|---|
| elrab.1 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) |
| Ref | Expression |
|---|---|
| elrab3 | ⊢ (𝐴 ∈ 𝐵 → (𝐴 ∈ {𝑥 ∈ 𝐵 ∣ 𝜑} ↔ 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elrab.1 | . . 3 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) | |
| 2 | 1 | elrab 2920 | . 2 ⊢ (𝐴 ∈ {𝑥 ∈ 𝐵 ∣ 𝜑} ↔ (𝐴 ∈ 𝐵 ∧ 𝜓)) |
| 3 | 2 | baib 920 | 1 ⊢ (𝐴 ∈ 𝐵 → (𝐴 ∈ {𝑥 ∈ 𝐵 ∣ 𝜑} ↔ 𝜓)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 = wceq 1364 ∈ wcel 2167 {crab 2479 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-rab 2484 df-v 2765 |
| This theorem is referenced by: unimax 3874 undifexmid 4227 frind 4388 ordtriexmidlem2 4557 ordtriexmid 4558 ontriexmidim 4559 ordtri2orexmid 4560 onsucelsucexmid 4567 0elsucexmid 4602 ordpwsucexmid 4607 ordtri2or2exmid 4608 ontri2orexmidim 4609 canth 5878 acexmidlema 5916 acexmidlemb 5917 isnumi 7260 genpelvl 7596 genpelvu 7597 cauappcvgprlemladdru 7740 cauappcvgprlem1 7743 caucvgprlem1 7763 sup3exmid 9001 supinfneg 9686 infsupneg 9687 supminfex 9688 ublbneg 9704 negm 9706 infssuzex 10340 hashinfuni 10886 gcddvds 12155 dvdslegcd 12156 bezoutlemsup 12201 uzwodc 12229 lcmval 12256 dvdslcm 12262 isprm2lem 12309 |
| Copyright terms: Public domain | W3C validator |