| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > elrab3 | GIF version | ||
| Description: Membership in a restricted class abstraction, using implicit substitution. (Contributed by NM, 5-Oct-2006.) |
| Ref | Expression |
|---|---|
| elrab.1 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) |
| Ref | Expression |
|---|---|
| elrab3 | ⊢ (𝐴 ∈ 𝐵 → (𝐴 ∈ {𝑥 ∈ 𝐵 ∣ 𝜑} ↔ 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elrab.1 | . . 3 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) | |
| 2 | 1 | elrab 2933 | . 2 ⊢ (𝐴 ∈ {𝑥 ∈ 𝐵 ∣ 𝜑} ↔ (𝐴 ∈ 𝐵 ∧ 𝜓)) |
| 3 | 2 | baib 921 | 1 ⊢ (𝐴 ∈ 𝐵 → (𝐴 ∈ {𝑥 ∈ 𝐵 ∣ 𝜑} ↔ 𝜓)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 = wceq 1373 ∈ wcel 2177 {crab 2489 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2188 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-rab 2494 df-v 2775 |
| This theorem is referenced by: unimax 3890 undifexmid 4245 frind 4407 ordtriexmidlem2 4576 ordtriexmid 4577 ontriexmidim 4578 ordtri2orexmid 4579 onsucelsucexmid 4586 0elsucexmid 4621 ordpwsucexmid 4626 ordtri2or2exmid 4627 ontri2orexmidim 4628 canth 5910 acexmidlema 5948 acexmidlemb 5949 isnumi 7304 genpelvl 7645 genpelvu 7646 cauappcvgprlemladdru 7789 cauappcvgprlem1 7792 caucvgprlem1 7812 sup3exmid 9050 supinfneg 9736 infsupneg 9737 supminfex 9738 ublbneg 9754 negm 9756 infssuzex 10398 hashinfuni 10944 gcddvds 12359 dvdslegcd 12360 bezoutlemsup 12405 uzwodc 12433 lcmval 12460 dvdslcm 12466 isprm2lem 12513 |
| Copyright terms: Public domain | W3C validator |