| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > elrab3 | GIF version | ||
| Description: Membership in a restricted class abstraction, using implicit substitution. (Contributed by NM, 5-Oct-2006.) |
| Ref | Expression |
|---|---|
| elrab.1 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) |
| Ref | Expression |
|---|---|
| elrab3 | ⊢ (𝐴 ∈ 𝐵 → (𝐴 ∈ {𝑥 ∈ 𝐵 ∣ 𝜑} ↔ 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elrab.1 | . . 3 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) | |
| 2 | 1 | elrab 2959 | . 2 ⊢ (𝐴 ∈ {𝑥 ∈ 𝐵 ∣ 𝜑} ↔ (𝐴 ∈ 𝐵 ∧ 𝜓)) |
| 3 | 2 | baib 924 | 1 ⊢ (𝐴 ∈ 𝐵 → (𝐴 ∈ {𝑥 ∈ 𝐵 ∣ 𝜑} ↔ 𝜓)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 = wceq 1395 ∈ wcel 2200 {crab 2512 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-rab 2517 df-v 2801 |
| This theorem is referenced by: unimax 3921 undifexmid 4276 frind 4442 ordtriexmidlem2 4611 ordtriexmid 4612 ontriexmidim 4613 ordtri2orexmid 4614 onsucelsucexmid 4621 0elsucexmid 4656 ordpwsucexmid 4661 ordtri2or2exmid 4662 ontri2orexmidim 4663 canth 5951 acexmidlema 5991 acexmidlemb 5992 isnumi 7350 genpelvl 7695 genpelvu 7696 cauappcvgprlemladdru 7839 cauappcvgprlem1 7842 caucvgprlem1 7862 sup3exmid 9100 supinfneg 9786 infsupneg 9787 supminfex 9788 ublbneg 9804 negm 9806 infssuzex 10448 hashinfuni 10994 gcddvds 12479 dvdslegcd 12480 bezoutlemsup 12525 uzwodc 12553 lcmval 12580 dvdslcm 12586 isprm2lem 12633 |
| Copyright terms: Public domain | W3C validator |