ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elrab3 GIF version

Theorem elrab3 2929
Description: Membership in a restricted class abstraction, using implicit substitution. (Contributed by NM, 5-Oct-2006.)
Hypothesis
Ref Expression
elrab.1 (𝑥 = 𝐴 → (𝜑𝜓))
Assertion
Ref Expression
elrab3 (𝐴𝐵 → (𝐴 ∈ {𝑥𝐵𝜑} ↔ 𝜓))
Distinct variable groups:   𝜓,𝑥   𝑥,𝐴   𝑥,𝐵
Allowed substitution hint:   𝜑(𝑥)

Proof of Theorem elrab3
StepHypRef Expression
1 elrab.1 . . 3 (𝑥 = 𝐴 → (𝜑𝜓))
21elrab 2928 . 2 (𝐴 ∈ {𝑥𝐵𝜑} ↔ (𝐴𝐵𝜓))
32baib 920 1 (𝐴𝐵 → (𝐴 ∈ {𝑥𝐵𝜑} ↔ 𝜓))
Colors of variables: wff set class
Syntax hints:  wi 4  wb 105   = wceq 1372  wcel 2175  {crab 2487
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-ext 2186
This theorem depends on definitions:  df-bi 117  df-tru 1375  df-nf 1483  df-sb 1785  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-rab 2492  df-v 2773
This theorem is referenced by:  unimax  3883  undifexmid  4236  frind  4398  ordtriexmidlem2  4567  ordtriexmid  4568  ontriexmidim  4569  ordtri2orexmid  4570  onsucelsucexmid  4577  0elsucexmid  4612  ordpwsucexmid  4617  ordtri2or2exmid  4618  ontri2orexmidim  4619  canth  5896  acexmidlema  5934  acexmidlemb  5935  isnumi  7288  genpelvl  7624  genpelvu  7625  cauappcvgprlemladdru  7768  cauappcvgprlem1  7771  caucvgprlem1  7791  sup3exmid  9029  supinfneg  9715  infsupneg  9716  supminfex  9717  ublbneg  9733  negm  9735  infssuzex  10374  hashinfuni  10920  gcddvds  12226  dvdslegcd  12227  bezoutlemsup  12272  uzwodc  12300  lcmval  12327  dvdslcm  12333  isprm2lem  12380
  Copyright terms: Public domain W3C validator