ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elrab3 GIF version

Theorem elrab3 2934
Description: Membership in a restricted class abstraction, using implicit substitution. (Contributed by NM, 5-Oct-2006.)
Hypothesis
Ref Expression
elrab.1 (𝑥 = 𝐴 → (𝜑𝜓))
Assertion
Ref Expression
elrab3 (𝐴𝐵 → (𝐴 ∈ {𝑥𝐵𝜑} ↔ 𝜓))
Distinct variable groups:   𝜓,𝑥   𝑥,𝐴   𝑥,𝐵
Allowed substitution hint:   𝜑(𝑥)

Proof of Theorem elrab3
StepHypRef Expression
1 elrab.1 . . 3 (𝑥 = 𝐴 → (𝜑𝜓))
21elrab 2933 . 2 (𝐴 ∈ {𝑥𝐵𝜑} ↔ (𝐴𝐵𝜓))
32baib 921 1 (𝐴𝐵 → (𝐴 ∈ {𝑥𝐵𝜑} ↔ 𝜓))
Colors of variables: wff set class
Syntax hints:  wi 4  wb 105   = wceq 1373  wcel 2177  {crab 2489
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2188
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-rab 2494  df-v 2775
This theorem is referenced by:  unimax  3890  undifexmid  4245  frind  4407  ordtriexmidlem2  4576  ordtriexmid  4577  ontriexmidim  4578  ordtri2orexmid  4579  onsucelsucexmid  4586  0elsucexmid  4621  ordpwsucexmid  4626  ordtri2or2exmid  4627  ontri2orexmidim  4628  canth  5910  acexmidlema  5948  acexmidlemb  5949  isnumi  7304  genpelvl  7645  genpelvu  7646  cauappcvgprlemladdru  7789  cauappcvgprlem1  7792  caucvgprlem1  7812  sup3exmid  9050  supinfneg  9736  infsupneg  9737  supminfex  9738  ublbneg  9754  negm  9756  infssuzex  10398  hashinfuni  10944  gcddvds  12359  dvdslegcd  12360  bezoutlemsup  12405  uzwodc  12433  lcmval  12460  dvdslcm  12466  isprm2lem  12513
  Copyright terms: Public domain W3C validator