Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > elrab3 | GIF version |
Description: Membership in a restricted class abstraction, using implicit substitution. (Contributed by NM, 5-Oct-2006.) |
Ref | Expression |
---|---|
elrab.1 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) |
Ref | Expression |
---|---|
elrab3 | ⊢ (𝐴 ∈ 𝐵 → (𝐴 ∈ {𝑥 ∈ 𝐵 ∣ 𝜑} ↔ 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elrab.1 | . . 3 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) | |
2 | 1 | elrab 2868 | . 2 ⊢ (𝐴 ∈ {𝑥 ∈ 𝐵 ∣ 𝜑} ↔ (𝐴 ∈ 𝐵 ∧ 𝜓)) |
3 | 2 | baib 905 | 1 ⊢ (𝐴 ∈ 𝐵 → (𝐴 ∈ {𝑥 ∈ 𝐵 ∣ 𝜑} ↔ 𝜓)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 104 = wceq 1335 ∈ wcel 2128 {crab 2439 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1427 ax-7 1428 ax-gen 1429 ax-ie1 1473 ax-ie2 1474 ax-8 1484 ax-10 1485 ax-11 1486 ax-i12 1487 ax-bndl 1489 ax-4 1490 ax-17 1506 ax-i9 1510 ax-ial 1514 ax-i5r 1515 ax-ext 2139 |
This theorem depends on definitions: df-bi 116 df-tru 1338 df-nf 1441 df-sb 1743 df-clab 2144 df-cleq 2150 df-clel 2153 df-nfc 2288 df-rab 2444 df-v 2714 |
This theorem is referenced by: unimax 3806 undifexmid 4154 frind 4312 ordtriexmidlem2 4478 ordtriexmid 4479 ontriexmidim 4480 ordtri2orexmid 4481 onsucelsucexmid 4488 0elsucexmid 4523 ordpwsucexmid 4528 ordtri2or2exmid 4529 ontri2orexmidim 4530 canth 5775 acexmidlema 5812 acexmidlemb 5813 isnumi 7111 genpelvl 7426 genpelvu 7427 cauappcvgprlemladdru 7570 cauappcvgprlem1 7573 caucvgprlem1 7593 sup3exmid 8822 supinfneg 9500 infsupneg 9501 supminfex 9502 ublbneg 9515 negm 9517 hashinfuni 10644 infssuzex 11828 gcddvds 11838 dvdslegcd 11839 bezoutlemsup 11884 lcmval 11931 dvdslcm 11937 isprm2lem 11984 |
Copyright terms: Public domain | W3C validator |