ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elrab3 GIF version

Theorem elrab3 2887
Description: Membership in a restricted class abstraction, using implicit substitution. (Contributed by NM, 5-Oct-2006.)
Hypothesis
Ref Expression
elrab.1 (𝑥 = 𝐴 → (𝜑𝜓))
Assertion
Ref Expression
elrab3 (𝐴𝐵 → (𝐴 ∈ {𝑥𝐵𝜑} ↔ 𝜓))
Distinct variable groups:   𝜓,𝑥   𝑥,𝐴   𝑥,𝐵
Allowed substitution hint:   𝜑(𝑥)

Proof of Theorem elrab3
StepHypRef Expression
1 elrab.1 . . 3 (𝑥 = 𝐴 → (𝜑𝜓))
21elrab 2886 . 2 (𝐴 ∈ {𝑥𝐵𝜑} ↔ (𝐴𝐵𝜓))
32baib 914 1 (𝐴𝐵 → (𝐴 ∈ {𝑥𝐵𝜑} ↔ 𝜓))
Colors of variables: wff set class
Syntax hints:  wi 4  wb 104   = wceq 1348  wcel 2141  {crab 2452
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-ext 2152
This theorem depends on definitions:  df-bi 116  df-tru 1351  df-nf 1454  df-sb 1756  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-rab 2457  df-v 2732
This theorem is referenced by:  unimax  3830  undifexmid  4179  frind  4337  ordtriexmidlem2  4504  ordtriexmid  4505  ontriexmidim  4506  ordtri2orexmid  4507  onsucelsucexmid  4514  0elsucexmid  4549  ordpwsucexmid  4554  ordtri2or2exmid  4555  ontri2orexmidim  4556  canth  5807  acexmidlema  5844  acexmidlemb  5845  isnumi  7159  genpelvl  7474  genpelvu  7475  cauappcvgprlemladdru  7618  cauappcvgprlem1  7621  caucvgprlem1  7641  sup3exmid  8873  supinfneg  9554  infsupneg  9555  supminfex  9556  ublbneg  9572  negm  9574  hashinfuni  10711  infssuzex  11904  gcddvds  11918  dvdslegcd  11919  bezoutlemsup  11964  uzwodc  11992  lcmval  12017  dvdslcm  12023  isprm2lem  12070
  Copyright terms: Public domain W3C validator