ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  relfld GIF version

Theorem relfld 5132
Description: The double union of a relation is its field. (Contributed by NM, 17-Sep-2006.)
Assertion
Ref Expression
relfld (Rel 𝑅 𝑅 = (dom 𝑅 ∪ ran 𝑅))

Proof of Theorem relfld
StepHypRef Expression
1 relssdmrn 5124 . . . 4 (Rel 𝑅𝑅 ⊆ (dom 𝑅 × ran 𝑅))
2 uniss 3810 . . . 4 (𝑅 ⊆ (dom 𝑅 × ran 𝑅) → 𝑅 (dom 𝑅 × ran 𝑅))
3 uniss 3810 . . . 4 ( 𝑅 (dom 𝑅 × ran 𝑅) → 𝑅 (dom 𝑅 × ran 𝑅))
41, 2, 33syl 17 . . 3 (Rel 𝑅 𝑅 (dom 𝑅 × ran 𝑅))
5 unixpss 4717 . . 3 (dom 𝑅 × ran 𝑅) ⊆ (dom 𝑅 ∪ ran 𝑅)
64, 5sstrdi 3154 . 2 (Rel 𝑅 𝑅 ⊆ (dom 𝑅 ∪ ran 𝑅))
7 dmrnssfld 4867 . . 3 (dom 𝑅 ∪ ran 𝑅) ⊆ 𝑅
87a1i 9 . 2 (Rel 𝑅 → (dom 𝑅 ∪ ran 𝑅) ⊆ 𝑅)
96, 8eqssd 3159 1 (Rel 𝑅 𝑅 = (dom 𝑅 ∪ ran 𝑅))
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1343  cun 3114  wss 3116   cuni 3789   × cxp 4602  dom cdm 4604  ran crn 4605  Rel wrel 4609
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-pow 4153  ax-pr 4187
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ral 2449  df-rex 2450  df-v 2728  df-un 3120  df-in 3122  df-ss 3129  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-br 3983  df-opab 4044  df-xp 4610  df-rel 4611  df-cnv 4612  df-dm 4614  df-rn 4615
This theorem is referenced by:  relresfld  5133  relcoi1  5135  unidmrn  5136  relcnvfld  5137  unixpm  5139
  Copyright terms: Public domain W3C validator