| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > relfld | GIF version | ||
| Description: The double union of a relation is its field. (Contributed by NM, 17-Sep-2006.) |
| Ref | Expression |
|---|---|
| relfld | ⊢ (Rel 𝑅 → ∪ ∪ 𝑅 = (dom 𝑅 ∪ ran 𝑅)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | relssdmrn 5212 | . . . 4 ⊢ (Rel 𝑅 → 𝑅 ⊆ (dom 𝑅 × ran 𝑅)) | |
| 2 | uniss 3877 | . . . 4 ⊢ (𝑅 ⊆ (dom 𝑅 × ran 𝑅) → ∪ 𝑅 ⊆ ∪ (dom 𝑅 × ran 𝑅)) | |
| 3 | uniss 3877 | . . . 4 ⊢ (∪ 𝑅 ⊆ ∪ (dom 𝑅 × ran 𝑅) → ∪ ∪ 𝑅 ⊆ ∪ ∪ (dom 𝑅 × ran 𝑅)) | |
| 4 | 1, 2, 3 | 3syl 17 | . . 3 ⊢ (Rel 𝑅 → ∪ ∪ 𝑅 ⊆ ∪ ∪ (dom 𝑅 × ran 𝑅)) |
| 5 | unixpss 4796 | . . 3 ⊢ ∪ ∪ (dom 𝑅 × ran 𝑅) ⊆ (dom 𝑅 ∪ ran 𝑅) | |
| 6 | 4, 5 | sstrdi 3209 | . 2 ⊢ (Rel 𝑅 → ∪ ∪ 𝑅 ⊆ (dom 𝑅 ∪ ran 𝑅)) |
| 7 | dmrnssfld 4950 | . . 3 ⊢ (dom 𝑅 ∪ ran 𝑅) ⊆ ∪ ∪ 𝑅 | |
| 8 | 7 | a1i 9 | . 2 ⊢ (Rel 𝑅 → (dom 𝑅 ∪ ran 𝑅) ⊆ ∪ ∪ 𝑅) |
| 9 | 6, 8 | eqssd 3214 | 1 ⊢ (Rel 𝑅 → ∪ ∪ 𝑅 = (dom 𝑅 ∪ ran 𝑅)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1373 ∪ cun 3168 ⊆ wss 3170 ∪ cuni 3856 × cxp 4681 dom cdm 4683 ran crn 4684 Rel wrel 4688 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-14 2180 ax-ext 2188 ax-sep 4170 ax-pow 4226 ax-pr 4261 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ral 2490 df-rex 2491 df-v 2775 df-un 3174 df-in 3176 df-ss 3183 df-pw 3623 df-sn 3644 df-pr 3645 df-op 3647 df-uni 3857 df-br 4052 df-opab 4114 df-xp 4689 df-rel 4690 df-cnv 4691 df-dm 4693 df-rn 4694 |
| This theorem is referenced by: relresfld 5221 relcoi1 5223 unidmrn 5224 relcnvfld 5225 unixpm 5227 |
| Copyright terms: Public domain | W3C validator |