ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  relfld GIF version

Theorem relfld 5220
Description: The double union of a relation is its field. (Contributed by NM, 17-Sep-2006.)
Assertion
Ref Expression
relfld (Rel 𝑅 𝑅 = (dom 𝑅 ∪ ran 𝑅))

Proof of Theorem relfld
StepHypRef Expression
1 relssdmrn 5212 . . . 4 (Rel 𝑅𝑅 ⊆ (dom 𝑅 × ran 𝑅))
2 uniss 3877 . . . 4 (𝑅 ⊆ (dom 𝑅 × ran 𝑅) → 𝑅 (dom 𝑅 × ran 𝑅))
3 uniss 3877 . . . 4 ( 𝑅 (dom 𝑅 × ran 𝑅) → 𝑅 (dom 𝑅 × ran 𝑅))
41, 2, 33syl 17 . . 3 (Rel 𝑅 𝑅 (dom 𝑅 × ran 𝑅))
5 unixpss 4796 . . 3 (dom 𝑅 × ran 𝑅) ⊆ (dom 𝑅 ∪ ran 𝑅)
64, 5sstrdi 3209 . 2 (Rel 𝑅 𝑅 ⊆ (dom 𝑅 ∪ ran 𝑅))
7 dmrnssfld 4950 . . 3 (dom 𝑅 ∪ ran 𝑅) ⊆ 𝑅
87a1i 9 . 2 (Rel 𝑅 → (dom 𝑅 ∪ ran 𝑅) ⊆ 𝑅)
96, 8eqssd 3214 1 (Rel 𝑅 𝑅 = (dom 𝑅 ∪ ran 𝑅))
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1373  cun 3168  wss 3170   cuni 3856   × cxp 4681  dom cdm 4683  ran crn 4684  Rel wrel 4688
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-14 2180  ax-ext 2188  ax-sep 4170  ax-pow 4226  ax-pr 4261
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ral 2490  df-rex 2491  df-v 2775  df-un 3174  df-in 3176  df-ss 3183  df-pw 3623  df-sn 3644  df-pr 3645  df-op 3647  df-uni 3857  df-br 4052  df-opab 4114  df-xp 4689  df-rel 4690  df-cnv 4691  df-dm 4693  df-rn 4694
This theorem is referenced by:  relresfld  5221  relcoi1  5223  unidmrn  5224  relcnvfld  5225  unixpm  5227
  Copyright terms: Public domain W3C validator