![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > relfld | GIF version |
Description: The double union of a relation is its field. (Contributed by NM, 17-Sep-2006.) |
Ref | Expression |
---|---|
relfld | ⊢ (Rel 𝑅 → ∪ ∪ 𝑅 = (dom 𝑅 ∪ ran 𝑅)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | relssdmrn 5148 | . . . 4 ⊢ (Rel 𝑅 → 𝑅 ⊆ (dom 𝑅 × ran 𝑅)) | |
2 | uniss 3830 | . . . 4 ⊢ (𝑅 ⊆ (dom 𝑅 × ran 𝑅) → ∪ 𝑅 ⊆ ∪ (dom 𝑅 × ran 𝑅)) | |
3 | uniss 3830 | . . . 4 ⊢ (∪ 𝑅 ⊆ ∪ (dom 𝑅 × ran 𝑅) → ∪ ∪ 𝑅 ⊆ ∪ ∪ (dom 𝑅 × ran 𝑅)) | |
4 | 1, 2, 3 | 3syl 17 | . . 3 ⊢ (Rel 𝑅 → ∪ ∪ 𝑅 ⊆ ∪ ∪ (dom 𝑅 × ran 𝑅)) |
5 | unixpss 4738 | . . 3 ⊢ ∪ ∪ (dom 𝑅 × ran 𝑅) ⊆ (dom 𝑅 ∪ ran 𝑅) | |
6 | 4, 5 | sstrdi 3167 | . 2 ⊢ (Rel 𝑅 → ∪ ∪ 𝑅 ⊆ (dom 𝑅 ∪ ran 𝑅)) |
7 | dmrnssfld 4889 | . . 3 ⊢ (dom 𝑅 ∪ ran 𝑅) ⊆ ∪ ∪ 𝑅 | |
8 | 7 | a1i 9 | . 2 ⊢ (Rel 𝑅 → (dom 𝑅 ∪ ran 𝑅) ⊆ ∪ ∪ 𝑅) |
9 | 6, 8 | eqssd 3172 | 1 ⊢ (Rel 𝑅 → ∪ ∪ 𝑅 = (dom 𝑅 ∪ ran 𝑅)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1353 ∪ cun 3127 ⊆ wss 3129 ∪ cuni 3809 × cxp 4623 dom cdm 4625 ran crn 4626 Rel wrel 4630 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-14 2151 ax-ext 2159 ax-sep 4120 ax-pow 4173 ax-pr 4208 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-nf 1461 df-sb 1763 df-eu 2029 df-mo 2030 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ral 2460 df-rex 2461 df-v 2739 df-un 3133 df-in 3135 df-ss 3142 df-pw 3577 df-sn 3598 df-pr 3599 df-op 3601 df-uni 3810 df-br 4003 df-opab 4064 df-xp 4631 df-rel 4632 df-cnv 4633 df-dm 4635 df-rn 4636 |
This theorem is referenced by: relresfld 5157 relcoi1 5159 unidmrn 5160 relcnvfld 5161 unixpm 5163 |
Copyright terms: Public domain | W3C validator |