ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  relfld GIF version

Theorem relfld 5256
Description: The double union of a relation is its field. (Contributed by NM, 17-Sep-2006.)
Assertion
Ref Expression
relfld (Rel 𝑅 𝑅 = (dom 𝑅 ∪ ran 𝑅))

Proof of Theorem relfld
StepHypRef Expression
1 relssdmrn 5248 . . . 4 (Rel 𝑅𝑅 ⊆ (dom 𝑅 × ran 𝑅))
2 uniss 3908 . . . 4 (𝑅 ⊆ (dom 𝑅 × ran 𝑅) → 𝑅 (dom 𝑅 × ran 𝑅))
3 uniss 3908 . . . 4 ( 𝑅 (dom 𝑅 × ran 𝑅) → 𝑅 (dom 𝑅 × ran 𝑅))
41, 2, 33syl 17 . . 3 (Rel 𝑅 𝑅 (dom 𝑅 × ran 𝑅))
5 unixpss 4831 . . 3 (dom 𝑅 × ran 𝑅) ⊆ (dom 𝑅 ∪ ran 𝑅)
64, 5sstrdi 3236 . 2 (Rel 𝑅 𝑅 ⊆ (dom 𝑅 ∪ ran 𝑅))
7 dmrnssfld 4986 . . 3 (dom 𝑅 ∪ ran 𝑅) ⊆ 𝑅
87a1i 9 . 2 (Rel 𝑅 → (dom 𝑅 ∪ ran 𝑅) ⊆ 𝑅)
96, 8eqssd 3241 1 (Rel 𝑅 𝑅 = (dom 𝑅 ∪ ran 𝑅))
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1395  cun 3195  wss 3197   cuni 3887   × cxp 4716  dom cdm 4718  ran crn 4719  Rel wrel 4723
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-14 2203  ax-ext 2211  ax-sep 4201  ax-pow 4257  ax-pr 4292
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-v 2801  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-br 4083  df-opab 4145  df-xp 4724  df-rel 4725  df-cnv 4726  df-dm 4728  df-rn 4729
This theorem is referenced by:  relresfld  5257  relcoi1  5259  unidmrn  5260  relcnvfld  5261  unixpm  5263
  Copyright terms: Public domain W3C validator