| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > zrei | GIF version | ||
| Description: An integer is a real number. (Contributed by NM, 14-Jul-2005.) |
| Ref | Expression |
|---|---|
| zre.1 | ⊢ 𝐴 ∈ ℤ |
| Ref | Expression |
|---|---|
| zrei | ⊢ 𝐴 ∈ ℝ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | zre.1 | . 2 ⊢ 𝐴 ∈ ℤ | |
| 2 | zre 9330 | . 2 ⊢ (𝐴 ∈ ℤ → 𝐴 ∈ ℝ) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ 𝐴 ∈ ℝ |
| Colors of variables: wff set class |
| Syntax hints: ∈ wcel 2167 ℝcr 7878 ℤcz 9326 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-3or 981 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-rex 2481 df-rab 2484 df-v 2765 df-un 3161 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-br 4034 df-iota 5219 df-fv 5266 df-ov 5925 df-neg 8200 df-z 9327 |
| This theorem is referenced by: dfuzi 9436 eluzaddi 9628 eluzsubi 9629 fldiv4lem1div2 10397 |
| Copyright terms: Public domain | W3C validator |