| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > zrei | GIF version | ||
| Description: An integer is a real number. (Contributed by NM, 14-Jul-2005.) |
| Ref | Expression |
|---|---|
| zre.1 | ⊢ 𝐴 ∈ ℤ |
| Ref | Expression |
|---|---|
| zrei | ⊢ 𝐴 ∈ ℝ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | zre.1 | . 2 ⊢ 𝐴 ∈ ℤ | |
| 2 | zre 9446 | . 2 ⊢ (𝐴 ∈ ℤ → 𝐴 ∈ ℝ) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ 𝐴 ∈ ℝ |
| Colors of variables: wff set class |
| Syntax hints: ∈ wcel 2200 ℝcr 7994 ℤcz 9442 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-3or 1003 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-rex 2514 df-rab 2517 df-v 2801 df-un 3201 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-br 4083 df-iota 5277 df-fv 5325 df-ov 6003 df-neg 8316 df-z 9443 |
| This theorem is referenced by: dfuzi 9553 eluzaddi 9745 eluzsubi 9746 fldiv4lem1div2 10522 |
| Copyright terms: Public domain | W3C validator |