| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > zre | GIF version | ||
| Description: An integer is a real. (Contributed by NM, 8-Jan-2002.) |
| Ref | Expression |
|---|---|
| zre | ⊢ (𝑁 ∈ ℤ → 𝑁 ∈ ℝ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elz 9347 | . 2 ⊢ (𝑁 ∈ ℤ ↔ (𝑁 ∈ ℝ ∧ (𝑁 = 0 ∨ 𝑁 ∈ ℕ ∨ -𝑁 ∈ ℕ))) | |
| 2 | 1 | simplbi 274 | 1 ⊢ (𝑁 ∈ ℤ → 𝑁 ∈ ℝ) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∨ w3o 979 = wceq 1364 ∈ wcel 2167 ℝcr 7897 0cc0 7898 -cneg 8217 ℕcn 9009 ℤcz 9345 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-3or 981 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-rex 2481 df-rab 2484 df-v 2765 df-un 3161 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-br 4035 df-iota 5220 df-fv 5267 df-ov 5928 df-neg 8219 df-z 9346 |
| This theorem is referenced by: zcn 9350 zrei 9351 zssre 9352 elnn0z 9358 elnnz1 9368 peano2z 9381 zaddcl 9385 ztri3or0 9387 ztri3or 9388 zletric 9389 zlelttric 9390 zltnle 9391 zleloe 9392 zletr 9394 znnsub 9396 nzadd 9397 zltp1le 9399 zleltp1 9400 znn0sub 9410 zapne 9419 zdceq 9420 zdcle 9421 zdclt 9422 zltlen 9423 nn0ge0div 9432 zextle 9436 btwnnz 9439 suprzclex 9443 msqznn 9445 peano2uz2 9452 uzind 9456 fzind 9460 fnn0ind 9461 eluzuzle 9628 uzid 9634 uzneg 9639 uz11 9643 eluzp1m1 9644 eluzp1p1 9646 eluzaddi 9647 eluzsubi 9648 uzin 9653 uz3m2nn 9666 peano2uz 9676 nn0pzuz 9680 eluz2b2 9696 uz2mulcl 9701 eqreznegel 9707 lbzbi 9709 qre 9718 elpq 9742 zltaddlt1le 10101 elfz1eq 10129 fznlem 10135 fzen 10137 uzsubsubfz 10141 fzaddel 10153 fzsuc2 10173 fzp1disj 10174 fzrev 10178 elfz1b 10184 fzneuz 10195 fzp1nel 10198 elfz0fzfz0 10220 fz0fzelfz0 10221 fznn0sub2 10222 fz0fzdiffz0 10224 elfzmlbp 10226 difelfznle 10229 nelfzo 10246 elfzouz2 10256 fzonlt0 10262 fzossrbm1 10268 fzo1fzo0n0 10278 elfzo0z 10279 fzofzim 10283 eluzgtdifelfzo 10292 fzossfzop1 10307 ssfzo12bi 10320 elfzomelpfzo 10326 fzosplitprm1 10329 fzostep1 10332 infssuzex 10342 flid 10393 flqbi2 10400 2tnp1ge0ge0 10410 flhalf 10411 fldiv4p1lem1div2 10414 fldiv4lem1div2uz2 10415 ceiqle 10424 uzsinds 10555 zsqcl2 10728 nn0abscl 11269 zmaxcl 11408 2zsupmax 11410 2zinfmin 11427 p1modz1 11978 evennn02n 12066 evennn2n 12067 ltoddhalfle 12077 bitsp1o 12137 dfgcd2 12208 algcvga 12246 isprm3 12313 dvdsnprmd 12320 sqnprm 12331 zgcdsq 12396 hashdvds 12416 fldivp1 12544 zgz 12569 4sqlem4 12588 4sqexercise1 12594 mulgval 13330 coskpi 15192 relogexp 15216 rplogbzexp 15298 zabsle1 15348 lgsne0 15387 gausslemma2dlem1a 15407 gausslemma2dlem3 15412 gausslemma2dlem4 15413 lgsquadlem1 15426 lgsquadlem2 15427 2lgslem1a1 15435 2lgslem1a2 15436 2sqlem2 15464 |
| Copyright terms: Public domain | W3C validator |