| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > zre | GIF version | ||
| Description: An integer is a real. (Contributed by NM, 8-Jan-2002.) |
| Ref | Expression |
|---|---|
| zre | ⊢ (𝑁 ∈ ℤ → 𝑁 ∈ ℝ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elz 9394 | . 2 ⊢ (𝑁 ∈ ℤ ↔ (𝑁 ∈ ℝ ∧ (𝑁 = 0 ∨ 𝑁 ∈ ℕ ∨ -𝑁 ∈ ℕ))) | |
| 2 | 1 | simplbi 274 | 1 ⊢ (𝑁 ∈ ℤ → 𝑁 ∈ ℝ) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∨ w3o 980 = wceq 1373 ∈ wcel 2177 ℝcr 7944 0cc0 7945 -cneg 8264 ℕcn 9056 ℤcz 9392 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2188 |
| This theorem depends on definitions: df-bi 117 df-3or 982 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-rex 2491 df-rab 2494 df-v 2775 df-un 3174 df-sn 3644 df-pr 3645 df-op 3647 df-uni 3857 df-br 4052 df-iota 5241 df-fv 5288 df-ov 5960 df-neg 8266 df-z 9393 |
| This theorem is referenced by: zcn 9397 zrei 9398 zssre 9399 elnn0z 9405 elnnz1 9415 peano2z 9428 zaddcl 9432 ztri3or0 9434 ztri3or 9435 zletric 9436 zlelttric 9437 zltnle 9438 zleloe 9439 zletr 9442 znnsub 9444 nzadd 9445 zltp1le 9447 zleltp1 9448 znn0sub 9458 zapne 9467 zdceq 9468 zdcle 9469 zdclt 9470 zltlen 9471 nn0ge0div 9480 zextle 9484 btwnnz 9487 suprzclex 9491 msqznn 9493 peano2uz2 9500 uzind 9504 fzind 9508 fnn0ind 9509 eluzuzle 9676 uzid 9682 uzneg 9687 uz11 9691 eluzp1m1 9692 eluzp1p1 9694 eluzaddi 9695 eluzsubi 9696 uzin 9701 uz3m2nn 9714 peano2uz 9724 nn0pzuz 9728 eluz2b2 9744 uz2mulcl 9749 eqreznegel 9755 lbzbi 9757 qre 9766 elpq 9790 zltaddlt1le 10149 elfz1eq 10177 fznlem 10183 fzen 10185 uzsubsubfz 10189 fzaddel 10201 fzsuc2 10221 fzp1disj 10222 fzrev 10226 elfz1b 10232 fzneuz 10243 fzp1nel 10246 elfz0fzfz0 10268 fz0fzelfz0 10269 fznn0sub2 10270 fz0fzdiffz0 10272 elfzmlbp 10274 difelfznle 10277 nelfzo 10294 elfzouz2 10304 fzo0n 10310 fzonlt0 10311 fzossrbm1 10317 fzo1fzo0n0 10329 elfzo0z 10330 fzofzim 10334 eluzgtdifelfzo 10348 fzossfzop1 10363 ssfzo12bi 10376 elfzomelpfzo 10382 fzosplitprm1 10385 fzostep1 10388 infssuzex 10398 flid 10449 flqbi2 10456 2tnp1ge0ge0 10466 flhalf 10467 fldiv4p1lem1div2 10470 fldiv4lem1div2uz2 10471 ceiqle 10480 uzsinds 10611 zsqcl2 10784 ccatsymb 11081 ccatval21sw 11084 lswccatn0lsw 11090 swrd0g 11136 swrdswrdlem 11180 swrdswrd 11181 nn0abscl 11471 zmaxcl 11610 2zsupmax 11612 2zinfmin 11629 p1modz1 12180 evennn02n 12268 evennn2n 12269 ltoddhalfle 12279 bitsp1o 12339 dfgcd2 12410 algcvga 12448 isprm3 12515 dvdsnprmd 12522 sqnprm 12533 zgcdsq 12598 hashdvds 12618 fldivp1 12746 zgz 12771 4sqlem4 12790 4sqexercise1 12796 mulgval 13533 coskpi 15395 relogexp 15419 rplogbzexp 15501 zabsle1 15551 lgsne0 15590 gausslemma2dlem1a 15610 gausslemma2dlem3 15615 gausslemma2dlem4 15616 lgsquadlem1 15629 lgsquadlem2 15630 2lgslem1a1 15638 2lgslem1a2 15639 2sqlem2 15667 |
| Copyright terms: Public domain | W3C validator |