![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > zre | GIF version |
Description: An integer is a real. (Contributed by NM, 8-Jan-2002.) |
Ref | Expression |
---|---|
zre | ⊢ (𝑁 ∈ ℤ → 𝑁 ∈ ℝ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elz 8908 | . 2 ⊢ (𝑁 ∈ ℤ ↔ (𝑁 ∈ ℝ ∧ (𝑁 = 0 ∨ 𝑁 ∈ ℕ ∨ -𝑁 ∈ ℕ))) | |
2 | 1 | simplbi 270 | 1 ⊢ (𝑁 ∈ ℤ → 𝑁 ∈ ℝ) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∨ w3o 929 = wceq 1299 ∈ wcel 1448 ℝcr 7499 0cc0 7500 -cneg 7805 ℕcn 8578 ℤcz 8906 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 671 ax-5 1391 ax-7 1392 ax-gen 1393 ax-ie1 1437 ax-ie2 1438 ax-8 1450 ax-10 1451 ax-11 1452 ax-i12 1453 ax-bndl 1454 ax-4 1455 ax-17 1474 ax-i9 1478 ax-ial 1482 ax-i5r 1483 ax-ext 2082 |
This theorem depends on definitions: df-bi 116 df-3or 931 df-3an 932 df-tru 1302 df-nf 1405 df-sb 1704 df-clab 2087 df-cleq 2093 df-clel 2096 df-nfc 2229 df-rex 2381 df-rab 2384 df-v 2643 df-un 3025 df-sn 3480 df-pr 3481 df-op 3483 df-uni 3684 df-br 3876 df-iota 5024 df-fv 5067 df-ov 5709 df-neg 7807 df-z 8907 |
This theorem is referenced by: zcn 8911 zrei 8912 zssre 8913 elnn0z 8919 elnnz1 8929 peano2z 8942 zaddcl 8946 ztri3or0 8948 ztri3or 8949 zletric 8950 zlelttric 8951 zltnle 8952 zleloe 8953 zletr 8955 znnsub 8957 nzadd 8958 zltp1le 8960 zleltp1 8961 znn0sub 8971 zapne 8977 zdceq 8978 zdcle 8979 zdclt 8980 zltlen 8981 nn0ge0div 8990 zextle 8994 btwnnz 8997 suprzclex 9001 msqznn 9003 peano2uz2 9010 uzind 9014 fzind 9018 fnn0ind 9019 eluzuzle 9184 uzid 9190 uzneg 9194 uz11 9198 eluzp1m1 9199 eluzp1p1 9201 eluzaddi 9202 eluzsubi 9203 uzin 9208 uz3m2nn 9218 peano2uz 9228 nn0pzuz 9232 eluz2b2 9247 uz2mulcl 9252 eqreznegel 9256 lbzbi 9258 qre 9267 zltaddlt1le 9630 elfz1eq 9656 fznlem 9662 fzen 9664 uzsubsubfz 9668 fzaddel 9680 fzsuc2 9700 fzp1disj 9701 fzrev 9705 elfz1b 9711 fzneuz 9722 fzp1nel 9725 elfz0fzfz0 9744 fz0fzelfz0 9745 fznn0sub2 9746 fz0fzdiffz0 9748 elfzmlbp 9750 difelfznle 9753 elfzouz2 9779 fzonlt0 9785 fzossrbm1 9791 fzo1fzo0n0 9801 elfzo0z 9802 fzofzim 9806 eluzgtdifelfzo 9815 fzossfzop1 9830 ssfzo12bi 9843 elfzomelpfzo 9849 fzosplitprm1 9852 fzostep1 9855 flid 9898 flqbi2 9905 2tnp1ge0ge0 9915 flhalf 9916 fldiv4p1lem1div2 9919 ceiqle 9927 uzsinds 10056 zsqcl2 10211 nn0abscl 10697 zmaxcl 10835 2zsupmax 10836 evennn02n 11374 evennn2n 11375 ltoddhalfle 11385 infssuzex 11437 dfgcd2 11495 algcvga 11525 isprm3 11592 dvdsnprmd 11599 sqnprm 11609 zgcdsq 11671 hashdvds 11689 |
Copyright terms: Public domain | W3C validator |