| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > zre | GIF version | ||
| Description: An integer is a real. (Contributed by NM, 8-Jan-2002.) |
| Ref | Expression |
|---|---|
| zre | ⊢ (𝑁 ∈ ℤ → 𝑁 ∈ ℝ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elz 9373 | . 2 ⊢ (𝑁 ∈ ℤ ↔ (𝑁 ∈ ℝ ∧ (𝑁 = 0 ∨ 𝑁 ∈ ℕ ∨ -𝑁 ∈ ℕ))) | |
| 2 | 1 | simplbi 274 | 1 ⊢ (𝑁 ∈ ℤ → 𝑁 ∈ ℝ) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∨ w3o 979 = wceq 1372 ∈ wcel 2175 ℝcr 7923 0cc0 7924 -cneg 8243 ℕcn 9035 ℤcz 9371 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-ext 2186 |
| This theorem depends on definitions: df-bi 117 df-3or 981 df-3an 982 df-tru 1375 df-nf 1483 df-sb 1785 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-rex 2489 df-rab 2492 df-v 2773 df-un 3169 df-sn 3638 df-pr 3639 df-op 3641 df-uni 3850 df-br 4044 df-iota 5231 df-fv 5278 df-ov 5946 df-neg 8245 df-z 9372 |
| This theorem is referenced by: zcn 9376 zrei 9377 zssre 9378 elnn0z 9384 elnnz1 9394 peano2z 9407 zaddcl 9411 ztri3or0 9413 ztri3or 9414 zletric 9415 zlelttric 9416 zltnle 9417 zleloe 9418 zletr 9421 znnsub 9423 nzadd 9424 zltp1le 9426 zleltp1 9427 znn0sub 9437 zapne 9446 zdceq 9447 zdcle 9448 zdclt 9449 zltlen 9450 nn0ge0div 9459 zextle 9463 btwnnz 9466 suprzclex 9470 msqznn 9472 peano2uz2 9479 uzind 9483 fzind 9487 fnn0ind 9488 eluzuzle 9655 uzid 9661 uzneg 9666 uz11 9670 eluzp1m1 9671 eluzp1p1 9673 eluzaddi 9674 eluzsubi 9675 uzin 9680 uz3m2nn 9693 peano2uz 9703 nn0pzuz 9707 eluz2b2 9723 uz2mulcl 9728 eqreznegel 9734 lbzbi 9736 qre 9745 elpq 9769 zltaddlt1le 10128 elfz1eq 10156 fznlem 10162 fzen 10164 uzsubsubfz 10168 fzaddel 10180 fzsuc2 10200 fzp1disj 10201 fzrev 10205 elfz1b 10211 fzneuz 10222 fzp1nel 10225 elfz0fzfz0 10247 fz0fzelfz0 10248 fznn0sub2 10249 fz0fzdiffz0 10251 elfzmlbp 10253 difelfznle 10256 nelfzo 10273 elfzouz2 10283 fzonlt0 10289 fzossrbm1 10295 fzo1fzo0n0 10305 elfzo0z 10306 fzofzim 10310 eluzgtdifelfzo 10324 fzossfzop1 10339 ssfzo12bi 10352 elfzomelpfzo 10358 fzosplitprm1 10361 fzostep1 10364 infssuzex 10374 flid 10425 flqbi2 10432 2tnp1ge0ge0 10442 flhalf 10443 fldiv4p1lem1div2 10446 fldiv4lem1div2uz2 10447 ceiqle 10456 uzsinds 10587 zsqcl2 10760 ccatsymb 11056 ccatval21sw 11059 lswccatn0lsw 11065 nn0abscl 11338 zmaxcl 11477 2zsupmax 11479 2zinfmin 11496 p1modz1 12047 evennn02n 12135 evennn2n 12136 ltoddhalfle 12146 bitsp1o 12206 dfgcd2 12277 algcvga 12315 isprm3 12382 dvdsnprmd 12389 sqnprm 12400 zgcdsq 12465 hashdvds 12485 fldivp1 12613 zgz 12638 4sqlem4 12657 4sqexercise1 12663 mulgval 13400 coskpi 15262 relogexp 15286 rplogbzexp 15368 zabsle1 15418 lgsne0 15457 gausslemma2dlem1a 15477 gausslemma2dlem3 15482 gausslemma2dlem4 15483 lgsquadlem1 15496 lgsquadlem2 15497 2lgslem1a1 15505 2lgslem1a2 15506 2sqlem2 15534 |
| Copyright terms: Public domain | W3C validator |