| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > zre | GIF version | ||
| Description: An integer is a real. (Contributed by NM, 8-Jan-2002.) |
| Ref | Expression |
|---|---|
| zre | ⊢ (𝑁 ∈ ℤ → 𝑁 ∈ ℝ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elz 9444 | . 2 ⊢ (𝑁 ∈ ℤ ↔ (𝑁 ∈ ℝ ∧ (𝑁 = 0 ∨ 𝑁 ∈ ℕ ∨ -𝑁 ∈ ℕ))) | |
| 2 | 1 | simplbi 274 | 1 ⊢ (𝑁 ∈ ℤ → 𝑁 ∈ ℝ) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∨ w3o 1001 = wceq 1395 ∈ wcel 2200 ℝcr 7994 0cc0 7995 -cneg 8314 ℕcn 9106 ℤcz 9442 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-3or 1003 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-rex 2514 df-rab 2517 df-v 2801 df-un 3201 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-br 4083 df-iota 5277 df-fv 5325 df-ov 6003 df-neg 8316 df-z 9443 |
| This theorem is referenced by: zcn 9447 zrei 9448 zssre 9449 elnn0z 9455 elnnz1 9465 peano2z 9478 zaddcl 9482 ztri3or0 9484 ztri3or 9485 zletric 9486 zlelttric 9487 zltnle 9488 zleloe 9489 zletr 9492 znnsub 9494 nzadd 9495 zltp1le 9497 zleltp1 9498 znn0sub 9508 zapne 9517 zdceq 9518 zdcle 9519 zdclt 9520 zltlen 9521 nn0ge0div 9530 zextle 9534 btwnnz 9537 suprzclex 9541 msqznn 9543 peano2uz2 9550 uzind 9554 fzind 9558 fnn0ind 9559 eluzuzle 9726 uzid 9732 uzneg 9737 uz11 9741 eluzp1m1 9742 eluzp1p1 9744 eluzaddi 9745 eluzsubi 9746 uzin 9751 uz3m2nn 9764 peano2uz 9774 nn0pzuz 9778 eluz2b2 9794 uz2mulcl 9799 eqreznegel 9805 lbzbi 9807 qre 9816 elpq 9840 zltaddlt1le 10199 elfz1eq 10227 fznlem 10233 fzen 10235 uzsubsubfz 10239 fzaddel 10251 fzsuc2 10271 fzp1disj 10272 fzrev 10276 elfz1b 10282 fzneuz 10293 fzp1nel 10296 elfz0fzfz0 10318 fz0fzelfz0 10319 fznn0sub2 10320 fz0fzdiffz0 10322 elfzmlbp 10324 difelfznle 10327 nelfzo 10344 elfzouz2 10354 fzo0n 10360 fzonlt0 10361 fzossrbm1 10367 fzo1fzo0n0 10379 elfzo0z 10380 fzofzim 10384 eluzgtdifelfzo 10398 fzossfzop1 10413 ssfzo12bi 10426 elfzomelpfzo 10432 fzosplitprm1 10435 fzostep1 10438 infssuzex 10448 flid 10499 flqbi2 10506 2tnp1ge0ge0 10516 flhalf 10517 fldiv4p1lem1div2 10520 fldiv4lem1div2uz2 10521 ceiqle 10530 uzsinds 10661 zsqcl2 10834 ccatsymb 11132 ccatval21sw 11135 lswccatn0lsw 11141 swrd0g 11187 swrdswrdlem 11231 swrdswrd 11232 swrdccatin2 11256 pfxccatin12lem2 11258 pfxccatin12lem3 11259 nn0abscl 11591 zmaxcl 11730 2zsupmax 11732 2zinfmin 11749 p1modz1 12300 evennn02n 12388 evennn2n 12389 ltoddhalfle 12399 bitsp1o 12459 dfgcd2 12530 algcvga 12568 isprm3 12635 dvdsnprmd 12642 sqnprm 12653 zgcdsq 12718 hashdvds 12738 fldivp1 12866 zgz 12891 4sqlem4 12910 4sqexercise1 12916 mulgval 13654 coskpi 15516 relogexp 15540 rplogbzexp 15622 zabsle1 15672 lgsne0 15711 gausslemma2dlem1a 15731 gausslemma2dlem3 15736 gausslemma2dlem4 15737 lgsquadlem1 15750 lgsquadlem2 15751 2lgslem1a1 15759 2lgslem1a2 15760 2sqlem2 15788 |
| Copyright terms: Public domain | W3C validator |