| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > zre | GIF version | ||
| Description: An integer is a real. (Contributed by NM, 8-Jan-2002.) |
| Ref | Expression |
|---|---|
| zre | ⊢ (𝑁 ∈ ℤ → 𝑁 ∈ ℝ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elz 9345 | . 2 ⊢ (𝑁 ∈ ℤ ↔ (𝑁 ∈ ℝ ∧ (𝑁 = 0 ∨ 𝑁 ∈ ℕ ∨ -𝑁 ∈ ℕ))) | |
| 2 | 1 | simplbi 274 | 1 ⊢ (𝑁 ∈ ℤ → 𝑁 ∈ ℝ) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∨ w3o 979 = wceq 1364 ∈ wcel 2167 ℝcr 7895 0cc0 7896 -cneg 8215 ℕcn 9007 ℤcz 9343 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-3or 981 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-rex 2481 df-rab 2484 df-v 2765 df-un 3161 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-br 4035 df-iota 5220 df-fv 5267 df-ov 5928 df-neg 8217 df-z 9344 |
| This theorem is referenced by: zcn 9348 zrei 9349 zssre 9350 elnn0z 9356 elnnz1 9366 peano2z 9379 zaddcl 9383 ztri3or0 9385 ztri3or 9386 zletric 9387 zlelttric 9388 zltnle 9389 zleloe 9390 zletr 9392 znnsub 9394 nzadd 9395 zltp1le 9397 zleltp1 9398 znn0sub 9408 zapne 9417 zdceq 9418 zdcle 9419 zdclt 9420 zltlen 9421 nn0ge0div 9430 zextle 9434 btwnnz 9437 suprzclex 9441 msqznn 9443 peano2uz2 9450 uzind 9454 fzind 9458 fnn0ind 9459 eluzuzle 9626 uzid 9632 uzneg 9637 uz11 9641 eluzp1m1 9642 eluzp1p1 9644 eluzaddi 9645 eluzsubi 9646 uzin 9651 uz3m2nn 9664 peano2uz 9674 nn0pzuz 9678 eluz2b2 9694 uz2mulcl 9699 eqreznegel 9705 lbzbi 9707 qre 9716 elpq 9740 zltaddlt1le 10099 elfz1eq 10127 fznlem 10133 fzen 10135 uzsubsubfz 10139 fzaddel 10151 fzsuc2 10171 fzp1disj 10172 fzrev 10176 elfz1b 10182 fzneuz 10193 fzp1nel 10196 elfz0fzfz0 10218 fz0fzelfz0 10219 fznn0sub2 10220 fz0fzdiffz0 10222 elfzmlbp 10224 difelfznle 10227 nelfzo 10244 elfzouz2 10254 fzonlt0 10260 fzossrbm1 10266 fzo1fzo0n0 10276 elfzo0z 10277 fzofzim 10281 eluzgtdifelfzo 10290 fzossfzop1 10305 ssfzo12bi 10318 elfzomelpfzo 10324 fzosplitprm1 10327 fzostep1 10330 infssuzex 10340 flid 10391 flqbi2 10398 2tnp1ge0ge0 10408 flhalf 10409 fldiv4p1lem1div2 10412 fldiv4lem1div2uz2 10413 ceiqle 10422 uzsinds 10553 zsqcl2 10726 nn0abscl 11267 zmaxcl 11406 2zsupmax 11408 2zinfmin 11425 p1modz1 11976 evennn02n 12064 evennn2n 12065 ltoddhalfle 12075 bitsp1o 12135 dfgcd2 12206 algcvga 12244 isprm3 12311 dvdsnprmd 12318 sqnprm 12329 zgcdsq 12394 hashdvds 12414 fldivp1 12542 zgz 12567 4sqlem4 12586 4sqexercise1 12592 mulgval 13328 coskpi 15168 relogexp 15192 rplogbzexp 15274 zabsle1 15324 lgsne0 15363 gausslemma2dlem1a 15383 gausslemma2dlem3 15388 gausslemma2dlem4 15389 lgsquadlem1 15402 lgsquadlem2 15403 2lgslem1a1 15411 2lgslem1a2 15412 2sqlem2 15440 |
| Copyright terms: Public domain | W3C validator |