Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > zre | GIF version |
Description: An integer is a real. (Contributed by NM, 8-Jan-2002.) |
Ref | Expression |
---|---|
zre | ⊢ (𝑁 ∈ ℤ → 𝑁 ∈ ℝ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elz 9214 | . 2 ⊢ (𝑁 ∈ ℤ ↔ (𝑁 ∈ ℝ ∧ (𝑁 = 0 ∨ 𝑁 ∈ ℕ ∨ -𝑁 ∈ ℕ))) | |
2 | 1 | simplbi 272 | 1 ⊢ (𝑁 ∈ ℤ → 𝑁 ∈ ℝ) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∨ w3o 972 = wceq 1348 ∈ wcel 2141 ℝcr 7773 0cc0 7774 -cneg 8091 ℕcn 8878 ℤcz 9212 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-ext 2152 |
This theorem depends on definitions: df-bi 116 df-3or 974 df-3an 975 df-tru 1351 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-rex 2454 df-rab 2457 df-v 2732 df-un 3125 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-br 3990 df-iota 5160 df-fv 5206 df-ov 5856 df-neg 8093 df-z 9213 |
This theorem is referenced by: zcn 9217 zrei 9218 zssre 9219 elnn0z 9225 elnnz1 9235 peano2z 9248 zaddcl 9252 ztri3or0 9254 ztri3or 9255 zletric 9256 zlelttric 9257 zltnle 9258 zleloe 9259 zletr 9261 znnsub 9263 nzadd 9264 zltp1le 9266 zleltp1 9267 znn0sub 9277 zapne 9286 zdceq 9287 zdcle 9288 zdclt 9289 zltlen 9290 nn0ge0div 9299 zextle 9303 btwnnz 9306 suprzclex 9310 msqznn 9312 peano2uz2 9319 uzind 9323 fzind 9327 fnn0ind 9328 eluzuzle 9495 uzid 9501 uzneg 9505 uz11 9509 eluzp1m1 9510 eluzp1p1 9512 eluzaddi 9513 eluzsubi 9514 uzin 9519 uz3m2nn 9532 peano2uz 9542 nn0pzuz 9546 eluz2b2 9562 uz2mulcl 9567 eqreznegel 9573 lbzbi 9575 qre 9584 elpq 9607 zltaddlt1le 9964 elfz1eq 9991 fznlem 9997 fzen 9999 uzsubsubfz 10003 fzaddel 10015 fzsuc2 10035 fzp1disj 10036 fzrev 10040 elfz1b 10046 fzneuz 10057 fzp1nel 10060 elfz0fzfz0 10082 fz0fzelfz0 10083 fznn0sub2 10084 fz0fzdiffz0 10086 elfzmlbp 10088 difelfznle 10091 elfzouz2 10117 fzonlt0 10123 fzossrbm1 10129 fzo1fzo0n0 10139 elfzo0z 10140 fzofzim 10144 eluzgtdifelfzo 10153 fzossfzop1 10168 ssfzo12bi 10181 elfzomelpfzo 10187 fzosplitprm1 10190 fzostep1 10193 flid 10240 flqbi2 10247 2tnp1ge0ge0 10257 flhalf 10258 fldiv4p1lem1div2 10261 ceiqle 10269 uzsinds 10398 zsqcl2 10553 nn0abscl 11049 zmaxcl 11188 2zsupmax 11189 2zinfmin 11206 p1modz1 11756 evennn02n 11841 evennn2n 11842 ltoddhalfle 11852 infssuzex 11904 dfgcd2 11969 algcvga 12005 isprm3 12072 dvdsnprmd 12079 sqnprm 12090 zgcdsq 12155 hashdvds 12175 fldivp1 12300 zgz 12325 4sqlem4 12344 coskpi 13563 relogexp 13587 rplogbzexp 13666 zabsle1 13694 lgsne0 13733 2sqlem2 13745 |
Copyright terms: Public domain | W3C validator |