![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > zre | GIF version |
Description: An integer is a real. (Contributed by NM, 8-Jan-2002.) |
Ref | Expression |
---|---|
zre | ⊢ (𝑁 ∈ ℤ → 𝑁 ∈ ℝ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elz 9322 | . 2 ⊢ (𝑁 ∈ ℤ ↔ (𝑁 ∈ ℝ ∧ (𝑁 = 0 ∨ 𝑁 ∈ ℕ ∨ -𝑁 ∈ ℕ))) | |
2 | 1 | simplbi 274 | 1 ⊢ (𝑁 ∈ ℤ → 𝑁 ∈ ℝ) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∨ w3o 979 = wceq 1364 ∈ wcel 2164 ℝcr 7873 0cc0 7874 -cneg 8193 ℕcn 8984 ℤcz 9320 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2175 |
This theorem depends on definitions: df-bi 117 df-3or 981 df-3an 982 df-tru 1367 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-rex 2478 df-rab 2481 df-v 2762 df-un 3158 df-sn 3625 df-pr 3626 df-op 3628 df-uni 3837 df-br 4031 df-iota 5216 df-fv 5263 df-ov 5922 df-neg 8195 df-z 9321 |
This theorem is referenced by: zcn 9325 zrei 9326 zssre 9327 elnn0z 9333 elnnz1 9343 peano2z 9356 zaddcl 9360 ztri3or0 9362 ztri3or 9363 zletric 9364 zlelttric 9365 zltnle 9366 zleloe 9367 zletr 9369 znnsub 9371 nzadd 9372 zltp1le 9374 zleltp1 9375 znn0sub 9385 zapne 9394 zdceq 9395 zdcle 9396 zdclt 9397 zltlen 9398 nn0ge0div 9407 zextle 9411 btwnnz 9414 suprzclex 9418 msqznn 9420 peano2uz2 9427 uzind 9431 fzind 9435 fnn0ind 9436 eluzuzle 9603 uzid 9609 uzneg 9614 uz11 9618 eluzp1m1 9619 eluzp1p1 9621 eluzaddi 9622 eluzsubi 9623 uzin 9628 uz3m2nn 9641 peano2uz 9651 nn0pzuz 9655 eluz2b2 9671 uz2mulcl 9676 eqreznegel 9682 lbzbi 9684 qre 9693 elpq 9717 zltaddlt1le 10076 elfz1eq 10104 fznlem 10110 fzen 10112 uzsubsubfz 10116 fzaddel 10128 fzsuc2 10148 fzp1disj 10149 fzrev 10153 elfz1b 10159 fzneuz 10170 fzp1nel 10173 elfz0fzfz0 10195 fz0fzelfz0 10196 fznn0sub2 10197 fz0fzdiffz0 10199 elfzmlbp 10201 difelfznle 10204 nelfzo 10221 elfzouz2 10231 fzonlt0 10237 fzossrbm1 10243 fzo1fzo0n0 10253 elfzo0z 10254 fzofzim 10258 eluzgtdifelfzo 10267 fzossfzop1 10282 ssfzo12bi 10295 elfzomelpfzo 10301 fzosplitprm1 10304 fzostep1 10307 flid 10356 flqbi2 10363 2tnp1ge0ge0 10373 flhalf 10374 fldiv4p1lem1div2 10377 fldiv4lem1div2uz2 10378 ceiqle 10387 uzsinds 10518 zsqcl2 10691 nn0abscl 11232 zmaxcl 11371 2zsupmax 11372 2zinfmin 11389 p1modz1 11940 evennn02n 12026 evennn2n 12027 ltoddhalfle 12037 infssuzex 12089 dfgcd2 12154 algcvga 12192 isprm3 12259 dvdsnprmd 12266 sqnprm 12277 zgcdsq 12342 hashdvds 12362 fldivp1 12489 zgz 12514 4sqlem4 12533 4sqexercise1 12539 mulgval 13195 coskpi 15024 relogexp 15048 rplogbzexp 15127 zabsle1 15156 lgsne0 15195 gausslemma2dlem1a 15215 gausslemma2dlem3 15220 gausslemma2dlem4 15221 lgsquadlem1 15234 lgsquadlem2 15235 2lgslem1a1 15243 2lgslem1a2 15244 2sqlem2 15272 |
Copyright terms: Public domain | W3C validator |