Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > zcn | GIF version |
Description: An integer is a complex number. (Contributed by NM, 9-May-2004.) |
Ref | Expression |
---|---|
zcn | ⊢ (𝑁 ∈ ℤ → 𝑁 ∈ ℂ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | zre 9191 | . 2 ⊢ (𝑁 ∈ ℤ → 𝑁 ∈ ℝ) | |
2 | 1 | recnd 7923 | 1 ⊢ (𝑁 ∈ ℤ → 𝑁 ∈ ℂ) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∈ wcel 2136 ℂcc 7747 ℤcz 9187 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 ax-resscn 7841 |
This theorem depends on definitions: df-bi 116 df-3or 969 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2296 df-rex 2449 df-rab 2452 df-v 2727 df-un 3119 df-in 3121 df-ss 3128 df-sn 3581 df-pr 3582 df-op 3584 df-uni 3789 df-br 3982 df-iota 5152 df-fv 5195 df-ov 5844 df-neg 8068 df-z 9188 |
This theorem is referenced by: zsscn 9195 zaddcllempos 9224 peano2zm 9225 zaddcllemneg 9226 zaddcl 9227 zsubcl 9228 zrevaddcl 9237 nzadd 9239 zlem1lt 9243 zltlem1 9244 zapne 9261 zdiv 9275 zdivadd 9276 zdivmul 9277 zextlt 9279 zneo 9288 zeo2 9293 peano5uzti 9295 zindd 9305 divfnzn 9555 qmulz 9557 zq 9560 qaddcl 9569 qnegcl 9570 qmulcl 9571 qreccl 9576 fzen 9974 uzsubsubfz 9978 fz01en 9984 fzmmmeqm 9989 fzsubel 9991 fztp 10009 fzsuc2 10010 fzrev2 10016 fzrev3 10018 elfzp1b 10028 fzrevral 10036 fzrevral2 10037 fzrevral3 10038 fzshftral 10039 fzoaddel2 10124 fzosubel2 10126 eluzgtdifelfzo 10128 fzocatel 10130 elfzom1elp1fzo 10133 fzval3 10135 zpnn0elfzo1 10139 fzosplitprm1 10165 fzoshftral 10169 flqzadd 10229 2tnp1ge0ge0 10232 ceilid 10246 intfracq 10251 zmod10 10271 modqmuladdnn0 10299 addmodlteq 10329 frecfzen2 10358 ser3mono 10409 m1expeven 10498 expsubap 10499 zesq 10569 sqoddm1div8 10604 bccmpl 10663 shftuz 10755 nnabscl 11038 climshftlemg 11239 climshft 11241 mptfzshft 11379 fsumrev 11380 fisum0diag2 11384 efexp 11619 efzval 11620 demoivre 11709 dvdsval2 11726 iddvds 11740 1dvds 11741 dvds0 11742 negdvdsb 11743 dvdsnegb 11744 0dvds 11747 dvdsmul1 11749 iddvdsexp 11751 muldvds1 11752 muldvds2 11753 dvdscmul 11754 dvdsmulc 11755 summodnegmod 11758 modmulconst 11759 dvds2ln 11760 dvds2add 11761 dvds2sub 11762 dvdstr 11764 dvdssub2 11771 dvdsadd 11772 dvdsaddr 11773 dvdssub 11774 dvdssubr 11775 dvdsadd2b 11776 dvdsabseq 11781 divconjdvds 11783 alzdvds 11788 addmodlteqALT 11793 zeo3 11801 odd2np1lem 11805 odd2np1 11806 even2n 11807 oddp1even 11809 mulsucdiv2z 11818 zob 11824 ltoddhalfle 11826 halfleoddlt 11827 opoe 11828 omoe 11829 opeo 11830 omeo 11831 m1exp1 11834 divalgb 11858 divalgmod 11860 modremain 11862 ndvdssub 11863 ndvdsadd 11864 flodddiv4 11867 flodddiv4t2lthalf 11870 gcdneg 11911 gcdadd 11914 gcdid 11915 modgcd 11920 dvdsgcd 11941 mulgcd 11945 absmulgcd 11946 mulgcdr 11947 gcddiv 11948 gcdmultiplez 11950 dvdssqim 11953 dvdssq 11960 bezoutr1 11962 lcmneg 12002 lcmgcdlem 12005 lcmgcd 12006 lcmid 12008 lcm1 12009 coprmdvds 12020 coprmdvds2 12021 qredeq 12024 qredeu 12025 divgcdcoprmex 12030 cncongr1 12031 cncongr2 12032 prmdvdsexp 12076 rpexp1i 12082 sqrt2irr 12090 divnumden 12124 phiprmpw 12150 nnnn0modprm0 12183 modprmn0modprm0 12184 coprimeprodsq2 12186 pclemub 12215 pcprendvds2 12219 pcmul 12229 pcneg 12252 fldivp1 12274 prmpwdvds 12281 zgz 12299 ef2kpi 13327 efper 13328 sinperlem 13329 sin2kpi 13332 cos2kpi 13333 abssinper 13367 sinkpi 13368 coskpi 13369 cxpexprp 13416 lgslem3 13503 lgsneg 13525 lgsdir2lem2 13530 lgsdir2lem4 13532 lgsdir2 13534 lgssq 13541 lgsmulsqcoprm 13547 lgsdirnn0 13548 2sqlem2 13551 2sqlem7 13557 |
Copyright terms: Public domain | W3C validator |