Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > eluzsubi | GIF version |
Description: Membership in an earlier upper set of integers. (Contributed by Paul Chapman, 22-Nov-2007.) |
Ref | Expression |
---|---|
eluzaddi.1 | ⊢ 𝑀 ∈ ℤ |
eluzaddi.2 | ⊢ 𝐾 ∈ ℤ |
Ref | Expression |
---|---|
eluzsubi | ⊢ (𝑁 ∈ (ℤ≥‘(𝑀 + 𝐾)) → (𝑁 − 𝐾) ∈ (ℤ≥‘𝑀)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eluzelz 9475 | . . 3 ⊢ (𝑁 ∈ (ℤ≥‘(𝑀 + 𝐾)) → 𝑁 ∈ ℤ) | |
2 | eluzaddi.2 | . . 3 ⊢ 𝐾 ∈ ℤ | |
3 | zsubcl 9232 | . . 3 ⊢ ((𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) → (𝑁 − 𝐾) ∈ ℤ) | |
4 | 1, 2, 3 | sylancl 410 | . 2 ⊢ (𝑁 ∈ (ℤ≥‘(𝑀 + 𝐾)) → (𝑁 − 𝐾) ∈ ℤ) |
5 | eluzaddi.1 | . . . . 5 ⊢ 𝑀 ∈ ℤ | |
6 | zaddcl 9231 | . . . . 5 ⊢ ((𝑀 ∈ ℤ ∧ 𝐾 ∈ ℤ) → (𝑀 + 𝐾) ∈ ℤ) | |
7 | 5, 2, 6 | mp2an 423 | . . . 4 ⊢ (𝑀 + 𝐾) ∈ ℤ |
8 | 7 | eluz1i 9473 | . . 3 ⊢ (𝑁 ∈ (ℤ≥‘(𝑀 + 𝐾)) ↔ (𝑁 ∈ ℤ ∧ (𝑀 + 𝐾) ≤ 𝑁)) |
9 | zre 9195 | . . . . 5 ⊢ (𝑁 ∈ ℤ → 𝑁 ∈ ℝ) | |
10 | 5 | zrei 9197 | . . . . . 6 ⊢ 𝑀 ∈ ℝ |
11 | 2 | zrei 9197 | . . . . . 6 ⊢ 𝐾 ∈ ℝ |
12 | leaddsub 8336 | . . . . . 6 ⊢ ((𝑀 ∈ ℝ ∧ 𝐾 ∈ ℝ ∧ 𝑁 ∈ ℝ) → ((𝑀 + 𝐾) ≤ 𝑁 ↔ 𝑀 ≤ (𝑁 − 𝐾))) | |
13 | 10, 11, 12 | mp3an12 1317 | . . . . 5 ⊢ (𝑁 ∈ ℝ → ((𝑀 + 𝐾) ≤ 𝑁 ↔ 𝑀 ≤ (𝑁 − 𝐾))) |
14 | 9, 13 | syl 14 | . . . 4 ⊢ (𝑁 ∈ ℤ → ((𝑀 + 𝐾) ≤ 𝑁 ↔ 𝑀 ≤ (𝑁 − 𝐾))) |
15 | 14 | biimpa 294 | . . 3 ⊢ ((𝑁 ∈ ℤ ∧ (𝑀 + 𝐾) ≤ 𝑁) → 𝑀 ≤ (𝑁 − 𝐾)) |
16 | 8, 15 | sylbi 120 | . 2 ⊢ (𝑁 ∈ (ℤ≥‘(𝑀 + 𝐾)) → 𝑀 ≤ (𝑁 − 𝐾)) |
17 | 5 | eluz1i 9473 | . 2 ⊢ ((𝑁 − 𝐾) ∈ (ℤ≥‘𝑀) ↔ ((𝑁 − 𝐾) ∈ ℤ ∧ 𝑀 ≤ (𝑁 − 𝐾))) |
18 | 4, 16, 17 | sylanbrc 414 | 1 ⊢ (𝑁 ∈ (ℤ≥‘(𝑀 + 𝐾)) → (𝑁 − 𝐾) ∈ (ℤ≥‘𝑀)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ↔ wb 104 ∈ wcel 2136 class class class wbr 3982 ‘cfv 5188 (class class class)co 5842 ℝcr 7752 + caddc 7756 ≤ cle 7934 − cmin 8069 ℤcz 9191 ℤ≥cuz 9466 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-pow 4153 ax-pr 4187 ax-un 4411 ax-setind 4514 ax-cnex 7844 ax-resscn 7845 ax-1cn 7846 ax-1re 7847 ax-icn 7848 ax-addcl 7849 ax-addrcl 7850 ax-mulcl 7851 ax-addcom 7853 ax-addass 7855 ax-distr 7857 ax-i2m1 7858 ax-0lt1 7859 ax-0id 7861 ax-rnegex 7862 ax-cnre 7864 ax-pre-ltirr 7865 ax-pre-ltwlin 7866 ax-pre-lttrn 7867 ax-pre-ltadd 7869 |
This theorem depends on definitions: df-bi 116 df-3or 969 df-3an 970 df-tru 1346 df-fal 1349 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ne 2337 df-nel 2432 df-ral 2449 df-rex 2450 df-reu 2451 df-rab 2453 df-v 2728 df-sbc 2952 df-dif 3118 df-un 3120 df-in 3122 df-ss 3129 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-int 3825 df-br 3983 df-opab 4044 df-mpt 4045 df-id 4271 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-rn 4615 df-res 4616 df-ima 4617 df-iota 5153 df-fun 5190 df-fn 5191 df-f 5192 df-fv 5196 df-riota 5798 df-ov 5845 df-oprab 5846 df-mpo 5847 df-pnf 7935 df-mnf 7936 df-xr 7937 df-ltxr 7938 df-le 7939 df-sub 8071 df-neg 8072 df-inn 8858 df-n0 9115 df-z 9192 df-uz 9467 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |