| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > eluzaddi | GIF version | ||
| Description: Membership in a later upper set of integers. (Contributed by Paul Chapman, 22-Nov-2007.) |
| Ref | Expression |
|---|---|
| eluzaddi.1 | ⊢ 𝑀 ∈ ℤ |
| eluzaddi.2 | ⊢ 𝐾 ∈ ℤ |
| Ref | Expression |
|---|---|
| eluzaddi | ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → (𝑁 + 𝐾) ∈ (ℤ≥‘(𝑀 + 𝐾))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eluzelz 9692 | . . 3 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → 𝑁 ∈ ℤ) | |
| 2 | eluzaddi.2 | . . 3 ⊢ 𝐾 ∈ ℤ | |
| 3 | zaddcl 9447 | . . 3 ⊢ ((𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) → (𝑁 + 𝐾) ∈ ℤ) | |
| 4 | 1, 2, 3 | sylancl 413 | . 2 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → (𝑁 + 𝐾) ∈ ℤ) |
| 5 | eluzaddi.1 | . . . 4 ⊢ 𝑀 ∈ ℤ | |
| 6 | 5 | eluz1i 9690 | . . 3 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) ↔ (𝑁 ∈ ℤ ∧ 𝑀 ≤ 𝑁)) |
| 7 | zre 9411 | . . . . 5 ⊢ (𝑁 ∈ ℤ → 𝑁 ∈ ℝ) | |
| 8 | 5 | zrei 9413 | . . . . . 6 ⊢ 𝑀 ∈ ℝ |
| 9 | 2 | zrei 9413 | . . . . . 6 ⊢ 𝐾 ∈ ℝ |
| 10 | leadd1 8538 | . . . . . 6 ⊢ ((𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 𝐾 ∈ ℝ) → (𝑀 ≤ 𝑁 ↔ (𝑀 + 𝐾) ≤ (𝑁 + 𝐾))) | |
| 11 | 8, 9, 10 | mp3an13 1341 | . . . . 5 ⊢ (𝑁 ∈ ℝ → (𝑀 ≤ 𝑁 ↔ (𝑀 + 𝐾) ≤ (𝑁 + 𝐾))) |
| 12 | 7, 11 | syl 14 | . . . 4 ⊢ (𝑁 ∈ ℤ → (𝑀 ≤ 𝑁 ↔ (𝑀 + 𝐾) ≤ (𝑁 + 𝐾))) |
| 13 | 12 | biimpa 296 | . . 3 ⊢ ((𝑁 ∈ ℤ ∧ 𝑀 ≤ 𝑁) → (𝑀 + 𝐾) ≤ (𝑁 + 𝐾)) |
| 14 | 6, 13 | sylbi 121 | . 2 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → (𝑀 + 𝐾) ≤ (𝑁 + 𝐾)) |
| 15 | zaddcl 9447 | . . . 4 ⊢ ((𝑀 ∈ ℤ ∧ 𝐾 ∈ ℤ) → (𝑀 + 𝐾) ∈ ℤ) | |
| 16 | 5, 2, 15 | mp2an 426 | . . 3 ⊢ (𝑀 + 𝐾) ∈ ℤ |
| 17 | 16 | eluz1i 9690 | . 2 ⊢ ((𝑁 + 𝐾) ∈ (ℤ≥‘(𝑀 + 𝐾)) ↔ ((𝑁 + 𝐾) ∈ ℤ ∧ (𝑀 + 𝐾) ≤ (𝑁 + 𝐾))) |
| 18 | 4, 14, 17 | sylanbrc 417 | 1 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → (𝑁 + 𝐾) ∈ (ℤ≥‘(𝑀 + 𝐾))) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 ∈ wcel 2178 class class class wbr 4059 ‘cfv 5290 (class class class)co 5967 ℝcr 7959 + caddc 7963 ≤ cle 8143 ℤcz 9407 ℤ≥cuz 9683 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2180 ax-14 2181 ax-ext 2189 ax-sep 4178 ax-pow 4234 ax-pr 4269 ax-un 4498 ax-setind 4603 ax-cnex 8051 ax-resscn 8052 ax-1cn 8053 ax-1re 8054 ax-icn 8055 ax-addcl 8056 ax-addrcl 8057 ax-mulcl 8058 ax-addcom 8060 ax-addass 8062 ax-distr 8064 ax-i2m1 8065 ax-0lt1 8066 ax-0id 8068 ax-rnegex 8069 ax-cnre 8071 ax-pre-ltirr 8072 ax-pre-ltwlin 8073 ax-pre-lttrn 8074 ax-pre-ltadd 8076 |
| This theorem depends on definitions: df-bi 117 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ne 2379 df-nel 2474 df-ral 2491 df-rex 2492 df-reu 2493 df-rab 2495 df-v 2778 df-sbc 3006 df-dif 3176 df-un 3178 df-in 3180 df-ss 3187 df-pw 3628 df-sn 3649 df-pr 3650 df-op 3652 df-uni 3865 df-int 3900 df-br 4060 df-opab 4122 df-mpt 4123 df-id 4358 df-xp 4699 df-rel 4700 df-cnv 4701 df-co 4702 df-dm 4703 df-rn 4704 df-res 4705 df-ima 4706 df-iota 5251 df-fun 5292 df-fn 5293 df-f 5294 df-fv 5298 df-riota 5922 df-ov 5970 df-oprab 5971 df-mpo 5972 df-pnf 8144 df-mnf 8145 df-xr 8146 df-ltxr 8147 df-le 8148 df-sub 8280 df-neg 8281 df-inn 9072 df-n0 9331 df-z 9408 df-uz 9684 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |