![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > eluzaddi | GIF version |
Description: Membership in a later upper set of integers. (Contributed by Paul Chapman, 22-Nov-2007.) |
Ref | Expression |
---|---|
eluzaddi.1 | ⊢ 𝑀 ∈ ℤ |
eluzaddi.2 | ⊢ 𝐾 ∈ ℤ |
Ref | Expression |
---|---|
eluzaddi | ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → (𝑁 + 𝐾) ∈ (ℤ≥‘(𝑀 + 𝐾))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eluzelz 9089 | . . 3 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → 𝑁 ∈ ℤ) | |
2 | eluzaddi.2 | . . 3 ⊢ 𝐾 ∈ ℤ | |
3 | zaddcl 8851 | . . 3 ⊢ ((𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) → (𝑁 + 𝐾) ∈ ℤ) | |
4 | 1, 2, 3 | sylancl 405 | . 2 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → (𝑁 + 𝐾) ∈ ℤ) |
5 | eluzaddi.1 | . . . 4 ⊢ 𝑀 ∈ ℤ | |
6 | 5 | eluz1i 9087 | . . 3 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) ↔ (𝑁 ∈ ℤ ∧ 𝑀 ≤ 𝑁)) |
7 | zre 8815 | . . . . 5 ⊢ (𝑁 ∈ ℤ → 𝑁 ∈ ℝ) | |
8 | 5 | zrei 8817 | . . . . . 6 ⊢ 𝑀 ∈ ℝ |
9 | 2 | zrei 8817 | . . . . . 6 ⊢ 𝐾 ∈ ℝ |
10 | leadd1 7969 | . . . . . 6 ⊢ ((𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 𝐾 ∈ ℝ) → (𝑀 ≤ 𝑁 ↔ (𝑀 + 𝐾) ≤ (𝑁 + 𝐾))) | |
11 | 8, 9, 10 | mp3an13 1265 | . . . . 5 ⊢ (𝑁 ∈ ℝ → (𝑀 ≤ 𝑁 ↔ (𝑀 + 𝐾) ≤ (𝑁 + 𝐾))) |
12 | 7, 11 | syl 14 | . . . 4 ⊢ (𝑁 ∈ ℤ → (𝑀 ≤ 𝑁 ↔ (𝑀 + 𝐾) ≤ (𝑁 + 𝐾))) |
13 | 12 | biimpa 291 | . . 3 ⊢ ((𝑁 ∈ ℤ ∧ 𝑀 ≤ 𝑁) → (𝑀 + 𝐾) ≤ (𝑁 + 𝐾)) |
14 | 6, 13 | sylbi 120 | . 2 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → (𝑀 + 𝐾) ≤ (𝑁 + 𝐾)) |
15 | zaddcl 8851 | . . . 4 ⊢ ((𝑀 ∈ ℤ ∧ 𝐾 ∈ ℤ) → (𝑀 + 𝐾) ∈ ℤ) | |
16 | 5, 2, 15 | mp2an 418 | . . 3 ⊢ (𝑀 + 𝐾) ∈ ℤ |
17 | 16 | eluz1i 9087 | . 2 ⊢ ((𝑁 + 𝐾) ∈ (ℤ≥‘(𝑀 + 𝐾)) ↔ ((𝑁 + 𝐾) ∈ ℤ ∧ (𝑀 + 𝐾) ≤ (𝑁 + 𝐾))) |
18 | 4, 14, 17 | sylanbrc 409 | 1 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → (𝑁 + 𝐾) ∈ (ℤ≥‘(𝑀 + 𝐾))) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ↔ wb 104 ∈ wcel 1439 class class class wbr 3851 ‘cfv 5028 (class class class)co 5666 ℝcr 7410 + caddc 7414 ≤ cle 7584 ℤcz 8811 ℤ≥cuz 9080 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 580 ax-in2 581 ax-io 666 ax-5 1382 ax-7 1383 ax-gen 1384 ax-ie1 1428 ax-ie2 1429 ax-8 1441 ax-10 1442 ax-11 1443 ax-i12 1444 ax-bndl 1445 ax-4 1446 ax-13 1450 ax-14 1451 ax-17 1465 ax-i9 1469 ax-ial 1473 ax-i5r 1474 ax-ext 2071 ax-sep 3963 ax-pow 4015 ax-pr 4045 ax-un 4269 ax-setind 4366 ax-cnex 7497 ax-resscn 7498 ax-1cn 7499 ax-1re 7500 ax-icn 7501 ax-addcl 7502 ax-addrcl 7503 ax-mulcl 7504 ax-addcom 7506 ax-addass 7508 ax-distr 7510 ax-i2m1 7511 ax-0lt1 7512 ax-0id 7514 ax-rnegex 7515 ax-cnre 7517 ax-pre-ltirr 7518 ax-pre-ltwlin 7519 ax-pre-lttrn 7520 ax-pre-ltadd 7522 |
This theorem depends on definitions: df-bi 116 df-3or 926 df-3an 927 df-tru 1293 df-fal 1296 df-nf 1396 df-sb 1694 df-eu 1952 df-mo 1953 df-clab 2076 df-cleq 2082 df-clel 2085 df-nfc 2218 df-ne 2257 df-nel 2352 df-ral 2365 df-rex 2366 df-reu 2367 df-rab 2369 df-v 2622 df-sbc 2842 df-dif 3002 df-un 3004 df-in 3006 df-ss 3013 df-pw 3435 df-sn 3456 df-pr 3457 df-op 3459 df-uni 3660 df-int 3695 df-br 3852 df-opab 3906 df-mpt 3907 df-id 4129 df-xp 4458 df-rel 4459 df-cnv 4460 df-co 4461 df-dm 4462 df-rn 4463 df-res 4464 df-ima 4465 df-iota 4993 df-fun 5030 df-fn 5031 df-f 5032 df-fv 5036 df-riota 5622 df-ov 5669 df-oprab 5670 df-mpt2 5671 df-pnf 7585 df-mnf 7586 df-xr 7587 df-ltxr 7588 df-le 7589 df-sub 7716 df-neg 7717 df-inn 8484 df-n0 8735 df-z 8812 df-uz 9081 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |