| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > zssre | GIF version | ||
| Description: The integers are a subset of the reals. (Contributed by NM, 2-Aug-2004.) |
| Ref | Expression |
|---|---|
| zssre | ⊢ ℤ ⊆ ℝ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | zre 9383 | . 2 ⊢ (𝑥 ∈ ℤ → 𝑥 ∈ ℝ) | |
| 2 | 1 | ssriv 3198 | 1 ⊢ ℤ ⊆ ℝ |
| Colors of variables: wff set class |
| Syntax hints: ⊆ wss 3167 ℝcr 7931 ℤcz 9379 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2188 |
| This theorem depends on definitions: df-bi 117 df-3or 982 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-rex 2491 df-rab 2494 df-v 2775 df-un 3171 df-in 3173 df-ss 3180 df-sn 3640 df-pr 3641 df-op 3643 df-uni 3853 df-br 4048 df-iota 5237 df-fv 5284 df-ov 5954 df-neg 8253 df-z 9380 |
| This theorem is referenced by: suprzclex 9478 zred 9502 lbzbi 9744 fzval2 10140 zsupcl 10381 infssuzex 10383 infssuzcldc 10385 seq3coll 10994 summodclem2a 11736 fsum3cvg3 11751 prodmodclem2a 11931 gcddvds 12328 dvdslegcd 12329 |
| Copyright terms: Public domain | W3C validator |