![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > zssre | GIF version |
Description: The integers are a subset of the reals. (Contributed by NM, 2-Aug-2004.) |
Ref | Expression |
---|---|
zssre | ⊢ ℤ ⊆ ℝ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | zre 9282 | . 2 ⊢ (𝑥 ∈ ℤ → 𝑥 ∈ ℝ) | |
2 | 1 | ssriv 3174 | 1 ⊢ ℤ ⊆ ℝ |
Colors of variables: wff set class |
Syntax hints: ⊆ wss 3144 ℝcr 7835 ℤcz 9278 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2171 |
This theorem depends on definitions: df-bi 117 df-3or 981 df-3an 982 df-tru 1367 df-nf 1472 df-sb 1774 df-clab 2176 df-cleq 2182 df-clel 2185 df-nfc 2321 df-rex 2474 df-rab 2477 df-v 2754 df-un 3148 df-in 3150 df-ss 3157 df-sn 3613 df-pr 3614 df-op 3616 df-uni 3825 df-br 4019 df-iota 5193 df-fv 5240 df-ov 5895 df-neg 8156 df-z 9279 |
This theorem is referenced by: suprzclex 9376 zred 9400 lbzbi 9641 fzval2 10036 seq3coll 10849 summodclem2a 11416 fsum3cvg3 11431 prodmodclem2a 11611 zsupcl 11975 infssuzex 11977 infssuzcldc 11979 gcddvds 11991 dvdslegcd 11992 |
Copyright terms: Public domain | W3C validator |