| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > simp2ll | Structured version Visualization version GIF version | ||
| Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.) |
| Ref | Expression |
|---|---|
| simp2ll | ⊢ ((𝜃 ∧ ((𝜑 ∧ 𝜓) ∧ 𝜒) ∧ 𝜏) → 𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpll 766 | . 2 ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) → 𝜑) | |
| 2 | 1 | 3ad2ant2 1134 | 1 ⊢ ((𝜃 ∧ ((𝜑 ∧ 𝜓) ∧ 𝜒) ∧ 𝜏) → 𝜑) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: tfrlem5 8305 omeu 8506 expmordi 14076 hash7g 14395 4sqlem18 16876 vdwlem10 16904 0catg 17596 mvrf1 21924 mdetuni0 22537 mdetmul 22539 tsmsxp 24071 ax5seglem3 28911 btwnconn1lem1 36152 btwnconn1lem2 36153 btwnconn1lem3 36154 btwnconn1lem12 36163 btwnconn1lem13 36164 lshpkrlem6 39235 athgt 39576 2llnjN 39687 dalaw 40006 lhpmcvr4N 40146 cdlemb2 40161 4atexlemex6 40194 cdlemd7 40324 cdleme01N 40341 cdleme02N 40342 cdleme0ex1N 40343 cdleme0ex2N 40344 cdleme7aa 40362 cdleme7c 40365 cdleme7d 40366 cdleme7e 40367 cdleme7ga 40368 cdleme7 40369 cdleme11a 40380 cdleme20k 40439 cdleme27cl 40486 cdleme42e 40599 cdleme42h 40602 cdleme42i 40603 cdlemf 40683 cdlemg2kq 40722 cdlemg2m 40724 cdlemg8a 40747 cdlemg11aq 40758 cdlemg10c 40759 cdlemg11b 40762 cdlemg17a 40781 cdlemg31b0N 40814 cdlemg31c 40819 cdlemg33c0 40822 cdlemg41 40838 cdlemh2 40936 cdlemn9 41325 dihglbcpreN 41420 dihmeetlem3N 41425 dihmeetlem13N 41439 pellex 42953 |
| Copyright terms: Public domain | W3C validator |