![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > simp2ll | Structured version Visualization version GIF version |
Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.) |
Ref | Expression |
---|---|
simp2ll | ⊢ ((𝜃 ∧ ((𝜑 ∧ 𝜓) ∧ 𝜒) ∧ 𝜏) → 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpll 767 | . 2 ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) → 𝜑) | |
2 | 1 | 3ad2ant2 1133 | 1 ⊢ ((𝜃 ∧ ((𝜑 ∧ 𝜓) ∧ 𝜒) ∧ 𝜏) → 𝜑) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
This theorem is referenced by: tfrlem5 8419 omeu 8622 expmordi 14204 hash7g 14522 4sqlem18 16996 vdwlem10 17024 0catg 17733 mvrf1 22024 mdetuni0 22643 mdetmul 22645 tsmsxp 24179 ax5seglem3 28961 btwnconn1lem1 36069 btwnconn1lem2 36070 btwnconn1lem3 36071 btwnconn1lem12 36080 btwnconn1lem13 36081 lshpkrlem6 39097 athgt 39439 2llnjN 39550 dalaw 39869 lhpmcvr4N 40009 cdlemb2 40024 4atexlemex6 40057 cdlemd7 40187 cdleme01N 40204 cdleme02N 40205 cdleme0ex1N 40206 cdleme0ex2N 40207 cdleme7aa 40225 cdleme7c 40228 cdleme7d 40229 cdleme7e 40230 cdleme7ga 40231 cdleme7 40232 cdleme11a 40243 cdleme20k 40302 cdleme27cl 40349 cdleme42e 40462 cdleme42h 40465 cdleme42i 40466 cdlemf 40546 cdlemg2kq 40585 cdlemg2m 40587 cdlemg8a 40610 cdlemg11aq 40621 cdlemg10c 40622 cdlemg11b 40625 cdlemg17a 40644 cdlemg31b0N 40677 cdlemg31c 40682 cdlemg33c0 40685 cdlemg41 40701 cdlemh2 40799 cdlemn9 41188 dihglbcpreN 41283 dihmeetlem3N 41288 dihmeetlem13N 41302 pellex 42823 |
Copyright terms: Public domain | W3C validator |