![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > simp2ll | Structured version Visualization version GIF version |
Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.) |
Ref | Expression |
---|---|
simp2ll | ⊢ ((𝜃 ∧ ((𝜑 ∧ 𝜓) ∧ 𝜒) ∧ 𝜏) → 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpll 766 | . 2 ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) → 𝜑) | |
2 | 1 | 3ad2ant2 1134 | 1 ⊢ ((𝜃 ∧ ((𝜑 ∧ 𝜓) ∧ 𝜒) ∧ 𝜏) → 𝜑) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1087 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1089 |
This theorem is referenced by: tfrlem5 8436 omeu 8641 expmordi 14217 hash7g 14535 4sqlem18 17009 vdwlem10 17037 0catg 17746 mvrf1 22029 mdetuni0 22648 mdetmul 22650 tsmsxp 24184 ax5seglem3 28964 btwnconn1lem1 36051 btwnconn1lem2 36052 btwnconn1lem3 36053 btwnconn1lem12 36062 btwnconn1lem13 36063 lshpkrlem6 39071 athgt 39413 2llnjN 39524 dalaw 39843 lhpmcvr4N 39983 cdlemb2 39998 4atexlemex6 40031 cdlemd7 40161 cdleme01N 40178 cdleme02N 40179 cdleme0ex1N 40180 cdleme0ex2N 40181 cdleme7aa 40199 cdleme7c 40202 cdleme7d 40203 cdleme7e 40204 cdleme7ga 40205 cdleme7 40206 cdleme11a 40217 cdleme20k 40276 cdleme27cl 40323 cdleme42e 40436 cdleme42h 40439 cdleme42i 40440 cdlemf 40520 cdlemg2kq 40559 cdlemg2m 40561 cdlemg8a 40584 cdlemg11aq 40595 cdlemg10c 40596 cdlemg11b 40599 cdlemg17a 40618 cdlemg31b0N 40651 cdlemg31c 40656 cdlemg33c0 40659 cdlemg41 40675 cdlemh2 40773 cdlemn9 41162 dihglbcpreN 41257 dihmeetlem3N 41262 dihmeetlem13N 41276 pellex 42791 |
Copyright terms: Public domain | W3C validator |