Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > simp2ll | Structured version Visualization version GIF version |
Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.) |
Ref | Expression |
---|---|
simp2ll | ⊢ ((𝜃 ∧ ((𝜑 ∧ 𝜓) ∧ 𝜒) ∧ 𝜏) → 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpll 763 | . 2 ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) → 𝜑) | |
2 | 1 | 3ad2ant2 1132 | 1 ⊢ ((𝜃 ∧ ((𝜑 ∧ 𝜓) ∧ 𝜒) ∧ 𝜏) → 𝜑) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1085 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 396 df-3an 1087 |
This theorem is referenced by: tfrlem5 8182 omeu 8378 expmordi 13813 4sqlem18 16591 vdwlem10 16619 0catg 17314 mvrf1 21104 mdetuni0 21678 mdetmul 21680 tsmsxp 23214 ax5seglem3 27202 btwnconn1lem1 34316 btwnconn1lem2 34317 btwnconn1lem3 34318 btwnconn1lem12 34327 btwnconn1lem13 34328 lshpkrlem6 37056 athgt 37397 2llnjN 37508 dalaw 37827 lhpmcvr4N 37967 cdlemb2 37982 4atexlemex6 38015 cdlemd7 38145 cdleme01N 38162 cdleme02N 38163 cdleme0ex1N 38164 cdleme0ex2N 38165 cdleme7aa 38183 cdleme7c 38186 cdleme7d 38187 cdleme7e 38188 cdleme7ga 38189 cdleme7 38190 cdleme11a 38201 cdleme20k 38260 cdleme27cl 38307 cdleme42e 38420 cdleme42h 38423 cdleme42i 38424 cdlemf 38504 cdlemg2kq 38543 cdlemg2m 38545 cdlemg8a 38568 cdlemg11aq 38579 cdlemg10c 38580 cdlemg11b 38583 cdlemg17a 38602 cdlemg31b0N 38635 cdlemg31c 38640 cdlemg33c0 38643 cdlemg41 38659 cdlemh2 38757 cdlemn9 39146 dihglbcpreN 39241 dihmeetlem3N 39246 dihmeetlem13N 39260 pellex 40573 |
Copyright terms: Public domain | W3C validator |