| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > simp2ll | Structured version Visualization version GIF version | ||
| Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.) |
| Ref | Expression |
|---|---|
| simp2ll | ⊢ ((𝜃 ∧ ((𝜑 ∧ 𝜓) ∧ 𝜒) ∧ 𝜏) → 𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpll 766 | . 2 ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) → 𝜑) | |
| 2 | 1 | 3ad2ant2 1134 | 1 ⊢ ((𝜃 ∧ ((𝜑 ∧ 𝜓) ∧ 𝜒) ∧ 𝜏) → 𝜑) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: tfrlem5 8309 omeu 8510 expmordi 14092 hash7g 14411 4sqlem18 16892 vdwlem10 16920 0catg 17612 mvrf1 21911 mdetuni0 22524 mdetmul 22526 tsmsxp 24058 ax5seglem3 28894 btwnconn1lem1 36060 btwnconn1lem2 36061 btwnconn1lem3 36062 btwnconn1lem12 36071 btwnconn1lem13 36072 lshpkrlem6 39093 athgt 39435 2llnjN 39546 dalaw 39865 lhpmcvr4N 40005 cdlemb2 40020 4atexlemex6 40053 cdlemd7 40183 cdleme01N 40200 cdleme02N 40201 cdleme0ex1N 40202 cdleme0ex2N 40203 cdleme7aa 40221 cdleme7c 40224 cdleme7d 40225 cdleme7e 40226 cdleme7ga 40227 cdleme7 40228 cdleme11a 40239 cdleme20k 40298 cdleme27cl 40345 cdleme42e 40458 cdleme42h 40461 cdleme42i 40462 cdlemf 40542 cdlemg2kq 40581 cdlemg2m 40583 cdlemg8a 40606 cdlemg11aq 40617 cdlemg10c 40618 cdlemg11b 40621 cdlemg17a 40640 cdlemg31b0N 40673 cdlemg31c 40678 cdlemg33c0 40681 cdlemg41 40697 cdlemh2 40795 cdlemn9 41184 dihglbcpreN 41279 dihmeetlem3N 41284 dihmeetlem13N 41298 pellex 42808 |
| Copyright terms: Public domain | W3C validator |