| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > simp2ll | Structured version Visualization version GIF version | ||
| Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.) |
| Ref | Expression |
|---|---|
| simp2ll | ⊢ ((𝜃 ∧ ((𝜑 ∧ 𝜓) ∧ 𝜒) ∧ 𝜏) → 𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpll 766 | . 2 ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) → 𝜑) | |
| 2 | 1 | 3ad2ant2 1134 | 1 ⊢ ((𝜃 ∧ ((𝜑 ∧ 𝜓) ∧ 𝜒) ∧ 𝜏) → 𝜑) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: tfrlem5 8351 omeu 8552 expmordi 14139 hash7g 14458 4sqlem18 16940 vdwlem10 16968 0catg 17656 mvrf1 21902 mdetuni0 22515 mdetmul 22517 tsmsxp 24049 ax5seglem3 28865 btwnconn1lem1 36082 btwnconn1lem2 36083 btwnconn1lem3 36084 btwnconn1lem12 36093 btwnconn1lem13 36094 lshpkrlem6 39115 athgt 39457 2llnjN 39568 dalaw 39887 lhpmcvr4N 40027 cdlemb2 40042 4atexlemex6 40075 cdlemd7 40205 cdleme01N 40222 cdleme02N 40223 cdleme0ex1N 40224 cdleme0ex2N 40225 cdleme7aa 40243 cdleme7c 40246 cdleme7d 40247 cdleme7e 40248 cdleme7ga 40249 cdleme7 40250 cdleme11a 40261 cdleme20k 40320 cdleme27cl 40367 cdleme42e 40480 cdleme42h 40483 cdleme42i 40484 cdlemf 40564 cdlemg2kq 40603 cdlemg2m 40605 cdlemg8a 40628 cdlemg11aq 40639 cdlemg10c 40640 cdlemg11b 40643 cdlemg17a 40662 cdlemg31b0N 40695 cdlemg31c 40700 cdlemg33c0 40703 cdlemg41 40719 cdlemh2 40817 cdlemn9 41206 dihglbcpreN 41301 dihmeetlem3N 41306 dihmeetlem13N 41320 pellex 42830 |
| Copyright terms: Public domain | W3C validator |