| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > simp2ll | Structured version Visualization version GIF version | ||
| Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.) |
| Ref | Expression |
|---|---|
| simp2ll | ⊢ ((𝜃 ∧ ((𝜑 ∧ 𝜓) ∧ 𝜒) ∧ 𝜏) → 𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpll 766 | . 2 ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) → 𝜑) | |
| 2 | 1 | 3ad2ant2 1134 | 1 ⊢ ((𝜃 ∧ ((𝜑 ∧ 𝜓) ∧ 𝜒) ∧ 𝜏) → 𝜑) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: tfrlem5 8394 omeu 8597 expmordi 14185 hash7g 14504 4sqlem18 16982 vdwlem10 17010 0catg 17700 mvrf1 21946 mdetuni0 22559 mdetmul 22561 tsmsxp 24093 ax5seglem3 28910 btwnconn1lem1 36105 btwnconn1lem2 36106 btwnconn1lem3 36107 btwnconn1lem12 36116 btwnconn1lem13 36117 lshpkrlem6 39133 athgt 39475 2llnjN 39586 dalaw 39905 lhpmcvr4N 40045 cdlemb2 40060 4atexlemex6 40093 cdlemd7 40223 cdleme01N 40240 cdleme02N 40241 cdleme0ex1N 40242 cdleme0ex2N 40243 cdleme7aa 40261 cdleme7c 40264 cdleme7d 40265 cdleme7e 40266 cdleme7ga 40267 cdleme7 40268 cdleme11a 40279 cdleme20k 40338 cdleme27cl 40385 cdleme42e 40498 cdleme42h 40501 cdleme42i 40502 cdlemf 40582 cdlemg2kq 40621 cdlemg2m 40623 cdlemg8a 40646 cdlemg11aq 40657 cdlemg10c 40658 cdlemg11b 40661 cdlemg17a 40680 cdlemg31b0N 40713 cdlemg31c 40718 cdlemg33c0 40721 cdlemg41 40737 cdlemh2 40835 cdlemn9 41224 dihglbcpreN 41319 dihmeetlem3N 41324 dihmeetlem13N 41338 pellex 42858 |
| Copyright terms: Public domain | W3C validator |