| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > simp2ll | Structured version Visualization version GIF version | ||
| Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.) |
| Ref | Expression |
|---|---|
| simp2ll | ⊢ ((𝜃 ∧ ((𝜑 ∧ 𝜓) ∧ 𝜒) ∧ 𝜏) → 𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpll 766 | . 2 ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) → 𝜑) | |
| 2 | 1 | 3ad2ant2 1134 | 1 ⊢ ((𝜃 ∧ ((𝜑 ∧ 𝜓) ∧ 𝜒) ∧ 𝜏) → 𝜑) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: tfrlem5 8348 omeu 8549 expmordi 14132 hash7g 14451 4sqlem18 16933 vdwlem10 16961 0catg 17649 mvrf1 21895 mdetuni0 22508 mdetmul 22510 tsmsxp 24042 ax5seglem3 28858 btwnconn1lem1 36075 btwnconn1lem2 36076 btwnconn1lem3 36077 btwnconn1lem12 36086 btwnconn1lem13 36087 lshpkrlem6 39108 athgt 39450 2llnjN 39561 dalaw 39880 lhpmcvr4N 40020 cdlemb2 40035 4atexlemex6 40068 cdlemd7 40198 cdleme01N 40215 cdleme02N 40216 cdleme0ex1N 40217 cdleme0ex2N 40218 cdleme7aa 40236 cdleme7c 40239 cdleme7d 40240 cdleme7e 40241 cdleme7ga 40242 cdleme7 40243 cdleme11a 40254 cdleme20k 40313 cdleme27cl 40360 cdleme42e 40473 cdleme42h 40476 cdleme42i 40477 cdlemf 40557 cdlemg2kq 40596 cdlemg2m 40598 cdlemg8a 40621 cdlemg11aq 40632 cdlemg10c 40633 cdlemg11b 40636 cdlemg17a 40655 cdlemg31b0N 40688 cdlemg31c 40693 cdlemg33c0 40696 cdlemg41 40712 cdlemh2 40810 cdlemn9 41199 dihglbcpreN 41294 dihmeetlem3N 41299 dihmeetlem13N 41313 pellex 42823 |
| Copyright terms: Public domain | W3C validator |