| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > simp2ll | Structured version Visualization version GIF version | ||
| Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.) |
| Ref | Expression |
|---|---|
| simp2ll | ⊢ ((𝜃 ∧ ((𝜑 ∧ 𝜓) ∧ 𝜒) ∧ 𝜏) → 𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpll 766 | . 2 ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) → 𝜑) | |
| 2 | 1 | 3ad2ant2 1134 | 1 ⊢ ((𝜃 ∧ ((𝜑 ∧ 𝜓) ∧ 𝜒) ∧ 𝜏) → 𝜑) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: tfrlem5 8299 omeu 8500 expmordi 14074 hash7g 14393 4sqlem18 16874 vdwlem10 16902 0catg 17594 mvrf1 21924 mdetuni0 22537 mdetmul 22539 tsmsxp 24071 ax5seglem3 28910 btwnconn1lem1 36127 btwnconn1lem2 36128 btwnconn1lem3 36129 btwnconn1lem12 36138 btwnconn1lem13 36139 lshpkrlem6 39160 athgt 39501 2llnjN 39612 dalaw 39931 lhpmcvr4N 40071 cdlemb2 40086 4atexlemex6 40119 cdlemd7 40249 cdleme01N 40266 cdleme02N 40267 cdleme0ex1N 40268 cdleme0ex2N 40269 cdleme7aa 40287 cdleme7c 40290 cdleme7d 40291 cdleme7e 40292 cdleme7ga 40293 cdleme7 40294 cdleme11a 40305 cdleme20k 40364 cdleme27cl 40411 cdleme42e 40524 cdleme42h 40527 cdleme42i 40528 cdlemf 40608 cdlemg2kq 40647 cdlemg2m 40649 cdlemg8a 40672 cdlemg11aq 40683 cdlemg10c 40684 cdlemg11b 40687 cdlemg17a 40706 cdlemg31b0N 40739 cdlemg31c 40744 cdlemg33c0 40747 cdlemg41 40763 cdlemh2 40861 cdlemn9 41250 dihglbcpreN 41345 dihmeetlem3N 41350 dihmeetlem13N 41364 pellex 42874 |
| Copyright terms: Public domain | W3C validator |