MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  0cat Structured version   Visualization version   GIF version

Theorem 0cat 17387
Description: The empty set is a category, the empty category, see example 3.3(4.c) in [Adamek] p. 24. (Contributed by Mario Carneiro, 3-Jan-2017.)
Assertion
Ref Expression
0cat ∅ ∈ Cat

Proof of Theorem 0cat
StepHypRef Expression
1 0ex 5231 . 2 ∅ ∈ V
2 base0 16906 . 2 ∅ = (Base‘∅)
3 0catg 17386 . 2 ((∅ ∈ V ∧ ∅ = (Base‘∅)) → ∅ ∈ Cat)
41, 2, 3mp2an 689 1 ∅ ∈ Cat
Colors of variables: wff setvar class
Syntax hints:   = wceq 1539  wcel 2106  Vcvv 3431  c0 4258  cfv 6428  Basecbs 16901  Catccat 17362
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7580  ax-cnex 10916  ax-1cn 10918  ax-addcl 10920
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3433  df-sbc 3718  df-csb 3834  df-dif 3891  df-un 3893  df-in 3895  df-ss 3905  df-pss 3907  df-nul 4259  df-if 4462  df-pw 4537  df-sn 4564  df-pr 4566  df-op 4570  df-uni 4842  df-iun 4928  df-br 5076  df-opab 5138  df-mpt 5159  df-tr 5193  df-id 5486  df-eprel 5492  df-po 5500  df-so 5501  df-fr 5541  df-we 5543  df-xp 5592  df-rel 5593  df-cnv 5594  df-co 5595  df-dm 5596  df-rn 5597  df-res 5598  df-ima 5599  df-pred 6197  df-ord 6264  df-on 6265  df-lim 6266  df-suc 6267  df-iota 6386  df-fun 6430  df-fn 6431  df-f 6432  df-f1 6433  df-fo 6434  df-f1o 6435  df-fv 6436  df-ov 7272  df-om 7705  df-2nd 7823  df-frecs 8086  df-wrecs 8117  df-recs 8191  df-rdg 8230  df-nn 11963  df-slot 16872  df-ndx 16884  df-base 16902  df-cat 17366
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator