MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  catcone0 Structured version   Visualization version   GIF version

Theorem catcone0 17745
Description: Composition of non-empty hom-sets is non-empty. (Contributed by Zhi Wang, 18-Sep-2024.)
Hypotheses
Ref Expression
catcocl.b 𝐵 = (Base‘𝐶)
catcocl.h 𝐻 = (Hom ‘𝐶)
catcocl.o · = (comp‘𝐶)
catcocl.c (𝜑𝐶 ∈ Cat)
catcocl.x (𝜑𝑋𝐵)
catcocl.y (𝜑𝑌𝐵)
catcocl.z (𝜑𝑍𝐵)
catcone0.f (𝜑 → (𝑋𝐻𝑌) ≠ ∅)
catcone0.g (𝜑 → (𝑌𝐻𝑍) ≠ ∅)
Assertion
Ref Expression
catcone0 (𝜑 → (𝑋𝐻𝑍) ≠ ∅)

Proof of Theorem catcone0
Dummy variables 𝑓 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 catcone0.f . . . 4 (𝜑 → (𝑋𝐻𝑌) ≠ ∅)
2 catcone0.g . . . 4 (𝜑 → (𝑌𝐻𝑍) ≠ ∅)
3 n0 4376 . . . . . 6 ((𝑋𝐻𝑌) ≠ ∅ ↔ ∃𝑓 𝑓 ∈ (𝑋𝐻𝑌))
4 n0 4376 . . . . . 6 ((𝑌𝐻𝑍) ≠ ∅ ↔ ∃𝑔 𝑔 ∈ (𝑌𝐻𝑍))
53, 4anbi12i 627 . . . . 5 (((𝑋𝐻𝑌) ≠ ∅ ∧ (𝑌𝐻𝑍) ≠ ∅) ↔ (∃𝑓 𝑓 ∈ (𝑋𝐻𝑌) ∧ ∃𝑔 𝑔 ∈ (𝑌𝐻𝑍)))
6 exdistrv 1955 . . . . 5 (∃𝑓𝑔(𝑓 ∈ (𝑋𝐻𝑌) ∧ 𝑔 ∈ (𝑌𝐻𝑍)) ↔ (∃𝑓 𝑓 ∈ (𝑋𝐻𝑌) ∧ ∃𝑔 𝑔 ∈ (𝑌𝐻𝑍)))
75, 6sylbb2 238 . . . 4 (((𝑋𝐻𝑌) ≠ ∅ ∧ (𝑌𝐻𝑍) ≠ ∅) → ∃𝑓𝑔(𝑓 ∈ (𝑋𝐻𝑌) ∧ 𝑔 ∈ (𝑌𝐻𝑍)))
81, 2, 7syl2anc 583 . . 3 (𝜑 → ∃𝑓𝑔(𝑓 ∈ (𝑋𝐻𝑌) ∧ 𝑔 ∈ (𝑌𝐻𝑍)))
98ancli 548 . 2 (𝜑 → (𝜑 ∧ ∃𝑓𝑔(𝑓 ∈ (𝑋𝐻𝑌) ∧ 𝑔 ∈ (𝑌𝐻𝑍))))
10 19.42vv 1957 . . 3 (∃𝑓𝑔(𝜑 ∧ (𝑓 ∈ (𝑋𝐻𝑌) ∧ 𝑔 ∈ (𝑌𝐻𝑍))) ↔ (𝜑 ∧ ∃𝑓𝑔(𝑓 ∈ (𝑋𝐻𝑌) ∧ 𝑔 ∈ (𝑌𝐻𝑍))))
1110biimpri 228 . 2 ((𝜑 ∧ ∃𝑓𝑔(𝑓 ∈ (𝑋𝐻𝑌) ∧ 𝑔 ∈ (𝑌𝐻𝑍))) → ∃𝑓𝑔(𝜑 ∧ (𝑓 ∈ (𝑋𝐻𝑌) ∧ 𝑔 ∈ (𝑌𝐻𝑍))))
12 catcocl.b . . . 4 𝐵 = (Base‘𝐶)
13 catcocl.h . . . 4 𝐻 = (Hom ‘𝐶)
14 catcocl.o . . . 4 · = (comp‘𝐶)
15 catcocl.c . . . . 5 (𝜑𝐶 ∈ Cat)
1615adantr 480 . . . 4 ((𝜑 ∧ (𝑓 ∈ (𝑋𝐻𝑌) ∧ 𝑔 ∈ (𝑌𝐻𝑍))) → 𝐶 ∈ Cat)
17 catcocl.x . . . . 5 (𝜑𝑋𝐵)
1817adantr 480 . . . 4 ((𝜑 ∧ (𝑓 ∈ (𝑋𝐻𝑌) ∧ 𝑔 ∈ (𝑌𝐻𝑍))) → 𝑋𝐵)
19 catcocl.y . . . . 5 (𝜑𝑌𝐵)
2019adantr 480 . . . 4 ((𝜑 ∧ (𝑓 ∈ (𝑋𝐻𝑌) ∧ 𝑔 ∈ (𝑌𝐻𝑍))) → 𝑌𝐵)
21 catcocl.z . . . . 5 (𝜑𝑍𝐵)
2221adantr 480 . . . 4 ((𝜑 ∧ (𝑓 ∈ (𝑋𝐻𝑌) ∧ 𝑔 ∈ (𝑌𝐻𝑍))) → 𝑍𝐵)
23 simprl 770 . . . 4 ((𝜑 ∧ (𝑓 ∈ (𝑋𝐻𝑌) ∧ 𝑔 ∈ (𝑌𝐻𝑍))) → 𝑓 ∈ (𝑋𝐻𝑌))
24 simprr 772 . . . 4 ((𝜑 ∧ (𝑓 ∈ (𝑋𝐻𝑌) ∧ 𝑔 ∈ (𝑌𝐻𝑍))) → 𝑔 ∈ (𝑌𝐻𝑍))
2512, 13, 14, 16, 18, 20, 22, 23, 24catcocl 17743 . . 3 ((𝜑 ∧ (𝑓 ∈ (𝑋𝐻𝑌) ∧ 𝑔 ∈ (𝑌𝐻𝑍))) → (𝑔(⟨𝑋, 𝑌· 𝑍)𝑓) ∈ (𝑋𝐻𝑍))
26252eximi 1834 . 2 (∃𝑓𝑔(𝜑 ∧ (𝑓 ∈ (𝑋𝐻𝑌) ∧ 𝑔 ∈ (𝑌𝐻𝑍))) → ∃𝑓𝑔(𝑔(⟨𝑋, 𝑌· 𝑍)𝑓) ∈ (𝑋𝐻𝑍))
27 ne0i 4364 . . 3 ((𝑔(⟨𝑋, 𝑌· 𝑍)𝑓) ∈ (𝑋𝐻𝑍) → (𝑋𝐻𝑍) ≠ ∅)
2827exlimivv 1931 . 2 (∃𝑓𝑔(𝑔(⟨𝑋, 𝑌· 𝑍)𝑓) ∈ (𝑋𝐻𝑍) → (𝑋𝐻𝑍) ≠ ∅)
299, 11, 26, 284syl 19 1 (𝜑 → (𝑋𝐻𝑍) ≠ ∅)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wex 1777  wcel 2108  wne 2946  c0 4352  cop 4654  cfv 6573  (class class class)co 7448  Basecbs 17258  Hom chom 17322  compcco 17323  Catccat 17722
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2711  ax-nul 5324
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-ne 2947  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-sbc 3805  df-dif 3979  df-un 3981  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-iota 6525  df-fv 6581  df-ov 7451  df-cat 17726
This theorem is referenced by:  catprs  48678
  Copyright terms: Public domain W3C validator