MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  catcone0 Structured version   Visualization version   GIF version

Theorem catcone0 17655
Description: Composition of non-empty hom-sets is non-empty. (Contributed by Zhi Wang, 18-Sep-2024.)
Hypotheses
Ref Expression
catcocl.b 𝐵 = (Base‘𝐶)
catcocl.h 𝐻 = (Hom ‘𝐶)
catcocl.o · = (comp‘𝐶)
catcocl.c (𝜑𝐶 ∈ Cat)
catcocl.x (𝜑𝑋𝐵)
catcocl.y (𝜑𝑌𝐵)
catcocl.z (𝜑𝑍𝐵)
catcone0.f (𝜑 → (𝑋𝐻𝑌) ≠ ∅)
catcone0.g (𝜑 → (𝑌𝐻𝑍) ≠ ∅)
Assertion
Ref Expression
catcone0 (𝜑 → (𝑋𝐻𝑍) ≠ ∅)

Proof of Theorem catcone0
Dummy variables 𝑓 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 catcone0.f . . . 4 (𝜑 → (𝑋𝐻𝑌) ≠ ∅)
2 catcone0.g . . . 4 (𝜑 → (𝑌𝐻𝑍) ≠ ∅)
3 n0 4319 . . . . . 6 ((𝑋𝐻𝑌) ≠ ∅ ↔ ∃𝑓 𝑓 ∈ (𝑋𝐻𝑌))
4 n0 4319 . . . . . 6 ((𝑌𝐻𝑍) ≠ ∅ ↔ ∃𝑔 𝑔 ∈ (𝑌𝐻𝑍))
53, 4anbi12i 628 . . . . 5 (((𝑋𝐻𝑌) ≠ ∅ ∧ (𝑌𝐻𝑍) ≠ ∅) ↔ (∃𝑓 𝑓 ∈ (𝑋𝐻𝑌) ∧ ∃𝑔 𝑔 ∈ (𝑌𝐻𝑍)))
6 exdistrv 1955 . . . . 5 (∃𝑓𝑔(𝑓 ∈ (𝑋𝐻𝑌) ∧ 𝑔 ∈ (𝑌𝐻𝑍)) ↔ (∃𝑓 𝑓 ∈ (𝑋𝐻𝑌) ∧ ∃𝑔 𝑔 ∈ (𝑌𝐻𝑍)))
75, 6sylbb2 238 . . . 4 (((𝑋𝐻𝑌) ≠ ∅ ∧ (𝑌𝐻𝑍) ≠ ∅) → ∃𝑓𝑔(𝑓 ∈ (𝑋𝐻𝑌) ∧ 𝑔 ∈ (𝑌𝐻𝑍)))
81, 2, 7syl2anc 584 . . 3 (𝜑 → ∃𝑓𝑔(𝑓 ∈ (𝑋𝐻𝑌) ∧ 𝑔 ∈ (𝑌𝐻𝑍)))
98ancli 548 . 2 (𝜑 → (𝜑 ∧ ∃𝑓𝑔(𝑓 ∈ (𝑋𝐻𝑌) ∧ 𝑔 ∈ (𝑌𝐻𝑍))))
10 19.42vv 1957 . . 3 (∃𝑓𝑔(𝜑 ∧ (𝑓 ∈ (𝑋𝐻𝑌) ∧ 𝑔 ∈ (𝑌𝐻𝑍))) ↔ (𝜑 ∧ ∃𝑓𝑔(𝑓 ∈ (𝑋𝐻𝑌) ∧ 𝑔 ∈ (𝑌𝐻𝑍))))
1110biimpri 228 . 2 ((𝜑 ∧ ∃𝑓𝑔(𝑓 ∈ (𝑋𝐻𝑌) ∧ 𝑔 ∈ (𝑌𝐻𝑍))) → ∃𝑓𝑔(𝜑 ∧ (𝑓 ∈ (𝑋𝐻𝑌) ∧ 𝑔 ∈ (𝑌𝐻𝑍))))
12 catcocl.b . . . 4 𝐵 = (Base‘𝐶)
13 catcocl.h . . . 4 𝐻 = (Hom ‘𝐶)
14 catcocl.o . . . 4 · = (comp‘𝐶)
15 catcocl.c . . . . 5 (𝜑𝐶 ∈ Cat)
1615adantr 480 . . . 4 ((𝜑 ∧ (𝑓 ∈ (𝑋𝐻𝑌) ∧ 𝑔 ∈ (𝑌𝐻𝑍))) → 𝐶 ∈ Cat)
17 catcocl.x . . . . 5 (𝜑𝑋𝐵)
1817adantr 480 . . . 4 ((𝜑 ∧ (𝑓 ∈ (𝑋𝐻𝑌) ∧ 𝑔 ∈ (𝑌𝐻𝑍))) → 𝑋𝐵)
19 catcocl.y . . . . 5 (𝜑𝑌𝐵)
2019adantr 480 . . . 4 ((𝜑 ∧ (𝑓 ∈ (𝑋𝐻𝑌) ∧ 𝑔 ∈ (𝑌𝐻𝑍))) → 𝑌𝐵)
21 catcocl.z . . . . 5 (𝜑𝑍𝐵)
2221adantr 480 . . . 4 ((𝜑 ∧ (𝑓 ∈ (𝑋𝐻𝑌) ∧ 𝑔 ∈ (𝑌𝐻𝑍))) → 𝑍𝐵)
23 simprl 770 . . . 4 ((𝜑 ∧ (𝑓 ∈ (𝑋𝐻𝑌) ∧ 𝑔 ∈ (𝑌𝐻𝑍))) → 𝑓 ∈ (𝑋𝐻𝑌))
24 simprr 772 . . . 4 ((𝜑 ∧ (𝑓 ∈ (𝑋𝐻𝑌) ∧ 𝑔 ∈ (𝑌𝐻𝑍))) → 𝑔 ∈ (𝑌𝐻𝑍))
2512, 13, 14, 16, 18, 20, 22, 23, 24catcocl 17653 . . 3 ((𝜑 ∧ (𝑓 ∈ (𝑋𝐻𝑌) ∧ 𝑔 ∈ (𝑌𝐻𝑍))) → (𝑔(⟨𝑋, 𝑌· 𝑍)𝑓) ∈ (𝑋𝐻𝑍))
26252eximi 1836 . 2 (∃𝑓𝑔(𝜑 ∧ (𝑓 ∈ (𝑋𝐻𝑌) ∧ 𝑔 ∈ (𝑌𝐻𝑍))) → ∃𝑓𝑔(𝑔(⟨𝑋, 𝑌· 𝑍)𝑓) ∈ (𝑋𝐻𝑍))
27 ne0i 4307 . . 3 ((𝑔(⟨𝑋, 𝑌· 𝑍)𝑓) ∈ (𝑋𝐻𝑍) → (𝑋𝐻𝑍) ≠ ∅)
2827exlimivv 1932 . 2 (∃𝑓𝑔(𝑔(⟨𝑋, 𝑌· 𝑍)𝑓) ∈ (𝑋𝐻𝑍) → (𝑋𝐻𝑍) ≠ ∅)
299, 11, 26, 284syl 19 1 (𝜑 → (𝑋𝐻𝑍) ≠ ∅)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wex 1779  wcel 2109  wne 2926  c0 4299  cop 4598  cfv 6514  (class class class)co 7390  Basecbs 17186  Hom chom 17238  compcco 17239  Catccat 17632
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2702  ax-nul 5264
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2709  df-cleq 2722  df-clel 2804  df-ne 2927  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-sbc 3757  df-dif 3920  df-un 3922  df-ss 3934  df-nul 4300  df-if 4492  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-br 5111  df-iota 6467  df-fv 6522  df-ov 7393  df-cat 17636
This theorem is referenced by:  catprs  49004
  Copyright terms: Public domain W3C validator