MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  catcone0 Structured version   Visualization version   GIF version

Theorem catcone0 17313
Description: Composition of non-empty hom-sets is non-empty. (Contributed by Zhi Wang, 18-Sep-2024.)
Hypotheses
Ref Expression
catcocl.b 𝐵 = (Base‘𝐶)
catcocl.h 𝐻 = (Hom ‘𝐶)
catcocl.o · = (comp‘𝐶)
catcocl.c (𝜑𝐶 ∈ Cat)
catcocl.x (𝜑𝑋𝐵)
catcocl.y (𝜑𝑌𝐵)
catcocl.z (𝜑𝑍𝐵)
catcone0.f (𝜑 → (𝑋𝐻𝑌) ≠ ∅)
catcone0.g (𝜑 → (𝑌𝐻𝑍) ≠ ∅)
Assertion
Ref Expression
catcone0 (𝜑 → (𝑋𝐻𝑍) ≠ ∅)

Proof of Theorem catcone0
Dummy variables 𝑓 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 catcone0.f . . . . 5 (𝜑 → (𝑋𝐻𝑌) ≠ ∅)
2 catcone0.g . . . . 5 (𝜑 → (𝑌𝐻𝑍) ≠ ∅)
3 n0 4277 . . . . . . 7 ((𝑋𝐻𝑌) ≠ ∅ ↔ ∃𝑓 𝑓 ∈ (𝑋𝐻𝑌))
4 n0 4277 . . . . . . 7 ((𝑌𝐻𝑍) ≠ ∅ ↔ ∃𝑔 𝑔 ∈ (𝑌𝐻𝑍))
53, 4anbi12i 626 . . . . . 6 (((𝑋𝐻𝑌) ≠ ∅ ∧ (𝑌𝐻𝑍) ≠ ∅) ↔ (∃𝑓 𝑓 ∈ (𝑋𝐻𝑌) ∧ ∃𝑔 𝑔 ∈ (𝑌𝐻𝑍)))
6 exdistrv 1960 . . . . . 6 (∃𝑓𝑔(𝑓 ∈ (𝑋𝐻𝑌) ∧ 𝑔 ∈ (𝑌𝐻𝑍)) ↔ (∃𝑓 𝑓 ∈ (𝑋𝐻𝑌) ∧ ∃𝑔 𝑔 ∈ (𝑌𝐻𝑍)))
75, 6sylbb2 237 . . . . 5 (((𝑋𝐻𝑌) ≠ ∅ ∧ (𝑌𝐻𝑍) ≠ ∅) → ∃𝑓𝑔(𝑓 ∈ (𝑋𝐻𝑌) ∧ 𝑔 ∈ (𝑌𝐻𝑍)))
81, 2, 7syl2anc 583 . . . 4 (𝜑 → ∃𝑓𝑔(𝑓 ∈ (𝑋𝐻𝑌) ∧ 𝑔 ∈ (𝑌𝐻𝑍)))
98ancli 548 . . 3 (𝜑 → (𝜑 ∧ ∃𝑓𝑔(𝑓 ∈ (𝑋𝐻𝑌) ∧ 𝑔 ∈ (𝑌𝐻𝑍))))
10 19.42vv 1962 . . . 4 (∃𝑓𝑔(𝜑 ∧ (𝑓 ∈ (𝑋𝐻𝑌) ∧ 𝑔 ∈ (𝑌𝐻𝑍))) ↔ (𝜑 ∧ ∃𝑓𝑔(𝑓 ∈ (𝑋𝐻𝑌) ∧ 𝑔 ∈ (𝑌𝐻𝑍))))
1110biimpri 227 . . 3 ((𝜑 ∧ ∃𝑓𝑔(𝑓 ∈ (𝑋𝐻𝑌) ∧ 𝑔 ∈ (𝑌𝐻𝑍))) → ∃𝑓𝑔(𝜑 ∧ (𝑓 ∈ (𝑋𝐻𝑌) ∧ 𝑔 ∈ (𝑌𝐻𝑍))))
12 catcocl.b . . . . 5 𝐵 = (Base‘𝐶)
13 catcocl.h . . . . 5 𝐻 = (Hom ‘𝐶)
14 catcocl.o . . . . 5 · = (comp‘𝐶)
15 catcocl.c . . . . . 6 (𝜑𝐶 ∈ Cat)
1615adantr 480 . . . . 5 ((𝜑 ∧ (𝑓 ∈ (𝑋𝐻𝑌) ∧ 𝑔 ∈ (𝑌𝐻𝑍))) → 𝐶 ∈ Cat)
17 catcocl.x . . . . . 6 (𝜑𝑋𝐵)
1817adantr 480 . . . . 5 ((𝜑 ∧ (𝑓 ∈ (𝑋𝐻𝑌) ∧ 𝑔 ∈ (𝑌𝐻𝑍))) → 𝑋𝐵)
19 catcocl.y . . . . . 6 (𝜑𝑌𝐵)
2019adantr 480 . . . . 5 ((𝜑 ∧ (𝑓 ∈ (𝑋𝐻𝑌) ∧ 𝑔 ∈ (𝑌𝐻𝑍))) → 𝑌𝐵)
21 catcocl.z . . . . . 6 (𝜑𝑍𝐵)
2221adantr 480 . . . . 5 ((𝜑 ∧ (𝑓 ∈ (𝑋𝐻𝑌) ∧ 𝑔 ∈ (𝑌𝐻𝑍))) → 𝑍𝐵)
23 simprl 767 . . . . 5 ((𝜑 ∧ (𝑓 ∈ (𝑋𝐻𝑌) ∧ 𝑔 ∈ (𝑌𝐻𝑍))) → 𝑓 ∈ (𝑋𝐻𝑌))
24 simprr 769 . . . . 5 ((𝜑 ∧ (𝑓 ∈ (𝑋𝐻𝑌) ∧ 𝑔 ∈ (𝑌𝐻𝑍))) → 𝑔 ∈ (𝑌𝐻𝑍))
2512, 13, 14, 16, 18, 20, 22, 23, 24catcocl 17311 . . . 4 ((𝜑 ∧ (𝑓 ∈ (𝑋𝐻𝑌) ∧ 𝑔 ∈ (𝑌𝐻𝑍))) → (𝑔(⟨𝑋, 𝑌· 𝑍)𝑓) ∈ (𝑋𝐻𝑍))
26252eximi 1839 . . 3 (∃𝑓𝑔(𝜑 ∧ (𝑓 ∈ (𝑋𝐻𝑌) ∧ 𝑔 ∈ (𝑌𝐻𝑍))) → ∃𝑓𝑔(𝑔(⟨𝑋, 𝑌· 𝑍)𝑓) ∈ (𝑋𝐻𝑍))
279, 11, 263syl 18 . 2 (𝜑 → ∃𝑓𝑔(𝑔(⟨𝑋, 𝑌· 𝑍)𝑓) ∈ (𝑋𝐻𝑍))
28 ne0i 4265 . . 3 ((𝑔(⟨𝑋, 𝑌· 𝑍)𝑓) ∈ (𝑋𝐻𝑍) → (𝑋𝐻𝑍) ≠ ∅)
2928exlimivv 1936 . 2 (∃𝑓𝑔(𝑔(⟨𝑋, 𝑌· 𝑍)𝑓) ∈ (𝑋𝐻𝑍) → (𝑋𝐻𝑍) ≠ ∅)
3027, 29syl 17 1 (𝜑 → (𝑋𝐻𝑍) ≠ ∅)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wex 1783  wcel 2108  wne 2942  c0 4253  cop 4564  cfv 6418  (class class class)co 7255  Basecbs 16840  Hom chom 16899  compcco 16900  Catccat 17290
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-nul 5225
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-ne 2943  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-sbc 3712  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-br 5071  df-iota 6376  df-fv 6426  df-ov 7258  df-cat 17294
This theorem is referenced by:  catprs  46180
  Copyright terms: Public domain W3C validator