MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  reldmtpos Structured version   Visualization version   GIF version

Theorem reldmtpos 8259
Description: Necessary and sufficient condition for dom tpos 𝐹 to be a relation. (Contributed by Mario Carneiro, 10-Sep-2015.)
Assertion
Ref Expression
reldmtpos (Rel dom tpos 𝐹 ↔ ¬ ∅ ∈ dom 𝐹)

Proof of Theorem reldmtpos
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 0ex 5307 . . . . 5 ∅ ∈ V
21eldm 5911 . . . 4 (∅ ∈ dom 𝐹 ↔ ∃𝑦𝐹𝑦)
3 brtpos0 8258 . . . . . . 7 (𝑦 ∈ V → (∅tpos 𝐹𝑦 ↔ ∅𝐹𝑦))
43elv 3485 . . . . . 6 (∅tpos 𝐹𝑦 ↔ ∅𝐹𝑦)
5 0nelrel0 5745 . . . . . . 7 (Rel dom tpos 𝐹 → ¬ ∅ ∈ dom tpos 𝐹)
6 vex 3484 . . . . . . . 8 𝑦 ∈ V
71, 6breldm 5919 . . . . . . 7 (∅tpos 𝐹𝑦 → ∅ ∈ dom tpos 𝐹)
85, 7nsyl3 138 . . . . . 6 (∅tpos 𝐹𝑦 → ¬ Rel dom tpos 𝐹)
94, 8sylbir 235 . . . . 5 (∅𝐹𝑦 → ¬ Rel dom tpos 𝐹)
109exlimiv 1930 . . . 4 (∃𝑦𝐹𝑦 → ¬ Rel dom tpos 𝐹)
112, 10sylbi 217 . . 3 (∅ ∈ dom 𝐹 → ¬ Rel dom tpos 𝐹)
1211con2i 139 . 2 (Rel dom tpos 𝐹 → ¬ ∅ ∈ dom 𝐹)
13 vex 3484 . . . . . 6 𝑥 ∈ V
1413eldm 5911 . . . . 5 (𝑥 ∈ dom tpos 𝐹 ↔ ∃𝑦 𝑥tpos 𝐹𝑦)
15 relcnv 6122 . . . . . . . . . . 11 Rel dom 𝐹
16 df-rel 5692 . . . . . . . . . . 11 (Rel dom 𝐹dom 𝐹 ⊆ (V × V))
1715, 16mpbi 230 . . . . . . . . . 10 dom 𝐹 ⊆ (V × V)
1817sseli 3979 . . . . . . . . 9 (𝑥dom 𝐹𝑥 ∈ (V × V))
1918a1i 11 . . . . . . . 8 ((¬ ∅ ∈ dom 𝐹𝑥tpos 𝐹𝑦) → (𝑥dom 𝐹𝑥 ∈ (V × V)))
20 elsni 4643 . . . . . . . . . . . 12 (𝑥 ∈ {∅} → 𝑥 = ∅)
2120breq1d 5153 . . . . . . . . . . 11 (𝑥 ∈ {∅} → (𝑥tpos 𝐹𝑦 ↔ ∅tpos 𝐹𝑦))
221, 6breldm 5919 . . . . . . . . . . . . 13 (∅𝐹𝑦 → ∅ ∈ dom 𝐹)
2322pm2.24d 151 . . . . . . . . . . . 12 (∅𝐹𝑦 → (¬ ∅ ∈ dom 𝐹𝑥 ∈ (V × V)))
244, 23sylbi 217 . . . . . . . . . . 11 (∅tpos 𝐹𝑦 → (¬ ∅ ∈ dom 𝐹𝑥 ∈ (V × V)))
2521, 24biimtrdi 253 . . . . . . . . . 10 (𝑥 ∈ {∅} → (𝑥tpos 𝐹𝑦 → (¬ ∅ ∈ dom 𝐹𝑥 ∈ (V × V))))
2625com3l 89 . . . . . . . . 9 (𝑥tpos 𝐹𝑦 → (¬ ∅ ∈ dom 𝐹 → (𝑥 ∈ {∅} → 𝑥 ∈ (V × V))))
2726impcom 407 . . . . . . . 8 ((¬ ∅ ∈ dom 𝐹𝑥tpos 𝐹𝑦) → (𝑥 ∈ {∅} → 𝑥 ∈ (V × V)))
28 brtpos2 8257 . . . . . . . . . . . 12 (𝑦 ∈ V → (𝑥tpos 𝐹𝑦 ↔ (𝑥 ∈ (dom 𝐹 ∪ {∅}) ∧ {𝑥}𝐹𝑦)))
296, 28ax-mp 5 . . . . . . . . . . 11 (𝑥tpos 𝐹𝑦 ↔ (𝑥 ∈ (dom 𝐹 ∪ {∅}) ∧ {𝑥}𝐹𝑦))
3029simplbi 497 . . . . . . . . . 10 (𝑥tpos 𝐹𝑦𝑥 ∈ (dom 𝐹 ∪ {∅}))
31 elun 4153 . . . . . . . . . 10 (𝑥 ∈ (dom 𝐹 ∪ {∅}) ↔ (𝑥dom 𝐹𝑥 ∈ {∅}))
3230, 31sylib 218 . . . . . . . . 9 (𝑥tpos 𝐹𝑦 → (𝑥dom 𝐹𝑥 ∈ {∅}))
3332adantl 481 . . . . . . . 8 ((¬ ∅ ∈ dom 𝐹𝑥tpos 𝐹𝑦) → (𝑥dom 𝐹𝑥 ∈ {∅}))
3419, 27, 33mpjaod 861 . . . . . . 7 ((¬ ∅ ∈ dom 𝐹𝑥tpos 𝐹𝑦) → 𝑥 ∈ (V × V))
3534ex 412 . . . . . 6 (¬ ∅ ∈ dom 𝐹 → (𝑥tpos 𝐹𝑦𝑥 ∈ (V × V)))
3635exlimdv 1933 . . . . 5 (¬ ∅ ∈ dom 𝐹 → (∃𝑦 𝑥tpos 𝐹𝑦𝑥 ∈ (V × V)))
3714, 36biimtrid 242 . . . 4 (¬ ∅ ∈ dom 𝐹 → (𝑥 ∈ dom tpos 𝐹𝑥 ∈ (V × V)))
3837ssrdv 3989 . . 3 (¬ ∅ ∈ dom 𝐹 → dom tpos 𝐹 ⊆ (V × V))
39 df-rel 5692 . . 3 (Rel dom tpos 𝐹 ↔ dom tpos 𝐹 ⊆ (V × V))
4038, 39sylibr 234 . 2 (¬ ∅ ∈ dom 𝐹 → Rel dom tpos 𝐹)
4112, 40impbii 209 1 (Rel dom tpos 𝐹 ↔ ¬ ∅ ∈ dom 𝐹)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 848  wex 1779  wcel 2108  Vcvv 3480  cun 3949  wss 3951  c0 4333  {csn 4626   cuni 4907   class class class wbr 5143   × cxp 5683  ccnv 5684  dom cdm 5685  Rel wrel 5690  tpos ctpos 8250
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3437  df-v 3482  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-br 5144  df-opab 5206  df-mpt 5226  df-id 5578  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-iota 6514  df-fun 6563  df-fn 6564  df-fv 6569  df-tpos 8251
This theorem is referenced by:  dmtpos  8263
  Copyright terms: Public domain W3C validator