MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  reldmtpos Structured version   Visualization version   GIF version

Theorem reldmtpos 8021
Description: Necessary and sufficient condition for dom tpos 𝐹 to be a relation. (Contributed by Mario Carneiro, 10-Sep-2015.)
Assertion
Ref Expression
reldmtpos (Rel dom tpos 𝐹 ↔ ¬ ∅ ∈ dom 𝐹)

Proof of Theorem reldmtpos
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 0ex 5226 . . . . 5 ∅ ∈ V
21eldm 5798 . . . 4 (∅ ∈ dom 𝐹 ↔ ∃𝑦𝐹𝑦)
3 brtpos0 8020 . . . . . . 7 (𝑦 ∈ V → (∅tpos 𝐹𝑦 ↔ ∅𝐹𝑦))
43elv 3428 . . . . . 6 (∅tpos 𝐹𝑦 ↔ ∅𝐹𝑦)
5 0nelrel0 5638 . . . . . . 7 (Rel dom tpos 𝐹 → ¬ ∅ ∈ dom tpos 𝐹)
6 vex 3426 . . . . . . . 8 𝑦 ∈ V
71, 6breldm 5806 . . . . . . 7 (∅tpos 𝐹𝑦 → ∅ ∈ dom tpos 𝐹)
85, 7nsyl3 138 . . . . . 6 (∅tpos 𝐹𝑦 → ¬ Rel dom tpos 𝐹)
94, 8sylbir 234 . . . . 5 (∅𝐹𝑦 → ¬ Rel dom tpos 𝐹)
109exlimiv 1934 . . . 4 (∃𝑦𝐹𝑦 → ¬ Rel dom tpos 𝐹)
112, 10sylbi 216 . . 3 (∅ ∈ dom 𝐹 → ¬ Rel dom tpos 𝐹)
1211con2i 139 . 2 (Rel dom tpos 𝐹 → ¬ ∅ ∈ dom 𝐹)
13 vex 3426 . . . . . 6 𝑥 ∈ V
1413eldm 5798 . . . . 5 (𝑥 ∈ dom tpos 𝐹 ↔ ∃𝑦 𝑥tpos 𝐹𝑦)
15 relcnv 6001 . . . . . . . . . . 11 Rel dom 𝐹
16 df-rel 5587 . . . . . . . . . . 11 (Rel dom 𝐹dom 𝐹 ⊆ (V × V))
1715, 16mpbi 229 . . . . . . . . . 10 dom 𝐹 ⊆ (V × V)
1817sseli 3913 . . . . . . . . 9 (𝑥dom 𝐹𝑥 ∈ (V × V))
1918a1i 11 . . . . . . . 8 ((¬ ∅ ∈ dom 𝐹𝑥tpos 𝐹𝑦) → (𝑥dom 𝐹𝑥 ∈ (V × V)))
20 elsni 4575 . . . . . . . . . . . 12 (𝑥 ∈ {∅} → 𝑥 = ∅)
2120breq1d 5080 . . . . . . . . . . 11 (𝑥 ∈ {∅} → (𝑥tpos 𝐹𝑦 ↔ ∅tpos 𝐹𝑦))
221, 6breldm 5806 . . . . . . . . . . . . 13 (∅𝐹𝑦 → ∅ ∈ dom 𝐹)
2322pm2.24d 151 . . . . . . . . . . . 12 (∅𝐹𝑦 → (¬ ∅ ∈ dom 𝐹𝑥 ∈ (V × V)))
244, 23sylbi 216 . . . . . . . . . . 11 (∅tpos 𝐹𝑦 → (¬ ∅ ∈ dom 𝐹𝑥 ∈ (V × V)))
2521, 24syl6bi 252 . . . . . . . . . 10 (𝑥 ∈ {∅} → (𝑥tpos 𝐹𝑦 → (¬ ∅ ∈ dom 𝐹𝑥 ∈ (V × V))))
2625com3l 89 . . . . . . . . 9 (𝑥tpos 𝐹𝑦 → (¬ ∅ ∈ dom 𝐹 → (𝑥 ∈ {∅} → 𝑥 ∈ (V × V))))
2726impcom 407 . . . . . . . 8 ((¬ ∅ ∈ dom 𝐹𝑥tpos 𝐹𝑦) → (𝑥 ∈ {∅} → 𝑥 ∈ (V × V)))
28 brtpos2 8019 . . . . . . . . . . . 12 (𝑦 ∈ V → (𝑥tpos 𝐹𝑦 ↔ (𝑥 ∈ (dom 𝐹 ∪ {∅}) ∧ {𝑥}𝐹𝑦)))
296, 28ax-mp 5 . . . . . . . . . . 11 (𝑥tpos 𝐹𝑦 ↔ (𝑥 ∈ (dom 𝐹 ∪ {∅}) ∧ {𝑥}𝐹𝑦))
3029simplbi 497 . . . . . . . . . 10 (𝑥tpos 𝐹𝑦𝑥 ∈ (dom 𝐹 ∪ {∅}))
31 elun 4079 . . . . . . . . . 10 (𝑥 ∈ (dom 𝐹 ∪ {∅}) ↔ (𝑥dom 𝐹𝑥 ∈ {∅}))
3230, 31sylib 217 . . . . . . . . 9 (𝑥tpos 𝐹𝑦 → (𝑥dom 𝐹𝑥 ∈ {∅}))
3332adantl 481 . . . . . . . 8 ((¬ ∅ ∈ dom 𝐹𝑥tpos 𝐹𝑦) → (𝑥dom 𝐹𝑥 ∈ {∅}))
3419, 27, 33mpjaod 856 . . . . . . 7 ((¬ ∅ ∈ dom 𝐹𝑥tpos 𝐹𝑦) → 𝑥 ∈ (V × V))
3534ex 412 . . . . . 6 (¬ ∅ ∈ dom 𝐹 → (𝑥tpos 𝐹𝑦𝑥 ∈ (V × V)))
3635exlimdv 1937 . . . . 5 (¬ ∅ ∈ dom 𝐹 → (∃𝑦 𝑥tpos 𝐹𝑦𝑥 ∈ (V × V)))
3714, 36syl5bi 241 . . . 4 (¬ ∅ ∈ dom 𝐹 → (𝑥 ∈ dom tpos 𝐹𝑥 ∈ (V × V)))
3837ssrdv 3923 . . 3 (¬ ∅ ∈ dom 𝐹 → dom tpos 𝐹 ⊆ (V × V))
39 df-rel 5587 . . 3 (Rel dom tpos 𝐹 ↔ dom tpos 𝐹 ⊆ (V × V))
4038, 39sylibr 233 . 2 (¬ ∅ ∈ dom 𝐹 → Rel dom tpos 𝐹)
4112, 40impbii 208 1 (Rel dom tpos 𝐹 ↔ ¬ ∅ ∈ dom 𝐹)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 395  wo 843  wex 1783  wcel 2108  Vcvv 3422  cun 3881  wss 3883  c0 4253  {csn 4558   cuni 4836   class class class wbr 5070   × cxp 5578  ccnv 5579  dom cdm 5580  Rel wrel 5585  tpos ctpos 8012
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fun 6420  df-fn 6421  df-fv 6426  df-tpos 8013
This theorem is referenced by:  dmtpos  8025
  Copyright terms: Public domain W3C validator