| Step | Hyp | Ref
| Expression |
| 1 | | 0ex 5277 |
. . . . 5
⊢ ∅
∈ V |
| 2 | 1 | eldm 5880 |
. . . 4
⊢ (∅
∈ dom 𝐹 ↔
∃𝑦∅𝐹𝑦) |
| 3 | | brtpos0 8232 |
. . . . . . 7
⊢ (𝑦 ∈ V → (∅tpos
𝐹𝑦 ↔ ∅𝐹𝑦)) |
| 4 | 3 | elv 3464 |
. . . . . 6
⊢
(∅tpos 𝐹𝑦 ↔ ∅𝐹𝑦) |
| 5 | | 0nelrel0 5714 |
. . . . . . 7
⊢ (Rel dom
tpos 𝐹 → ¬ ∅
∈ dom tpos 𝐹) |
| 6 | | vex 3463 |
. . . . . . . 8
⊢ 𝑦 ∈ V |
| 7 | 1, 6 | breldm 5888 |
. . . . . . 7
⊢
(∅tpos 𝐹𝑦 → ∅ ∈ dom tpos
𝐹) |
| 8 | 5, 7 | nsyl3 138 |
. . . . . 6
⊢
(∅tpos 𝐹𝑦 → ¬ Rel dom tpos 𝐹) |
| 9 | 4, 8 | sylbir 235 |
. . . . 5
⊢
(∅𝐹𝑦 → ¬ Rel dom tpos 𝐹) |
| 10 | 9 | exlimiv 1930 |
. . . 4
⊢
(∃𝑦∅𝐹𝑦 → ¬ Rel dom tpos 𝐹) |
| 11 | 2, 10 | sylbi 217 |
. . 3
⊢ (∅
∈ dom 𝐹 → ¬
Rel dom tpos 𝐹) |
| 12 | 11 | con2i 139 |
. 2
⊢ (Rel dom
tpos 𝐹 → ¬ ∅
∈ dom 𝐹) |
| 13 | | vex 3463 |
. . . . . 6
⊢ 𝑥 ∈ V |
| 14 | 13 | eldm 5880 |
. . . . 5
⊢ (𝑥 ∈ dom tpos 𝐹 ↔ ∃𝑦 𝑥tpos 𝐹𝑦) |
| 15 | | relcnv 6091 |
. . . . . . . . . . 11
⊢ Rel ◡dom 𝐹 |
| 16 | | df-rel 5661 |
. . . . . . . . . . 11
⊢ (Rel
◡dom 𝐹 ↔ ◡dom 𝐹 ⊆ (V × V)) |
| 17 | 15, 16 | mpbi 230 |
. . . . . . . . . 10
⊢ ◡dom 𝐹 ⊆ (V × V) |
| 18 | 17 | sseli 3954 |
. . . . . . . . 9
⊢ (𝑥 ∈ ◡dom 𝐹 → 𝑥 ∈ (V × V)) |
| 19 | 18 | a1i 11 |
. . . . . . . 8
⊢ ((¬
∅ ∈ dom 𝐹 ∧
𝑥tpos 𝐹𝑦) → (𝑥 ∈ ◡dom 𝐹 → 𝑥 ∈ (V × V))) |
| 20 | | elsni 4618 |
. . . . . . . . . . . 12
⊢ (𝑥 ∈ {∅} → 𝑥 = ∅) |
| 21 | 20 | breq1d 5129 |
. . . . . . . . . . 11
⊢ (𝑥 ∈ {∅} → (𝑥tpos 𝐹𝑦 ↔ ∅tpos 𝐹𝑦)) |
| 22 | 1, 6 | breldm 5888 |
. . . . . . . . . . . . 13
⊢
(∅𝐹𝑦 → ∅ ∈ dom 𝐹) |
| 23 | 22 | pm2.24d 151 |
. . . . . . . . . . . 12
⊢
(∅𝐹𝑦 → (¬ ∅ ∈
dom 𝐹 → 𝑥 ∈ (V ×
V))) |
| 24 | 4, 23 | sylbi 217 |
. . . . . . . . . . 11
⊢
(∅tpos 𝐹𝑦 → (¬ ∅ ∈
dom 𝐹 → 𝑥 ∈ (V ×
V))) |
| 25 | 21, 24 | biimtrdi 253 |
. . . . . . . . . 10
⊢ (𝑥 ∈ {∅} → (𝑥tpos 𝐹𝑦 → (¬ ∅ ∈ dom 𝐹 → 𝑥 ∈ (V × V)))) |
| 26 | 25 | com3l 89 |
. . . . . . . . 9
⊢ (𝑥tpos 𝐹𝑦 → (¬ ∅ ∈ dom 𝐹 → (𝑥 ∈ {∅} → 𝑥 ∈ (V × V)))) |
| 27 | 26 | impcom 407 |
. . . . . . . 8
⊢ ((¬
∅ ∈ dom 𝐹 ∧
𝑥tpos 𝐹𝑦) → (𝑥 ∈ {∅} → 𝑥 ∈ (V × V))) |
| 28 | | brtpos2 8231 |
. . . . . . . . . . . 12
⊢ (𝑦 ∈ V → (𝑥tpos 𝐹𝑦 ↔ (𝑥 ∈ (◡dom 𝐹 ∪ {∅}) ∧ ∪ ◡{𝑥}𝐹𝑦))) |
| 29 | 6, 28 | ax-mp 5 |
. . . . . . . . . . 11
⊢ (𝑥tpos 𝐹𝑦 ↔ (𝑥 ∈ (◡dom 𝐹 ∪ {∅}) ∧ ∪ ◡{𝑥}𝐹𝑦)) |
| 30 | 29 | simplbi 497 |
. . . . . . . . . 10
⊢ (𝑥tpos 𝐹𝑦 → 𝑥 ∈ (◡dom 𝐹 ∪ {∅})) |
| 31 | | elun 4128 |
. . . . . . . . . 10
⊢ (𝑥 ∈ (◡dom 𝐹 ∪ {∅}) ↔ (𝑥 ∈ ◡dom 𝐹 ∨ 𝑥 ∈ {∅})) |
| 32 | 30, 31 | sylib 218 |
. . . . . . . . 9
⊢ (𝑥tpos 𝐹𝑦 → (𝑥 ∈ ◡dom 𝐹 ∨ 𝑥 ∈ {∅})) |
| 33 | 32 | adantl 481 |
. . . . . . . 8
⊢ ((¬
∅ ∈ dom 𝐹 ∧
𝑥tpos 𝐹𝑦) → (𝑥 ∈ ◡dom 𝐹 ∨ 𝑥 ∈ {∅})) |
| 34 | 19, 27, 33 | mpjaod 860 |
. . . . . . 7
⊢ ((¬
∅ ∈ dom 𝐹 ∧
𝑥tpos 𝐹𝑦) → 𝑥 ∈ (V × V)) |
| 35 | 34 | ex 412 |
. . . . . 6
⊢ (¬
∅ ∈ dom 𝐹 →
(𝑥tpos 𝐹𝑦 → 𝑥 ∈ (V × V))) |
| 36 | 35 | exlimdv 1933 |
. . . . 5
⊢ (¬
∅ ∈ dom 𝐹 →
(∃𝑦 𝑥tpos 𝐹𝑦 → 𝑥 ∈ (V × V))) |
| 37 | 14, 36 | biimtrid 242 |
. . . 4
⊢ (¬
∅ ∈ dom 𝐹 →
(𝑥 ∈ dom tpos 𝐹 → 𝑥 ∈ (V × V))) |
| 38 | 37 | ssrdv 3964 |
. . 3
⊢ (¬
∅ ∈ dom 𝐹 →
dom tpos 𝐹 ⊆ (V
× V)) |
| 39 | | df-rel 5661 |
. . 3
⊢ (Rel dom
tpos 𝐹 ↔ dom tpos
𝐹 ⊆ (V ×
V)) |
| 40 | 38, 39 | sylibr 234 |
. 2
⊢ (¬
∅ ∈ dom 𝐹 →
Rel dom tpos 𝐹) |
| 41 | 12, 40 | impbii 209 |
1
⊢ (Rel dom
tpos 𝐹 ↔ ¬ ∅
∈ dom 𝐹) |