![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 0vtxrgr | Structured version Visualization version GIF version |
Description: A null graph (with no vertices) is k-regular for every k. (Contributed by Alexander van der Vekens, 10-Jul-2018.) (Revised by AV, 26-Dec-2020.) |
Ref | Expression |
---|---|
0vtxrgr | β’ ((πΊ β π β§ (VtxβπΊ) = β ) β βπ β β0* πΊ RegGraph π) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpr 486 | . . 3 β’ (((πΊ β π β§ (VtxβπΊ) = β ) β§ π β β0*) β π β β0*) | |
2 | rzal 4509 | . . . 4 β’ ((VtxβπΊ) = β β βπ£ β (VtxβπΊ)((VtxDegβπΊ)βπ£) = π) | |
3 | 2 | ad2antlr 726 | . . 3 β’ (((πΊ β π β§ (VtxβπΊ) = β ) β§ π β β0*) β βπ£ β (VtxβπΊ)((VtxDegβπΊ)βπ£) = π) |
4 | eqid 2733 | . . . . 5 β’ (VtxβπΊ) = (VtxβπΊ) | |
5 | eqid 2733 | . . . . 5 β’ (VtxDegβπΊ) = (VtxDegβπΊ) | |
6 | 4, 5 | isrgr 28816 | . . . 4 β’ ((πΊ β π β§ π β β0*) β (πΊ RegGraph π β (π β β0* β§ βπ£ β (VtxβπΊ)((VtxDegβπΊ)βπ£) = π))) |
7 | 6 | adantlr 714 | . . 3 β’ (((πΊ β π β§ (VtxβπΊ) = β ) β§ π β β0*) β (πΊ RegGraph π β (π β β0* β§ βπ£ β (VtxβπΊ)((VtxDegβπΊ)βπ£) = π))) |
8 | 1, 3, 7 | mpbir2and 712 | . 2 β’ (((πΊ β π β§ (VtxβπΊ) = β ) β§ π β β0*) β πΊ RegGraph π) |
9 | 8 | ralrimiva 3147 | 1 β’ ((πΊ β π β§ (VtxβπΊ) = β ) β βπ β β0* πΊ RegGraph π) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β wb 205 β§ wa 397 = wceq 1542 β wcel 2107 βwral 3062 β c0 4323 class class class wbr 5149 βcfv 6544 β0*cxnn0 12544 Vtxcvtx 28256 VtxDegcvtxdg 28722 RegGraph crgr 28812 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-ext 2704 ax-sep 5300 ax-nul 5307 ax-pr 5428 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-sb 2069 df-clab 2711 df-cleq 2725 df-clel 2811 df-ral 3063 df-rab 3434 df-v 3477 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4324 df-if 4530 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-br 5150 df-opab 5212 df-iota 6496 df-fv 6552 df-rgr 28814 |
This theorem is referenced by: 0vtxrusgr 28834 |
Copyright terms: Public domain | W3C validator |