![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 0vtxrgr | Structured version Visualization version GIF version |
Description: A null graph (with no vertices) is k-regular for every k. (Contributed by Alexander van der Vekens, 10-Jul-2018.) (Revised by AV, 26-Dec-2020.) |
Ref | Expression |
---|---|
0vtxrgr | ⊢ ((𝐺 ∈ 𝑊 ∧ (Vtx‘𝐺) = ∅) → ∀𝑘 ∈ ℕ0* 𝐺 RegGraph 𝑘) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpr 484 | . . 3 ⊢ (((𝐺 ∈ 𝑊 ∧ (Vtx‘𝐺) = ∅) ∧ 𝑘 ∈ ℕ0*) → 𝑘 ∈ ℕ0*) | |
2 | rzal 4532 | . . . 4 ⊢ ((Vtx‘𝐺) = ∅ → ∀𝑣 ∈ (Vtx‘𝐺)((VtxDeg‘𝐺)‘𝑣) = 𝑘) | |
3 | 2 | ad2antlr 726 | . . 3 ⊢ (((𝐺 ∈ 𝑊 ∧ (Vtx‘𝐺) = ∅) ∧ 𝑘 ∈ ℕ0*) → ∀𝑣 ∈ (Vtx‘𝐺)((VtxDeg‘𝐺)‘𝑣) = 𝑘) |
4 | eqid 2740 | . . . . 5 ⊢ (Vtx‘𝐺) = (Vtx‘𝐺) | |
5 | eqid 2740 | . . . . 5 ⊢ (VtxDeg‘𝐺) = (VtxDeg‘𝐺) | |
6 | 4, 5 | isrgr 29595 | . . . 4 ⊢ ((𝐺 ∈ 𝑊 ∧ 𝑘 ∈ ℕ0*) → (𝐺 RegGraph 𝑘 ↔ (𝑘 ∈ ℕ0* ∧ ∀𝑣 ∈ (Vtx‘𝐺)((VtxDeg‘𝐺)‘𝑣) = 𝑘))) |
7 | 6 | adantlr 714 | . . 3 ⊢ (((𝐺 ∈ 𝑊 ∧ (Vtx‘𝐺) = ∅) ∧ 𝑘 ∈ ℕ0*) → (𝐺 RegGraph 𝑘 ↔ (𝑘 ∈ ℕ0* ∧ ∀𝑣 ∈ (Vtx‘𝐺)((VtxDeg‘𝐺)‘𝑣) = 𝑘))) |
8 | 1, 3, 7 | mpbir2and 712 | . 2 ⊢ (((𝐺 ∈ 𝑊 ∧ (Vtx‘𝐺) = ∅) ∧ 𝑘 ∈ ℕ0*) → 𝐺 RegGraph 𝑘) |
9 | 8 | ralrimiva 3152 | 1 ⊢ ((𝐺 ∈ 𝑊 ∧ (Vtx‘𝐺) = ∅) → ∀𝑘 ∈ ℕ0* 𝐺 RegGraph 𝑘) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1537 ∈ wcel 2108 ∀wral 3067 ∅c0 4352 class class class wbr 5166 ‘cfv 6573 ℕ0*cxnn0 12625 Vtxcvtx 29031 VtxDegcvtxdg 29501 RegGraph crgr 29591 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-ral 3068 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-iota 6525 df-fv 6581 df-rgr 29593 |
This theorem is referenced by: 0vtxrusgr 29613 |
Copyright terms: Public domain | W3C validator |