MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  0vtxrgr Structured version   Visualization version   GIF version

Theorem 0vtxrgr 28173
Description: A null graph (with no vertices) is k-regular for every k. (Contributed by Alexander van der Vekens, 10-Jul-2018.) (Revised by AV, 26-Dec-2020.)
Assertion
Ref Expression
0vtxrgr ((𝐺𝑊 ∧ (Vtx‘𝐺) = ∅) → ∀𝑘 ∈ ℕ0* 𝐺 RegGraph 𝑘)
Distinct variable groups:   𝑘,𝐺   𝑘,𝑊

Proof of Theorem 0vtxrgr
Dummy variable 𝑣 is distinct from all other variables.
StepHypRef Expression
1 simpr 485 . . 3 (((𝐺𝑊 ∧ (Vtx‘𝐺) = ∅) ∧ 𝑘 ∈ ℕ0*) → 𝑘 ∈ ℕ0*)
2 rzal 4452 . . . 4 ((Vtx‘𝐺) = ∅ → ∀𝑣 ∈ (Vtx‘𝐺)((VtxDeg‘𝐺)‘𝑣) = 𝑘)
32ad2antlr 724 . . 3 (((𝐺𝑊 ∧ (Vtx‘𝐺) = ∅) ∧ 𝑘 ∈ ℕ0*) → ∀𝑣 ∈ (Vtx‘𝐺)((VtxDeg‘𝐺)‘𝑣) = 𝑘)
4 eqid 2736 . . . . 5 (Vtx‘𝐺) = (Vtx‘𝐺)
5 eqid 2736 . . . . 5 (VtxDeg‘𝐺) = (VtxDeg‘𝐺)
64, 5isrgr 28156 . . . 4 ((𝐺𝑊𝑘 ∈ ℕ0*) → (𝐺 RegGraph 𝑘 ↔ (𝑘 ∈ ℕ0* ∧ ∀𝑣 ∈ (Vtx‘𝐺)((VtxDeg‘𝐺)‘𝑣) = 𝑘)))
76adantlr 712 . . 3 (((𝐺𝑊 ∧ (Vtx‘𝐺) = ∅) ∧ 𝑘 ∈ ℕ0*) → (𝐺 RegGraph 𝑘 ↔ (𝑘 ∈ ℕ0* ∧ ∀𝑣 ∈ (Vtx‘𝐺)((VtxDeg‘𝐺)‘𝑣) = 𝑘)))
81, 3, 7mpbir2and 710 . 2 (((𝐺𝑊 ∧ (Vtx‘𝐺) = ∅) ∧ 𝑘 ∈ ℕ0*) → 𝐺 RegGraph 𝑘)
98ralrimiva 3139 1 ((𝐺𝑊 ∧ (Vtx‘𝐺) = ∅) → ∀𝑘 ∈ ℕ0* 𝐺 RegGraph 𝑘)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1540  wcel 2105  wral 3061  c0 4268   class class class wbr 5089  cfv 6473  0*cxnn0 12398  Vtxcvtx 27596  VtxDegcvtxdg 28062   RegGraph crgr 28152
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-ext 2707  ax-sep 5240  ax-nul 5247  ax-pr 5369
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-sb 2067  df-clab 2714  df-cleq 2728  df-clel 2814  df-ral 3062  df-rab 3404  df-v 3443  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4269  df-if 4473  df-sn 4573  df-pr 4575  df-op 4579  df-uni 4852  df-br 5090  df-opab 5152  df-iota 6425  df-fv 6481  df-rgr 28154
This theorem is referenced by:  0vtxrusgr  28174
  Copyright terms: Public domain W3C validator