| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 0vtxrgr | Structured version Visualization version GIF version | ||
| Description: A null graph (with no vertices) is k-regular for every k. (Contributed by Alexander van der Vekens, 10-Jul-2018.) (Revised by AV, 26-Dec-2020.) |
| Ref | Expression |
|---|---|
| 0vtxrgr | ⊢ ((𝐺 ∈ 𝑊 ∧ (Vtx‘𝐺) = ∅) → ∀𝑘 ∈ ℕ0* 𝐺 RegGraph 𝑘) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpr 484 | . . 3 ⊢ (((𝐺 ∈ 𝑊 ∧ (Vtx‘𝐺) = ∅) ∧ 𝑘 ∈ ℕ0*) → 𝑘 ∈ ℕ0*) | |
| 2 | rzal 4472 | . . . 4 ⊢ ((Vtx‘𝐺) = ∅ → ∀𝑣 ∈ (Vtx‘𝐺)((VtxDeg‘𝐺)‘𝑣) = 𝑘) | |
| 3 | 2 | ad2antlr 727 | . . 3 ⊢ (((𝐺 ∈ 𝑊 ∧ (Vtx‘𝐺) = ∅) ∧ 𝑘 ∈ ℕ0*) → ∀𝑣 ∈ (Vtx‘𝐺)((VtxDeg‘𝐺)‘𝑣) = 𝑘) |
| 4 | eqid 2729 | . . . . 5 ⊢ (Vtx‘𝐺) = (Vtx‘𝐺) | |
| 5 | eqid 2729 | . . . . 5 ⊢ (VtxDeg‘𝐺) = (VtxDeg‘𝐺) | |
| 6 | 4, 5 | isrgr 29487 | . . . 4 ⊢ ((𝐺 ∈ 𝑊 ∧ 𝑘 ∈ ℕ0*) → (𝐺 RegGraph 𝑘 ↔ (𝑘 ∈ ℕ0* ∧ ∀𝑣 ∈ (Vtx‘𝐺)((VtxDeg‘𝐺)‘𝑣) = 𝑘))) |
| 7 | 6 | adantlr 715 | . . 3 ⊢ (((𝐺 ∈ 𝑊 ∧ (Vtx‘𝐺) = ∅) ∧ 𝑘 ∈ ℕ0*) → (𝐺 RegGraph 𝑘 ↔ (𝑘 ∈ ℕ0* ∧ ∀𝑣 ∈ (Vtx‘𝐺)((VtxDeg‘𝐺)‘𝑣) = 𝑘))) |
| 8 | 1, 3, 7 | mpbir2and 713 | . 2 ⊢ (((𝐺 ∈ 𝑊 ∧ (Vtx‘𝐺) = ∅) ∧ 𝑘 ∈ ℕ0*) → 𝐺 RegGraph 𝑘) |
| 9 | 8 | ralrimiva 3125 | 1 ⊢ ((𝐺 ∈ 𝑊 ∧ (Vtx‘𝐺) = ∅) → ∀𝑘 ∈ ℕ0* 𝐺 RegGraph 𝑘) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∀wral 3044 ∅c0 4296 class class class wbr 5107 ‘cfv 6511 ℕ0*cxnn0 12515 Vtxcvtx 28923 VtxDegcvtxdg 29393 RegGraph crgr 29483 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pr 5387 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ral 3045 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-opab 5170 df-iota 6464 df-fv 6519 df-rgr 29485 |
| This theorem is referenced by: 0vtxrusgr 29505 |
| Copyright terms: Public domain | W3C validator |