![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 0vtxrgr | Structured version Visualization version GIF version |
Description: A null graph (with no vertices) is k-regular for every k. (Contributed by Alexander van der Vekens, 10-Jul-2018.) (Revised by AV, 26-Dec-2020.) |
Ref | Expression |
---|---|
0vtxrgr | β’ ((πΊ β π β§ (VtxβπΊ) = β ) β βπ β β0* πΊ RegGraph π) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpr 485 | . . 3 β’ (((πΊ β π β§ (VtxβπΊ) = β ) β§ π β β0*) β π β β0*) | |
2 | rzal 4508 | . . . 4 β’ ((VtxβπΊ) = β β βπ£ β (VtxβπΊ)((VtxDegβπΊ)βπ£) = π) | |
3 | 2 | ad2antlr 725 | . . 3 β’ (((πΊ β π β§ (VtxβπΊ) = β ) β§ π β β0*) β βπ£ β (VtxβπΊ)((VtxDegβπΊ)βπ£) = π) |
4 | eqid 2732 | . . . . 5 β’ (VtxβπΊ) = (VtxβπΊ) | |
5 | eqid 2732 | . . . . 5 β’ (VtxDegβπΊ) = (VtxDegβπΊ) | |
6 | 4, 5 | isrgr 29071 | . . . 4 β’ ((πΊ β π β§ π β β0*) β (πΊ RegGraph π β (π β β0* β§ βπ£ β (VtxβπΊ)((VtxDegβπΊ)βπ£) = π))) |
7 | 6 | adantlr 713 | . . 3 β’ (((πΊ β π β§ (VtxβπΊ) = β ) β§ π β β0*) β (πΊ RegGraph π β (π β β0* β§ βπ£ β (VtxβπΊ)((VtxDegβπΊ)βπ£) = π))) |
8 | 1, 3, 7 | mpbir2and 711 | . 2 β’ (((πΊ β π β§ (VtxβπΊ) = β ) β§ π β β0*) β πΊ RegGraph π) |
9 | 8 | ralrimiva 3146 | 1 β’ ((πΊ β π β§ (VtxβπΊ) = β ) β βπ β β0* πΊ RegGraph π) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β wb 205 β§ wa 396 = wceq 1541 β wcel 2106 βwral 3061 β c0 4322 class class class wbr 5148 βcfv 6543 β0*cxnn0 12548 Vtxcvtx 28511 VtxDegcvtxdg 28977 RegGraph crgr 29067 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2703 ax-sep 5299 ax-nul 5306 ax-pr 5427 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-sb 2068 df-clab 2710 df-cleq 2724 df-clel 2810 df-ral 3062 df-rab 3433 df-v 3476 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-br 5149 df-opab 5211 df-iota 6495 df-fv 6551 df-rgr 29069 |
This theorem is referenced by: 0vtxrusgr 29089 |
Copyright terms: Public domain | W3C validator |