Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 0vtxrgr | Structured version Visualization version GIF version |
Description: A null graph (with no vertices) is k-regular for every k. (Contributed by Alexander van der Vekens, 10-Jul-2018.) (Revised by AV, 26-Dec-2020.) |
Ref | Expression |
---|---|
0vtxrgr | ⊢ ((𝐺 ∈ 𝑊 ∧ (Vtx‘𝐺) = ∅) → ∀𝑘 ∈ ℕ0* 𝐺 RegGraph 𝑘) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpr 485 | . . 3 ⊢ (((𝐺 ∈ 𝑊 ∧ (Vtx‘𝐺) = ∅) ∧ 𝑘 ∈ ℕ0*) → 𝑘 ∈ ℕ0*) | |
2 | rzal 4452 | . . . 4 ⊢ ((Vtx‘𝐺) = ∅ → ∀𝑣 ∈ (Vtx‘𝐺)((VtxDeg‘𝐺)‘𝑣) = 𝑘) | |
3 | 2 | ad2antlr 724 | . . 3 ⊢ (((𝐺 ∈ 𝑊 ∧ (Vtx‘𝐺) = ∅) ∧ 𝑘 ∈ ℕ0*) → ∀𝑣 ∈ (Vtx‘𝐺)((VtxDeg‘𝐺)‘𝑣) = 𝑘) |
4 | eqid 2736 | . . . . 5 ⊢ (Vtx‘𝐺) = (Vtx‘𝐺) | |
5 | eqid 2736 | . . . . 5 ⊢ (VtxDeg‘𝐺) = (VtxDeg‘𝐺) | |
6 | 4, 5 | isrgr 28156 | . . . 4 ⊢ ((𝐺 ∈ 𝑊 ∧ 𝑘 ∈ ℕ0*) → (𝐺 RegGraph 𝑘 ↔ (𝑘 ∈ ℕ0* ∧ ∀𝑣 ∈ (Vtx‘𝐺)((VtxDeg‘𝐺)‘𝑣) = 𝑘))) |
7 | 6 | adantlr 712 | . . 3 ⊢ (((𝐺 ∈ 𝑊 ∧ (Vtx‘𝐺) = ∅) ∧ 𝑘 ∈ ℕ0*) → (𝐺 RegGraph 𝑘 ↔ (𝑘 ∈ ℕ0* ∧ ∀𝑣 ∈ (Vtx‘𝐺)((VtxDeg‘𝐺)‘𝑣) = 𝑘))) |
8 | 1, 3, 7 | mpbir2and 710 | . 2 ⊢ (((𝐺 ∈ 𝑊 ∧ (Vtx‘𝐺) = ∅) ∧ 𝑘 ∈ ℕ0*) → 𝐺 RegGraph 𝑘) |
9 | 8 | ralrimiva 3139 | 1 ⊢ ((𝐺 ∈ 𝑊 ∧ (Vtx‘𝐺) = ∅) → ∀𝑘 ∈ ℕ0* 𝐺 RegGraph 𝑘) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 = wceq 1540 ∈ wcel 2105 ∀wral 3061 ∅c0 4268 class class class wbr 5089 ‘cfv 6473 ℕ0*cxnn0 12398 Vtxcvtx 27596 VtxDegcvtxdg 28062 RegGraph crgr 28152 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-ext 2707 ax-sep 5240 ax-nul 5247 ax-pr 5369 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-sb 2067 df-clab 2714 df-cleq 2728 df-clel 2814 df-ral 3062 df-rab 3404 df-v 3443 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4269 df-if 4473 df-sn 4573 df-pr 4575 df-op 4579 df-uni 4852 df-br 5090 df-opab 5152 df-iota 6425 df-fv 6481 df-rgr 28154 |
This theorem is referenced by: 0vtxrusgr 28174 |
Copyright terms: Public domain | W3C validator |