MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  0vtxrgr Structured version   Visualization version   GIF version

Theorem 0vtxrgr 29609
Description: A null graph (with no vertices) is k-regular for every k. (Contributed by Alexander van der Vekens, 10-Jul-2018.) (Revised by AV, 26-Dec-2020.)
Assertion
Ref Expression
0vtxrgr ((𝐺𝑊 ∧ (Vtx‘𝐺) = ∅) → ∀𝑘 ∈ ℕ0* 𝐺 RegGraph 𝑘)
Distinct variable groups:   𝑘,𝐺   𝑘,𝑊

Proof of Theorem 0vtxrgr
Dummy variable 𝑣 is distinct from all other variables.
StepHypRef Expression
1 simpr 484 . . 3 (((𝐺𝑊 ∧ (Vtx‘𝐺) = ∅) ∧ 𝑘 ∈ ℕ0*) → 𝑘 ∈ ℕ0*)
2 rzal 4515 . . . 4 ((Vtx‘𝐺) = ∅ → ∀𝑣 ∈ (Vtx‘𝐺)((VtxDeg‘𝐺)‘𝑣) = 𝑘)
32ad2antlr 727 . . 3 (((𝐺𝑊 ∧ (Vtx‘𝐺) = ∅) ∧ 𝑘 ∈ ℕ0*) → ∀𝑣 ∈ (Vtx‘𝐺)((VtxDeg‘𝐺)‘𝑣) = 𝑘)
4 eqid 2735 . . . . 5 (Vtx‘𝐺) = (Vtx‘𝐺)
5 eqid 2735 . . . . 5 (VtxDeg‘𝐺) = (VtxDeg‘𝐺)
64, 5isrgr 29592 . . . 4 ((𝐺𝑊𝑘 ∈ ℕ0*) → (𝐺 RegGraph 𝑘 ↔ (𝑘 ∈ ℕ0* ∧ ∀𝑣 ∈ (Vtx‘𝐺)((VtxDeg‘𝐺)‘𝑣) = 𝑘)))
76adantlr 715 . . 3 (((𝐺𝑊 ∧ (Vtx‘𝐺) = ∅) ∧ 𝑘 ∈ ℕ0*) → (𝐺 RegGraph 𝑘 ↔ (𝑘 ∈ ℕ0* ∧ ∀𝑣 ∈ (Vtx‘𝐺)((VtxDeg‘𝐺)‘𝑣) = 𝑘)))
81, 3, 7mpbir2and 713 . 2 (((𝐺𝑊 ∧ (Vtx‘𝐺) = ∅) ∧ 𝑘 ∈ ℕ0*) → 𝐺 RegGraph 𝑘)
98ralrimiva 3144 1 ((𝐺𝑊 ∧ (Vtx‘𝐺) = ∅) → ∀𝑘 ∈ ℕ0* 𝐺 RegGraph 𝑘)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1537  wcel 2106  wral 3059  c0 4339   class class class wbr 5148  cfv 6563  0*cxnn0 12597  Vtxcvtx 29028  VtxDegcvtxdg 29498   RegGraph crgr 29588
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pr 5438
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-sb 2063  df-clab 2713  df-cleq 2727  df-clel 2814  df-ral 3060  df-rab 3434  df-v 3480  df-dif 3966  df-un 3968  df-ss 3980  df-nul 4340  df-if 4532  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-br 5149  df-opab 5211  df-iota 6516  df-fv 6571  df-rgr 29590
This theorem is referenced by:  0vtxrusgr  29610
  Copyright terms: Public domain W3C validator