Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 0edg0rgr | Structured version Visualization version GIF version |
Description: A graph is 0-regular if it has no edges. (Contributed by Alexander van der Vekens, 8-Jul-2018.) (Revised by AV, 26-Dec-2020.) |
Ref | Expression |
---|---|
0edg0rgr | ⊢ ((𝐺 ∈ 𝑊 ∧ (iEdg‘𝐺) = ∅) → 𝐺 RegGraph 0) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpr 485 | . . . . 5 ⊢ (((𝐺 ∈ 𝑊 ∧ (iEdg‘𝐺) = ∅) ∧ 𝑣 ∈ (Vtx‘𝐺)) → 𝑣 ∈ (Vtx‘𝐺)) | |
2 | simplr 766 | . . . . 5 ⊢ (((𝐺 ∈ 𝑊 ∧ (iEdg‘𝐺) = ∅) ∧ 𝑣 ∈ (Vtx‘𝐺)) → (iEdg‘𝐺) = ∅) | |
3 | eqid 2736 | . . . . . 6 ⊢ (Vtx‘𝐺) = (Vtx‘𝐺) | |
4 | eqid 2736 | . . . . . 6 ⊢ (iEdg‘𝐺) = (iEdg‘𝐺) | |
5 | 3, 4 | vtxdg0e 28071 | . . . . 5 ⊢ ((𝑣 ∈ (Vtx‘𝐺) ∧ (iEdg‘𝐺) = ∅) → ((VtxDeg‘𝐺)‘𝑣) = 0) |
6 | 1, 2, 5 | syl2anc 584 | . . . 4 ⊢ (((𝐺 ∈ 𝑊 ∧ (iEdg‘𝐺) = ∅) ∧ 𝑣 ∈ (Vtx‘𝐺)) → ((VtxDeg‘𝐺)‘𝑣) = 0) |
7 | 6 | ralrimiva 3139 | . . 3 ⊢ ((𝐺 ∈ 𝑊 ∧ (iEdg‘𝐺) = ∅) → ∀𝑣 ∈ (Vtx‘𝐺)((VtxDeg‘𝐺)‘𝑣) = 0) |
8 | 0xnn0 12404 | . . 3 ⊢ 0 ∈ ℕ0* | |
9 | 7, 8 | jctil 520 | . 2 ⊢ ((𝐺 ∈ 𝑊 ∧ (iEdg‘𝐺) = ∅) → (0 ∈ ℕ0* ∧ ∀𝑣 ∈ (Vtx‘𝐺)((VtxDeg‘𝐺)‘𝑣) = 0)) |
10 | 8 | a1i 11 | . . 3 ⊢ ((iEdg‘𝐺) = ∅ → 0 ∈ ℕ0*) |
11 | eqid 2736 | . . . 4 ⊢ (VtxDeg‘𝐺) = (VtxDeg‘𝐺) | |
12 | 3, 11 | isrgr 28156 | . . 3 ⊢ ((𝐺 ∈ 𝑊 ∧ 0 ∈ ℕ0*) → (𝐺 RegGraph 0 ↔ (0 ∈ ℕ0* ∧ ∀𝑣 ∈ (Vtx‘𝐺)((VtxDeg‘𝐺)‘𝑣) = 0))) |
13 | 10, 12 | sylan2 593 | . 2 ⊢ ((𝐺 ∈ 𝑊 ∧ (iEdg‘𝐺) = ∅) → (𝐺 RegGraph 0 ↔ (0 ∈ ℕ0* ∧ ∀𝑣 ∈ (Vtx‘𝐺)((VtxDeg‘𝐺)‘𝑣) = 0))) |
14 | 9, 13 | mpbird 256 | 1 ⊢ ((𝐺 ∈ 𝑊 ∧ (iEdg‘𝐺) = ∅) → 𝐺 RegGraph 0) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 = wceq 1540 ∈ wcel 2105 ∀wral 3061 ∅c0 4268 class class class wbr 5089 ‘cfv 6473 0cc0 10964 ℕ0*cxnn0 12398 Vtxcvtx 27596 iEdgciedg 27597 VtxDegcvtxdg 28062 RegGraph crgr 28152 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2707 ax-rep 5226 ax-sep 5240 ax-nul 5247 ax-pow 5305 ax-pr 5369 ax-un 7642 ax-cnex 11020 ax-resscn 11021 ax-1cn 11022 ax-icn 11023 ax-addcl 11024 ax-addrcl 11025 ax-mulcl 11026 ax-mulrcl 11027 ax-mulcom 11028 ax-addass 11029 ax-mulass 11030 ax-distr 11031 ax-i2m1 11032 ax-1ne0 11033 ax-1rid 11034 ax-rnegex 11035 ax-rrecex 11036 ax-cnre 11037 ax-pre-lttri 11038 ax-pre-lttrn 11039 ax-pre-ltadd 11040 ax-pre-mulgt0 11041 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2886 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-reu 3350 df-rab 3404 df-v 3443 df-sbc 3727 df-csb 3843 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3916 df-nul 4269 df-if 4473 df-pw 4548 df-sn 4573 df-pr 4575 df-op 4579 df-uni 4852 df-int 4894 df-iun 4940 df-br 5090 df-opab 5152 df-mpt 5173 df-tr 5207 df-id 5512 df-eprel 5518 df-po 5526 df-so 5527 df-fr 5569 df-we 5571 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6232 df-ord 6299 df-on 6300 df-lim 6301 df-suc 6302 df-iota 6425 df-fun 6475 df-fn 6476 df-f 6477 df-f1 6478 df-fo 6479 df-f1o 6480 df-fv 6481 df-riota 7286 df-ov 7332 df-oprab 7333 df-mpo 7334 df-om 7773 df-1st 7891 df-2nd 7892 df-frecs 8159 df-wrecs 8190 df-recs 8264 df-rdg 8303 df-1o 8359 df-er 8561 df-en 8797 df-dom 8798 df-sdom 8799 df-fin 8800 df-card 9788 df-pnf 11104 df-mnf 11105 df-xr 11106 df-ltxr 11107 df-le 11108 df-sub 11300 df-neg 11301 df-nn 12067 df-n0 12327 df-xnn0 12399 df-z 12413 df-uz 12676 df-xadd 12942 df-fz 13333 df-hash 14138 df-vtxdg 28063 df-rgr 28154 |
This theorem is referenced by: uhgr0edg0rgr 28170 |
Copyright terms: Public domain | W3C validator |