Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 0edg0rgr | Structured version Visualization version GIF version |
Description: A graph is 0-regular if it has no edges. (Contributed by Alexander van der Vekens, 8-Jul-2018.) (Revised by AV, 26-Dec-2020.) |
Ref | Expression |
---|---|
0edg0rgr | ⊢ ((𝐺 ∈ 𝑊 ∧ (iEdg‘𝐺) = ∅) → 𝐺 RegGraph 0) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpr 484 | . . . . 5 ⊢ (((𝐺 ∈ 𝑊 ∧ (iEdg‘𝐺) = ∅) ∧ 𝑣 ∈ (Vtx‘𝐺)) → 𝑣 ∈ (Vtx‘𝐺)) | |
2 | simplr 765 | . . . . 5 ⊢ (((𝐺 ∈ 𝑊 ∧ (iEdg‘𝐺) = ∅) ∧ 𝑣 ∈ (Vtx‘𝐺)) → (iEdg‘𝐺) = ∅) | |
3 | eqid 2738 | . . . . . 6 ⊢ (Vtx‘𝐺) = (Vtx‘𝐺) | |
4 | eqid 2738 | . . . . . 6 ⊢ (iEdg‘𝐺) = (iEdg‘𝐺) | |
5 | 3, 4 | vtxdg0e 27744 | . . . . 5 ⊢ ((𝑣 ∈ (Vtx‘𝐺) ∧ (iEdg‘𝐺) = ∅) → ((VtxDeg‘𝐺)‘𝑣) = 0) |
6 | 1, 2, 5 | syl2anc 583 | . . . 4 ⊢ (((𝐺 ∈ 𝑊 ∧ (iEdg‘𝐺) = ∅) ∧ 𝑣 ∈ (Vtx‘𝐺)) → ((VtxDeg‘𝐺)‘𝑣) = 0) |
7 | 6 | ralrimiva 3107 | . . 3 ⊢ ((𝐺 ∈ 𝑊 ∧ (iEdg‘𝐺) = ∅) → ∀𝑣 ∈ (Vtx‘𝐺)((VtxDeg‘𝐺)‘𝑣) = 0) |
8 | 0xnn0 12241 | . . 3 ⊢ 0 ∈ ℕ0* | |
9 | 7, 8 | jctil 519 | . 2 ⊢ ((𝐺 ∈ 𝑊 ∧ (iEdg‘𝐺) = ∅) → (0 ∈ ℕ0* ∧ ∀𝑣 ∈ (Vtx‘𝐺)((VtxDeg‘𝐺)‘𝑣) = 0)) |
10 | 8 | a1i 11 | . . 3 ⊢ ((iEdg‘𝐺) = ∅ → 0 ∈ ℕ0*) |
11 | eqid 2738 | . . . 4 ⊢ (VtxDeg‘𝐺) = (VtxDeg‘𝐺) | |
12 | 3, 11 | isrgr 27829 | . . 3 ⊢ ((𝐺 ∈ 𝑊 ∧ 0 ∈ ℕ0*) → (𝐺 RegGraph 0 ↔ (0 ∈ ℕ0* ∧ ∀𝑣 ∈ (Vtx‘𝐺)((VtxDeg‘𝐺)‘𝑣) = 0))) |
13 | 10, 12 | sylan2 592 | . 2 ⊢ ((𝐺 ∈ 𝑊 ∧ (iEdg‘𝐺) = ∅) → (𝐺 RegGraph 0 ↔ (0 ∈ ℕ0* ∧ ∀𝑣 ∈ (Vtx‘𝐺)((VtxDeg‘𝐺)‘𝑣) = 0))) |
14 | 9, 13 | mpbird 256 | 1 ⊢ ((𝐺 ∈ 𝑊 ∧ (iEdg‘𝐺) = ∅) → 𝐺 RegGraph 0) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1539 ∈ wcel 2108 ∀wral 3063 ∅c0 4253 class class class wbr 5070 ‘cfv 6418 0cc0 10802 ℕ0*cxnn0 12235 Vtxcvtx 27269 iEdgciedg 27270 VtxDegcvtxdg 27735 RegGraph crgr 27825 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-int 4877 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-om 7688 df-1st 7804 df-2nd 7805 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-1o 8267 df-er 8456 df-en 8692 df-dom 8693 df-sdom 8694 df-fin 8695 df-card 9628 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-nn 11904 df-n0 12164 df-xnn0 12236 df-z 12250 df-uz 12512 df-xadd 12778 df-fz 13169 df-hash 13973 df-vtxdg 27736 df-rgr 27827 |
This theorem is referenced by: uhgr0edg0rgr 27843 |
Copyright terms: Public domain | W3C validator |