![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > rgrprcx | Structured version Visualization version GIF version |
Description: The class of 0-regular graphs is a proper class. (Contributed by AV, 27-Dec-2020.) |
Ref | Expression |
---|---|
rgrprcx | ⊢ {𝑔 ∣ ∀𝑣 ∈ (Vtx‘𝑔)((VtxDeg‘𝑔)‘𝑣) = 0} ∉ V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rgrprc 27088 | . 2 ⊢ {𝑔 ∣ 𝑔RegGraph0} ∉ V | |
2 | 0xnn0 11783 | . . . . . 6 ⊢ 0 ∈ ℕ0* | |
3 | vex 3412 | . . . . . . 7 ⊢ 𝑔 ∈ V | |
4 | eqid 2772 | . . . . . . . 8 ⊢ (Vtx‘𝑔) = (Vtx‘𝑔) | |
5 | eqid 2772 | . . . . . . . 8 ⊢ (VtxDeg‘𝑔) = (VtxDeg‘𝑔) | |
6 | 4, 5 | isrgr 27056 | . . . . . . 7 ⊢ ((𝑔 ∈ V ∧ 0 ∈ ℕ0*) → (𝑔RegGraph0 ↔ (0 ∈ ℕ0* ∧ ∀𝑣 ∈ (Vtx‘𝑔)((VtxDeg‘𝑔)‘𝑣) = 0))) |
7 | 3, 2, 6 | mp2an 679 | . . . . . 6 ⊢ (𝑔RegGraph0 ↔ (0 ∈ ℕ0* ∧ ∀𝑣 ∈ (Vtx‘𝑔)((VtxDeg‘𝑔)‘𝑣) = 0)) |
8 | 2, 7 | mpbiran 696 | . . . . 5 ⊢ (𝑔RegGraph0 ↔ ∀𝑣 ∈ (Vtx‘𝑔)((VtxDeg‘𝑔)‘𝑣) = 0) |
9 | 8 | bicomi 216 | . . . 4 ⊢ (∀𝑣 ∈ (Vtx‘𝑔)((VtxDeg‘𝑔)‘𝑣) = 0 ↔ 𝑔RegGraph0) |
10 | 9 | abbii 2838 | . . 3 ⊢ {𝑔 ∣ ∀𝑣 ∈ (Vtx‘𝑔)((VtxDeg‘𝑔)‘𝑣) = 0} = {𝑔 ∣ 𝑔RegGraph0} |
11 | neleq1 3072 | . . 3 ⊢ ({𝑔 ∣ ∀𝑣 ∈ (Vtx‘𝑔)((VtxDeg‘𝑔)‘𝑣) = 0} = {𝑔 ∣ 𝑔RegGraph0} → ({𝑔 ∣ ∀𝑣 ∈ (Vtx‘𝑔)((VtxDeg‘𝑔)‘𝑣) = 0} ∉ V ↔ {𝑔 ∣ 𝑔RegGraph0} ∉ V)) | |
12 | 10, 11 | ax-mp 5 | . 2 ⊢ ({𝑔 ∣ ∀𝑣 ∈ (Vtx‘𝑔)((VtxDeg‘𝑔)‘𝑣) = 0} ∉ V ↔ {𝑔 ∣ 𝑔RegGraph0} ∉ V) |
13 | 1, 12 | mpbir 223 | 1 ⊢ {𝑔 ∣ ∀𝑣 ∈ (Vtx‘𝑔)((VtxDeg‘𝑔)‘𝑣) = 0} ∉ V |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 198 ∧ wa 387 = wceq 1507 ∈ wcel 2050 {cab 2752 ∉ wnel 3067 ∀wral 3082 Vcvv 3409 class class class wbr 4925 ‘cfv 6185 0cc0 10333 ℕ0*cxnn0 11777 Vtxcvtx 26496 VtxDegcvtxdg 26962 RegGraphcrgr 27052 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1758 ax-4 1772 ax-5 1869 ax-6 1928 ax-7 1965 ax-8 2052 ax-9 2059 ax-10 2079 ax-11 2093 ax-12 2106 ax-13 2301 ax-ext 2744 ax-rep 5045 ax-sep 5056 ax-nul 5063 ax-pow 5115 ax-pr 5182 ax-un 7277 ax-cnex 10389 ax-resscn 10390 ax-1cn 10391 ax-icn 10392 ax-addcl 10393 ax-addrcl 10394 ax-mulcl 10395 ax-mulrcl 10396 ax-mulcom 10397 ax-addass 10398 ax-mulass 10399 ax-distr 10400 ax-i2m1 10401 ax-1ne0 10402 ax-1rid 10403 ax-rnegex 10404 ax-rrecex 10405 ax-cnre 10406 ax-pre-lttri 10407 ax-pre-lttrn 10408 ax-pre-ltadd 10409 ax-pre-mulgt0 10410 |
This theorem depends on definitions: df-bi 199 df-an 388 df-or 834 df-3or 1069 df-3an 1070 df-tru 1510 df-ex 1743 df-nf 1747 df-sb 2016 df-mo 2547 df-eu 2584 df-clab 2753 df-cleq 2765 df-clel 2840 df-nfc 2912 df-ne 2962 df-nel 3068 df-ral 3087 df-rex 3088 df-reu 3089 df-rab 3091 df-v 3411 df-sbc 3676 df-csb 3781 df-dif 3826 df-un 3828 df-in 3830 df-ss 3837 df-pss 3839 df-nul 4173 df-if 4345 df-pw 4418 df-sn 4436 df-pr 4438 df-tp 4440 df-op 4442 df-uni 4709 df-int 4746 df-iun 4790 df-br 4926 df-opab 4988 df-mpt 5005 df-tr 5027 df-id 5308 df-eprel 5313 df-po 5322 df-so 5323 df-fr 5362 df-we 5364 df-xp 5409 df-rel 5410 df-cnv 5411 df-co 5412 df-dm 5413 df-rn 5414 df-res 5415 df-ima 5416 df-pred 5983 df-ord 6029 df-on 6030 df-lim 6031 df-suc 6032 df-iota 6149 df-fun 6187 df-fn 6188 df-f 6189 df-f1 6190 df-fo 6191 df-f1o 6192 df-fv 6193 df-riota 6935 df-ov 6977 df-oprab 6978 df-mpo 6979 df-om 7395 df-1st 7499 df-2nd 7500 df-wrecs 7748 df-recs 7810 df-rdg 7848 df-1o 7903 df-er 8087 df-en 8305 df-dom 8306 df-sdom 8307 df-fin 8308 df-card 9160 df-pnf 10474 df-mnf 10475 df-xr 10476 df-ltxr 10477 df-le 10478 df-sub 10670 df-neg 10671 df-nn 11438 df-2 11501 df-n0 11706 df-xnn0 11778 df-z 11792 df-uz 12057 df-xadd 12323 df-fz 12707 df-hash 13504 df-iedg 26499 df-edg 26548 df-uhgr 26558 df-upgr 26582 df-uspgr 26650 df-usgr 26651 df-vtxdg 26963 df-rgr 27054 df-rusgr 27055 |
This theorem is referenced by: rgrx0ndm 27090 |
Copyright terms: Public domain | W3C validator |