MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rgrprcx Structured version   Visualization version   GIF version

Theorem rgrprcx 27089
Description: The class of 0-regular graphs is a proper class. (Contributed by AV, 27-Dec-2020.)
Assertion
Ref Expression
rgrprcx {𝑔 ∣ ∀𝑣 ∈ (Vtx‘𝑔)((VtxDeg‘𝑔)‘𝑣) = 0} ∉ V
Distinct variable group:   𝑣,𝑔

Proof of Theorem rgrprcx
StepHypRef Expression
1 rgrprc 27088 . 2 {𝑔𝑔RegGraph0} ∉ V
2 0xnn0 11783 . . . . . 6 0 ∈ ℕ0*
3 vex 3412 . . . . . . 7 𝑔 ∈ V
4 eqid 2772 . . . . . . . 8 (Vtx‘𝑔) = (Vtx‘𝑔)
5 eqid 2772 . . . . . . . 8 (VtxDeg‘𝑔) = (VtxDeg‘𝑔)
64, 5isrgr 27056 . . . . . . 7 ((𝑔 ∈ V ∧ 0 ∈ ℕ0*) → (𝑔RegGraph0 ↔ (0 ∈ ℕ0* ∧ ∀𝑣 ∈ (Vtx‘𝑔)((VtxDeg‘𝑔)‘𝑣) = 0)))
73, 2, 6mp2an 679 . . . . . 6 (𝑔RegGraph0 ↔ (0 ∈ ℕ0* ∧ ∀𝑣 ∈ (Vtx‘𝑔)((VtxDeg‘𝑔)‘𝑣) = 0))
82, 7mpbiran 696 . . . . 5 (𝑔RegGraph0 ↔ ∀𝑣 ∈ (Vtx‘𝑔)((VtxDeg‘𝑔)‘𝑣) = 0)
98bicomi 216 . . . 4 (∀𝑣 ∈ (Vtx‘𝑔)((VtxDeg‘𝑔)‘𝑣) = 0 ↔ 𝑔RegGraph0)
109abbii 2838 . . 3 {𝑔 ∣ ∀𝑣 ∈ (Vtx‘𝑔)((VtxDeg‘𝑔)‘𝑣) = 0} = {𝑔𝑔RegGraph0}
11 neleq1 3072 . . 3 ({𝑔 ∣ ∀𝑣 ∈ (Vtx‘𝑔)((VtxDeg‘𝑔)‘𝑣) = 0} = {𝑔𝑔RegGraph0} → ({𝑔 ∣ ∀𝑣 ∈ (Vtx‘𝑔)((VtxDeg‘𝑔)‘𝑣) = 0} ∉ V ↔ {𝑔𝑔RegGraph0} ∉ V))
1210, 11ax-mp 5 . 2 ({𝑔 ∣ ∀𝑣 ∈ (Vtx‘𝑔)((VtxDeg‘𝑔)‘𝑣) = 0} ∉ V ↔ {𝑔𝑔RegGraph0} ∉ V)
131, 12mpbir 223 1 {𝑔 ∣ ∀𝑣 ∈ (Vtx‘𝑔)((VtxDeg‘𝑔)‘𝑣) = 0} ∉ V
Colors of variables: wff setvar class
Syntax hints:  wb 198  wa 387   = wceq 1507  wcel 2050  {cab 2752  wnel 3067  wral 3082  Vcvv 3409   class class class wbr 4925  cfv 6185  0cc0 10333  0*cxnn0 11777  Vtxcvtx 26496  VtxDegcvtxdg 26962  RegGraphcrgr 27052
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1758  ax-4 1772  ax-5 1869  ax-6 1928  ax-7 1965  ax-8 2052  ax-9 2059  ax-10 2079  ax-11 2093  ax-12 2106  ax-13 2301  ax-ext 2744  ax-rep 5045  ax-sep 5056  ax-nul 5063  ax-pow 5115  ax-pr 5182  ax-un 7277  ax-cnex 10389  ax-resscn 10390  ax-1cn 10391  ax-icn 10392  ax-addcl 10393  ax-addrcl 10394  ax-mulcl 10395  ax-mulrcl 10396  ax-mulcom 10397  ax-addass 10398  ax-mulass 10399  ax-distr 10400  ax-i2m1 10401  ax-1ne0 10402  ax-1rid 10403  ax-rnegex 10404  ax-rrecex 10405  ax-cnre 10406  ax-pre-lttri 10407  ax-pre-lttrn 10408  ax-pre-ltadd 10409  ax-pre-mulgt0 10410
This theorem depends on definitions:  df-bi 199  df-an 388  df-or 834  df-3or 1069  df-3an 1070  df-tru 1510  df-ex 1743  df-nf 1747  df-sb 2016  df-mo 2547  df-eu 2584  df-clab 2753  df-cleq 2765  df-clel 2840  df-nfc 2912  df-ne 2962  df-nel 3068  df-ral 3087  df-rex 3088  df-reu 3089  df-rab 3091  df-v 3411  df-sbc 3676  df-csb 3781  df-dif 3826  df-un 3828  df-in 3830  df-ss 3837  df-pss 3839  df-nul 4173  df-if 4345  df-pw 4418  df-sn 4436  df-pr 4438  df-tp 4440  df-op 4442  df-uni 4709  df-int 4746  df-iun 4790  df-br 4926  df-opab 4988  df-mpt 5005  df-tr 5027  df-id 5308  df-eprel 5313  df-po 5322  df-so 5323  df-fr 5362  df-we 5364  df-xp 5409  df-rel 5410  df-cnv 5411  df-co 5412  df-dm 5413  df-rn 5414  df-res 5415  df-ima 5416  df-pred 5983  df-ord 6029  df-on 6030  df-lim 6031  df-suc 6032  df-iota 6149  df-fun 6187  df-fn 6188  df-f 6189  df-f1 6190  df-fo 6191  df-f1o 6192  df-fv 6193  df-riota 6935  df-ov 6977  df-oprab 6978  df-mpo 6979  df-om 7395  df-1st 7499  df-2nd 7500  df-wrecs 7748  df-recs 7810  df-rdg 7848  df-1o 7903  df-er 8087  df-en 8305  df-dom 8306  df-sdom 8307  df-fin 8308  df-card 9160  df-pnf 10474  df-mnf 10475  df-xr 10476  df-ltxr 10477  df-le 10478  df-sub 10670  df-neg 10671  df-nn 11438  df-2 11501  df-n0 11706  df-xnn0 11778  df-z 11792  df-uz 12057  df-xadd 12323  df-fz 12707  df-hash 13504  df-iedg 26499  df-edg 26548  df-uhgr 26558  df-upgr 26582  df-uspgr 26650  df-usgr 26651  df-vtxdg 26963  df-rgr 27054  df-rusgr 27055
This theorem is referenced by:  rgrx0ndm  27090
  Copyright terms: Public domain W3C validator