![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > rgrprcx | Structured version Visualization version GIF version |
Description: The class of 0-regular graphs is a proper class. (Contributed by AV, 27-Dec-2020.) |
Ref | Expression |
---|---|
rgrprcx | β’ {π β£ βπ£ β (Vtxβπ)((VtxDegβπ)βπ£) = 0} β V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rgrprc 29283 | . 2 β’ {π β£ π RegGraph 0} β V | |
2 | 0xnn0 12557 | . . . . . 6 β’ 0 β β0* | |
3 | vex 3477 | . . . . . . 7 β’ π β V | |
4 | eqid 2731 | . . . . . . . 8 β’ (Vtxβπ) = (Vtxβπ) | |
5 | eqid 2731 | . . . . . . . 8 β’ (VtxDegβπ) = (VtxDegβπ) | |
6 | 4, 5 | isrgr 29251 | . . . . . . 7 β’ ((π β V β§ 0 β β0*) β (π RegGraph 0 β (0 β β0* β§ βπ£ β (Vtxβπ)((VtxDegβπ)βπ£) = 0))) |
7 | 3, 2, 6 | mp2an 689 | . . . . . 6 β’ (π RegGraph 0 β (0 β β0* β§ βπ£ β (Vtxβπ)((VtxDegβπ)βπ£) = 0)) |
8 | 2, 7 | mpbiran 706 | . . . . 5 β’ (π RegGraph 0 β βπ£ β (Vtxβπ)((VtxDegβπ)βπ£) = 0) |
9 | 8 | bicomi 223 | . . . 4 β’ (βπ£ β (Vtxβπ)((VtxDegβπ)βπ£) = 0 β π RegGraph 0) |
10 | 9 | abbii 2801 | . . 3 β’ {π β£ βπ£ β (Vtxβπ)((VtxDegβπ)βπ£) = 0} = {π β£ π RegGraph 0} |
11 | neleq1 3051 | . . 3 β’ ({π β£ βπ£ β (Vtxβπ)((VtxDegβπ)βπ£) = 0} = {π β£ π RegGraph 0} β ({π β£ βπ£ β (Vtxβπ)((VtxDegβπ)βπ£) = 0} β V β {π β£ π RegGraph 0} β V)) | |
12 | 10, 11 | ax-mp 5 | . 2 β’ ({π β£ βπ£ β (Vtxβπ)((VtxDegβπ)βπ£) = 0} β V β {π β£ π RegGraph 0} β V) |
13 | 1, 12 | mpbir 230 | 1 β’ {π β£ βπ£ β (Vtxβπ)((VtxDegβπ)βπ£) = 0} β V |
Colors of variables: wff setvar class |
Syntax hints: β wb 205 β§ wa 395 = wceq 1540 β wcel 2105 {cab 2708 β wnel 3045 βwral 3060 Vcvv 3473 class class class wbr 5148 βcfv 6543 0cc0 11116 β0*cxnn0 12551 Vtxcvtx 28691 VtxDegcvtxdg 29157 RegGraph crgr 29247 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7729 ax-cnex 11172 ax-resscn 11173 ax-1cn 11174 ax-icn 11175 ax-addcl 11176 ax-addrcl 11177 ax-mulcl 11178 ax-mulrcl 11179 ax-mulcom 11180 ax-addass 11181 ax-mulass 11182 ax-distr 11183 ax-i2m1 11184 ax-1ne0 11185 ax-1rid 11186 ax-rnegex 11187 ax-rrecex 11188 ax-cnre 11189 ax-pre-lttri 11190 ax-pre-lttrn 11191 ax-pre-ltadd 11192 ax-pre-mulgt0 11193 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-reu 3376 df-rab 3432 df-v 3475 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-int 4951 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-riota 7368 df-ov 7415 df-oprab 7416 df-mpo 7417 df-om 7860 df-1st 7979 df-2nd 7980 df-frecs 8272 df-wrecs 8303 df-recs 8377 df-rdg 8416 df-1o 8472 df-er 8709 df-en 8946 df-dom 8947 df-sdom 8948 df-fin 8949 df-card 9940 df-pnf 11257 df-mnf 11258 df-xr 11259 df-ltxr 11260 df-le 11261 df-sub 11453 df-neg 11454 df-nn 12220 df-2 12282 df-n0 12480 df-xnn0 12552 df-z 12566 df-uz 12830 df-xadd 13100 df-fz 13492 df-hash 14298 df-iedg 28694 df-edg 28743 df-uhgr 28753 df-upgr 28777 df-uspgr 28845 df-usgr 28846 df-vtxdg 29158 df-rgr 29249 df-rusgr 29250 |
This theorem is referenced by: rgrx0ndm 29285 |
Copyright terms: Public domain | W3C validator |