MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rgrprcx Structured version   Visualization version   GIF version

Theorem rgrprcx 27388
Description: The class of 0-regular graphs is a proper class. (Contributed by AV, 27-Dec-2020.)
Assertion
Ref Expression
rgrprcx {𝑔 ∣ ∀𝑣 ∈ (Vtx‘𝑔)((VtxDeg‘𝑔)‘𝑣) = 0} ∉ V
Distinct variable group:   𝑣,𝑔

Proof of Theorem rgrprcx
StepHypRef Expression
1 rgrprc 27387 . 2 {𝑔𝑔 RegGraph 0} ∉ V
2 0xnn0 11973 . . . . . 6 0 ∈ ℕ0*
3 vex 3484 . . . . . . 7 𝑔 ∈ V
4 eqid 2824 . . . . . . . 8 (Vtx‘𝑔) = (Vtx‘𝑔)
5 eqid 2824 . . . . . . . 8 (VtxDeg‘𝑔) = (VtxDeg‘𝑔)
64, 5isrgr 27355 . . . . . . 7 ((𝑔 ∈ V ∧ 0 ∈ ℕ0*) → (𝑔 RegGraph 0 ↔ (0 ∈ ℕ0* ∧ ∀𝑣 ∈ (Vtx‘𝑔)((VtxDeg‘𝑔)‘𝑣) = 0)))
73, 2, 6mp2an 691 . . . . . 6 (𝑔 RegGraph 0 ↔ (0 ∈ ℕ0* ∧ ∀𝑣 ∈ (Vtx‘𝑔)((VtxDeg‘𝑔)‘𝑣) = 0))
82, 7mpbiran 708 . . . . 5 (𝑔 RegGraph 0 ↔ ∀𝑣 ∈ (Vtx‘𝑔)((VtxDeg‘𝑔)‘𝑣) = 0)
98bicomi 227 . . . 4 (∀𝑣 ∈ (Vtx‘𝑔)((VtxDeg‘𝑔)‘𝑣) = 0 ↔ 𝑔 RegGraph 0)
109abbii 2889 . . 3 {𝑔 ∣ ∀𝑣 ∈ (Vtx‘𝑔)((VtxDeg‘𝑔)‘𝑣) = 0} = {𝑔𝑔 RegGraph 0}
11 neleq1 3123 . . 3 ({𝑔 ∣ ∀𝑣 ∈ (Vtx‘𝑔)((VtxDeg‘𝑔)‘𝑣) = 0} = {𝑔𝑔 RegGraph 0} → ({𝑔 ∣ ∀𝑣 ∈ (Vtx‘𝑔)((VtxDeg‘𝑔)‘𝑣) = 0} ∉ V ↔ {𝑔𝑔 RegGraph 0} ∉ V))
1210, 11ax-mp 5 . 2 ({𝑔 ∣ ∀𝑣 ∈ (Vtx‘𝑔)((VtxDeg‘𝑔)‘𝑣) = 0} ∉ V ↔ {𝑔𝑔 RegGraph 0} ∉ V)
131, 12mpbir 234 1 {𝑔 ∣ ∀𝑣 ∈ (Vtx‘𝑔)((VtxDeg‘𝑔)‘𝑣) = 0} ∉ V
Colors of variables: wff setvar class
Syntax hints:  wb 209  wa 399   = wceq 1538  wcel 2115  {cab 2802  wnel 3118  wral 3133  Vcvv 3481   class class class wbr 5053  cfv 6344  0cc0 10536  0*cxnn0 11967  Vtxcvtx 26795  VtxDegcvtxdg 27261   RegGraph crgr 27351
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-10 2146  ax-11 2162  ax-12 2179  ax-ext 2796  ax-rep 5177  ax-sep 5190  ax-nul 5197  ax-pow 5254  ax-pr 5318  ax-un 7456  ax-cnex 10592  ax-resscn 10593  ax-1cn 10594  ax-icn 10595  ax-addcl 10596  ax-addrcl 10597  ax-mulcl 10598  ax-mulrcl 10599  ax-mulcom 10600  ax-addass 10601  ax-mulass 10602  ax-distr 10603  ax-i2m1 10604  ax-1ne0 10605  ax-1rid 10606  ax-rnegex 10607  ax-rrecex 10608  ax-cnre 10609  ax-pre-lttri 10610  ax-pre-lttrn 10611  ax-pre-ltadd 10612  ax-pre-mulgt0 10613
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2071  df-mo 2624  df-eu 2655  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2964  df-ne 3015  df-nel 3119  df-ral 3138  df-rex 3139  df-reu 3140  df-rab 3142  df-v 3483  df-sbc 3760  df-csb 3868  df-dif 3923  df-un 3925  df-in 3927  df-ss 3937  df-pss 3939  df-nul 4278  df-if 4452  df-pw 4525  df-sn 4552  df-pr 4554  df-tp 4556  df-op 4558  df-uni 4826  df-int 4864  df-iun 4908  df-br 5054  df-opab 5116  df-mpt 5134  df-tr 5160  df-id 5448  df-eprel 5453  df-po 5462  df-so 5463  df-fr 5502  df-we 5504  df-xp 5549  df-rel 5550  df-cnv 5551  df-co 5552  df-dm 5553  df-rn 5554  df-res 5555  df-ima 5556  df-pred 6136  df-ord 6182  df-on 6183  df-lim 6184  df-suc 6185  df-iota 6303  df-fun 6346  df-fn 6347  df-f 6348  df-f1 6349  df-fo 6350  df-f1o 6351  df-fv 6352  df-riota 7108  df-ov 7153  df-oprab 7154  df-mpo 7155  df-om 7576  df-1st 7685  df-2nd 7686  df-wrecs 7944  df-recs 8005  df-rdg 8043  df-1o 8099  df-er 8286  df-en 8507  df-dom 8508  df-sdom 8509  df-fin 8510  df-card 9366  df-pnf 10676  df-mnf 10677  df-xr 10678  df-ltxr 10679  df-le 10680  df-sub 10871  df-neg 10872  df-nn 11638  df-2 11700  df-n0 11898  df-xnn0 11968  df-z 11982  df-uz 12244  df-xadd 12508  df-fz 12898  df-hash 13699  df-iedg 26798  df-edg 26847  df-uhgr 26857  df-upgr 26881  df-uspgr 26949  df-usgr 26950  df-vtxdg 27262  df-rgr 27353  df-rusgr 27354
This theorem is referenced by:  rgrx0ndm  27389
  Copyright terms: Public domain W3C validator