MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rusgrprc Structured version   Visualization version   GIF version

Theorem rusgrprc 29623
Description: The class of 0-regular simple graphs is a proper class. (Contributed by AV, 27-Dec-2020.)
Assertion
Ref Expression
rusgrprc {𝑔𝑔 RegUSGraph 0} ∉ V

Proof of Theorem rusgrprc
Dummy variable 𝑣 is distinct from all other variables.
StepHypRef Expression
1 rgrusgrprc 29622 . 2 {𝑔 ∈ USGraph ∣ ∀𝑣 ∈ (Vtx‘𝑔)((VtxDeg‘𝑔)‘𝑣) = 0} ∉ V
2 vex 3482 . . . . . . 7 𝑔 ∈ V
3 0xnn0 12603 . . . . . . 7 0 ∈ ℕ0*
4 eqid 2735 . . . . . . . 8 (Vtx‘𝑔) = (Vtx‘𝑔)
5 eqid 2735 . . . . . . . 8 (VtxDeg‘𝑔) = (VtxDeg‘𝑔)
64, 5isrusgr0 29599 . . . . . . 7 ((𝑔 ∈ V ∧ 0 ∈ ℕ0*) → (𝑔 RegUSGraph 0 ↔ (𝑔 ∈ USGraph ∧ 0 ∈ ℕ0* ∧ ∀𝑣 ∈ (Vtx‘𝑔)((VtxDeg‘𝑔)‘𝑣) = 0)))
72, 3, 6mp2an 692 . . . . . 6 (𝑔 RegUSGraph 0 ↔ (𝑔 ∈ USGraph ∧ 0 ∈ ℕ0* ∧ ∀𝑣 ∈ (Vtx‘𝑔)((VtxDeg‘𝑔)‘𝑣) = 0))
8 3ancomb 1098 . . . . . 6 ((𝑔 ∈ USGraph ∧ 0 ∈ ℕ0* ∧ ∀𝑣 ∈ (Vtx‘𝑔)((VtxDeg‘𝑔)‘𝑣) = 0) ↔ (𝑔 ∈ USGraph ∧ ∀𝑣 ∈ (Vtx‘𝑔)((VtxDeg‘𝑔)‘𝑣) = 0 ∧ 0 ∈ ℕ0*))
9 df-3an 1088 . . . . . . 7 ((𝑔 ∈ USGraph ∧ ∀𝑣 ∈ (Vtx‘𝑔)((VtxDeg‘𝑔)‘𝑣) = 0 ∧ 0 ∈ ℕ0*) ↔ ((𝑔 ∈ USGraph ∧ ∀𝑣 ∈ (Vtx‘𝑔)((VtxDeg‘𝑔)‘𝑣) = 0) ∧ 0 ∈ ℕ0*))
103, 9mpbiran2 710 . . . . . 6 ((𝑔 ∈ USGraph ∧ ∀𝑣 ∈ (Vtx‘𝑔)((VtxDeg‘𝑔)‘𝑣) = 0 ∧ 0 ∈ ℕ0*) ↔ (𝑔 ∈ USGraph ∧ ∀𝑣 ∈ (Vtx‘𝑔)((VtxDeg‘𝑔)‘𝑣) = 0))
117, 8, 103bitri 297 . . . . 5 (𝑔 RegUSGraph 0 ↔ (𝑔 ∈ USGraph ∧ ∀𝑣 ∈ (Vtx‘𝑔)((VtxDeg‘𝑔)‘𝑣) = 0))
1211abbii 2807 . . . 4 {𝑔𝑔 RegUSGraph 0} = {𝑔 ∣ (𝑔 ∈ USGraph ∧ ∀𝑣 ∈ (Vtx‘𝑔)((VtxDeg‘𝑔)‘𝑣) = 0)}
13 df-rab 3434 . . . 4 {𝑔 ∈ USGraph ∣ ∀𝑣 ∈ (Vtx‘𝑔)((VtxDeg‘𝑔)‘𝑣) = 0} = {𝑔 ∣ (𝑔 ∈ USGraph ∧ ∀𝑣 ∈ (Vtx‘𝑔)((VtxDeg‘𝑔)‘𝑣) = 0)}
1412, 13eqtr4i 2766 . . 3 {𝑔𝑔 RegUSGraph 0} = {𝑔 ∈ USGraph ∣ ∀𝑣 ∈ (Vtx‘𝑔)((VtxDeg‘𝑔)‘𝑣) = 0}
15 neleq1 3050 . . 3 ({𝑔𝑔 RegUSGraph 0} = {𝑔 ∈ USGraph ∣ ∀𝑣 ∈ (Vtx‘𝑔)((VtxDeg‘𝑔)‘𝑣) = 0} → ({𝑔𝑔 RegUSGraph 0} ∉ V ↔ {𝑔 ∈ USGraph ∣ ∀𝑣 ∈ (Vtx‘𝑔)((VtxDeg‘𝑔)‘𝑣) = 0} ∉ V))
1614, 15ax-mp 5 . 2 ({𝑔𝑔 RegUSGraph 0} ∉ V ↔ {𝑔 ∈ USGraph ∣ ∀𝑣 ∈ (Vtx‘𝑔)((VtxDeg‘𝑔)‘𝑣) = 0} ∉ V)
171, 16mpbir 231 1 {𝑔𝑔 RegUSGraph 0} ∉ V
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395  w3a 1086   = wceq 1537  wcel 2106  {cab 2712  wnel 3044  wral 3059  {crab 3433  Vcvv 3478   class class class wbr 5148  cfv 6563  0cc0 11153  0*cxnn0 12597  Vtxcvtx 29028  USGraphcusgr 29181  VtxDegcvtxdg 29498   RegUSGraph crusgr 29589
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-int 4952  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8013  df-2nd 8014  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-1o 8505  df-er 8744  df-en 8985  df-dom 8986  df-sdom 8987  df-fin 8988  df-card 9977  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-nn 12265  df-2 12327  df-n0 12525  df-xnn0 12598  df-z 12612  df-uz 12877  df-xadd 13153  df-fz 13545  df-hash 14367  df-iedg 29031  df-edg 29080  df-uhgr 29090  df-upgr 29114  df-uspgr 29182  df-usgr 29183  df-vtxdg 29499  df-rgr 29590  df-rusgr 29591
This theorem is referenced by:  rgrprc  29624
  Copyright terms: Public domain W3C validator