Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > rusgrprc | Structured version Visualization version GIF version |
Description: The class of 0-regular simple graphs is a proper class. (Contributed by AV, 27-Dec-2020.) |
Ref | Expression |
---|---|
rusgrprc | ⊢ {𝑔 ∣ 𝑔 RegUSGraph 0} ∉ V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rgrusgrprc 27952 | . 2 ⊢ {𝑔 ∈ USGraph ∣ ∀𝑣 ∈ (Vtx‘𝑔)((VtxDeg‘𝑔)‘𝑣) = 0} ∉ V | |
2 | vex 3435 | . . . . . . 7 ⊢ 𝑔 ∈ V | |
3 | 0xnn0 12309 | . . . . . . 7 ⊢ 0 ∈ ℕ0* | |
4 | eqid 2740 | . . . . . . . 8 ⊢ (Vtx‘𝑔) = (Vtx‘𝑔) | |
5 | eqid 2740 | . . . . . . . 8 ⊢ (VtxDeg‘𝑔) = (VtxDeg‘𝑔) | |
6 | 4, 5 | isrusgr0 27929 | . . . . . . 7 ⊢ ((𝑔 ∈ V ∧ 0 ∈ ℕ0*) → (𝑔 RegUSGraph 0 ↔ (𝑔 ∈ USGraph ∧ 0 ∈ ℕ0* ∧ ∀𝑣 ∈ (Vtx‘𝑔)((VtxDeg‘𝑔)‘𝑣) = 0))) |
7 | 2, 3, 6 | mp2an 689 | . . . . . 6 ⊢ (𝑔 RegUSGraph 0 ↔ (𝑔 ∈ USGraph ∧ 0 ∈ ℕ0* ∧ ∀𝑣 ∈ (Vtx‘𝑔)((VtxDeg‘𝑔)‘𝑣) = 0)) |
8 | 3ancomb 1098 | . . . . . 6 ⊢ ((𝑔 ∈ USGraph ∧ 0 ∈ ℕ0* ∧ ∀𝑣 ∈ (Vtx‘𝑔)((VtxDeg‘𝑔)‘𝑣) = 0) ↔ (𝑔 ∈ USGraph ∧ ∀𝑣 ∈ (Vtx‘𝑔)((VtxDeg‘𝑔)‘𝑣) = 0 ∧ 0 ∈ ℕ0*)) | |
9 | df-3an 1088 | . . . . . . 7 ⊢ ((𝑔 ∈ USGraph ∧ ∀𝑣 ∈ (Vtx‘𝑔)((VtxDeg‘𝑔)‘𝑣) = 0 ∧ 0 ∈ ℕ0*) ↔ ((𝑔 ∈ USGraph ∧ ∀𝑣 ∈ (Vtx‘𝑔)((VtxDeg‘𝑔)‘𝑣) = 0) ∧ 0 ∈ ℕ0*)) | |
10 | 3, 9 | mpbiran2 707 | . . . . . 6 ⊢ ((𝑔 ∈ USGraph ∧ ∀𝑣 ∈ (Vtx‘𝑔)((VtxDeg‘𝑔)‘𝑣) = 0 ∧ 0 ∈ ℕ0*) ↔ (𝑔 ∈ USGraph ∧ ∀𝑣 ∈ (Vtx‘𝑔)((VtxDeg‘𝑔)‘𝑣) = 0)) |
11 | 7, 8, 10 | 3bitri 297 | . . . . 5 ⊢ (𝑔 RegUSGraph 0 ↔ (𝑔 ∈ USGraph ∧ ∀𝑣 ∈ (Vtx‘𝑔)((VtxDeg‘𝑔)‘𝑣) = 0)) |
12 | 11 | abbii 2810 | . . . 4 ⊢ {𝑔 ∣ 𝑔 RegUSGraph 0} = {𝑔 ∣ (𝑔 ∈ USGraph ∧ ∀𝑣 ∈ (Vtx‘𝑔)((VtxDeg‘𝑔)‘𝑣) = 0)} |
13 | df-rab 3075 | . . . 4 ⊢ {𝑔 ∈ USGraph ∣ ∀𝑣 ∈ (Vtx‘𝑔)((VtxDeg‘𝑔)‘𝑣) = 0} = {𝑔 ∣ (𝑔 ∈ USGraph ∧ ∀𝑣 ∈ (Vtx‘𝑔)((VtxDeg‘𝑔)‘𝑣) = 0)} | |
14 | 12, 13 | eqtr4i 2771 | . . 3 ⊢ {𝑔 ∣ 𝑔 RegUSGraph 0} = {𝑔 ∈ USGraph ∣ ∀𝑣 ∈ (Vtx‘𝑔)((VtxDeg‘𝑔)‘𝑣) = 0} |
15 | neleq1 3056 | . . 3 ⊢ ({𝑔 ∣ 𝑔 RegUSGraph 0} = {𝑔 ∈ USGraph ∣ ∀𝑣 ∈ (Vtx‘𝑔)((VtxDeg‘𝑔)‘𝑣) = 0} → ({𝑔 ∣ 𝑔 RegUSGraph 0} ∉ V ↔ {𝑔 ∈ USGraph ∣ ∀𝑣 ∈ (Vtx‘𝑔)((VtxDeg‘𝑔)‘𝑣) = 0} ∉ V)) | |
16 | 14, 15 | ax-mp 5 | . 2 ⊢ ({𝑔 ∣ 𝑔 RegUSGraph 0} ∉ V ↔ {𝑔 ∈ USGraph ∣ ∀𝑣 ∈ (Vtx‘𝑔)((VtxDeg‘𝑔)‘𝑣) = 0} ∉ V) |
17 | 1, 16 | mpbir 230 | 1 ⊢ {𝑔 ∣ 𝑔 RegUSGraph 0} ∉ V |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 396 ∧ w3a 1086 = wceq 1542 ∈ wcel 2110 {cab 2717 ∉ wnel 3051 ∀wral 3066 {crab 3070 Vcvv 3431 class class class wbr 5079 ‘cfv 6431 0cc0 10870 ℕ0*cxnn0 12303 Vtxcvtx 27362 USGraphcusgr 27515 VtxDegcvtxdg 27828 RegUSGraph crusgr 27919 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2015 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2711 ax-rep 5214 ax-sep 5227 ax-nul 5234 ax-pow 5292 ax-pr 5356 ax-un 7580 ax-cnex 10926 ax-resscn 10927 ax-1cn 10928 ax-icn 10929 ax-addcl 10930 ax-addrcl 10931 ax-mulcl 10932 ax-mulrcl 10933 ax-mulcom 10934 ax-addass 10935 ax-mulass 10936 ax-distr 10937 ax-i2m1 10938 ax-1ne0 10939 ax-1rid 10940 ax-rnegex 10941 ax-rrecex 10942 ax-cnre 10943 ax-pre-lttri 10944 ax-pre-lttrn 10945 ax-pre-ltadd 10946 ax-pre-mulgt0 10947 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2072 df-mo 2542 df-eu 2571 df-clab 2718 df-cleq 2732 df-clel 2818 df-nfc 2891 df-ne 2946 df-nel 3052 df-ral 3071 df-rex 3072 df-reu 3073 df-rab 3075 df-v 3433 df-sbc 3721 df-csb 3838 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-pss 3911 df-nul 4263 df-if 4466 df-pw 4541 df-sn 4568 df-pr 4570 df-op 4574 df-uni 4846 df-int 4886 df-iun 4932 df-br 5080 df-opab 5142 df-mpt 5163 df-tr 5197 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-pred 6200 df-ord 6267 df-on 6268 df-lim 6269 df-suc 6270 df-iota 6389 df-fun 6433 df-fn 6434 df-f 6435 df-f1 6436 df-fo 6437 df-f1o 6438 df-fv 6439 df-riota 7226 df-ov 7272 df-oprab 7273 df-mpo 7274 df-om 7705 df-1st 7822 df-2nd 7823 df-frecs 8086 df-wrecs 8117 df-recs 8191 df-rdg 8230 df-1o 8286 df-er 8479 df-en 8715 df-dom 8716 df-sdom 8717 df-fin 8718 df-card 9696 df-pnf 11010 df-mnf 11011 df-xr 11012 df-ltxr 11013 df-le 11014 df-sub 11205 df-neg 11206 df-nn 11972 df-2 12034 df-n0 12232 df-xnn0 12304 df-z 12318 df-uz 12580 df-xadd 12846 df-fz 13237 df-hash 14041 df-iedg 27365 df-edg 27414 df-uhgr 27424 df-upgr 27448 df-uspgr 27516 df-usgr 27517 df-vtxdg 27829 df-rgr 27920 df-rusgr 27921 |
This theorem is referenced by: rgrprc 27954 |
Copyright terms: Public domain | W3C validator |