![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 3anan12 | Structured version Visualization version GIF version |
Description: Convert triple conjunction to conjunction, then commute. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (Proof shortened by Andrew Salmon, 14-Jun-2011.) (Revised to shorten 3ancoma 1096 by Wolf Lammen, 5-Jun-2022.) |
Ref | Expression |
---|---|
3anan12 | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) ↔ (𝜓 ∧ (𝜑 ∧ 𝜒))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3anass 1093 | . 2 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) ↔ (𝜑 ∧ (𝜓 ∧ 𝜒))) | |
2 | an12 641 | . 2 ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒)) ↔ (𝜓 ∧ (𝜑 ∧ 𝜒))) | |
3 | 1, 2 | bitri 274 | 1 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) ↔ (𝜓 ∧ (𝜑 ∧ 𝜒))) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 394 ∧ w3a 1085 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 395 df-3an 1087 |
This theorem is referenced by: 3ancoma 1096 an33rean 1481 an33reanOLD 1482 2reu5lem3 3752 snopeqop 5505 dff1o2 6837 ixxun 13344 elfz1b 13574 mreexexlem4d 17595 unocv 21452 iunocv 21453 iscvsp 24875 mbfmax 25398 ulm2 26133 iswwlks 29357 wwlksnfi 29427 eclclwwlkn1 29595 clwwlknon2x 29623 bnj548 34206 pridlnr 37207 brres2 37439 xrninxp 37565 sineq0ALT 44000 elbigo 47324 |
Copyright terms: Public domain | W3C validator |