![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 3anan12 | Structured version Visualization version GIF version |
Description: Convert triple conjunction to conjunction, then commute. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (Proof shortened by Andrew Salmon, 14-Jun-2011.) (Revised to shorten 3ancoma 1098 by Wolf Lammen, 5-Jun-2022.) |
Ref | Expression |
---|---|
3anan12 | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) ↔ (𝜓 ∧ (𝜑 ∧ 𝜒))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3anass 1095 | . 2 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) ↔ (𝜑 ∧ (𝜓 ∧ 𝜒))) | |
2 | an12 644 | . 2 ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒)) ↔ (𝜓 ∧ (𝜑 ∧ 𝜒))) | |
3 | 1, 2 | bitri 275 | 1 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) ↔ (𝜓 ∧ (𝜑 ∧ 𝜒))) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 206 ∧ wa 395 ∧ w3a 1087 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1089 |
This theorem is referenced by: 3ancoma 1098 an33rean 1483 2reu5lem3 3779 snopeqop 5525 dff1o2 6867 ixxun 13423 elfz1b 13653 mreexexlem4d 17705 unocv 21721 iunocv 21722 iscvsp 25180 mbfmax 25703 ulm2 26446 iswwlks 29869 wwlksnfi 29939 eclclwwlkn1 30107 clwwlknon2x 30135 bnj548 34873 pridlnr 37996 brres2 38224 xrninxp 38348 sineq0ALT 44908 elbigo 48285 |
Copyright terms: Public domain | W3C validator |