Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 3anan12 | Structured version Visualization version GIF version |
Description: Convert triple conjunction to conjunction, then commute. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (Proof shortened by Andrew Salmon, 14-Jun-2011.) (Revised to shorten 3ancoma 1097 by Wolf Lammen, 5-Jun-2022.) |
Ref | Expression |
---|---|
3anan12 | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) ↔ (𝜓 ∧ (𝜑 ∧ 𝜒))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3anass 1094 | . 2 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) ↔ (𝜑 ∧ (𝜓 ∧ 𝜒))) | |
2 | an12 642 | . 2 ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒)) ↔ (𝜓 ∧ (𝜑 ∧ 𝜒))) | |
3 | 1, 2 | bitri 274 | 1 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) ↔ (𝜓 ∧ (𝜑 ∧ 𝜒))) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 396 ∧ w3a 1086 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 397 df-3an 1088 |
This theorem is referenced by: 3ancoma 1097 an33rean 1482 an33reanOLD 1483 2reu5lem3 3692 snopeqop 5420 dff1o2 6721 ixxun 13095 elfz1b 13325 mreexexlem4d 17356 unocv 20885 iunocv 20886 iscvsp 24291 mbfmax 24813 ulm2 25544 iswwlks 28201 wwlksnfi 28271 eclclwwlkn1 28439 clwwlknon2x 28467 bnj548 32877 pridlnr 36194 brres2 36407 xrninxp 36518 sineq0ALT 42557 elbigo 45897 |
Copyright terms: Public domain | W3C validator |