MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  3anan12 Structured version   Visualization version   GIF version

Theorem 3anan12 1094
Description: Convert triple conjunction to conjunction, then commute. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (Proof shortened by Andrew Salmon, 14-Jun-2011.) (Revised to shorten 3ancoma 1096 by Wolf Lammen, 5-Jun-2022.)
Assertion
Ref Expression
3anan12 ((𝜑𝜓𝜒) ↔ (𝜓 ∧ (𝜑𝜒)))

Proof of Theorem 3anan12
StepHypRef Expression
1 3anass 1093 . 2 ((𝜑𝜓𝜒) ↔ (𝜑 ∧ (𝜓𝜒)))
2 an12 641 . 2 ((𝜑 ∧ (𝜓𝜒)) ↔ (𝜓 ∧ (𝜑𝜒)))
31, 2bitri 274 1 ((𝜑𝜓𝜒) ↔ (𝜓 ∧ (𝜑𝜒)))
Colors of variables: wff setvar class
Syntax hints:  wb 205  wa 394  w3a 1085
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-an 395  df-3an 1087
This theorem is referenced by:  3ancoma  1096  an33rean  1481  an33reanOLD  1482  2reu5lem3  3752  snopeqop  5505  dff1o2  6837  ixxun  13344  elfz1b  13574  mreexexlem4d  17595  unocv  21452  iunocv  21453  iscvsp  24875  mbfmax  25398  ulm2  26133  iswwlks  29357  wwlksnfi  29427  eclclwwlkn1  29595  clwwlknon2x  29623  bnj548  34206  pridlnr  37207  brres2  37439  xrninxp  37565  sineq0ALT  44000  elbigo  47324
  Copyright terms: Public domain W3C validator