Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 3anan12 | Structured version Visualization version GIF version |
Description: Convert triple conjunction to conjunction, then commute. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (Proof shortened by Andrew Salmon, 14-Jun-2011.) (Revised to shorten 3ancoma 1096 by Wolf Lammen, 5-Jun-2022.) |
Ref | Expression |
---|---|
3anan12 | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) ↔ (𝜓 ∧ (𝜑 ∧ 𝜒))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3anass 1093 | . 2 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) ↔ (𝜑 ∧ (𝜓 ∧ 𝜒))) | |
2 | an12 641 | . 2 ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒)) ↔ (𝜓 ∧ (𝜑 ∧ 𝜒))) | |
3 | 1, 2 | bitri 274 | 1 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) ↔ (𝜓 ∧ (𝜑 ∧ 𝜒))) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 395 ∧ w3a 1085 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 396 df-3an 1087 |
This theorem is referenced by: 3ancoma 1096 an33rean 1481 an33reanOLD 1482 2reu5lem3 3687 snopeqop 5414 dff1o2 6705 ixxun 13024 elfz1b 13254 mreexexlem4d 17273 unocv 20797 iunocv 20798 iscvsp 24197 mbfmax 24718 ulm2 25449 iswwlks 28102 wwlksnfi 28172 eclclwwlkn1 28340 clwwlknon2x 28368 bnj548 32777 pridlnr 36121 brres2 36334 xrninxp 36445 sineq0ALT 42446 elbigo 45785 |
Copyright terms: Public domain | W3C validator |