MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  3anan12 Structured version   Visualization version   GIF version

Theorem 3anan12 1094
Description: Convert triple conjunction to conjunction, then commute. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (Proof shortened by Andrew Salmon, 14-Jun-2011.) (Revised to shorten 3ancoma 1096 by Wolf Lammen, 5-Jun-2022.)
Assertion
Ref Expression
3anan12 ((𝜑𝜓𝜒) ↔ (𝜓 ∧ (𝜑𝜒)))

Proof of Theorem 3anan12
StepHypRef Expression
1 3anass 1093 . 2 ((𝜑𝜓𝜒) ↔ (𝜑 ∧ (𝜓𝜒)))
2 an12 641 . 2 ((𝜑 ∧ (𝜓𝜒)) ↔ (𝜓 ∧ (𝜑𝜒)))
31, 2bitri 274 1 ((𝜑𝜓𝜒) ↔ (𝜓 ∧ (𝜑𝜒)))
Colors of variables: wff setvar class
Syntax hints:  wb 205  wa 395  w3a 1085
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-an 396  df-3an 1087
This theorem is referenced by:  3ancoma  1096  an33rean  1481  an33reanOLD  1482  2reu5lem3  3687  snopeqop  5414  dff1o2  6705  ixxun  13024  elfz1b  13254  mreexexlem4d  17273  unocv  20797  iunocv  20798  iscvsp  24197  mbfmax  24718  ulm2  25449  iswwlks  28102  wwlksnfi  28172  eclclwwlkn1  28340  clwwlknon2x  28368  bnj548  32777  pridlnr  36121  brres2  36334  xrninxp  36445  sineq0ALT  42446  elbigo  45785
  Copyright terms: Public domain W3C validator