MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  3anan12 Structured version   Visualization version   GIF version

Theorem 3anan12 1095
Description: Convert triple conjunction to conjunction, then commute. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (Proof shortened by Andrew Salmon, 14-Jun-2011.) (Revised to shorten 3ancoma 1097 by Wolf Lammen, 5-Jun-2022.)
Assertion
Ref Expression
3anan12 ((𝜑𝜓𝜒) ↔ (𝜓 ∧ (𝜑𝜒)))

Proof of Theorem 3anan12
StepHypRef Expression
1 3anass 1094 . 2 ((𝜑𝜓𝜒) ↔ (𝜑 ∧ (𝜓𝜒)))
2 an12 645 . 2 ((𝜑 ∧ (𝜓𝜒)) ↔ (𝜓 ∧ (𝜑𝜒)))
31, 2bitri 275 1 ((𝜑𝜓𝜒) ↔ (𝜓 ∧ (𝜑𝜒)))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395  w3a 1086
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-an 396  df-3an 1088
This theorem is referenced by:  3ancoma  1097  an33rean  1485  2reu5lem3  3717  snopeqop  5449  dff1o2  6769  ixxun  13264  elfz1b  13496  mreexexlem4d  17553  unocv  21587  iunocv  21588  iscvsp  25026  mbfmax  25548  ulm2  26292  iswwlks  29781  wwlksnfi  29851  eclclwwlkn1  30019  clwwlknon2x  30047  bnj548  34864  pridlnr  38020  brres2  38247  xrninxp  38368  sineq0ALT  44914  elbigo  48540
  Copyright terms: Public domain W3C validator