| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 3anan12 | Structured version Visualization version GIF version | ||
| Description: Convert triple conjunction to conjunction, then commute. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (Proof shortened by Andrew Salmon, 14-Jun-2011.) (Revised to shorten 3ancoma 1097 by Wolf Lammen, 5-Jun-2022.) |
| Ref | Expression |
|---|---|
| 3anan12 | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) ↔ (𝜓 ∧ (𝜑 ∧ 𝜒))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3anass 1094 | . 2 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) ↔ (𝜑 ∧ (𝜓 ∧ 𝜒))) | |
| 2 | an12 645 | . 2 ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒)) ↔ (𝜓 ∧ (𝜑 ∧ 𝜒))) | |
| 3 | 1, 2 | bitri 275 | 1 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) ↔ (𝜓 ∧ (𝜑 ∧ 𝜒))) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 ∧ w3a 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: 3ancoma 1097 an33rean 1485 2reu5lem3 3725 snopeqop 5461 dff1o2 6787 ixxun 13298 elfz1b 13530 mreexexlem4d 17584 unocv 21565 iunocv 21566 iscvsp 25004 mbfmax 25526 ulm2 26270 iswwlks 29739 wwlksnfi 29809 eclclwwlkn1 29977 clwwlknon2x 30005 bnj548 34860 pridlnr 38003 brres2 38230 xrninxp 38351 sineq0ALT 44899 elbigo 48513 |
| Copyright terms: Public domain | W3C validator |