MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  3anan12 Structured version   Visualization version   GIF version

Theorem 3anan12 1096
Description: Convert triple conjunction to conjunction, then commute. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (Proof shortened by Andrew Salmon, 14-Jun-2011.) (Revised to shorten 3ancoma 1098 by Wolf Lammen, 5-Jun-2022.)
Assertion
Ref Expression
3anan12 ((𝜑𝜓𝜒) ↔ (𝜓 ∧ (𝜑𝜒)))

Proof of Theorem 3anan12
StepHypRef Expression
1 3anass 1095 . 2 ((𝜑𝜓𝜒) ↔ (𝜑 ∧ (𝜓𝜒)))
2 an12 644 . 2 ((𝜑 ∧ (𝜓𝜒)) ↔ (𝜓 ∧ (𝜑𝜒)))
31, 2bitri 275 1 ((𝜑𝜓𝜒) ↔ (𝜓 ∧ (𝜑𝜒)))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395  w3a 1087
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-an 396  df-3an 1089
This theorem is referenced by:  3ancoma  1098  an33rean  1483  2reu5lem3  3779  snopeqop  5525  dff1o2  6867  ixxun  13423  elfz1b  13653  mreexexlem4d  17705  unocv  21721  iunocv  21722  iscvsp  25180  mbfmax  25703  ulm2  26446  iswwlks  29869  wwlksnfi  29939  eclclwwlkn1  30107  clwwlknon2x  30135  bnj548  34873  pridlnr  37996  brres2  38224  xrninxp  38348  sineq0ALT  44908  elbigo  48285
  Copyright terms: Public domain W3C validator