| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 3anan12 | Structured version Visualization version GIF version | ||
| Description: Convert triple conjunction to conjunction, then commute. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (Proof shortened by Andrew Salmon, 14-Jun-2011.) (Revised to shorten 3ancoma 1097 by Wolf Lammen, 5-Jun-2022.) |
| Ref | Expression |
|---|---|
| 3anan12 | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) ↔ (𝜓 ∧ (𝜑 ∧ 𝜒))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3anass 1094 | . 2 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) ↔ (𝜑 ∧ (𝜓 ∧ 𝜒))) | |
| 2 | an12 645 | . 2 ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒)) ↔ (𝜓 ∧ (𝜑 ∧ 𝜒))) | |
| 3 | 1, 2 | bitri 275 | 1 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) ↔ (𝜓 ∧ (𝜑 ∧ 𝜒))) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 ∧ w3a 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: 3ancoma 1097 an33rean 1485 2reu5lem3 3711 snopeqop 5444 dff1o2 6768 ixxun 13261 elfz1b 13493 mreexexlem4d 17553 unocv 21617 iunocv 21618 iscvsp 25055 mbfmax 25577 ulm2 26321 iswwlks 29814 wwlksnfi 29884 eclclwwlkn1 30055 clwwlknon2x 30083 bnj548 34909 pridlnr 38086 brres2 38315 xrninxp 38449 sineq0ALT 45039 elbigo 48662 |
| Copyright terms: Public domain | W3C validator |