![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 3adant3l | Structured version Visualization version GIF version |
Description: Deduction adding a conjunct to antecedent. (Contributed by NM, 8-Jan-2006.) (Proof shortened by Wolf Lammen, 25-Jun-2022.) |
Ref | Expression |
---|---|
ad4ant3.1 | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) |
Ref | Expression |
---|---|
3adant3l | ⊢ ((𝜑 ∧ 𝜓 ∧ (𝜏 ∧ 𝜒)) → 𝜃) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpr 486 | . 2 ⊢ ((𝜏 ∧ 𝜒) → 𝜒) | |
2 | ad4ant3.1 | . 2 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) | |
3 | 1, 2 | syl3an3 1166 | 1 ⊢ ((𝜑 ∧ 𝜓 ∧ (𝜏 ∧ 𝜒)) → 𝜃) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 ∧ w3a 1088 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 398 df-3an 1090 |
This theorem is referenced by: wfrlem12OLD 8320 ecopovtrn 8814 rrxmet 24925 nvaddsub4 29910 adjlnop 31339 pl1cn 32935 rrnmet 36697 lflsub 37937 lflmul 37938 cvlatexch3 38208 cdleme5 39111 cdlemeg46rjgN 39393 cdlemg2l 39474 cdlemg10c 39510 tendospcanN 39894 dicvaddcl 40061 dicvscacl 40062 dochexmidlem8 40338 limsupre3lem 44448 fourierdlem42 44865 fourierdlem113 44935 ovnsupge0 45273 ovncvrrp 45280 ovnhoilem2 45318 |
Copyright terms: Public domain | W3C validator |