![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 3adant3l | Structured version Visualization version GIF version |
Description: Deduction adding a conjunct to antecedent. (Contributed by NM, 8-Jan-2006.) (Proof shortened by Wolf Lammen, 25-Jun-2022.) |
Ref | Expression |
---|---|
ad4ant3.1 | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) |
Ref | Expression |
---|---|
3adant3l | ⊢ ((𝜑 ∧ 𝜓 ∧ (𝜏 ∧ 𝜒)) → 𝜃) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpr 484 | . 2 ⊢ ((𝜏 ∧ 𝜒) → 𝜒) | |
2 | ad4ant3.1 | . 2 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) | |
3 | 1, 2 | syl3an3 1165 | 1 ⊢ ((𝜑 ∧ 𝜓 ∧ (𝜏 ∧ 𝜒)) → 𝜃) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1087 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1089 |
This theorem is referenced by: wfrlem12OLD 8376 ecopovtrn 8878 rrxmet 25461 nvaddsub4 30689 adjlnop 32118 pl1cn 33901 rrnmet 37789 lflsub 39023 lflmul 39024 cvlatexch3 39294 cdleme5 40197 cdlemeg46rjgN 40479 cdlemg2l 40560 cdlemg10c 40596 tendospcanN 40980 dicvaddcl 41147 dicvscacl 41148 dochexmidlem8 41424 limsupre3lem 45653 fourierdlem42 46070 fourierdlem113 46140 ovnsupge0 46478 ovncvrrp 46485 ovnhoilem2 46523 |
Copyright terms: Public domain | W3C validator |