MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  3adant3l Structured version   Visualization version   GIF version

Theorem 3adant3l 1181
Description: Deduction adding a conjunct to antecedent. (Contributed by NM, 8-Jan-2006.) (Proof shortened by Wolf Lammen, 25-Jun-2022.)
Hypothesis
Ref Expression
ad4ant3.1 ((𝜑𝜓𝜒) → 𝜃)
Assertion
Ref Expression
3adant3l ((𝜑𝜓 ∧ (𝜏𝜒)) → 𝜃)

Proof of Theorem 3adant3l
StepHypRef Expression
1 simpr 484 . 2 ((𝜏𝜒) → 𝜒)
2 ad4ant3.1 . 2 ((𝜑𝜓𝜒) → 𝜃)
31, 2syl3an3 1165 1 ((𝜑𝜓 ∧ (𝜏𝜒)) → 𝜃)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-an 396  df-3an 1088
This theorem is referenced by:  ecopovtrn  8793  rrxmet  25308  nvaddsub4  30586  adjlnop  32015  pl1cn  33945  rrnmet  37823  lflsub  39060  lflmul  39061  cvlatexch3  39331  cdleme5  40234  cdlemeg46rjgN  40516  cdlemg2l  40597  cdlemg10c  40633  tendospcanN  41017  dicvaddcl  41184  dicvscacl  41185  dochexmidlem8  41461  limsupre3lem  45730  fourierdlem42  46147  fourierdlem113  46217  ovnsupge0  46555  ovncvrrp  46562  ovnhoilem2  46600
  Copyright terms: Public domain W3C validator