![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 3adant3l | Structured version Visualization version GIF version |
Description: Deduction adding a conjunct to antecedent. (Contributed by NM, 8-Jan-2006.) (Proof shortened by Wolf Lammen, 25-Jun-2022.) |
Ref | Expression |
---|---|
ad4ant3.1 | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) |
Ref | Expression |
---|---|
3adant3l | ⊢ ((𝜑 ∧ 𝜓 ∧ (𝜏 ∧ 𝜒)) → 𝜃) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpr 485 | . 2 ⊢ ((𝜏 ∧ 𝜒) → 𝜒) | |
2 | ad4ant3.1 | . 2 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) | |
3 | 1, 2 | syl3an3 1165 | 1 ⊢ ((𝜑 ∧ 𝜓 ∧ (𝜏 ∧ 𝜒)) → 𝜃) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∧ w3a 1087 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 397 df-3an 1089 |
This theorem is referenced by: wfrlem12OLD 8322 ecopovtrn 8816 rrxmet 24932 nvaddsub4 29948 adjlnop 31377 pl1cn 33004 rrnmet 36783 lflsub 38023 lflmul 38024 cvlatexch3 38294 cdleme5 39197 cdlemeg46rjgN 39479 cdlemg2l 39560 cdlemg10c 39596 tendospcanN 39980 dicvaddcl 40147 dicvscacl 40148 dochexmidlem8 40424 limsupre3lem 44527 fourierdlem42 44944 fourierdlem113 45014 ovnsupge0 45352 ovncvrrp 45359 ovnhoilem2 45397 |
Copyright terms: Public domain | W3C validator |