MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  3adant3l Structured version   Visualization version   GIF version

Theorem 3adant3l 1181
Description: Deduction adding a conjunct to antecedent. (Contributed by NM, 8-Jan-2006.) (Proof shortened by Wolf Lammen, 25-Jun-2022.)
Hypothesis
Ref Expression
ad4ant3.1 ((𝜑𝜓𝜒) → 𝜃)
Assertion
Ref Expression
3adant3l ((𝜑𝜓 ∧ (𝜏𝜒)) → 𝜃)

Proof of Theorem 3adant3l
StepHypRef Expression
1 simpr 484 . 2 ((𝜏𝜒) → 𝜒)
2 ad4ant3.1 . 2 ((𝜑𝜓𝜒) → 𝜃)
31, 2syl3an3 1165 1 ((𝜑𝜓 ∧ (𝜏𝜒)) → 𝜃)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-an 396  df-3an 1088
This theorem is referenced by:  ecopovtrn  8744  rrxmet  25333  nvaddsub4  30632  adjlnop  32061  pl1cn  33963  rrnmet  37868  lflsub  39105  lflmul  39106  cvlatexch3  39376  cdleme5  40278  cdlemeg46rjgN  40560  cdlemg2l  40641  cdlemg10c  40677  tendospcanN  41061  dicvaddcl  41228  dicvscacl  41229  dochexmidlem8  41505  limsupre3lem  45769  fourierdlem42  46186  fourierdlem113  46256  ovnsupge0  46594  ovncvrrp  46601  ovnhoilem2  46639
  Copyright terms: Public domain W3C validator