MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  3adant3l Structured version   Visualization version   GIF version

Theorem 3adant3l 1179
Description: Deduction adding a conjunct to antecedent. (Contributed by NM, 8-Jan-2006.) (Proof shortened by Wolf Lammen, 25-Jun-2022.)
Hypothesis
Ref Expression
ad4ant3.1 ((𝜑𝜓𝜒) → 𝜃)
Assertion
Ref Expression
3adant3l ((𝜑𝜓 ∧ (𝜏𝜒)) → 𝜃)

Proof of Theorem 3adant3l
StepHypRef Expression
1 simpr 484 . 2 ((𝜏𝜒) → 𝜒)
2 ad4ant3.1 . 2 ((𝜑𝜓𝜒) → 𝜃)
31, 2syl3an3 1164 1 ((𝜑𝜓 ∧ (𝜏𝜒)) → 𝜃)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-an 396  df-3an 1088
This theorem is referenced by:  wfrlem12OLD  8359  ecopovtrn  8859  rrxmet  25456  nvaddsub4  30686  adjlnop  32115  pl1cn  33916  rrnmet  37816  lflsub  39049  lflmul  39050  cvlatexch3  39320  cdleme5  40223  cdlemeg46rjgN  40505  cdlemg2l  40586  cdlemg10c  40622  tendospcanN  41006  dicvaddcl  41173  dicvscacl  41174  dochexmidlem8  41450  limsupre3lem  45688  fourierdlem42  46105  fourierdlem113  46175  ovnsupge0  46513  ovncvrrp  46520  ovnhoilem2  46558
  Copyright terms: Public domain W3C validator