Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 3adant3l | Structured version Visualization version GIF version |
Description: Deduction adding a conjunct to antecedent. (Contributed by NM, 8-Jan-2006.) (Proof shortened by Wolf Lammen, 25-Jun-2022.) |
Ref | Expression |
---|---|
ad4ant3.1 | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) |
Ref | Expression |
---|---|
3adant3l | ⊢ ((𝜑 ∧ 𝜓 ∧ (𝜏 ∧ 𝜒)) → 𝜃) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpr 486 | . 2 ⊢ ((𝜏 ∧ 𝜒) → 𝜒) | |
2 | ad4ant3.1 | . 2 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) | |
3 | 1, 2 | syl3an3 1165 | 1 ⊢ ((𝜑 ∧ 𝜓 ∧ (𝜏 ∧ 𝜒)) → 𝜃) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 ∧ w3a 1087 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 398 df-3an 1089 |
This theorem is referenced by: wfrlem12OLD 8182 ecopovtrn 8640 rrxmet 24621 nvaddsub4 29068 adjlnop 30497 pl1cn 31954 rrnmet 36035 lflsub 37281 lflmul 37282 cvlatexch3 37552 cdleme5 38454 cdlemeg46rjgN 38736 cdlemg2l 38817 cdlemg10c 38853 tendospcanN 39237 dicvaddcl 39404 dicvscacl 39405 dochexmidlem8 39681 limsupre3lem 43502 fourierdlem42 43919 fourierdlem113 43989 ovnsupge0 44325 ovncvrrp 44332 ovnhoilem2 44370 |
Copyright terms: Public domain | W3C validator |