| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 3adant3l | Structured version Visualization version GIF version | ||
| Description: Deduction adding a conjunct to antecedent. (Contributed by NM, 8-Jan-2006.) (Proof shortened by Wolf Lammen, 25-Jun-2022.) |
| Ref | Expression |
|---|---|
| ad4ant3.1 | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) |
| Ref | Expression |
|---|---|
| 3adant3l | ⊢ ((𝜑 ∧ 𝜓 ∧ (𝜏 ∧ 𝜒)) → 𝜃) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpr 484 | . 2 ⊢ ((𝜏 ∧ 𝜒) → 𝜒) | |
| 2 | ad4ant3.1 | . 2 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) | |
| 3 | 1, 2 | syl3an3 1165 | 1 ⊢ ((𝜑 ∧ 𝜓 ∧ (𝜏 ∧ 𝜒)) → 𝜃) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: ecopovtrn 8744 rrxmet 25333 nvaddsub4 30632 adjlnop 32061 pl1cn 33963 rrnmet 37868 lflsub 39105 lflmul 39106 cvlatexch3 39376 cdleme5 40278 cdlemeg46rjgN 40560 cdlemg2l 40641 cdlemg10c 40677 tendospcanN 41061 dicvaddcl 41228 dicvscacl 41229 dochexmidlem8 41505 limsupre3lem 45769 fourierdlem42 46186 fourierdlem113 46256 ovnsupge0 46594 ovncvrrp 46601 ovnhoilem2 46639 |
| Copyright terms: Public domain | W3C validator |