![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 3adant3l | Structured version Visualization version GIF version |
Description: Deduction adding a conjunct to antecedent. (Contributed by NM, 8-Jan-2006.) (Proof shortened by Wolf Lammen, 25-Jun-2022.) |
Ref | Expression |
---|---|
ad4ant3.1 | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) |
Ref | Expression |
---|---|
3adant3l | ⊢ ((𝜑 ∧ 𝜓 ∧ (𝜏 ∧ 𝜒)) → 𝜃) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpr 484 | . 2 ⊢ ((𝜏 ∧ 𝜒) → 𝜒) | |
2 | ad4ant3.1 | . 2 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) | |
3 | 1, 2 | syl3an3 1164 | 1 ⊢ ((𝜑 ∧ 𝜓 ∧ (𝜏 ∧ 𝜒)) → 𝜃) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
This theorem is referenced by: wfrlem12OLD 8359 ecopovtrn 8859 rrxmet 25456 nvaddsub4 30686 adjlnop 32115 pl1cn 33916 rrnmet 37816 lflsub 39049 lflmul 39050 cvlatexch3 39320 cdleme5 40223 cdlemeg46rjgN 40505 cdlemg2l 40586 cdlemg10c 40622 tendospcanN 41006 dicvaddcl 41173 dicvscacl 41174 dochexmidlem8 41450 limsupre3lem 45688 fourierdlem42 46105 fourierdlem113 46175 ovnsupge0 46513 ovncvrrp 46520 ovnhoilem2 46558 |
Copyright terms: Public domain | W3C validator |