MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  3adant3l Structured version   Visualization version   GIF version

Theorem 3adant3l 1180
Description: Deduction adding a conjunct to antecedent. (Contributed by NM, 8-Jan-2006.) (Proof shortened by Wolf Lammen, 25-Jun-2022.)
Hypothesis
Ref Expression
ad4ant3.1 ((𝜑𝜓𝜒) → 𝜃)
Assertion
Ref Expression
3adant3l ((𝜑𝜓 ∧ (𝜏𝜒)) → 𝜃)

Proof of Theorem 3adant3l
StepHypRef Expression
1 simpr 486 . 2 ((𝜏𝜒) → 𝜒)
2 ad4ant3.1 . 2 ((𝜑𝜓𝜒) → 𝜃)
31, 2syl3an3 1165 1 ((𝜑𝜓 ∧ (𝜏𝜒)) → 𝜃)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 397  w3a 1087
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-an 398  df-3an 1089
This theorem is referenced by:  wfrlem12OLD  8182  ecopovtrn  8640  rrxmet  24621  nvaddsub4  29068  adjlnop  30497  pl1cn  31954  rrnmet  36035  lflsub  37281  lflmul  37282  cvlatexch3  37552  cdleme5  38454  cdlemeg46rjgN  38736  cdlemg2l  38817  cdlemg10c  38853  tendospcanN  39237  dicvaddcl  39404  dicvscacl  39405  dochexmidlem8  39681  limsupre3lem  43502  fourierdlem42  43919  fourierdlem113  43989  ovnsupge0  44325  ovncvrrp  44332  ovnhoilem2  44370
  Copyright terms: Public domain W3C validator