| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 3adant3l | Structured version Visualization version GIF version | ||
| Description: Deduction adding a conjunct to antecedent. (Contributed by NM, 8-Jan-2006.) (Proof shortened by Wolf Lammen, 25-Jun-2022.) |
| Ref | Expression |
|---|---|
| ad4ant3.1 | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) |
| Ref | Expression |
|---|---|
| 3adant3l | ⊢ ((𝜑 ∧ 𝜓 ∧ (𝜏 ∧ 𝜒)) → 𝜃) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpr 484 | . 2 ⊢ ((𝜏 ∧ 𝜒) → 𝜒) | |
| 2 | ad4ant3.1 | . 2 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) | |
| 3 | 1, 2 | syl3an3 1165 | 1 ⊢ ((𝜑 ∧ 𝜓 ∧ (𝜏 ∧ 𝜒)) → 𝜃) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: ecopovtrn 8750 rrxmet 25336 nvaddsub4 30639 adjlnop 32068 pl1cn 33989 rrnmet 37889 lflsub 39186 lflmul 39187 cvlatexch3 39457 cdleme5 40359 cdlemeg46rjgN 40641 cdlemg2l 40722 cdlemg10c 40758 tendospcanN 41142 dicvaddcl 41309 dicvscacl 41310 dochexmidlem8 41586 limsupre3lem 45854 fourierdlem42 46271 fourierdlem113 46341 ovnsupge0 46679 ovncvrrp 46686 ovnhoilem2 46724 |
| Copyright terms: Public domain | W3C validator |