Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 3adant3l | Structured version Visualization version GIF version |
Description: Deduction adding a conjunct to antecedent. (Contributed by NM, 8-Jan-2006.) (Proof shortened by Wolf Lammen, 25-Jun-2022.) |
Ref | Expression |
---|---|
ad4ant3.1 | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) |
Ref | Expression |
---|---|
3adant3l | ⊢ ((𝜑 ∧ 𝜓 ∧ (𝜏 ∧ 𝜒)) → 𝜃) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpr 484 | . 2 ⊢ ((𝜏 ∧ 𝜒) → 𝜒) | |
2 | ad4ant3.1 | . 2 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) | |
3 | 1, 2 | syl3an3 1163 | 1 ⊢ ((𝜑 ∧ 𝜓 ∧ (𝜏 ∧ 𝜒)) → 𝜃) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1085 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 396 df-3an 1087 |
This theorem is referenced by: wfrlem12OLD 8135 ecopovtrn 8583 rrxmet 24553 nvaddsub4 28998 adjlnop 30427 pl1cn 31884 rrnmet 35966 lflsub 37060 lflmul 37061 cvlatexch3 37331 cdleme5 38233 cdlemeg46rjgN 38515 cdlemg2l 38596 cdlemg10c 38632 tendospcanN 39016 dicvaddcl 39183 dicvscacl 39184 dochexmidlem8 39460 limsupre3lem 43227 fourierdlem42 43644 fourierdlem113 43714 ovnsupge0 44049 ovncvrrp 44056 ovnhoilem2 44094 |
Copyright terms: Public domain | W3C validator |