Proof of Theorem cvlatexch3
Step | Hyp | Ref
| Expression |
1 | | simp1 1138 |
. . . . 5
⊢ ((𝐾 ∈ CvLat ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑃 ≠ 𝑄 ∧ 𝑃 ≠ 𝑅)) → 𝐾 ∈ CvLat) |
2 | | simp21 1208 |
. . . . 5
⊢ ((𝐾 ∈ CvLat ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑃 ≠ 𝑄 ∧ 𝑃 ≠ 𝑅)) → 𝑃 ∈ 𝐴) |
3 | | simp23 1210 |
. . . . 5
⊢ ((𝐾 ∈ CvLat ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑃 ≠ 𝑄 ∧ 𝑃 ≠ 𝑅)) → 𝑅 ∈ 𝐴) |
4 | | simp22 1209 |
. . . . 5
⊢ ((𝐾 ∈ CvLat ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑃 ≠ 𝑄 ∧ 𝑃 ≠ 𝑅)) → 𝑄 ∈ 𝐴) |
5 | | simp3l 1203 |
. . . . 5
⊢ ((𝐾 ∈ CvLat ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑃 ≠ 𝑄 ∧ 𝑃 ≠ 𝑅)) → 𝑃 ≠ 𝑄) |
6 | | cvlatexch.l |
. . . . . 6
⊢ ≤ =
(le‘𝐾) |
7 | | cvlatexch.j |
. . . . . 6
⊢ ∨ =
(join‘𝐾) |
8 | | cvlatexch.a |
. . . . . 6
⊢ 𝐴 = (Atoms‘𝐾) |
9 | 6, 7, 8 | cvlatexchb1 37085 |
. . . . 5
⊢ ((𝐾 ∈ CvLat ∧ (𝑃 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ 𝑃 ≠ 𝑄) → (𝑃 ≤ (𝑄 ∨ 𝑅) ↔ (𝑄 ∨ 𝑃) = (𝑄 ∨ 𝑅))) |
10 | 1, 2, 3, 4, 5, 9 | syl131anc 1385 |
. . . 4
⊢ ((𝐾 ∈ CvLat ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑃 ≠ 𝑄 ∧ 𝑃 ≠ 𝑅)) → (𝑃 ≤ (𝑄 ∨ 𝑅) ↔ (𝑄 ∨ 𝑃) = (𝑄 ∨ 𝑅))) |
11 | 10 | biimpa 480 |
. . 3
⊢ (((𝐾 ∈ CvLat ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑃 ≠ 𝑄 ∧ 𝑃 ≠ 𝑅)) ∧ 𝑃 ≤ (𝑄 ∨ 𝑅)) → (𝑄 ∨ 𝑃) = (𝑄 ∨ 𝑅)) |
12 | | simpl1 1193 |
. . . . 5
⊢ (((𝐾 ∈ CvLat ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑃 ≠ 𝑄 ∧ 𝑃 ≠ 𝑅)) ∧ 𝑃 ≤ (𝑄 ∨ 𝑅)) → 𝐾 ∈ CvLat) |
13 | | cvllat 37077 |
. . . . 5
⊢ (𝐾 ∈ CvLat → 𝐾 ∈ Lat) |
14 | 12, 13 | syl 17 |
. . . 4
⊢ (((𝐾 ∈ CvLat ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑃 ≠ 𝑄 ∧ 𝑃 ≠ 𝑅)) ∧ 𝑃 ≤ (𝑄 ∨ 𝑅)) → 𝐾 ∈ Lat) |
15 | | simpl21 1253 |
. . . . 5
⊢ (((𝐾 ∈ CvLat ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑃 ≠ 𝑄 ∧ 𝑃 ≠ 𝑅)) ∧ 𝑃 ≤ (𝑄 ∨ 𝑅)) → 𝑃 ∈ 𝐴) |
16 | | eqid 2737 |
. . . . . 6
⊢
(Base‘𝐾) =
(Base‘𝐾) |
17 | 16, 8 | atbase 37040 |
. . . . 5
⊢ (𝑃 ∈ 𝐴 → 𝑃 ∈ (Base‘𝐾)) |
18 | 15, 17 | syl 17 |
. . . 4
⊢ (((𝐾 ∈ CvLat ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑃 ≠ 𝑄 ∧ 𝑃 ≠ 𝑅)) ∧ 𝑃 ≤ (𝑄 ∨ 𝑅)) → 𝑃 ∈ (Base‘𝐾)) |
19 | | simpl22 1254 |
. . . . 5
⊢ (((𝐾 ∈ CvLat ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑃 ≠ 𝑄 ∧ 𝑃 ≠ 𝑅)) ∧ 𝑃 ≤ (𝑄 ∨ 𝑅)) → 𝑄 ∈ 𝐴) |
20 | 16, 8 | atbase 37040 |
. . . . 5
⊢ (𝑄 ∈ 𝐴 → 𝑄 ∈ (Base‘𝐾)) |
21 | 19, 20 | syl 17 |
. . . 4
⊢ (((𝐾 ∈ CvLat ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑃 ≠ 𝑄 ∧ 𝑃 ≠ 𝑅)) ∧ 𝑃 ≤ (𝑄 ∨ 𝑅)) → 𝑄 ∈ (Base‘𝐾)) |
22 | 16, 7 | latjcom 17953 |
. . . 4
⊢ ((𝐾 ∈ Lat ∧ 𝑃 ∈ (Base‘𝐾) ∧ 𝑄 ∈ (Base‘𝐾)) → (𝑃 ∨ 𝑄) = (𝑄 ∨ 𝑃)) |
23 | 14, 18, 21, 22 | syl3anc 1373 |
. . 3
⊢ (((𝐾 ∈ CvLat ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑃 ≠ 𝑄 ∧ 𝑃 ≠ 𝑅)) ∧ 𝑃 ≤ (𝑄 ∨ 𝑅)) → (𝑃 ∨ 𝑄) = (𝑄 ∨ 𝑃)) |
24 | 6, 7, 8 | cvlatexchb2 37086 |
. . . . 5
⊢ ((𝐾 ∈ CvLat ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ 𝑃 ≠ 𝑅) → (𝑃 ≤ (𝑄 ∨ 𝑅) ↔ (𝑃 ∨ 𝑅) = (𝑄 ∨ 𝑅))) |
25 | 24 | 3adant3l 1182 |
. . . 4
⊢ ((𝐾 ∈ CvLat ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑃 ≠ 𝑄 ∧ 𝑃 ≠ 𝑅)) → (𝑃 ≤ (𝑄 ∨ 𝑅) ↔ (𝑃 ∨ 𝑅) = (𝑄 ∨ 𝑅))) |
26 | 25 | biimpa 480 |
. . 3
⊢ (((𝐾 ∈ CvLat ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑃 ≠ 𝑄 ∧ 𝑃 ≠ 𝑅)) ∧ 𝑃 ≤ (𝑄 ∨ 𝑅)) → (𝑃 ∨ 𝑅) = (𝑄 ∨ 𝑅)) |
27 | 11, 23, 26 | 3eqtr4d 2787 |
. 2
⊢ (((𝐾 ∈ CvLat ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑃 ≠ 𝑄 ∧ 𝑃 ≠ 𝑅)) ∧ 𝑃 ≤ (𝑄 ∨ 𝑅)) → (𝑃 ∨ 𝑄) = (𝑃 ∨ 𝑅)) |
28 | 27 | ex 416 |
1
⊢ ((𝐾 ∈ CvLat ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑃 ≠ 𝑄 ∧ 𝑃 ≠ 𝑅)) → (𝑃 ≤ (𝑄 ∨ 𝑅) → (𝑃 ∨ 𝑄) = (𝑃 ∨ 𝑅))) |