Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cvlatexch3 Structured version   Visualization version   GIF version

Theorem cvlatexch3 38721
Description: Atom exchange property. (Contributed by NM, 29-Nov-2012.)
Hypotheses
Ref Expression
cvlatexch.l ≀ = (leβ€˜πΎ)
cvlatexch.j ∨ = (joinβ€˜πΎ)
cvlatexch.a 𝐴 = (Atomsβ€˜πΎ)
Assertion
Ref Expression
cvlatexch3 ((𝐾 ∈ CvLat ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑃 β‰  𝑄 ∧ 𝑃 β‰  𝑅)) β†’ (𝑃 ≀ (𝑄 ∨ 𝑅) β†’ (𝑃 ∨ 𝑄) = (𝑃 ∨ 𝑅)))

Proof of Theorem cvlatexch3
StepHypRef Expression
1 simp1 1133 . . . . 5 ((𝐾 ∈ CvLat ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑃 β‰  𝑄 ∧ 𝑃 β‰  𝑅)) β†’ 𝐾 ∈ CvLat)
2 simp21 1203 . . . . 5 ((𝐾 ∈ CvLat ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑃 β‰  𝑄 ∧ 𝑃 β‰  𝑅)) β†’ 𝑃 ∈ 𝐴)
3 simp23 1205 . . . . 5 ((𝐾 ∈ CvLat ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑃 β‰  𝑄 ∧ 𝑃 β‰  𝑅)) β†’ 𝑅 ∈ 𝐴)
4 simp22 1204 . . . . 5 ((𝐾 ∈ CvLat ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑃 β‰  𝑄 ∧ 𝑃 β‰  𝑅)) β†’ 𝑄 ∈ 𝐴)
5 simp3l 1198 . . . . 5 ((𝐾 ∈ CvLat ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑃 β‰  𝑄 ∧ 𝑃 β‰  𝑅)) β†’ 𝑃 β‰  𝑄)
6 cvlatexch.l . . . . . 6 ≀ = (leβ€˜πΎ)
7 cvlatexch.j . . . . . 6 ∨ = (joinβ€˜πΎ)
8 cvlatexch.a . . . . . 6 𝐴 = (Atomsβ€˜πΎ)
96, 7, 8cvlatexchb1 38717 . . . . 5 ((𝐾 ∈ CvLat ∧ (𝑃 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ 𝑃 β‰  𝑄) β†’ (𝑃 ≀ (𝑄 ∨ 𝑅) ↔ (𝑄 ∨ 𝑃) = (𝑄 ∨ 𝑅)))
101, 2, 3, 4, 5, 9syl131anc 1380 . . . 4 ((𝐾 ∈ CvLat ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑃 β‰  𝑄 ∧ 𝑃 β‰  𝑅)) β†’ (𝑃 ≀ (𝑄 ∨ 𝑅) ↔ (𝑄 ∨ 𝑃) = (𝑄 ∨ 𝑅)))
1110biimpa 476 . . 3 (((𝐾 ∈ CvLat ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑃 β‰  𝑄 ∧ 𝑃 β‰  𝑅)) ∧ 𝑃 ≀ (𝑄 ∨ 𝑅)) β†’ (𝑄 ∨ 𝑃) = (𝑄 ∨ 𝑅))
12 simpl1 1188 . . . . 5 (((𝐾 ∈ CvLat ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑃 β‰  𝑄 ∧ 𝑃 β‰  𝑅)) ∧ 𝑃 ≀ (𝑄 ∨ 𝑅)) β†’ 𝐾 ∈ CvLat)
13 cvllat 38709 . . . . 5 (𝐾 ∈ CvLat β†’ 𝐾 ∈ Lat)
1412, 13syl 17 . . . 4 (((𝐾 ∈ CvLat ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑃 β‰  𝑄 ∧ 𝑃 β‰  𝑅)) ∧ 𝑃 ≀ (𝑄 ∨ 𝑅)) β†’ 𝐾 ∈ Lat)
15 simpl21 1248 . . . . 5 (((𝐾 ∈ CvLat ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑃 β‰  𝑄 ∧ 𝑃 β‰  𝑅)) ∧ 𝑃 ≀ (𝑄 ∨ 𝑅)) β†’ 𝑃 ∈ 𝐴)
16 eqid 2726 . . . . . 6 (Baseβ€˜πΎ) = (Baseβ€˜πΎ)
1716, 8atbase 38672 . . . . 5 (𝑃 ∈ 𝐴 β†’ 𝑃 ∈ (Baseβ€˜πΎ))
1815, 17syl 17 . . . 4 (((𝐾 ∈ CvLat ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑃 β‰  𝑄 ∧ 𝑃 β‰  𝑅)) ∧ 𝑃 ≀ (𝑄 ∨ 𝑅)) β†’ 𝑃 ∈ (Baseβ€˜πΎ))
19 simpl22 1249 . . . . 5 (((𝐾 ∈ CvLat ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑃 β‰  𝑄 ∧ 𝑃 β‰  𝑅)) ∧ 𝑃 ≀ (𝑄 ∨ 𝑅)) β†’ 𝑄 ∈ 𝐴)
2016, 8atbase 38672 . . . . 5 (𝑄 ∈ 𝐴 β†’ 𝑄 ∈ (Baseβ€˜πΎ))
2119, 20syl 17 . . . 4 (((𝐾 ∈ CvLat ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑃 β‰  𝑄 ∧ 𝑃 β‰  𝑅)) ∧ 𝑃 ≀ (𝑄 ∨ 𝑅)) β†’ 𝑄 ∈ (Baseβ€˜πΎ))
2216, 7latjcom 18412 . . . 4 ((𝐾 ∈ Lat ∧ 𝑃 ∈ (Baseβ€˜πΎ) ∧ 𝑄 ∈ (Baseβ€˜πΎ)) β†’ (𝑃 ∨ 𝑄) = (𝑄 ∨ 𝑃))
2314, 18, 21, 22syl3anc 1368 . . 3 (((𝐾 ∈ CvLat ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑃 β‰  𝑄 ∧ 𝑃 β‰  𝑅)) ∧ 𝑃 ≀ (𝑄 ∨ 𝑅)) β†’ (𝑃 ∨ 𝑄) = (𝑄 ∨ 𝑃))
246, 7, 8cvlatexchb2 38718 . . . . 5 ((𝐾 ∈ CvLat ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ 𝑃 β‰  𝑅) β†’ (𝑃 ≀ (𝑄 ∨ 𝑅) ↔ (𝑃 ∨ 𝑅) = (𝑄 ∨ 𝑅)))
25243adant3l 1177 . . . 4 ((𝐾 ∈ CvLat ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑃 β‰  𝑄 ∧ 𝑃 β‰  𝑅)) β†’ (𝑃 ≀ (𝑄 ∨ 𝑅) ↔ (𝑃 ∨ 𝑅) = (𝑄 ∨ 𝑅)))
2625biimpa 476 . . 3 (((𝐾 ∈ CvLat ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑃 β‰  𝑄 ∧ 𝑃 β‰  𝑅)) ∧ 𝑃 ≀ (𝑄 ∨ 𝑅)) β†’ (𝑃 ∨ 𝑅) = (𝑄 ∨ 𝑅))
2711, 23, 263eqtr4d 2776 . 2 (((𝐾 ∈ CvLat ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑃 β‰  𝑄 ∧ 𝑃 β‰  𝑅)) ∧ 𝑃 ≀ (𝑄 ∨ 𝑅)) β†’ (𝑃 ∨ 𝑄) = (𝑃 ∨ 𝑅))
2827ex 412 1 ((𝐾 ∈ CvLat ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑃 β‰  𝑄 ∧ 𝑃 β‰  𝑅)) β†’ (𝑃 ≀ (𝑄 ∨ 𝑅) β†’ (𝑃 ∨ 𝑄) = (𝑃 ∨ 𝑅)))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ↔ wb 205   ∧ wa 395   ∧ w3a 1084   = wceq 1533   ∈ wcel 2098   β‰  wne 2934   class class class wbr 5141  β€˜cfv 6537  (class class class)co 7405  Basecbs 17153  lecple 17213  joincjn 18276  Latclat 18396  Atomscatm 38646  CvLatclc 38648
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2697  ax-rep 5278  ax-sep 5292  ax-nul 5299  ax-pow 5356  ax-pr 5420  ax-un 7722
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2704  df-cleq 2718  df-clel 2804  df-nfc 2879  df-ne 2935  df-ral 3056  df-rex 3065  df-rmo 3370  df-reu 3371  df-rab 3427  df-v 3470  df-sbc 3773  df-csb 3889  df-dif 3946  df-un 3948  df-in 3950  df-ss 3960  df-nul 4318  df-if 4524  df-pw 4599  df-sn 4624  df-pr 4626  df-op 4630  df-uni 4903  df-iun 4992  df-br 5142  df-opab 5204  df-mpt 5225  df-id 5567  df-xp 5675  df-rel 5676  df-cnv 5677  df-co 5678  df-dm 5679  df-rn 5680  df-res 5681  df-ima 5682  df-iota 6489  df-fun 6539  df-fn 6540  df-f 6541  df-f1 6542  df-fo 6543  df-f1o 6544  df-fv 6545  df-riota 7361  df-ov 7408  df-oprab 7409  df-proset 18260  df-poset 18278  df-plt 18295  df-lub 18311  df-glb 18312  df-join 18313  df-meet 18314  df-p0 18390  df-lat 18397  df-covers 38649  df-ats 38650  df-atl 38681  df-cvlat 38705
This theorem is referenced by:  cdleme21ct  39713
  Copyright terms: Public domain W3C validator