Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cvlatexch3 Structured version   Visualization version   GIF version

Theorem cvlatexch3 39376
Description: Atom exchange property. (Contributed by NM, 29-Nov-2012.)
Hypotheses
Ref Expression
cvlatexch.l = (le‘𝐾)
cvlatexch.j = (join‘𝐾)
cvlatexch.a 𝐴 = (Atoms‘𝐾)
Assertion
Ref Expression
cvlatexch3 ((𝐾 ∈ CvLat ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃𝑄𝑃𝑅)) → (𝑃 (𝑄 𝑅) → (𝑃 𝑄) = (𝑃 𝑅)))

Proof of Theorem cvlatexch3
StepHypRef Expression
1 simp1 1136 . . . . 5 ((𝐾 ∈ CvLat ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃𝑄𝑃𝑅)) → 𝐾 ∈ CvLat)
2 simp21 1207 . . . . 5 ((𝐾 ∈ CvLat ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃𝑄𝑃𝑅)) → 𝑃𝐴)
3 simp23 1209 . . . . 5 ((𝐾 ∈ CvLat ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃𝑄𝑃𝑅)) → 𝑅𝐴)
4 simp22 1208 . . . . 5 ((𝐾 ∈ CvLat ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃𝑄𝑃𝑅)) → 𝑄𝐴)
5 simp3l 1202 . . . . 5 ((𝐾 ∈ CvLat ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃𝑄𝑃𝑅)) → 𝑃𝑄)
6 cvlatexch.l . . . . . 6 = (le‘𝐾)
7 cvlatexch.j . . . . . 6 = (join‘𝐾)
8 cvlatexch.a . . . . . 6 𝐴 = (Atoms‘𝐾)
96, 7, 8cvlatexchb1 39372 . . . . 5 ((𝐾 ∈ CvLat ∧ (𝑃𝐴𝑅𝐴𝑄𝐴) ∧ 𝑃𝑄) → (𝑃 (𝑄 𝑅) ↔ (𝑄 𝑃) = (𝑄 𝑅)))
101, 2, 3, 4, 5, 9syl131anc 1385 . . . 4 ((𝐾 ∈ CvLat ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃𝑄𝑃𝑅)) → (𝑃 (𝑄 𝑅) ↔ (𝑄 𝑃) = (𝑄 𝑅)))
1110biimpa 476 . . 3 (((𝐾 ∈ CvLat ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃𝑄𝑃𝑅)) ∧ 𝑃 (𝑄 𝑅)) → (𝑄 𝑃) = (𝑄 𝑅))
12 simpl1 1192 . . . . 5 (((𝐾 ∈ CvLat ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃𝑄𝑃𝑅)) ∧ 𝑃 (𝑄 𝑅)) → 𝐾 ∈ CvLat)
13 cvllat 39364 . . . . 5 (𝐾 ∈ CvLat → 𝐾 ∈ Lat)
1412, 13syl 17 . . . 4 (((𝐾 ∈ CvLat ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃𝑄𝑃𝑅)) ∧ 𝑃 (𝑄 𝑅)) → 𝐾 ∈ Lat)
15 simpl21 1252 . . . . 5 (((𝐾 ∈ CvLat ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃𝑄𝑃𝑅)) ∧ 𝑃 (𝑄 𝑅)) → 𝑃𝐴)
16 eqid 2731 . . . . . 6 (Base‘𝐾) = (Base‘𝐾)
1716, 8atbase 39327 . . . . 5 (𝑃𝐴𝑃 ∈ (Base‘𝐾))
1815, 17syl 17 . . . 4 (((𝐾 ∈ CvLat ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃𝑄𝑃𝑅)) ∧ 𝑃 (𝑄 𝑅)) → 𝑃 ∈ (Base‘𝐾))
19 simpl22 1253 . . . . 5 (((𝐾 ∈ CvLat ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃𝑄𝑃𝑅)) ∧ 𝑃 (𝑄 𝑅)) → 𝑄𝐴)
2016, 8atbase 39327 . . . . 5 (𝑄𝐴𝑄 ∈ (Base‘𝐾))
2119, 20syl 17 . . . 4 (((𝐾 ∈ CvLat ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃𝑄𝑃𝑅)) ∧ 𝑃 (𝑄 𝑅)) → 𝑄 ∈ (Base‘𝐾))
2216, 7latjcom 18350 . . . 4 ((𝐾 ∈ Lat ∧ 𝑃 ∈ (Base‘𝐾) ∧ 𝑄 ∈ (Base‘𝐾)) → (𝑃 𝑄) = (𝑄 𝑃))
2314, 18, 21, 22syl3anc 1373 . . 3 (((𝐾 ∈ CvLat ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃𝑄𝑃𝑅)) ∧ 𝑃 (𝑄 𝑅)) → (𝑃 𝑄) = (𝑄 𝑃))
246, 7, 8cvlatexchb2 39373 . . . . 5 ((𝐾 ∈ CvLat ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ 𝑃𝑅) → (𝑃 (𝑄 𝑅) ↔ (𝑃 𝑅) = (𝑄 𝑅)))
25243adant3l 1181 . . . 4 ((𝐾 ∈ CvLat ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃𝑄𝑃𝑅)) → (𝑃 (𝑄 𝑅) ↔ (𝑃 𝑅) = (𝑄 𝑅)))
2625biimpa 476 . . 3 (((𝐾 ∈ CvLat ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃𝑄𝑃𝑅)) ∧ 𝑃 (𝑄 𝑅)) → (𝑃 𝑅) = (𝑄 𝑅))
2711, 23, 263eqtr4d 2776 . 2 (((𝐾 ∈ CvLat ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃𝑄𝑃𝑅)) ∧ 𝑃 (𝑄 𝑅)) → (𝑃 𝑄) = (𝑃 𝑅))
2827ex 412 1 ((𝐾 ∈ CvLat ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃𝑄𝑃𝑅)) → (𝑃 (𝑄 𝑅) → (𝑃 𝑄) = (𝑃 𝑅)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1541  wcel 2111  wne 2928   class class class wbr 5091  cfv 6481  (class class class)co 7346  Basecbs 17117  lecple 17165  joincjn 18214  Latclat 18334  Atomscatm 39301  CvLatclc 39303
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5217  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-iun 4943  df-br 5092  df-opab 5154  df-mpt 5173  df-id 5511  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-proset 18197  df-poset 18216  df-plt 18231  df-lub 18247  df-glb 18248  df-join 18249  df-meet 18250  df-p0 18326  df-lat 18335  df-covers 39304  df-ats 39305  df-atl 39336  df-cvlat 39360
This theorem is referenced by:  cdleme21ct  40367
  Copyright terms: Public domain W3C validator