Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cvlatexch3 Structured version   Visualization version   GIF version

Theorem cvlatexch3 39294
Description: Atom exchange property. (Contributed by NM, 29-Nov-2012.)
Hypotheses
Ref Expression
cvlatexch.l = (le‘𝐾)
cvlatexch.j = (join‘𝐾)
cvlatexch.a 𝐴 = (Atoms‘𝐾)
Assertion
Ref Expression
cvlatexch3 ((𝐾 ∈ CvLat ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃𝑄𝑃𝑅)) → (𝑃 (𝑄 𝑅) → (𝑃 𝑄) = (𝑃 𝑅)))

Proof of Theorem cvlatexch3
StepHypRef Expression
1 simp1 1136 . . . . 5 ((𝐾 ∈ CvLat ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃𝑄𝑃𝑅)) → 𝐾 ∈ CvLat)
2 simp21 1206 . . . . 5 ((𝐾 ∈ CvLat ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃𝑄𝑃𝑅)) → 𝑃𝐴)
3 simp23 1208 . . . . 5 ((𝐾 ∈ CvLat ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃𝑄𝑃𝑅)) → 𝑅𝐴)
4 simp22 1207 . . . . 5 ((𝐾 ∈ CvLat ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃𝑄𝑃𝑅)) → 𝑄𝐴)
5 simp3l 1201 . . . . 5 ((𝐾 ∈ CvLat ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃𝑄𝑃𝑅)) → 𝑃𝑄)
6 cvlatexch.l . . . . . 6 = (le‘𝐾)
7 cvlatexch.j . . . . . 6 = (join‘𝐾)
8 cvlatexch.a . . . . . 6 𝐴 = (Atoms‘𝐾)
96, 7, 8cvlatexchb1 39290 . . . . 5 ((𝐾 ∈ CvLat ∧ (𝑃𝐴𝑅𝐴𝑄𝐴) ∧ 𝑃𝑄) → (𝑃 (𝑄 𝑅) ↔ (𝑄 𝑃) = (𝑄 𝑅)))
101, 2, 3, 4, 5, 9syl131anc 1383 . . . 4 ((𝐾 ∈ CvLat ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃𝑄𝑃𝑅)) → (𝑃 (𝑄 𝑅) ↔ (𝑄 𝑃) = (𝑄 𝑅)))
1110biimpa 476 . . 3 (((𝐾 ∈ CvLat ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃𝑄𝑃𝑅)) ∧ 𝑃 (𝑄 𝑅)) → (𝑄 𝑃) = (𝑄 𝑅))
12 simpl1 1191 . . . . 5 (((𝐾 ∈ CvLat ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃𝑄𝑃𝑅)) ∧ 𝑃 (𝑄 𝑅)) → 𝐾 ∈ CvLat)
13 cvllat 39282 . . . . 5 (𝐾 ∈ CvLat → 𝐾 ∈ Lat)
1412, 13syl 17 . . . 4 (((𝐾 ∈ CvLat ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃𝑄𝑃𝑅)) ∧ 𝑃 (𝑄 𝑅)) → 𝐾 ∈ Lat)
15 simpl21 1251 . . . . 5 (((𝐾 ∈ CvLat ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃𝑄𝑃𝑅)) ∧ 𝑃 (𝑄 𝑅)) → 𝑃𝐴)
16 eqid 2740 . . . . . 6 (Base‘𝐾) = (Base‘𝐾)
1716, 8atbase 39245 . . . . 5 (𝑃𝐴𝑃 ∈ (Base‘𝐾))
1815, 17syl 17 . . . 4 (((𝐾 ∈ CvLat ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃𝑄𝑃𝑅)) ∧ 𝑃 (𝑄 𝑅)) → 𝑃 ∈ (Base‘𝐾))
19 simpl22 1252 . . . . 5 (((𝐾 ∈ CvLat ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃𝑄𝑃𝑅)) ∧ 𝑃 (𝑄 𝑅)) → 𝑄𝐴)
2016, 8atbase 39245 . . . . 5 (𝑄𝐴𝑄 ∈ (Base‘𝐾))
2119, 20syl 17 . . . 4 (((𝐾 ∈ CvLat ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃𝑄𝑃𝑅)) ∧ 𝑃 (𝑄 𝑅)) → 𝑄 ∈ (Base‘𝐾))
2216, 7latjcom 18517 . . . 4 ((𝐾 ∈ Lat ∧ 𝑃 ∈ (Base‘𝐾) ∧ 𝑄 ∈ (Base‘𝐾)) → (𝑃 𝑄) = (𝑄 𝑃))
2314, 18, 21, 22syl3anc 1371 . . 3 (((𝐾 ∈ CvLat ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃𝑄𝑃𝑅)) ∧ 𝑃 (𝑄 𝑅)) → (𝑃 𝑄) = (𝑄 𝑃))
246, 7, 8cvlatexchb2 39291 . . . . 5 ((𝐾 ∈ CvLat ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ 𝑃𝑅) → (𝑃 (𝑄 𝑅) ↔ (𝑃 𝑅) = (𝑄 𝑅)))
25243adant3l 1180 . . . 4 ((𝐾 ∈ CvLat ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃𝑄𝑃𝑅)) → (𝑃 (𝑄 𝑅) ↔ (𝑃 𝑅) = (𝑄 𝑅)))
2625biimpa 476 . . 3 (((𝐾 ∈ CvLat ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃𝑄𝑃𝑅)) ∧ 𝑃 (𝑄 𝑅)) → (𝑃 𝑅) = (𝑄 𝑅))
2711, 23, 263eqtr4d 2790 . 2 (((𝐾 ∈ CvLat ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃𝑄𝑃𝑅)) ∧ 𝑃 (𝑄 𝑅)) → (𝑃 𝑄) = (𝑃 𝑅))
2827ex 412 1 ((𝐾 ∈ CvLat ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃𝑄𝑃𝑅)) → (𝑃 (𝑄 𝑅) → (𝑃 𝑄) = (𝑃 𝑅)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1087   = wceq 1537  wcel 2108  wne 2946   class class class wbr 5166  cfv 6573  (class class class)co 7448  Basecbs 17258  lecple 17318  joincjn 18381  Latclat 18501  Atomscatm 39219  CvLatclc 39221
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-proset 18365  df-poset 18383  df-plt 18400  df-lub 18416  df-glb 18417  df-join 18418  df-meet 18419  df-p0 18495  df-lat 18502  df-covers 39222  df-ats 39223  df-atl 39254  df-cvlat 39278
This theorem is referenced by:  cdleme21ct  40286
  Copyright terms: Public domain W3C validator