Step | Hyp | Ref
| Expression |
1 | | simp1 1136 |
. . . . 5
β’ ((πΎ β CvLat β§ (π β π΄ β§ π β π΄ β§ π
β π΄) β§ (π β π β§ π β π
)) β πΎ β CvLat) |
2 | | simp21 1206 |
. . . . 5
β’ ((πΎ β CvLat β§ (π β π΄ β§ π β π΄ β§ π
β π΄) β§ (π β π β§ π β π
)) β π β π΄) |
3 | | simp23 1208 |
. . . . 5
β’ ((πΎ β CvLat β§ (π β π΄ β§ π β π΄ β§ π
β π΄) β§ (π β π β§ π β π
)) β π
β π΄) |
4 | | simp22 1207 |
. . . . 5
β’ ((πΎ β CvLat β§ (π β π΄ β§ π β π΄ β§ π
β π΄) β§ (π β π β§ π β π
)) β π β π΄) |
5 | | simp3l 1201 |
. . . . 5
β’ ((πΎ β CvLat β§ (π β π΄ β§ π β π΄ β§ π
β π΄) β§ (π β π β§ π β π
)) β π β π) |
6 | | cvlatexch.l |
. . . . . 6
β’ β€ =
(leβπΎ) |
7 | | cvlatexch.j |
. . . . . 6
β’ β¨ =
(joinβπΎ) |
8 | | cvlatexch.a |
. . . . . 6
β’ π΄ = (AtomsβπΎ) |
9 | 6, 7, 8 | cvlatexchb1 38192 |
. . . . 5
β’ ((πΎ β CvLat β§ (π β π΄ β§ π
β π΄ β§ π β π΄) β§ π β π) β (π β€ (π β¨ π
) β (π β¨ π) = (π β¨ π
))) |
10 | 1, 2, 3, 4, 5, 9 | syl131anc 1383 |
. . . 4
β’ ((πΎ β CvLat β§ (π β π΄ β§ π β π΄ β§ π
β π΄) β§ (π β π β§ π β π
)) β (π β€ (π β¨ π
) β (π β¨ π) = (π β¨ π
))) |
11 | 10 | biimpa 477 |
. . 3
β’ (((πΎ β CvLat β§ (π β π΄ β§ π β π΄ β§ π
β π΄) β§ (π β π β§ π β π
)) β§ π β€ (π β¨ π
)) β (π β¨ π) = (π β¨ π
)) |
12 | | simpl1 1191 |
. . . . 5
β’ (((πΎ β CvLat β§ (π β π΄ β§ π β π΄ β§ π
β π΄) β§ (π β π β§ π β π
)) β§ π β€ (π β¨ π
)) β πΎ β CvLat) |
13 | | cvllat 38184 |
. . . . 5
β’ (πΎ β CvLat β πΎ β Lat) |
14 | 12, 13 | syl 17 |
. . . 4
β’ (((πΎ β CvLat β§ (π β π΄ β§ π β π΄ β§ π
β π΄) β§ (π β π β§ π β π
)) β§ π β€ (π β¨ π
)) β πΎ β Lat) |
15 | | simpl21 1251 |
. . . . 5
β’ (((πΎ β CvLat β§ (π β π΄ β§ π β π΄ β§ π
β π΄) β§ (π β π β§ π β π
)) β§ π β€ (π β¨ π
)) β π β π΄) |
16 | | eqid 2732 |
. . . . . 6
β’
(BaseβπΎ) =
(BaseβπΎ) |
17 | 16, 8 | atbase 38147 |
. . . . 5
β’ (π β π΄ β π β (BaseβπΎ)) |
18 | 15, 17 | syl 17 |
. . . 4
β’ (((πΎ β CvLat β§ (π β π΄ β§ π β π΄ β§ π
β π΄) β§ (π β π β§ π β π
)) β§ π β€ (π β¨ π
)) β π β (BaseβπΎ)) |
19 | | simpl22 1252 |
. . . . 5
β’ (((πΎ β CvLat β§ (π β π΄ β§ π β π΄ β§ π
β π΄) β§ (π β π β§ π β π
)) β§ π β€ (π β¨ π
)) β π β π΄) |
20 | 16, 8 | atbase 38147 |
. . . . 5
β’ (π β π΄ β π β (BaseβπΎ)) |
21 | 19, 20 | syl 17 |
. . . 4
β’ (((πΎ β CvLat β§ (π β π΄ β§ π β π΄ β§ π
β π΄) β§ (π β π β§ π β π
)) β§ π β€ (π β¨ π
)) β π β (BaseβπΎ)) |
22 | 16, 7 | latjcom 18396 |
. . . 4
β’ ((πΎ β Lat β§ π β (BaseβπΎ) β§ π β (BaseβπΎ)) β (π β¨ π) = (π β¨ π)) |
23 | 14, 18, 21, 22 | syl3anc 1371 |
. . 3
β’ (((πΎ β CvLat β§ (π β π΄ β§ π β π΄ β§ π
β π΄) β§ (π β π β§ π β π
)) β§ π β€ (π β¨ π
)) β (π β¨ π) = (π β¨ π)) |
24 | 6, 7, 8 | cvlatexchb2 38193 |
. . . . 5
β’ ((πΎ β CvLat β§ (π β π΄ β§ π β π΄ β§ π
β π΄) β§ π β π
) β (π β€ (π β¨ π
) β (π β¨ π
) = (π β¨ π
))) |
25 | 24 | 3adant3l 1180 |
. . . 4
β’ ((πΎ β CvLat β§ (π β π΄ β§ π β π΄ β§ π
β π΄) β§ (π β π β§ π β π
)) β (π β€ (π β¨ π
) β (π β¨ π
) = (π β¨ π
))) |
26 | 25 | biimpa 477 |
. . 3
β’ (((πΎ β CvLat β§ (π β π΄ β§ π β π΄ β§ π
β π΄) β§ (π β π β§ π β π
)) β§ π β€ (π β¨ π
)) β (π β¨ π
) = (π β¨ π
)) |
27 | 11, 23, 26 | 3eqtr4d 2782 |
. 2
β’ (((πΎ β CvLat β§ (π β π΄ β§ π β π΄ β§ π
β π΄) β§ (π β π β§ π β π
)) β§ π β€ (π β¨ π
)) β (π β¨ π) = (π β¨ π
)) |
28 | 27 | ex 413 |
1
β’ ((πΎ β CvLat β§ (π β π΄ β§ π β π΄ β§ π
β π΄) β§ (π β π β§ π β π
)) β (π β€ (π β¨ π
) β (π β¨ π) = (π β¨ π
))) |