Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dicvscacl Structured version   Visualization version   GIF version

Theorem dicvscacl 41173
Description: Membership in value of the partial isomorphism C is closed under scalar product. (Contributed by NM, 16-Feb-2014.) (Revised by Mario Carneiro, 24-Jun-2014.)
Hypotheses
Ref Expression
dicvscacl.l = (le‘𝐾)
dicvscacl.a 𝐴 = (Atoms‘𝐾)
dicvscacl.h 𝐻 = (LHyp‘𝐾)
dicvscacl.e 𝐸 = ((TEndo‘𝐾)‘𝑊)
dicvscacl.u 𝑈 = ((DVecH‘𝐾)‘𝑊)
dicvscacl.i 𝐼 = ((DIsoC‘𝐾)‘𝑊)
dicvscacl.s · = ( ·𝑠𝑈)
Assertion
Ref Expression
dicvscacl (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑋𝐸𝑌 ∈ (𝐼𝑄))) → (𝑋 · 𝑌) ∈ (𝐼𝑄))

Proof of Theorem dicvscacl
Dummy variable 𝑔 is distinct from all other variables.
StepHypRef Expression
1 simp1 1136 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑋𝐸𝑌 ∈ (𝐼𝑄))) → (𝐾 ∈ HL ∧ 𝑊𝐻))
2 simp3l 1202 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑋𝐸𝑌 ∈ (𝐼𝑄))) → 𝑋𝐸)
3 dicvscacl.l . . . . . . . 8 = (le‘𝐾)
4 dicvscacl.a . . . . . . . 8 𝐴 = (Atoms‘𝐾)
5 dicvscacl.h . . . . . . . 8 𝐻 = (LHyp‘𝐾)
6 dicvscacl.i . . . . . . . 8 𝐼 = ((DIsoC‘𝐾)‘𝑊)
7 dicvscacl.u . . . . . . . 8 𝑈 = ((DVecH‘𝐾)‘𝑊)
8 eqid 2729 . . . . . . . 8 (Base‘𝑈) = (Base‘𝑈)
93, 4, 5, 6, 7, 8dicssdvh 41168 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) → (𝐼𝑄) ⊆ (Base‘𝑈))
10 eqid 2729 . . . . . . . . . 10 ((LTrn‘𝐾)‘𝑊) = ((LTrn‘𝐾)‘𝑊)
11 dicvscacl.e . . . . . . . . . 10 𝐸 = ((TEndo‘𝐾)‘𝑊)
125, 10, 11, 7, 8dvhvbase 41069 . . . . . . . . 9 ((𝐾 ∈ HL ∧ 𝑊𝐻) → (Base‘𝑈) = (((LTrn‘𝐾)‘𝑊) × 𝐸))
1312eqcomd 2735 . . . . . . . 8 ((𝐾 ∈ HL ∧ 𝑊𝐻) → (((LTrn‘𝐾)‘𝑊) × 𝐸) = (Base‘𝑈))
1413adantr 480 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) → (((LTrn‘𝐾)‘𝑊) × 𝐸) = (Base‘𝑈))
159, 14sseqtrrd 3975 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) → (𝐼𝑄) ⊆ (((LTrn‘𝐾)‘𝑊) × 𝐸))
16153adant3 1132 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑋𝐸𝑌 ∈ (𝐼𝑄))) → (𝐼𝑄) ⊆ (((LTrn‘𝐾)‘𝑊) × 𝐸))
17 simp3r 1203 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑋𝐸𝑌 ∈ (𝐼𝑄))) → 𝑌 ∈ (𝐼𝑄))
1816, 17sseldd 3938 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑋𝐸𝑌 ∈ (𝐼𝑄))) → 𝑌 ∈ (((LTrn‘𝐾)‘𝑊) × 𝐸))
19 dicvscacl.s . . . . 5 · = ( ·𝑠𝑈)
205, 10, 11, 7, 19dvhvsca 41083 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐸𝑌 ∈ (((LTrn‘𝐾)‘𝑊) × 𝐸))) → (𝑋 · 𝑌) = ⟨(𝑋‘(1st𝑌)), (𝑋 ∘ (2nd𝑌))⟩)
211, 2, 18, 20syl12anc 836 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑋𝐸𝑌 ∈ (𝐼𝑄))) → (𝑋 · 𝑌) = ⟨(𝑋‘(1st𝑌)), (𝑋 ∘ (2nd𝑌))⟩)
22 fvi 6903 . . . . . 6 (𝑋𝐸 → ( I ‘𝑋) = 𝑋)
232, 22syl 17 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑋𝐸𝑌 ∈ (𝐼𝑄))) → ( I ‘𝑋) = 𝑋)
2423coeq1d 5808 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑋𝐸𝑌 ∈ (𝐼𝑄))) → (( I ‘𝑋) ∘ (2nd𝑌)) = (𝑋 ∘ (2nd𝑌)))
2524opeq2d 4834 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑋𝐸𝑌 ∈ (𝐼𝑄))) → ⟨(𝑋‘(1st𝑌)), (( I ‘𝑋) ∘ (2nd𝑌))⟩ = ⟨(𝑋‘(1st𝑌)), (𝑋 ∘ (2nd𝑌))⟩)
2621, 25eqtr4d 2767 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑋𝐸𝑌 ∈ (𝐼𝑄))) → (𝑋 · 𝑌) = ⟨(𝑋‘(1st𝑌)), (( I ‘𝑋) ∘ (2nd𝑌))⟩)
27 eqid 2729 . . . . . . . 8 ((oc‘𝐾)‘𝑊) = ((oc‘𝐾)‘𝑊)
283, 4, 5, 27, 10, 6dicelval1sta 41169 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝑌 ∈ (𝐼𝑄)) → (1st𝑌) = ((2nd𝑌)‘(𝑔 ∈ ((LTrn‘𝐾)‘𝑊)(𝑔‘((oc‘𝐾)‘𝑊)) = 𝑄)))
29283adant3l 1181 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑋𝐸𝑌 ∈ (𝐼𝑄))) → (1st𝑌) = ((2nd𝑌)‘(𝑔 ∈ ((LTrn‘𝐾)‘𝑊)(𝑔‘((oc‘𝐾)‘𝑊)) = 𝑄)))
3029fveq2d 6830 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑋𝐸𝑌 ∈ (𝐼𝑄))) → (𝑋‘(1st𝑌)) = (𝑋‘((2nd𝑌)‘(𝑔 ∈ ((LTrn‘𝐾)‘𝑊)(𝑔‘((oc‘𝐾)‘𝑊)) = 𝑄))))
313, 4, 5, 11, 6dicelval2nd 41171 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝑌 ∈ (𝐼𝑄)) → (2nd𝑌) ∈ 𝐸)
32313adant3l 1181 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑋𝐸𝑌 ∈ (𝐼𝑄))) → (2nd𝑌) ∈ 𝐸)
335, 10, 11tendof 40745 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (2nd𝑌) ∈ 𝐸) → (2nd𝑌):((LTrn‘𝐾)‘𝑊)⟶((LTrn‘𝐾)‘𝑊))
341, 32, 33syl2anc 584 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑋𝐸𝑌 ∈ (𝐼𝑄))) → (2nd𝑌):((LTrn‘𝐾)‘𝑊)⟶((LTrn‘𝐾)‘𝑊))
35 eqid 2729 . . . . . . . . 9 (oc‘𝐾) = (oc‘𝐾)
363, 35, 4, 5lhpocnel 40000 . . . . . . . 8 ((𝐾 ∈ HL ∧ 𝑊𝐻) → (((oc‘𝐾)‘𝑊) ∈ 𝐴 ∧ ¬ ((oc‘𝐾)‘𝑊) 𝑊))
37363ad2ant1 1133 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑋𝐸𝑌 ∈ (𝐼𝑄))) → (((oc‘𝐾)‘𝑊) ∈ 𝐴 ∧ ¬ ((oc‘𝐾)‘𝑊) 𝑊))
38 simp2 1137 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑋𝐸𝑌 ∈ (𝐼𝑄))) → (𝑄𝐴 ∧ ¬ 𝑄 𝑊))
39 eqid 2729 . . . . . . . 8 (𝑔 ∈ ((LTrn‘𝐾)‘𝑊)(𝑔‘((oc‘𝐾)‘𝑊)) = 𝑄) = (𝑔 ∈ ((LTrn‘𝐾)‘𝑊)(𝑔‘((oc‘𝐾)‘𝑊)) = 𝑄)
403, 4, 5, 10, 39ltrniotacl 40561 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (((oc‘𝐾)‘𝑊) ∈ 𝐴 ∧ ¬ ((oc‘𝐾)‘𝑊) 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) → (𝑔 ∈ ((LTrn‘𝐾)‘𝑊)(𝑔‘((oc‘𝐾)‘𝑊)) = 𝑄) ∈ ((LTrn‘𝐾)‘𝑊))
411, 37, 38, 40syl3anc 1373 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑋𝐸𝑌 ∈ (𝐼𝑄))) → (𝑔 ∈ ((LTrn‘𝐾)‘𝑊)(𝑔‘((oc‘𝐾)‘𝑊)) = 𝑄) ∈ ((LTrn‘𝐾)‘𝑊))
42 fvco3 6926 . . . . . 6 (((2nd𝑌):((LTrn‘𝐾)‘𝑊)⟶((LTrn‘𝐾)‘𝑊) ∧ (𝑔 ∈ ((LTrn‘𝐾)‘𝑊)(𝑔‘((oc‘𝐾)‘𝑊)) = 𝑄) ∈ ((LTrn‘𝐾)‘𝑊)) → ((𝑋 ∘ (2nd𝑌))‘(𝑔 ∈ ((LTrn‘𝐾)‘𝑊)(𝑔‘((oc‘𝐾)‘𝑊)) = 𝑄)) = (𝑋‘((2nd𝑌)‘(𝑔 ∈ ((LTrn‘𝐾)‘𝑊)(𝑔‘((oc‘𝐾)‘𝑊)) = 𝑄))))
4334, 41, 42syl2anc 584 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑋𝐸𝑌 ∈ (𝐼𝑄))) → ((𝑋 ∘ (2nd𝑌))‘(𝑔 ∈ ((LTrn‘𝐾)‘𝑊)(𝑔‘((oc‘𝐾)‘𝑊)) = 𝑄)) = (𝑋‘((2nd𝑌)‘(𝑔 ∈ ((LTrn‘𝐾)‘𝑊)(𝑔‘((oc‘𝐾)‘𝑊)) = 𝑄))))
4430, 43eqtr4d 2767 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑋𝐸𝑌 ∈ (𝐼𝑄))) → (𝑋‘(1st𝑌)) = ((𝑋 ∘ (2nd𝑌))‘(𝑔 ∈ ((LTrn‘𝐾)‘𝑊)(𝑔‘((oc‘𝐾)‘𝑊)) = 𝑄)))
4524fveq1d 6828 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑋𝐸𝑌 ∈ (𝐼𝑄))) → ((( I ‘𝑋) ∘ (2nd𝑌))‘(𝑔 ∈ ((LTrn‘𝐾)‘𝑊)(𝑔‘((oc‘𝐾)‘𝑊)) = 𝑄)) = ((𝑋 ∘ (2nd𝑌))‘(𝑔 ∈ ((LTrn‘𝐾)‘𝑊)(𝑔‘((oc‘𝐾)‘𝑊)) = 𝑄)))
4644, 45eqtr4d 2767 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑋𝐸𝑌 ∈ (𝐼𝑄))) → (𝑋‘(1st𝑌)) = ((( I ‘𝑋) ∘ (2nd𝑌))‘(𝑔 ∈ ((LTrn‘𝐾)‘𝑊)(𝑔‘((oc‘𝐾)‘𝑊)) = 𝑄)))
475, 11tendococl 40754 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋𝐸 ∧ (2nd𝑌) ∈ 𝐸) → (𝑋 ∘ (2nd𝑌)) ∈ 𝐸)
481, 2, 32, 47syl3anc 1373 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑋𝐸𝑌 ∈ (𝐼𝑄))) → (𝑋 ∘ (2nd𝑌)) ∈ 𝐸)
4924, 48eqeltrd 2828 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑋𝐸𝑌 ∈ (𝐼𝑄))) → (( I ‘𝑋) ∘ (2nd𝑌)) ∈ 𝐸)
50 fvex 6839 . . . . 5 (𝑋‘(1st𝑌)) ∈ V
51 fvex 6839 . . . . . 6 ( I ‘𝑋) ∈ V
52 fvex 6839 . . . . . 6 (2nd𝑌) ∈ V
5351, 52coex 7870 . . . . 5 (( I ‘𝑋) ∘ (2nd𝑌)) ∈ V
543, 4, 5, 27, 10, 11, 6, 50, 53dicopelval 41159 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) → (⟨(𝑋‘(1st𝑌)), (( I ‘𝑋) ∘ (2nd𝑌))⟩ ∈ (𝐼𝑄) ↔ ((𝑋‘(1st𝑌)) = ((( I ‘𝑋) ∘ (2nd𝑌))‘(𝑔 ∈ ((LTrn‘𝐾)‘𝑊)(𝑔‘((oc‘𝐾)‘𝑊)) = 𝑄)) ∧ (( I ‘𝑋) ∘ (2nd𝑌)) ∈ 𝐸)))
55543adant3 1132 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑋𝐸𝑌 ∈ (𝐼𝑄))) → (⟨(𝑋‘(1st𝑌)), (( I ‘𝑋) ∘ (2nd𝑌))⟩ ∈ (𝐼𝑄) ↔ ((𝑋‘(1st𝑌)) = ((( I ‘𝑋) ∘ (2nd𝑌))‘(𝑔 ∈ ((LTrn‘𝐾)‘𝑊)(𝑔‘((oc‘𝐾)‘𝑊)) = 𝑄)) ∧ (( I ‘𝑋) ∘ (2nd𝑌)) ∈ 𝐸)))
5646, 49, 55mpbir2and 713 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑋𝐸𝑌 ∈ (𝐼𝑄))) → ⟨(𝑋‘(1st𝑌)), (( I ‘𝑋) ∘ (2nd𝑌))⟩ ∈ (𝐼𝑄))
5726, 56eqeltrd 2828 1 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑋𝐸𝑌 ∈ (𝐼𝑄))) → (𝑋 · 𝑌) ∈ (𝐼𝑄))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wss 3905  cop 4585   class class class wbr 5095   I cid 5517   × cxp 5621  ccom 5627  wf 6482  cfv 6486  crio 7309  (class class class)co 7353  1st c1st 7929  2nd c2nd 7930  Basecbs 17138   ·𝑠 cvsca 17183  lecple 17186  occoc 17187  Atomscatm 39244  HLchlt 39331  LHypclh 39966  LTrncltrn 40083  TEndoctendo 40734  DVecHcdvh 41060  DIsoCcdic 41154
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-cnex 11084  ax-resscn 11085  ax-1cn 11086  ax-icn 11087  ax-addcl 11088  ax-addrcl 11089  ax-mulcl 11090  ax-mulrcl 11091  ax-mulcom 11092  ax-addass 11093  ax-mulass 11094  ax-distr 11095  ax-i2m1 11096  ax-1ne0 11097  ax-1rid 11098  ax-rnegex 11099  ax-rrecex 11100  ax-cnre 11101  ax-pre-lttri 11102  ax-pre-lttrn 11103  ax-pre-ltadd 11104  ax-pre-mulgt0 11105  ax-riotaBAD 38934
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3345  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-tp 4584  df-op 4586  df-uni 4862  df-iun 4946  df-iin 4947  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-om 7807  df-1st 7931  df-2nd 7932  df-undef 8213  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-rdg 8339  df-1o 8395  df-er 8632  df-map 8762  df-en 8880  df-dom 8881  df-sdom 8882  df-fin 8883  df-pnf 11170  df-mnf 11171  df-xr 11172  df-ltxr 11173  df-le 11174  df-sub 11367  df-neg 11368  df-nn 12147  df-2 12209  df-3 12210  df-4 12211  df-5 12212  df-6 12213  df-n0 12403  df-z 12490  df-uz 12754  df-fz 13429  df-struct 17076  df-slot 17111  df-ndx 17123  df-base 17139  df-plusg 17192  df-sca 17195  df-vsca 17196  df-proset 18218  df-poset 18237  df-plt 18252  df-lub 18268  df-glb 18269  df-join 18270  df-meet 18271  df-p0 18347  df-p1 18348  df-lat 18356  df-clat 18423  df-oposet 39157  df-ol 39159  df-oml 39160  df-covers 39247  df-ats 39248  df-atl 39279  df-cvlat 39303  df-hlat 39332  df-llines 39480  df-lplanes 39481  df-lvols 39482  df-lines 39483  df-psubsp 39485  df-pmap 39486  df-padd 39778  df-lhyp 39970  df-laut 39971  df-ldil 40086  df-ltrn 40087  df-trl 40141  df-tendo 40737  df-dvech 41061  df-dic 41155
This theorem is referenced by:  diclss  41175
  Copyright terms: Public domain W3C validator