| Step | Hyp | Ref
| Expression |
| 1 | | simp1 1136 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑋 ∈ 𝐸 ∧ 𝑌 ∈ (𝐼‘𝑄))) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
| 2 | | simp3l 1202 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑋 ∈ 𝐸 ∧ 𝑌 ∈ (𝐼‘𝑄))) → 𝑋 ∈ 𝐸) |
| 3 | | dicvscacl.l |
. . . . . . . 8
⊢ ≤ =
(le‘𝐾) |
| 4 | | dicvscacl.a |
. . . . . . . 8
⊢ 𝐴 = (Atoms‘𝐾) |
| 5 | | dicvscacl.h |
. . . . . . . 8
⊢ 𝐻 = (LHyp‘𝐾) |
| 6 | | dicvscacl.i |
. . . . . . . 8
⊢ 𝐼 = ((DIsoC‘𝐾)‘𝑊) |
| 7 | | dicvscacl.u |
. . . . . . . 8
⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) |
| 8 | | eqid 2736 |
. . . . . . . 8
⊢
(Base‘𝑈) =
(Base‘𝑈) |
| 9 | 3, 4, 5, 6, 7, 8 | dicssdvh 41210 |
. . . . . . 7
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) → (𝐼‘𝑄) ⊆ (Base‘𝑈)) |
| 10 | | eqid 2736 |
. . . . . . . . . 10
⊢
((LTrn‘𝐾)‘𝑊) = ((LTrn‘𝐾)‘𝑊) |
| 11 | | dicvscacl.e |
. . . . . . . . . 10
⊢ 𝐸 = ((TEndo‘𝐾)‘𝑊) |
| 12 | 5, 10, 11, 7, 8 | dvhvbase 41111 |
. . . . . . . . 9
⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → (Base‘𝑈) = (((LTrn‘𝐾)‘𝑊) × 𝐸)) |
| 13 | 12 | eqcomd 2742 |
. . . . . . . 8
⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → (((LTrn‘𝐾)‘𝑊) × 𝐸) = (Base‘𝑈)) |
| 14 | 13 | adantr 480 |
. . . . . . 7
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) → (((LTrn‘𝐾)‘𝑊) × 𝐸) = (Base‘𝑈)) |
| 15 | 9, 14 | sseqtrrd 4001 |
. . . . . 6
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) → (𝐼‘𝑄) ⊆ (((LTrn‘𝐾)‘𝑊) × 𝐸)) |
| 16 | 15 | 3adant3 1132 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑋 ∈ 𝐸 ∧ 𝑌 ∈ (𝐼‘𝑄))) → (𝐼‘𝑄) ⊆ (((LTrn‘𝐾)‘𝑊) × 𝐸)) |
| 17 | | simp3r 1203 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑋 ∈ 𝐸 ∧ 𝑌 ∈ (𝐼‘𝑄))) → 𝑌 ∈ (𝐼‘𝑄)) |
| 18 | 16, 17 | sseldd 3964 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑋 ∈ 𝐸 ∧ 𝑌 ∈ (𝐼‘𝑄))) → 𝑌 ∈ (((LTrn‘𝐾)‘𝑊) × 𝐸)) |
| 19 | | dicvscacl.s |
. . . . 5
⊢ · = (
·𝑠 ‘𝑈) |
| 20 | 5, 10, 11, 7, 19 | dvhvsca 41125 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐸 ∧ 𝑌 ∈ (((LTrn‘𝐾)‘𝑊) × 𝐸))) → (𝑋 · 𝑌) = 〈(𝑋‘(1st ‘𝑌)), (𝑋 ∘ (2nd ‘𝑌))〉) |
| 21 | 1, 2, 18, 20 | syl12anc 836 |
. . 3
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑋 ∈ 𝐸 ∧ 𝑌 ∈ (𝐼‘𝑄))) → (𝑋 · 𝑌) = 〈(𝑋‘(1st ‘𝑌)), (𝑋 ∘ (2nd ‘𝑌))〉) |
| 22 | | fvi 6960 |
. . . . . 6
⊢ (𝑋 ∈ 𝐸 → ( I ‘𝑋) = 𝑋) |
| 23 | 2, 22 | syl 17 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑋 ∈ 𝐸 ∧ 𝑌 ∈ (𝐼‘𝑄))) → ( I ‘𝑋) = 𝑋) |
| 24 | 23 | coeq1d 5846 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑋 ∈ 𝐸 ∧ 𝑌 ∈ (𝐼‘𝑄))) → (( I ‘𝑋) ∘ (2nd ‘𝑌)) = (𝑋 ∘ (2nd ‘𝑌))) |
| 25 | 24 | opeq2d 4861 |
. . 3
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑋 ∈ 𝐸 ∧ 𝑌 ∈ (𝐼‘𝑄))) → 〈(𝑋‘(1st ‘𝑌)), (( I ‘𝑋) ∘ (2nd
‘𝑌))〉 =
〈(𝑋‘(1st ‘𝑌)), (𝑋 ∘ (2nd ‘𝑌))〉) |
| 26 | 21, 25 | eqtr4d 2774 |
. 2
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑋 ∈ 𝐸 ∧ 𝑌 ∈ (𝐼‘𝑄))) → (𝑋 · 𝑌) = 〈(𝑋‘(1st ‘𝑌)), (( I ‘𝑋) ∘ (2nd
‘𝑌))〉) |
| 27 | | eqid 2736 |
. . . . . . . 8
⊢
((oc‘𝐾)‘𝑊) = ((oc‘𝐾)‘𝑊) |
| 28 | 3, 4, 5, 27, 10, 6 | dicelval1sta 41211 |
. . . . . . 7
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ 𝑌 ∈ (𝐼‘𝑄)) → (1st ‘𝑌) = ((2nd
‘𝑌)‘(℩𝑔 ∈ ((LTrn‘𝐾)‘𝑊)(𝑔‘((oc‘𝐾)‘𝑊)) = 𝑄))) |
| 29 | 28 | 3adant3l 1181 |
. . . . . 6
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑋 ∈ 𝐸 ∧ 𝑌 ∈ (𝐼‘𝑄))) → (1st ‘𝑌) = ((2nd
‘𝑌)‘(℩𝑔 ∈ ((LTrn‘𝐾)‘𝑊)(𝑔‘((oc‘𝐾)‘𝑊)) = 𝑄))) |
| 30 | 29 | fveq2d 6885 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑋 ∈ 𝐸 ∧ 𝑌 ∈ (𝐼‘𝑄))) → (𝑋‘(1st ‘𝑌)) = (𝑋‘((2nd ‘𝑌)‘(℩𝑔 ∈ ((LTrn‘𝐾)‘𝑊)(𝑔‘((oc‘𝐾)‘𝑊)) = 𝑄)))) |
| 31 | 3, 4, 5, 11, 6 | dicelval2nd 41213 |
. . . . . . . 8
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ 𝑌 ∈ (𝐼‘𝑄)) → (2nd ‘𝑌) ∈ 𝐸) |
| 32 | 31 | 3adant3l 1181 |
. . . . . . 7
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑋 ∈ 𝐸 ∧ 𝑌 ∈ (𝐼‘𝑄))) → (2nd ‘𝑌) ∈ 𝐸) |
| 33 | 5, 10, 11 | tendof 40787 |
. . . . . . 7
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (2nd ‘𝑌) ∈ 𝐸) → (2nd ‘𝑌):((LTrn‘𝐾)‘𝑊)⟶((LTrn‘𝐾)‘𝑊)) |
| 34 | 1, 32, 33 | syl2anc 584 |
. . . . . 6
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑋 ∈ 𝐸 ∧ 𝑌 ∈ (𝐼‘𝑄))) → (2nd ‘𝑌):((LTrn‘𝐾)‘𝑊)⟶((LTrn‘𝐾)‘𝑊)) |
| 35 | | eqid 2736 |
. . . . . . . . 9
⊢
(oc‘𝐾) =
(oc‘𝐾) |
| 36 | 3, 35, 4, 5 | lhpocnel 40042 |
. . . . . . . 8
⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → (((oc‘𝐾)‘𝑊) ∈ 𝐴 ∧ ¬ ((oc‘𝐾)‘𝑊) ≤ 𝑊)) |
| 37 | 36 | 3ad2ant1 1133 |
. . . . . . 7
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑋 ∈ 𝐸 ∧ 𝑌 ∈ (𝐼‘𝑄))) → (((oc‘𝐾)‘𝑊) ∈ 𝐴 ∧ ¬ ((oc‘𝐾)‘𝑊) ≤ 𝑊)) |
| 38 | | simp2 1137 |
. . . . . . 7
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑋 ∈ 𝐸 ∧ 𝑌 ∈ (𝐼‘𝑄))) → (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) |
| 39 | | eqid 2736 |
. . . . . . . 8
⊢
(℩𝑔
∈ ((LTrn‘𝐾)‘𝑊)(𝑔‘((oc‘𝐾)‘𝑊)) = 𝑄) = (℩𝑔 ∈ ((LTrn‘𝐾)‘𝑊)(𝑔‘((oc‘𝐾)‘𝑊)) = 𝑄) |
| 40 | 3, 4, 5, 10, 39 | ltrniotacl 40603 |
. . . . . . 7
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (((oc‘𝐾)‘𝑊) ∈ 𝐴 ∧ ¬ ((oc‘𝐾)‘𝑊) ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) → (℩𝑔 ∈ ((LTrn‘𝐾)‘𝑊)(𝑔‘((oc‘𝐾)‘𝑊)) = 𝑄) ∈ ((LTrn‘𝐾)‘𝑊)) |
| 41 | 1, 37, 38, 40 | syl3anc 1373 |
. . . . . 6
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑋 ∈ 𝐸 ∧ 𝑌 ∈ (𝐼‘𝑄))) → (℩𝑔 ∈ ((LTrn‘𝐾)‘𝑊)(𝑔‘((oc‘𝐾)‘𝑊)) = 𝑄) ∈ ((LTrn‘𝐾)‘𝑊)) |
| 42 | | fvco3 6983 |
. . . . . 6
⊢
(((2nd ‘𝑌):((LTrn‘𝐾)‘𝑊)⟶((LTrn‘𝐾)‘𝑊) ∧ (℩𝑔 ∈ ((LTrn‘𝐾)‘𝑊)(𝑔‘((oc‘𝐾)‘𝑊)) = 𝑄) ∈ ((LTrn‘𝐾)‘𝑊)) → ((𝑋 ∘ (2nd ‘𝑌))‘(℩𝑔 ∈ ((LTrn‘𝐾)‘𝑊)(𝑔‘((oc‘𝐾)‘𝑊)) = 𝑄)) = (𝑋‘((2nd ‘𝑌)‘(℩𝑔 ∈ ((LTrn‘𝐾)‘𝑊)(𝑔‘((oc‘𝐾)‘𝑊)) = 𝑄)))) |
| 43 | 34, 41, 42 | syl2anc 584 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑋 ∈ 𝐸 ∧ 𝑌 ∈ (𝐼‘𝑄))) → ((𝑋 ∘ (2nd ‘𝑌))‘(℩𝑔 ∈ ((LTrn‘𝐾)‘𝑊)(𝑔‘((oc‘𝐾)‘𝑊)) = 𝑄)) = (𝑋‘((2nd ‘𝑌)‘(℩𝑔 ∈ ((LTrn‘𝐾)‘𝑊)(𝑔‘((oc‘𝐾)‘𝑊)) = 𝑄)))) |
| 44 | 30, 43 | eqtr4d 2774 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑋 ∈ 𝐸 ∧ 𝑌 ∈ (𝐼‘𝑄))) → (𝑋‘(1st ‘𝑌)) = ((𝑋 ∘ (2nd ‘𝑌))‘(℩𝑔 ∈ ((LTrn‘𝐾)‘𝑊)(𝑔‘((oc‘𝐾)‘𝑊)) = 𝑄))) |
| 45 | 24 | fveq1d 6883 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑋 ∈ 𝐸 ∧ 𝑌 ∈ (𝐼‘𝑄))) → ((( I ‘𝑋) ∘ (2nd ‘𝑌))‘(℩𝑔 ∈ ((LTrn‘𝐾)‘𝑊)(𝑔‘((oc‘𝐾)‘𝑊)) = 𝑄)) = ((𝑋 ∘ (2nd ‘𝑌))‘(℩𝑔 ∈ ((LTrn‘𝐾)‘𝑊)(𝑔‘((oc‘𝐾)‘𝑊)) = 𝑄))) |
| 46 | 44, 45 | eqtr4d 2774 |
. . 3
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑋 ∈ 𝐸 ∧ 𝑌 ∈ (𝐼‘𝑄))) → (𝑋‘(1st ‘𝑌)) = ((( I ‘𝑋) ∘ (2nd
‘𝑌))‘(℩𝑔 ∈ ((LTrn‘𝐾)‘𝑊)(𝑔‘((oc‘𝐾)‘𝑊)) = 𝑄))) |
| 47 | 5, 11 | tendococl 40796 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ∈ 𝐸 ∧ (2nd ‘𝑌) ∈ 𝐸) → (𝑋 ∘ (2nd ‘𝑌)) ∈ 𝐸) |
| 48 | 1, 2, 32, 47 | syl3anc 1373 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑋 ∈ 𝐸 ∧ 𝑌 ∈ (𝐼‘𝑄))) → (𝑋 ∘ (2nd ‘𝑌)) ∈ 𝐸) |
| 49 | 24, 48 | eqeltrd 2835 |
. . 3
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑋 ∈ 𝐸 ∧ 𝑌 ∈ (𝐼‘𝑄))) → (( I ‘𝑋) ∘ (2nd ‘𝑌)) ∈ 𝐸) |
| 50 | | fvex 6894 |
. . . . 5
⊢ (𝑋‘(1st
‘𝑌)) ∈
V |
| 51 | | fvex 6894 |
. . . . . 6
⊢ ( I
‘𝑋) ∈
V |
| 52 | | fvex 6894 |
. . . . . 6
⊢
(2nd ‘𝑌) ∈ V |
| 53 | 51, 52 | coex 7931 |
. . . . 5
⊢ (( I
‘𝑋) ∘
(2nd ‘𝑌))
∈ V |
| 54 | 3, 4, 5, 27, 10, 11, 6, 50, 53 | dicopelval 41201 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) → (〈(𝑋‘(1st ‘𝑌)), (( I ‘𝑋) ∘ (2nd
‘𝑌))〉 ∈
(𝐼‘𝑄) ↔ ((𝑋‘(1st ‘𝑌)) = ((( I ‘𝑋) ∘ (2nd
‘𝑌))‘(℩𝑔 ∈ ((LTrn‘𝐾)‘𝑊)(𝑔‘((oc‘𝐾)‘𝑊)) = 𝑄)) ∧ (( I ‘𝑋) ∘ (2nd ‘𝑌)) ∈ 𝐸))) |
| 55 | 54 | 3adant3 1132 |
. . 3
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑋 ∈ 𝐸 ∧ 𝑌 ∈ (𝐼‘𝑄))) → (〈(𝑋‘(1st ‘𝑌)), (( I ‘𝑋) ∘ (2nd
‘𝑌))〉 ∈
(𝐼‘𝑄) ↔ ((𝑋‘(1st ‘𝑌)) = ((( I ‘𝑋) ∘ (2nd
‘𝑌))‘(℩𝑔 ∈ ((LTrn‘𝐾)‘𝑊)(𝑔‘((oc‘𝐾)‘𝑊)) = 𝑄)) ∧ (( I ‘𝑋) ∘ (2nd ‘𝑌)) ∈ 𝐸))) |
| 56 | 46, 49, 55 | mpbir2and 713 |
. 2
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑋 ∈ 𝐸 ∧ 𝑌 ∈ (𝐼‘𝑄))) → 〈(𝑋‘(1st ‘𝑌)), (( I ‘𝑋) ∘ (2nd
‘𝑌))〉 ∈
(𝐼‘𝑄)) |
| 57 | 26, 56 | eqeltrd 2835 |
1
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑋 ∈ 𝐸 ∧ 𝑌 ∈ (𝐼‘𝑄))) → (𝑋 · 𝑌) ∈ (𝐼‘𝑄)) |