Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dicvscacl Structured version   Visualization version   GIF version

Theorem dicvscacl 40794
Description: Membership in value of the partial isomorphism C is closed under scalar product. (Contributed by NM, 16-Feb-2014.) (Revised by Mario Carneiro, 24-Jun-2014.)
Hypotheses
Ref Expression
dicvscacl.l = (le‘𝐾)
dicvscacl.a 𝐴 = (Atoms‘𝐾)
dicvscacl.h 𝐻 = (LHyp‘𝐾)
dicvscacl.e 𝐸 = ((TEndo‘𝐾)‘𝑊)
dicvscacl.u 𝑈 = ((DVecH‘𝐾)‘𝑊)
dicvscacl.i 𝐼 = ((DIsoC‘𝐾)‘𝑊)
dicvscacl.s · = ( ·𝑠𝑈)
Assertion
Ref Expression
dicvscacl (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑋𝐸𝑌 ∈ (𝐼𝑄))) → (𝑋 · 𝑌) ∈ (𝐼𝑄))

Proof of Theorem dicvscacl
Dummy variable 𝑔 is distinct from all other variables.
StepHypRef Expression
1 simp1 1133 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑋𝐸𝑌 ∈ (𝐼𝑄))) → (𝐾 ∈ HL ∧ 𝑊𝐻))
2 simp3l 1198 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑋𝐸𝑌 ∈ (𝐼𝑄))) → 𝑋𝐸)
3 dicvscacl.l . . . . . . . 8 = (le‘𝐾)
4 dicvscacl.a . . . . . . . 8 𝐴 = (Atoms‘𝐾)
5 dicvscacl.h . . . . . . . 8 𝐻 = (LHyp‘𝐾)
6 dicvscacl.i . . . . . . . 8 𝐼 = ((DIsoC‘𝐾)‘𝑊)
7 dicvscacl.u . . . . . . . 8 𝑈 = ((DVecH‘𝐾)‘𝑊)
8 eqid 2725 . . . . . . . 8 (Base‘𝑈) = (Base‘𝑈)
93, 4, 5, 6, 7, 8dicssdvh 40789 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) → (𝐼𝑄) ⊆ (Base‘𝑈))
10 eqid 2725 . . . . . . . . . 10 ((LTrn‘𝐾)‘𝑊) = ((LTrn‘𝐾)‘𝑊)
11 dicvscacl.e . . . . . . . . . 10 𝐸 = ((TEndo‘𝐾)‘𝑊)
125, 10, 11, 7, 8dvhvbase 40690 . . . . . . . . 9 ((𝐾 ∈ HL ∧ 𝑊𝐻) → (Base‘𝑈) = (((LTrn‘𝐾)‘𝑊) × 𝐸))
1312eqcomd 2731 . . . . . . . 8 ((𝐾 ∈ HL ∧ 𝑊𝐻) → (((LTrn‘𝐾)‘𝑊) × 𝐸) = (Base‘𝑈))
1413adantr 479 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) → (((LTrn‘𝐾)‘𝑊) × 𝐸) = (Base‘𝑈))
159, 14sseqtrrd 4018 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) → (𝐼𝑄) ⊆ (((LTrn‘𝐾)‘𝑊) × 𝐸))
16153adant3 1129 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑋𝐸𝑌 ∈ (𝐼𝑄))) → (𝐼𝑄) ⊆ (((LTrn‘𝐾)‘𝑊) × 𝐸))
17 simp3r 1199 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑋𝐸𝑌 ∈ (𝐼𝑄))) → 𝑌 ∈ (𝐼𝑄))
1816, 17sseldd 3977 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑋𝐸𝑌 ∈ (𝐼𝑄))) → 𝑌 ∈ (((LTrn‘𝐾)‘𝑊) × 𝐸))
19 dicvscacl.s . . . . 5 · = ( ·𝑠𝑈)
205, 10, 11, 7, 19dvhvsca 40704 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐸𝑌 ∈ (((LTrn‘𝐾)‘𝑊) × 𝐸))) → (𝑋 · 𝑌) = ⟨(𝑋‘(1st𝑌)), (𝑋 ∘ (2nd𝑌))⟩)
211, 2, 18, 20syl12anc 835 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑋𝐸𝑌 ∈ (𝐼𝑄))) → (𝑋 · 𝑌) = ⟨(𝑋‘(1st𝑌)), (𝑋 ∘ (2nd𝑌))⟩)
22 fvi 6973 . . . . . 6 (𝑋𝐸 → ( I ‘𝑋) = 𝑋)
232, 22syl 17 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑋𝐸𝑌 ∈ (𝐼𝑄))) → ( I ‘𝑋) = 𝑋)
2423coeq1d 5864 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑋𝐸𝑌 ∈ (𝐼𝑄))) → (( I ‘𝑋) ∘ (2nd𝑌)) = (𝑋 ∘ (2nd𝑌)))
2524opeq2d 4882 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑋𝐸𝑌 ∈ (𝐼𝑄))) → ⟨(𝑋‘(1st𝑌)), (( I ‘𝑋) ∘ (2nd𝑌))⟩ = ⟨(𝑋‘(1st𝑌)), (𝑋 ∘ (2nd𝑌))⟩)
2621, 25eqtr4d 2768 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑋𝐸𝑌 ∈ (𝐼𝑄))) → (𝑋 · 𝑌) = ⟨(𝑋‘(1st𝑌)), (( I ‘𝑋) ∘ (2nd𝑌))⟩)
27 eqid 2725 . . . . . . . 8 ((oc‘𝐾)‘𝑊) = ((oc‘𝐾)‘𝑊)
283, 4, 5, 27, 10, 6dicelval1sta 40790 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝑌 ∈ (𝐼𝑄)) → (1st𝑌) = ((2nd𝑌)‘(𝑔 ∈ ((LTrn‘𝐾)‘𝑊)(𝑔‘((oc‘𝐾)‘𝑊)) = 𝑄)))
29283adant3l 1177 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑋𝐸𝑌 ∈ (𝐼𝑄))) → (1st𝑌) = ((2nd𝑌)‘(𝑔 ∈ ((LTrn‘𝐾)‘𝑊)(𝑔‘((oc‘𝐾)‘𝑊)) = 𝑄)))
3029fveq2d 6900 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑋𝐸𝑌 ∈ (𝐼𝑄))) → (𝑋‘(1st𝑌)) = (𝑋‘((2nd𝑌)‘(𝑔 ∈ ((LTrn‘𝐾)‘𝑊)(𝑔‘((oc‘𝐾)‘𝑊)) = 𝑄))))
313, 4, 5, 11, 6dicelval2nd 40792 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝑌 ∈ (𝐼𝑄)) → (2nd𝑌) ∈ 𝐸)
32313adant3l 1177 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑋𝐸𝑌 ∈ (𝐼𝑄))) → (2nd𝑌) ∈ 𝐸)
335, 10, 11tendof 40366 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (2nd𝑌) ∈ 𝐸) → (2nd𝑌):((LTrn‘𝐾)‘𝑊)⟶((LTrn‘𝐾)‘𝑊))
341, 32, 33syl2anc 582 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑋𝐸𝑌 ∈ (𝐼𝑄))) → (2nd𝑌):((LTrn‘𝐾)‘𝑊)⟶((LTrn‘𝐾)‘𝑊))
35 eqid 2725 . . . . . . . . 9 (oc‘𝐾) = (oc‘𝐾)
363, 35, 4, 5lhpocnel 39621 . . . . . . . 8 ((𝐾 ∈ HL ∧ 𝑊𝐻) → (((oc‘𝐾)‘𝑊) ∈ 𝐴 ∧ ¬ ((oc‘𝐾)‘𝑊) 𝑊))
37363ad2ant1 1130 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑋𝐸𝑌 ∈ (𝐼𝑄))) → (((oc‘𝐾)‘𝑊) ∈ 𝐴 ∧ ¬ ((oc‘𝐾)‘𝑊) 𝑊))
38 simp2 1134 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑋𝐸𝑌 ∈ (𝐼𝑄))) → (𝑄𝐴 ∧ ¬ 𝑄 𝑊))
39 eqid 2725 . . . . . . . 8 (𝑔 ∈ ((LTrn‘𝐾)‘𝑊)(𝑔‘((oc‘𝐾)‘𝑊)) = 𝑄) = (𝑔 ∈ ((LTrn‘𝐾)‘𝑊)(𝑔‘((oc‘𝐾)‘𝑊)) = 𝑄)
403, 4, 5, 10, 39ltrniotacl 40182 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (((oc‘𝐾)‘𝑊) ∈ 𝐴 ∧ ¬ ((oc‘𝐾)‘𝑊) 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) → (𝑔 ∈ ((LTrn‘𝐾)‘𝑊)(𝑔‘((oc‘𝐾)‘𝑊)) = 𝑄) ∈ ((LTrn‘𝐾)‘𝑊))
411, 37, 38, 40syl3anc 1368 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑋𝐸𝑌 ∈ (𝐼𝑄))) → (𝑔 ∈ ((LTrn‘𝐾)‘𝑊)(𝑔‘((oc‘𝐾)‘𝑊)) = 𝑄) ∈ ((LTrn‘𝐾)‘𝑊))
42 fvco3 6996 . . . . . 6 (((2nd𝑌):((LTrn‘𝐾)‘𝑊)⟶((LTrn‘𝐾)‘𝑊) ∧ (𝑔 ∈ ((LTrn‘𝐾)‘𝑊)(𝑔‘((oc‘𝐾)‘𝑊)) = 𝑄) ∈ ((LTrn‘𝐾)‘𝑊)) → ((𝑋 ∘ (2nd𝑌))‘(𝑔 ∈ ((LTrn‘𝐾)‘𝑊)(𝑔‘((oc‘𝐾)‘𝑊)) = 𝑄)) = (𝑋‘((2nd𝑌)‘(𝑔 ∈ ((LTrn‘𝐾)‘𝑊)(𝑔‘((oc‘𝐾)‘𝑊)) = 𝑄))))
4334, 41, 42syl2anc 582 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑋𝐸𝑌 ∈ (𝐼𝑄))) → ((𝑋 ∘ (2nd𝑌))‘(𝑔 ∈ ((LTrn‘𝐾)‘𝑊)(𝑔‘((oc‘𝐾)‘𝑊)) = 𝑄)) = (𝑋‘((2nd𝑌)‘(𝑔 ∈ ((LTrn‘𝐾)‘𝑊)(𝑔‘((oc‘𝐾)‘𝑊)) = 𝑄))))
4430, 43eqtr4d 2768 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑋𝐸𝑌 ∈ (𝐼𝑄))) → (𝑋‘(1st𝑌)) = ((𝑋 ∘ (2nd𝑌))‘(𝑔 ∈ ((LTrn‘𝐾)‘𝑊)(𝑔‘((oc‘𝐾)‘𝑊)) = 𝑄)))
4524fveq1d 6898 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑋𝐸𝑌 ∈ (𝐼𝑄))) → ((( I ‘𝑋) ∘ (2nd𝑌))‘(𝑔 ∈ ((LTrn‘𝐾)‘𝑊)(𝑔‘((oc‘𝐾)‘𝑊)) = 𝑄)) = ((𝑋 ∘ (2nd𝑌))‘(𝑔 ∈ ((LTrn‘𝐾)‘𝑊)(𝑔‘((oc‘𝐾)‘𝑊)) = 𝑄)))
4644, 45eqtr4d 2768 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑋𝐸𝑌 ∈ (𝐼𝑄))) → (𝑋‘(1st𝑌)) = ((( I ‘𝑋) ∘ (2nd𝑌))‘(𝑔 ∈ ((LTrn‘𝐾)‘𝑊)(𝑔‘((oc‘𝐾)‘𝑊)) = 𝑄)))
475, 11tendococl 40375 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋𝐸 ∧ (2nd𝑌) ∈ 𝐸) → (𝑋 ∘ (2nd𝑌)) ∈ 𝐸)
481, 2, 32, 47syl3anc 1368 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑋𝐸𝑌 ∈ (𝐼𝑄))) → (𝑋 ∘ (2nd𝑌)) ∈ 𝐸)
4924, 48eqeltrd 2825 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑋𝐸𝑌 ∈ (𝐼𝑄))) → (( I ‘𝑋) ∘ (2nd𝑌)) ∈ 𝐸)
50 fvex 6909 . . . . 5 (𝑋‘(1st𝑌)) ∈ V
51 fvex 6909 . . . . . 6 ( I ‘𝑋) ∈ V
52 fvex 6909 . . . . . 6 (2nd𝑌) ∈ V
5351, 52coex 7938 . . . . 5 (( I ‘𝑋) ∘ (2nd𝑌)) ∈ V
543, 4, 5, 27, 10, 11, 6, 50, 53dicopelval 40780 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) → (⟨(𝑋‘(1st𝑌)), (( I ‘𝑋) ∘ (2nd𝑌))⟩ ∈ (𝐼𝑄) ↔ ((𝑋‘(1st𝑌)) = ((( I ‘𝑋) ∘ (2nd𝑌))‘(𝑔 ∈ ((LTrn‘𝐾)‘𝑊)(𝑔‘((oc‘𝐾)‘𝑊)) = 𝑄)) ∧ (( I ‘𝑋) ∘ (2nd𝑌)) ∈ 𝐸)))
55543adant3 1129 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑋𝐸𝑌 ∈ (𝐼𝑄))) → (⟨(𝑋‘(1st𝑌)), (( I ‘𝑋) ∘ (2nd𝑌))⟩ ∈ (𝐼𝑄) ↔ ((𝑋‘(1st𝑌)) = ((( I ‘𝑋) ∘ (2nd𝑌))‘(𝑔 ∈ ((LTrn‘𝐾)‘𝑊)(𝑔‘((oc‘𝐾)‘𝑊)) = 𝑄)) ∧ (( I ‘𝑋) ∘ (2nd𝑌)) ∈ 𝐸)))
5646, 49, 55mpbir2and 711 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑋𝐸𝑌 ∈ (𝐼𝑄))) → ⟨(𝑋‘(1st𝑌)), (( I ‘𝑋) ∘ (2nd𝑌))⟩ ∈ (𝐼𝑄))
5726, 56eqeltrd 2825 1 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑋𝐸𝑌 ∈ (𝐼𝑄))) → (𝑋 · 𝑌) ∈ (𝐼𝑄))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 394  w3a 1084   = wceq 1533  wcel 2098  wss 3944  cop 4636   class class class wbr 5149   I cid 5575   × cxp 5676  ccom 5682  wf 6545  cfv 6549  crio 7374  (class class class)co 7419  1st c1st 7992  2nd c2nd 7993  Basecbs 17183   ·𝑠 cvsca 17240  lecple 17243  occoc 17244  Atomscatm 38865  HLchlt 38952  LHypclh 39587  LTrncltrn 39704  TEndoctendo 40355  DVecHcdvh 40681  DIsoCcdic 40775
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-rep 5286  ax-sep 5300  ax-nul 5307  ax-pow 5365  ax-pr 5429  ax-un 7741  ax-cnex 11196  ax-resscn 11197  ax-1cn 11198  ax-icn 11199  ax-addcl 11200  ax-addrcl 11201  ax-mulcl 11202  ax-mulrcl 11203  ax-mulcom 11204  ax-addass 11205  ax-mulass 11206  ax-distr 11207  ax-i2m1 11208  ax-1ne0 11209  ax-1rid 11210  ax-rnegex 11211  ax-rrecex 11212  ax-cnre 11213  ax-pre-lttri 11214  ax-pre-lttrn 11215  ax-pre-ltadd 11216  ax-pre-mulgt0 11217  ax-riotaBAD 38555
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2930  df-nel 3036  df-ral 3051  df-rex 3060  df-rmo 3363  df-reu 3364  df-rab 3419  df-v 3463  df-sbc 3774  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-pss 3964  df-nul 4323  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-tp 4635  df-op 4637  df-uni 4910  df-iun 4999  df-iin 5000  df-br 5150  df-opab 5212  df-mpt 5233  df-tr 5267  df-id 5576  df-eprel 5582  df-po 5590  df-so 5591  df-fr 5633  df-we 5635  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-dm 5688  df-rn 5689  df-res 5690  df-ima 5691  df-pred 6307  df-ord 6374  df-on 6375  df-lim 6376  df-suc 6377  df-iota 6501  df-fun 6551  df-fn 6552  df-f 6553  df-f1 6554  df-fo 6555  df-f1o 6556  df-fv 6557  df-riota 7375  df-ov 7422  df-oprab 7423  df-mpo 7424  df-om 7872  df-1st 7994  df-2nd 7995  df-undef 8279  df-frecs 8287  df-wrecs 8318  df-recs 8392  df-rdg 8431  df-1o 8487  df-er 8725  df-map 8847  df-en 8965  df-dom 8966  df-sdom 8967  df-fin 8968  df-pnf 11282  df-mnf 11283  df-xr 11284  df-ltxr 11285  df-le 11286  df-sub 11478  df-neg 11479  df-nn 12246  df-2 12308  df-3 12309  df-4 12310  df-5 12311  df-6 12312  df-n0 12506  df-z 12592  df-uz 12856  df-fz 13520  df-struct 17119  df-slot 17154  df-ndx 17166  df-base 17184  df-plusg 17249  df-sca 17252  df-vsca 17253  df-proset 18290  df-poset 18308  df-plt 18325  df-lub 18341  df-glb 18342  df-join 18343  df-meet 18344  df-p0 18420  df-p1 18421  df-lat 18427  df-clat 18494  df-oposet 38778  df-ol 38780  df-oml 38781  df-covers 38868  df-ats 38869  df-atl 38900  df-cvlat 38924  df-hlat 38953  df-llines 39101  df-lplanes 39102  df-lvols 39103  df-lines 39104  df-psubsp 39106  df-pmap 39107  df-padd 39399  df-lhyp 39591  df-laut 39592  df-ldil 39707  df-ltrn 39708  df-trl 39762  df-tendo 40358  df-dvech 40682  df-dic 40776
This theorem is referenced by:  diclss  40796
  Copyright terms: Public domain W3C validator