Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dicvscacl Structured version   Visualization version   GIF version

Theorem dicvscacl 38486
Description: Membership in value of the partial isomorphism C is closed under scalar product. (Contributed by NM, 16-Feb-2014.) (Revised by Mario Carneiro, 24-Jun-2014.)
Hypotheses
Ref Expression
dicvscacl.l = (le‘𝐾)
dicvscacl.a 𝐴 = (Atoms‘𝐾)
dicvscacl.h 𝐻 = (LHyp‘𝐾)
dicvscacl.e 𝐸 = ((TEndo‘𝐾)‘𝑊)
dicvscacl.u 𝑈 = ((DVecH‘𝐾)‘𝑊)
dicvscacl.i 𝐼 = ((DIsoC‘𝐾)‘𝑊)
dicvscacl.s · = ( ·𝑠𝑈)
Assertion
Ref Expression
dicvscacl (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑋𝐸𝑌 ∈ (𝐼𝑄))) → (𝑋 · 𝑌) ∈ (𝐼𝑄))

Proof of Theorem dicvscacl
Dummy variable 𝑔 is distinct from all other variables.
StepHypRef Expression
1 simp1 1133 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑋𝐸𝑌 ∈ (𝐼𝑄))) → (𝐾 ∈ HL ∧ 𝑊𝐻))
2 simp3l 1198 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑋𝐸𝑌 ∈ (𝐼𝑄))) → 𝑋𝐸)
3 dicvscacl.l . . . . . . . 8 = (le‘𝐾)
4 dicvscacl.a . . . . . . . 8 𝐴 = (Atoms‘𝐾)
5 dicvscacl.h . . . . . . . 8 𝐻 = (LHyp‘𝐾)
6 dicvscacl.i . . . . . . . 8 𝐼 = ((DIsoC‘𝐾)‘𝑊)
7 dicvscacl.u . . . . . . . 8 𝑈 = ((DVecH‘𝐾)‘𝑊)
8 eqid 2801 . . . . . . . 8 (Base‘𝑈) = (Base‘𝑈)
93, 4, 5, 6, 7, 8dicssdvh 38481 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) → (𝐼𝑄) ⊆ (Base‘𝑈))
10 eqid 2801 . . . . . . . . . 10 ((LTrn‘𝐾)‘𝑊) = ((LTrn‘𝐾)‘𝑊)
11 dicvscacl.e . . . . . . . . . 10 𝐸 = ((TEndo‘𝐾)‘𝑊)
125, 10, 11, 7, 8dvhvbase 38382 . . . . . . . . 9 ((𝐾 ∈ HL ∧ 𝑊𝐻) → (Base‘𝑈) = (((LTrn‘𝐾)‘𝑊) × 𝐸))
1312eqcomd 2807 . . . . . . . 8 ((𝐾 ∈ HL ∧ 𝑊𝐻) → (((LTrn‘𝐾)‘𝑊) × 𝐸) = (Base‘𝑈))
1413adantr 484 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) → (((LTrn‘𝐾)‘𝑊) × 𝐸) = (Base‘𝑈))
159, 14sseqtrrd 3959 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) → (𝐼𝑄) ⊆ (((LTrn‘𝐾)‘𝑊) × 𝐸))
16153adant3 1129 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑋𝐸𝑌 ∈ (𝐼𝑄))) → (𝐼𝑄) ⊆ (((LTrn‘𝐾)‘𝑊) × 𝐸))
17 simp3r 1199 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑋𝐸𝑌 ∈ (𝐼𝑄))) → 𝑌 ∈ (𝐼𝑄))
1816, 17sseldd 3919 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑋𝐸𝑌 ∈ (𝐼𝑄))) → 𝑌 ∈ (((LTrn‘𝐾)‘𝑊) × 𝐸))
19 dicvscacl.s . . . . 5 · = ( ·𝑠𝑈)
205, 10, 11, 7, 19dvhvsca 38396 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐸𝑌 ∈ (((LTrn‘𝐾)‘𝑊) × 𝐸))) → (𝑋 · 𝑌) = ⟨(𝑋‘(1st𝑌)), (𝑋 ∘ (2nd𝑌))⟩)
211, 2, 18, 20syl12anc 835 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑋𝐸𝑌 ∈ (𝐼𝑄))) → (𝑋 · 𝑌) = ⟨(𝑋‘(1st𝑌)), (𝑋 ∘ (2nd𝑌))⟩)
22 fvi 6719 . . . . . 6 (𝑋𝐸 → ( I ‘𝑋) = 𝑋)
232, 22syl 17 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑋𝐸𝑌 ∈ (𝐼𝑄))) → ( I ‘𝑋) = 𝑋)
2423coeq1d 5700 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑋𝐸𝑌 ∈ (𝐼𝑄))) → (( I ‘𝑋) ∘ (2nd𝑌)) = (𝑋 ∘ (2nd𝑌)))
2524opeq2d 4775 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑋𝐸𝑌 ∈ (𝐼𝑄))) → ⟨(𝑋‘(1st𝑌)), (( I ‘𝑋) ∘ (2nd𝑌))⟩ = ⟨(𝑋‘(1st𝑌)), (𝑋 ∘ (2nd𝑌))⟩)
2621, 25eqtr4d 2839 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑋𝐸𝑌 ∈ (𝐼𝑄))) → (𝑋 · 𝑌) = ⟨(𝑋‘(1st𝑌)), (( I ‘𝑋) ∘ (2nd𝑌))⟩)
27 eqid 2801 . . . . . . . 8 ((oc‘𝐾)‘𝑊) = ((oc‘𝐾)‘𝑊)
283, 4, 5, 27, 10, 6dicelval1sta 38482 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝑌 ∈ (𝐼𝑄)) → (1st𝑌) = ((2nd𝑌)‘(𝑔 ∈ ((LTrn‘𝐾)‘𝑊)(𝑔‘((oc‘𝐾)‘𝑊)) = 𝑄)))
29283adant3l 1177 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑋𝐸𝑌 ∈ (𝐼𝑄))) → (1st𝑌) = ((2nd𝑌)‘(𝑔 ∈ ((LTrn‘𝐾)‘𝑊)(𝑔‘((oc‘𝐾)‘𝑊)) = 𝑄)))
3029fveq2d 6653 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑋𝐸𝑌 ∈ (𝐼𝑄))) → (𝑋‘(1st𝑌)) = (𝑋‘((2nd𝑌)‘(𝑔 ∈ ((LTrn‘𝐾)‘𝑊)(𝑔‘((oc‘𝐾)‘𝑊)) = 𝑄))))
313, 4, 5, 11, 6dicelval2nd 38484 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝑌 ∈ (𝐼𝑄)) → (2nd𝑌) ∈ 𝐸)
32313adant3l 1177 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑋𝐸𝑌 ∈ (𝐼𝑄))) → (2nd𝑌) ∈ 𝐸)
335, 10, 11tendof 38058 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (2nd𝑌) ∈ 𝐸) → (2nd𝑌):((LTrn‘𝐾)‘𝑊)⟶((LTrn‘𝐾)‘𝑊))
341, 32, 33syl2anc 587 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑋𝐸𝑌 ∈ (𝐼𝑄))) → (2nd𝑌):((LTrn‘𝐾)‘𝑊)⟶((LTrn‘𝐾)‘𝑊))
35 eqid 2801 . . . . . . . . 9 (oc‘𝐾) = (oc‘𝐾)
363, 35, 4, 5lhpocnel 37313 . . . . . . . 8 ((𝐾 ∈ HL ∧ 𝑊𝐻) → (((oc‘𝐾)‘𝑊) ∈ 𝐴 ∧ ¬ ((oc‘𝐾)‘𝑊) 𝑊))
37363ad2ant1 1130 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑋𝐸𝑌 ∈ (𝐼𝑄))) → (((oc‘𝐾)‘𝑊) ∈ 𝐴 ∧ ¬ ((oc‘𝐾)‘𝑊) 𝑊))
38 simp2 1134 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑋𝐸𝑌 ∈ (𝐼𝑄))) → (𝑄𝐴 ∧ ¬ 𝑄 𝑊))
39 eqid 2801 . . . . . . . 8 (𝑔 ∈ ((LTrn‘𝐾)‘𝑊)(𝑔‘((oc‘𝐾)‘𝑊)) = 𝑄) = (𝑔 ∈ ((LTrn‘𝐾)‘𝑊)(𝑔‘((oc‘𝐾)‘𝑊)) = 𝑄)
403, 4, 5, 10, 39ltrniotacl 37874 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (((oc‘𝐾)‘𝑊) ∈ 𝐴 ∧ ¬ ((oc‘𝐾)‘𝑊) 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) → (𝑔 ∈ ((LTrn‘𝐾)‘𝑊)(𝑔‘((oc‘𝐾)‘𝑊)) = 𝑄) ∈ ((LTrn‘𝐾)‘𝑊))
411, 37, 38, 40syl3anc 1368 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑋𝐸𝑌 ∈ (𝐼𝑄))) → (𝑔 ∈ ((LTrn‘𝐾)‘𝑊)(𝑔‘((oc‘𝐾)‘𝑊)) = 𝑄) ∈ ((LTrn‘𝐾)‘𝑊))
42 fvco3 6741 . . . . . 6 (((2nd𝑌):((LTrn‘𝐾)‘𝑊)⟶((LTrn‘𝐾)‘𝑊) ∧ (𝑔 ∈ ((LTrn‘𝐾)‘𝑊)(𝑔‘((oc‘𝐾)‘𝑊)) = 𝑄) ∈ ((LTrn‘𝐾)‘𝑊)) → ((𝑋 ∘ (2nd𝑌))‘(𝑔 ∈ ((LTrn‘𝐾)‘𝑊)(𝑔‘((oc‘𝐾)‘𝑊)) = 𝑄)) = (𝑋‘((2nd𝑌)‘(𝑔 ∈ ((LTrn‘𝐾)‘𝑊)(𝑔‘((oc‘𝐾)‘𝑊)) = 𝑄))))
4334, 41, 42syl2anc 587 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑋𝐸𝑌 ∈ (𝐼𝑄))) → ((𝑋 ∘ (2nd𝑌))‘(𝑔 ∈ ((LTrn‘𝐾)‘𝑊)(𝑔‘((oc‘𝐾)‘𝑊)) = 𝑄)) = (𝑋‘((2nd𝑌)‘(𝑔 ∈ ((LTrn‘𝐾)‘𝑊)(𝑔‘((oc‘𝐾)‘𝑊)) = 𝑄))))
4430, 43eqtr4d 2839 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑋𝐸𝑌 ∈ (𝐼𝑄))) → (𝑋‘(1st𝑌)) = ((𝑋 ∘ (2nd𝑌))‘(𝑔 ∈ ((LTrn‘𝐾)‘𝑊)(𝑔‘((oc‘𝐾)‘𝑊)) = 𝑄)))
4524fveq1d 6651 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑋𝐸𝑌 ∈ (𝐼𝑄))) → ((( I ‘𝑋) ∘ (2nd𝑌))‘(𝑔 ∈ ((LTrn‘𝐾)‘𝑊)(𝑔‘((oc‘𝐾)‘𝑊)) = 𝑄)) = ((𝑋 ∘ (2nd𝑌))‘(𝑔 ∈ ((LTrn‘𝐾)‘𝑊)(𝑔‘((oc‘𝐾)‘𝑊)) = 𝑄)))
4644, 45eqtr4d 2839 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑋𝐸𝑌 ∈ (𝐼𝑄))) → (𝑋‘(1st𝑌)) = ((( I ‘𝑋) ∘ (2nd𝑌))‘(𝑔 ∈ ((LTrn‘𝐾)‘𝑊)(𝑔‘((oc‘𝐾)‘𝑊)) = 𝑄)))
475, 11tendococl 38067 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋𝐸 ∧ (2nd𝑌) ∈ 𝐸) → (𝑋 ∘ (2nd𝑌)) ∈ 𝐸)
481, 2, 32, 47syl3anc 1368 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑋𝐸𝑌 ∈ (𝐼𝑄))) → (𝑋 ∘ (2nd𝑌)) ∈ 𝐸)
4924, 48eqeltrd 2893 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑋𝐸𝑌 ∈ (𝐼𝑄))) → (( I ‘𝑋) ∘ (2nd𝑌)) ∈ 𝐸)
50 fvex 6662 . . . . 5 (𝑋‘(1st𝑌)) ∈ V
51 fvex 6662 . . . . . 6 ( I ‘𝑋) ∈ V
52 fvex 6662 . . . . . 6 (2nd𝑌) ∈ V
5351, 52coex 7621 . . . . 5 (( I ‘𝑋) ∘ (2nd𝑌)) ∈ V
543, 4, 5, 27, 10, 11, 6, 50, 53dicopelval 38472 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) → (⟨(𝑋‘(1st𝑌)), (( I ‘𝑋) ∘ (2nd𝑌))⟩ ∈ (𝐼𝑄) ↔ ((𝑋‘(1st𝑌)) = ((( I ‘𝑋) ∘ (2nd𝑌))‘(𝑔 ∈ ((LTrn‘𝐾)‘𝑊)(𝑔‘((oc‘𝐾)‘𝑊)) = 𝑄)) ∧ (( I ‘𝑋) ∘ (2nd𝑌)) ∈ 𝐸)))
55543adant3 1129 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑋𝐸𝑌 ∈ (𝐼𝑄))) → (⟨(𝑋‘(1st𝑌)), (( I ‘𝑋) ∘ (2nd𝑌))⟩ ∈ (𝐼𝑄) ↔ ((𝑋‘(1st𝑌)) = ((( I ‘𝑋) ∘ (2nd𝑌))‘(𝑔 ∈ ((LTrn‘𝐾)‘𝑊)(𝑔‘((oc‘𝐾)‘𝑊)) = 𝑄)) ∧ (( I ‘𝑋) ∘ (2nd𝑌)) ∈ 𝐸)))
5646, 49, 55mpbir2and 712 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑋𝐸𝑌 ∈ (𝐼𝑄))) → ⟨(𝑋‘(1st𝑌)), (( I ‘𝑋) ∘ (2nd𝑌))⟩ ∈ (𝐼𝑄))
5726, 56eqeltrd 2893 1 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑋𝐸𝑌 ∈ (𝐼𝑄))) → (𝑋 · 𝑌) ∈ (𝐼𝑄))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 209  wa 399  w3a 1084   = wceq 1538  wcel 2112  wss 3884  cop 4534   class class class wbr 5033   I cid 5427   × cxp 5521  ccom 5527  wf 6324  cfv 6328  crio 7096  (class class class)co 7139  1st c1st 7673  2nd c2nd 7674  Basecbs 16479   ·𝑠 cvsca 16565  lecple 16568  occoc 16569  Atomscatm 36558  HLchlt 36645  LHypclh 37279  LTrncltrn 37396  TEndoctendo 38047  DVecHcdvh 38373  DIsoCcdic 38467
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2159  ax-12 2176  ax-ext 2773  ax-rep 5157  ax-sep 5170  ax-nul 5177  ax-pow 5234  ax-pr 5298  ax-un 7445  ax-cnex 10586  ax-resscn 10587  ax-1cn 10588  ax-icn 10589  ax-addcl 10590  ax-addrcl 10591  ax-mulcl 10592  ax-mulrcl 10593  ax-mulcom 10594  ax-addass 10595  ax-mulass 10596  ax-distr 10597  ax-i2m1 10598  ax-1ne0 10599  ax-1rid 10600  ax-rnegex 10601  ax-rrecex 10602  ax-cnre 10603  ax-pre-lttri 10604  ax-pre-lttrn 10605  ax-pre-ltadd 10606  ax-pre-mulgt0 10607  ax-riotaBAD 36248
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2601  df-eu 2632  df-clab 2780  df-cleq 2794  df-clel 2873  df-nfc 2941  df-ne 2991  df-nel 3095  df-ral 3114  df-rex 3115  df-reu 3116  df-rmo 3117  df-rab 3118  df-v 3446  df-sbc 3724  df-csb 3832  df-dif 3887  df-un 3889  df-in 3891  df-ss 3901  df-pss 3903  df-nul 4247  df-if 4429  df-pw 4502  df-sn 4529  df-pr 4531  df-tp 4533  df-op 4535  df-uni 4804  df-int 4842  df-iun 4886  df-iin 4887  df-br 5034  df-opab 5096  df-mpt 5114  df-tr 5140  df-id 5428  df-eprel 5433  df-po 5442  df-so 5443  df-fr 5482  df-we 5484  df-xp 5529  df-rel 5530  df-cnv 5531  df-co 5532  df-dm 5533  df-rn 5534  df-res 5535  df-ima 5536  df-pred 6120  df-ord 6166  df-on 6167  df-lim 6168  df-suc 6169  df-iota 6287  df-fun 6330  df-fn 6331  df-f 6332  df-f1 6333  df-fo 6334  df-f1o 6335  df-fv 6336  df-riota 7097  df-ov 7142  df-oprab 7143  df-mpo 7144  df-om 7565  df-1st 7675  df-2nd 7676  df-undef 7926  df-wrecs 7934  df-recs 7995  df-rdg 8033  df-1o 8089  df-oadd 8093  df-er 8276  df-map 8395  df-en 8497  df-dom 8498  df-sdom 8499  df-fin 8500  df-pnf 10670  df-mnf 10671  df-xr 10672  df-ltxr 10673  df-le 10674  df-sub 10865  df-neg 10866  df-nn 11630  df-2 11692  df-3 11693  df-4 11694  df-5 11695  df-6 11696  df-n0 11890  df-z 11974  df-uz 12236  df-fz 12890  df-struct 16481  df-ndx 16482  df-slot 16483  df-base 16485  df-plusg 16574  df-sca 16577  df-vsca 16578  df-proset 17534  df-poset 17552  df-plt 17564  df-lub 17580  df-glb 17581  df-join 17582  df-meet 17583  df-p0 17645  df-p1 17646  df-lat 17652  df-clat 17714  df-oposet 36471  df-ol 36473  df-oml 36474  df-covers 36561  df-ats 36562  df-atl 36593  df-cvlat 36617  df-hlat 36646  df-llines 36793  df-lplanes 36794  df-lvols 36795  df-lines 36796  df-psubsp 36798  df-pmap 36799  df-padd 37091  df-lhyp 37283  df-laut 37284  df-ldil 37399  df-ltrn 37400  df-trl 37454  df-tendo 38050  df-dvech 38374  df-dic 38468
This theorem is referenced by:  diclss  38488
  Copyright terms: Public domain W3C validator