Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dicvscacl Structured version   Visualization version   GIF version

Theorem dicvscacl 39760
Description: Membership in value of the partial isomorphism C is closed under scalar product. (Contributed by NM, 16-Feb-2014.) (Revised by Mario Carneiro, 24-Jun-2014.)
Hypotheses
Ref Expression
dicvscacl.l ≀ = (leβ€˜πΎ)
dicvscacl.a 𝐴 = (Atomsβ€˜πΎ)
dicvscacl.h 𝐻 = (LHypβ€˜πΎ)
dicvscacl.e 𝐸 = ((TEndoβ€˜πΎ)β€˜π‘Š)
dicvscacl.u π‘ˆ = ((DVecHβ€˜πΎ)β€˜π‘Š)
dicvscacl.i 𝐼 = ((DIsoCβ€˜πΎ)β€˜π‘Š)
dicvscacl.s Β· = ( ·𝑠 β€˜π‘ˆ)
Assertion
Ref Expression
dicvscacl (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ (𝑋 ∈ 𝐸 ∧ π‘Œ ∈ (πΌβ€˜π‘„))) β†’ (𝑋 Β· π‘Œ) ∈ (πΌβ€˜π‘„))

Proof of Theorem dicvscacl
Dummy variable 𝑔 is distinct from all other variables.
StepHypRef Expression
1 simp1 1136 . . . 4 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ (𝑋 ∈ 𝐸 ∧ π‘Œ ∈ (πΌβ€˜π‘„))) β†’ (𝐾 ∈ HL ∧ π‘Š ∈ 𝐻))
2 simp3l 1201 . . . 4 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ (𝑋 ∈ 𝐸 ∧ π‘Œ ∈ (πΌβ€˜π‘„))) β†’ 𝑋 ∈ 𝐸)
3 dicvscacl.l . . . . . . . 8 ≀ = (leβ€˜πΎ)
4 dicvscacl.a . . . . . . . 8 𝐴 = (Atomsβ€˜πΎ)
5 dicvscacl.h . . . . . . . 8 𝐻 = (LHypβ€˜πΎ)
6 dicvscacl.i . . . . . . . 8 𝐼 = ((DIsoCβ€˜πΎ)β€˜π‘Š)
7 dicvscacl.u . . . . . . . 8 π‘ˆ = ((DVecHβ€˜πΎ)β€˜π‘Š)
8 eqid 2731 . . . . . . . 8 (Baseβ€˜π‘ˆ) = (Baseβ€˜π‘ˆ)
93, 4, 5, 6, 7, 8dicssdvh 39755 . . . . . . 7 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) β†’ (πΌβ€˜π‘„) βŠ† (Baseβ€˜π‘ˆ))
10 eqid 2731 . . . . . . . . . 10 ((LTrnβ€˜πΎ)β€˜π‘Š) = ((LTrnβ€˜πΎ)β€˜π‘Š)
11 dicvscacl.e . . . . . . . . . 10 𝐸 = ((TEndoβ€˜πΎ)β€˜π‘Š)
125, 10, 11, 7, 8dvhvbase 39656 . . . . . . . . 9 ((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) β†’ (Baseβ€˜π‘ˆ) = (((LTrnβ€˜πΎ)β€˜π‘Š) Γ— 𝐸))
1312eqcomd 2737 . . . . . . . 8 ((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) β†’ (((LTrnβ€˜πΎ)β€˜π‘Š) Γ— 𝐸) = (Baseβ€˜π‘ˆ))
1413adantr 481 . . . . . . 7 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) β†’ (((LTrnβ€˜πΎ)β€˜π‘Š) Γ— 𝐸) = (Baseβ€˜π‘ˆ))
159, 14sseqtrrd 4003 . . . . . 6 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) β†’ (πΌβ€˜π‘„) βŠ† (((LTrnβ€˜πΎ)β€˜π‘Š) Γ— 𝐸))
16153adant3 1132 . . . . 5 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ (𝑋 ∈ 𝐸 ∧ π‘Œ ∈ (πΌβ€˜π‘„))) β†’ (πΌβ€˜π‘„) βŠ† (((LTrnβ€˜πΎ)β€˜π‘Š) Γ— 𝐸))
17 simp3r 1202 . . . . 5 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ (𝑋 ∈ 𝐸 ∧ π‘Œ ∈ (πΌβ€˜π‘„))) β†’ π‘Œ ∈ (πΌβ€˜π‘„))
1816, 17sseldd 3963 . . . 4 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ (𝑋 ∈ 𝐸 ∧ π‘Œ ∈ (πΌβ€˜π‘„))) β†’ π‘Œ ∈ (((LTrnβ€˜πΎ)β€˜π‘Š) Γ— 𝐸))
19 dicvscacl.s . . . . 5 Β· = ( ·𝑠 β€˜π‘ˆ)
205, 10, 11, 7, 19dvhvsca 39670 . . . 4 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑋 ∈ 𝐸 ∧ π‘Œ ∈ (((LTrnβ€˜πΎ)β€˜π‘Š) Γ— 𝐸))) β†’ (𝑋 Β· π‘Œ) = ⟨(π‘‹β€˜(1st β€˜π‘Œ)), (𝑋 ∘ (2nd β€˜π‘Œ))⟩)
211, 2, 18, 20syl12anc 835 . . 3 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ (𝑋 ∈ 𝐸 ∧ π‘Œ ∈ (πΌβ€˜π‘„))) β†’ (𝑋 Β· π‘Œ) = ⟨(π‘‹β€˜(1st β€˜π‘Œ)), (𝑋 ∘ (2nd β€˜π‘Œ))⟩)
22 fvi 6937 . . . . . 6 (𝑋 ∈ 𝐸 β†’ ( I β€˜π‘‹) = 𝑋)
232, 22syl 17 . . . . 5 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ (𝑋 ∈ 𝐸 ∧ π‘Œ ∈ (πΌβ€˜π‘„))) β†’ ( I β€˜π‘‹) = 𝑋)
2423coeq1d 5837 . . . 4 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ (𝑋 ∈ 𝐸 ∧ π‘Œ ∈ (πΌβ€˜π‘„))) β†’ (( I β€˜π‘‹) ∘ (2nd β€˜π‘Œ)) = (𝑋 ∘ (2nd β€˜π‘Œ)))
2524opeq2d 4857 . . 3 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ (𝑋 ∈ 𝐸 ∧ π‘Œ ∈ (πΌβ€˜π‘„))) β†’ ⟨(π‘‹β€˜(1st β€˜π‘Œ)), (( I β€˜π‘‹) ∘ (2nd β€˜π‘Œ))⟩ = ⟨(π‘‹β€˜(1st β€˜π‘Œ)), (𝑋 ∘ (2nd β€˜π‘Œ))⟩)
2621, 25eqtr4d 2774 . 2 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ (𝑋 ∈ 𝐸 ∧ π‘Œ ∈ (πΌβ€˜π‘„))) β†’ (𝑋 Β· π‘Œ) = ⟨(π‘‹β€˜(1st β€˜π‘Œ)), (( I β€˜π‘‹) ∘ (2nd β€˜π‘Œ))⟩)
27 eqid 2731 . . . . . . . 8 ((ocβ€˜πΎ)β€˜π‘Š) = ((ocβ€˜πΎ)β€˜π‘Š)
283, 4, 5, 27, 10, 6dicelval1sta 39756 . . . . . . 7 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ π‘Œ ∈ (πΌβ€˜π‘„)) β†’ (1st β€˜π‘Œ) = ((2nd β€˜π‘Œ)β€˜(℩𝑔 ∈ ((LTrnβ€˜πΎ)β€˜π‘Š)(π‘”β€˜((ocβ€˜πΎ)β€˜π‘Š)) = 𝑄)))
29283adant3l 1180 . . . . . 6 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ (𝑋 ∈ 𝐸 ∧ π‘Œ ∈ (πΌβ€˜π‘„))) β†’ (1st β€˜π‘Œ) = ((2nd β€˜π‘Œ)β€˜(℩𝑔 ∈ ((LTrnβ€˜πΎ)β€˜π‘Š)(π‘”β€˜((ocβ€˜πΎ)β€˜π‘Š)) = 𝑄)))
3029fveq2d 6866 . . . . 5 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ (𝑋 ∈ 𝐸 ∧ π‘Œ ∈ (πΌβ€˜π‘„))) β†’ (π‘‹β€˜(1st β€˜π‘Œ)) = (π‘‹β€˜((2nd β€˜π‘Œ)β€˜(℩𝑔 ∈ ((LTrnβ€˜πΎ)β€˜π‘Š)(π‘”β€˜((ocβ€˜πΎ)β€˜π‘Š)) = 𝑄))))
313, 4, 5, 11, 6dicelval2nd 39758 . . . . . . . 8 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ π‘Œ ∈ (πΌβ€˜π‘„)) β†’ (2nd β€˜π‘Œ) ∈ 𝐸)
32313adant3l 1180 . . . . . . 7 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ (𝑋 ∈ 𝐸 ∧ π‘Œ ∈ (πΌβ€˜π‘„))) β†’ (2nd β€˜π‘Œ) ∈ 𝐸)
335, 10, 11tendof 39332 . . . . . . 7 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (2nd β€˜π‘Œ) ∈ 𝐸) β†’ (2nd β€˜π‘Œ):((LTrnβ€˜πΎ)β€˜π‘Š)⟢((LTrnβ€˜πΎ)β€˜π‘Š))
341, 32, 33syl2anc 584 . . . . . 6 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ (𝑋 ∈ 𝐸 ∧ π‘Œ ∈ (πΌβ€˜π‘„))) β†’ (2nd β€˜π‘Œ):((LTrnβ€˜πΎ)β€˜π‘Š)⟢((LTrnβ€˜πΎ)β€˜π‘Š))
35 eqid 2731 . . . . . . . . 9 (ocβ€˜πΎ) = (ocβ€˜πΎ)
363, 35, 4, 5lhpocnel 38587 . . . . . . . 8 ((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) β†’ (((ocβ€˜πΎ)β€˜π‘Š) ∈ 𝐴 ∧ Β¬ ((ocβ€˜πΎ)β€˜π‘Š) ≀ π‘Š))
37363ad2ant1 1133 . . . . . . 7 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ (𝑋 ∈ 𝐸 ∧ π‘Œ ∈ (πΌβ€˜π‘„))) β†’ (((ocβ€˜πΎ)β€˜π‘Š) ∈ 𝐴 ∧ Β¬ ((ocβ€˜πΎ)β€˜π‘Š) ≀ π‘Š))
38 simp2 1137 . . . . . . 7 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ (𝑋 ∈ 𝐸 ∧ π‘Œ ∈ (πΌβ€˜π‘„))) β†’ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š))
39 eqid 2731 . . . . . . . 8 (℩𝑔 ∈ ((LTrnβ€˜πΎ)β€˜π‘Š)(π‘”β€˜((ocβ€˜πΎ)β€˜π‘Š)) = 𝑄) = (℩𝑔 ∈ ((LTrnβ€˜πΎ)β€˜π‘Š)(π‘”β€˜((ocβ€˜πΎ)β€˜π‘Š)) = 𝑄)
403, 4, 5, 10, 39ltrniotacl 39148 . . . . . . 7 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (((ocβ€˜πΎ)β€˜π‘Š) ∈ 𝐴 ∧ Β¬ ((ocβ€˜πΎ)β€˜π‘Š) ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) β†’ (℩𝑔 ∈ ((LTrnβ€˜πΎ)β€˜π‘Š)(π‘”β€˜((ocβ€˜πΎ)β€˜π‘Š)) = 𝑄) ∈ ((LTrnβ€˜πΎ)β€˜π‘Š))
411, 37, 38, 40syl3anc 1371 . . . . . 6 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ (𝑋 ∈ 𝐸 ∧ π‘Œ ∈ (πΌβ€˜π‘„))) β†’ (℩𝑔 ∈ ((LTrnβ€˜πΎ)β€˜π‘Š)(π‘”β€˜((ocβ€˜πΎ)β€˜π‘Š)) = 𝑄) ∈ ((LTrnβ€˜πΎ)β€˜π‘Š))
42 fvco3 6960 . . . . . 6 (((2nd β€˜π‘Œ):((LTrnβ€˜πΎ)β€˜π‘Š)⟢((LTrnβ€˜πΎ)β€˜π‘Š) ∧ (℩𝑔 ∈ ((LTrnβ€˜πΎ)β€˜π‘Š)(π‘”β€˜((ocβ€˜πΎ)β€˜π‘Š)) = 𝑄) ∈ ((LTrnβ€˜πΎ)β€˜π‘Š)) β†’ ((𝑋 ∘ (2nd β€˜π‘Œ))β€˜(℩𝑔 ∈ ((LTrnβ€˜πΎ)β€˜π‘Š)(π‘”β€˜((ocβ€˜πΎ)β€˜π‘Š)) = 𝑄)) = (π‘‹β€˜((2nd β€˜π‘Œ)β€˜(℩𝑔 ∈ ((LTrnβ€˜πΎ)β€˜π‘Š)(π‘”β€˜((ocβ€˜πΎ)β€˜π‘Š)) = 𝑄))))
4334, 41, 42syl2anc 584 . . . . 5 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ (𝑋 ∈ 𝐸 ∧ π‘Œ ∈ (πΌβ€˜π‘„))) β†’ ((𝑋 ∘ (2nd β€˜π‘Œ))β€˜(℩𝑔 ∈ ((LTrnβ€˜πΎ)β€˜π‘Š)(π‘”β€˜((ocβ€˜πΎ)β€˜π‘Š)) = 𝑄)) = (π‘‹β€˜((2nd β€˜π‘Œ)β€˜(℩𝑔 ∈ ((LTrnβ€˜πΎ)β€˜π‘Š)(π‘”β€˜((ocβ€˜πΎ)β€˜π‘Š)) = 𝑄))))
4430, 43eqtr4d 2774 . . . 4 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ (𝑋 ∈ 𝐸 ∧ π‘Œ ∈ (πΌβ€˜π‘„))) β†’ (π‘‹β€˜(1st β€˜π‘Œ)) = ((𝑋 ∘ (2nd β€˜π‘Œ))β€˜(℩𝑔 ∈ ((LTrnβ€˜πΎ)β€˜π‘Š)(π‘”β€˜((ocβ€˜πΎ)β€˜π‘Š)) = 𝑄)))
4524fveq1d 6864 . . . 4 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ (𝑋 ∈ 𝐸 ∧ π‘Œ ∈ (πΌβ€˜π‘„))) β†’ ((( I β€˜π‘‹) ∘ (2nd β€˜π‘Œ))β€˜(℩𝑔 ∈ ((LTrnβ€˜πΎ)β€˜π‘Š)(π‘”β€˜((ocβ€˜πΎ)β€˜π‘Š)) = 𝑄)) = ((𝑋 ∘ (2nd β€˜π‘Œ))β€˜(℩𝑔 ∈ ((LTrnβ€˜πΎ)β€˜π‘Š)(π‘”β€˜((ocβ€˜πΎ)β€˜π‘Š)) = 𝑄)))
4644, 45eqtr4d 2774 . . 3 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ (𝑋 ∈ 𝐸 ∧ π‘Œ ∈ (πΌβ€˜π‘„))) β†’ (π‘‹β€˜(1st β€˜π‘Œ)) = ((( I β€˜π‘‹) ∘ (2nd β€˜π‘Œ))β€˜(℩𝑔 ∈ ((LTrnβ€˜πΎ)β€˜π‘Š)(π‘”β€˜((ocβ€˜πΎ)β€˜π‘Š)) = 𝑄)))
475, 11tendococl 39341 . . . . 5 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝑋 ∈ 𝐸 ∧ (2nd β€˜π‘Œ) ∈ 𝐸) β†’ (𝑋 ∘ (2nd β€˜π‘Œ)) ∈ 𝐸)
481, 2, 32, 47syl3anc 1371 . . . 4 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ (𝑋 ∈ 𝐸 ∧ π‘Œ ∈ (πΌβ€˜π‘„))) β†’ (𝑋 ∘ (2nd β€˜π‘Œ)) ∈ 𝐸)
4924, 48eqeltrd 2832 . . 3 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ (𝑋 ∈ 𝐸 ∧ π‘Œ ∈ (πΌβ€˜π‘„))) β†’ (( I β€˜π‘‹) ∘ (2nd β€˜π‘Œ)) ∈ 𝐸)
50 fvex 6875 . . . . 5 (π‘‹β€˜(1st β€˜π‘Œ)) ∈ V
51 fvex 6875 . . . . . 6 ( I β€˜π‘‹) ∈ V
52 fvex 6875 . . . . . 6 (2nd β€˜π‘Œ) ∈ V
5351, 52coex 7887 . . . . 5 (( I β€˜π‘‹) ∘ (2nd β€˜π‘Œ)) ∈ V
543, 4, 5, 27, 10, 11, 6, 50, 53dicopelval 39746 . . . 4 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) β†’ (⟨(π‘‹β€˜(1st β€˜π‘Œ)), (( I β€˜π‘‹) ∘ (2nd β€˜π‘Œ))⟩ ∈ (πΌβ€˜π‘„) ↔ ((π‘‹β€˜(1st β€˜π‘Œ)) = ((( I β€˜π‘‹) ∘ (2nd β€˜π‘Œ))β€˜(℩𝑔 ∈ ((LTrnβ€˜πΎ)β€˜π‘Š)(π‘”β€˜((ocβ€˜πΎ)β€˜π‘Š)) = 𝑄)) ∧ (( I β€˜π‘‹) ∘ (2nd β€˜π‘Œ)) ∈ 𝐸)))
55543adant3 1132 . . 3 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ (𝑋 ∈ 𝐸 ∧ π‘Œ ∈ (πΌβ€˜π‘„))) β†’ (⟨(π‘‹β€˜(1st β€˜π‘Œ)), (( I β€˜π‘‹) ∘ (2nd β€˜π‘Œ))⟩ ∈ (πΌβ€˜π‘„) ↔ ((π‘‹β€˜(1st β€˜π‘Œ)) = ((( I β€˜π‘‹) ∘ (2nd β€˜π‘Œ))β€˜(℩𝑔 ∈ ((LTrnβ€˜πΎ)β€˜π‘Š)(π‘”β€˜((ocβ€˜πΎ)β€˜π‘Š)) = 𝑄)) ∧ (( I β€˜π‘‹) ∘ (2nd β€˜π‘Œ)) ∈ 𝐸)))
5646, 49, 55mpbir2and 711 . 2 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ (𝑋 ∈ 𝐸 ∧ π‘Œ ∈ (πΌβ€˜π‘„))) β†’ ⟨(π‘‹β€˜(1st β€˜π‘Œ)), (( I β€˜π‘‹) ∘ (2nd β€˜π‘Œ))⟩ ∈ (πΌβ€˜π‘„))
5726, 56eqeltrd 2832 1 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ (𝑋 ∈ 𝐸 ∧ π‘Œ ∈ (πΌβ€˜π‘„))) β†’ (𝑋 Β· π‘Œ) ∈ (πΌβ€˜π‘„))
Colors of variables: wff setvar class
Syntax hints:  Β¬ wn 3   β†’ wi 4   ↔ wb 205   ∧ wa 396   ∧ w3a 1087   = wceq 1541   ∈ wcel 2106   βŠ† wss 3928  βŸ¨cop 4612   class class class wbr 5125   I cid 5550   Γ— cxp 5651   ∘ ccom 5657  βŸΆwf 6512  β€˜cfv 6516  β„©crio 7332  (class class class)co 7377  1st c1st 7939  2nd c2nd 7940  Basecbs 17109   ·𝑠 cvsca 17166  lecple 17169  occoc 17170  Atomscatm 37831  HLchlt 37918  LHypclh 38553  LTrncltrn 38670  TEndoctendo 39321  DVecHcdvh 39647  DIsoCcdic 39741
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2702  ax-rep 5262  ax-sep 5276  ax-nul 5283  ax-pow 5340  ax-pr 5404  ax-un 7692  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152  ax-riotaBAD 37521
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-rmo 3364  df-reu 3365  df-rab 3419  df-v 3461  df-sbc 3758  df-csb 3874  df-dif 3931  df-un 3933  df-in 3935  df-ss 3945  df-pss 3947  df-nul 4303  df-if 4507  df-pw 4582  df-sn 4607  df-pr 4609  df-tp 4611  df-op 4613  df-uni 4886  df-iun 4976  df-iin 4977  df-br 5126  df-opab 5188  df-mpt 5209  df-tr 5243  df-id 5551  df-eprel 5557  df-po 5565  df-so 5566  df-fr 5608  df-we 5610  df-xp 5659  df-rel 5660  df-cnv 5661  df-co 5662  df-dm 5663  df-rn 5664  df-res 5665  df-ima 5666  df-pred 6273  df-ord 6340  df-on 6341  df-lim 6342  df-suc 6343  df-iota 6468  df-fun 6518  df-fn 6519  df-f 6520  df-f1 6521  df-fo 6522  df-f1o 6523  df-fv 6524  df-riota 7333  df-ov 7380  df-oprab 7381  df-mpo 7382  df-om 7823  df-1st 7941  df-2nd 7942  df-undef 8224  df-frecs 8232  df-wrecs 8263  df-recs 8337  df-rdg 8376  df-1o 8432  df-er 8670  df-map 8789  df-en 8906  df-dom 8907  df-sdom 8908  df-fin 8909  df-pnf 11215  df-mnf 11216  df-xr 11217  df-ltxr 11218  df-le 11219  df-sub 11411  df-neg 11412  df-nn 12178  df-2 12240  df-3 12241  df-4 12242  df-5 12243  df-6 12244  df-n0 12438  df-z 12524  df-uz 12788  df-fz 13450  df-struct 17045  df-slot 17080  df-ndx 17092  df-base 17110  df-plusg 17175  df-sca 17178  df-vsca 17179  df-proset 18213  df-poset 18231  df-plt 18248  df-lub 18264  df-glb 18265  df-join 18266  df-meet 18267  df-p0 18343  df-p1 18344  df-lat 18350  df-clat 18417  df-oposet 37744  df-ol 37746  df-oml 37747  df-covers 37834  df-ats 37835  df-atl 37866  df-cvlat 37890  df-hlat 37919  df-llines 38067  df-lplanes 38068  df-lvols 38069  df-lines 38070  df-psubsp 38072  df-pmap 38073  df-padd 38365  df-lhyp 38557  df-laut 38558  df-ldil 38673  df-ltrn 38674  df-trl 38728  df-tendo 39324  df-dvech 39648  df-dic 39742
This theorem is referenced by:  diclss  39762
  Copyright terms: Public domain W3C validator