Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dicvscacl Structured version   Visualization version   GIF version

Theorem dicvscacl 40365
Description: Membership in value of the partial isomorphism C is closed under scalar product. (Contributed by NM, 16-Feb-2014.) (Revised by Mario Carneiro, 24-Jun-2014.)
Hypotheses
Ref Expression
dicvscacl.l ≀ = (leβ€˜πΎ)
dicvscacl.a 𝐴 = (Atomsβ€˜πΎ)
dicvscacl.h 𝐻 = (LHypβ€˜πΎ)
dicvscacl.e 𝐸 = ((TEndoβ€˜πΎ)β€˜π‘Š)
dicvscacl.u π‘ˆ = ((DVecHβ€˜πΎ)β€˜π‘Š)
dicvscacl.i 𝐼 = ((DIsoCβ€˜πΎ)β€˜π‘Š)
dicvscacl.s Β· = ( ·𝑠 β€˜π‘ˆ)
Assertion
Ref Expression
dicvscacl (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ (𝑋 ∈ 𝐸 ∧ π‘Œ ∈ (πΌβ€˜π‘„))) β†’ (𝑋 Β· π‘Œ) ∈ (πΌβ€˜π‘„))

Proof of Theorem dicvscacl
Dummy variable 𝑔 is distinct from all other variables.
StepHypRef Expression
1 simp1 1134 . . . 4 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ (𝑋 ∈ 𝐸 ∧ π‘Œ ∈ (πΌβ€˜π‘„))) β†’ (𝐾 ∈ HL ∧ π‘Š ∈ 𝐻))
2 simp3l 1199 . . . 4 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ (𝑋 ∈ 𝐸 ∧ π‘Œ ∈ (πΌβ€˜π‘„))) β†’ 𝑋 ∈ 𝐸)
3 dicvscacl.l . . . . . . . 8 ≀ = (leβ€˜πΎ)
4 dicvscacl.a . . . . . . . 8 𝐴 = (Atomsβ€˜πΎ)
5 dicvscacl.h . . . . . . . 8 𝐻 = (LHypβ€˜πΎ)
6 dicvscacl.i . . . . . . . 8 𝐼 = ((DIsoCβ€˜πΎ)β€˜π‘Š)
7 dicvscacl.u . . . . . . . 8 π‘ˆ = ((DVecHβ€˜πΎ)β€˜π‘Š)
8 eqid 2730 . . . . . . . 8 (Baseβ€˜π‘ˆ) = (Baseβ€˜π‘ˆ)
93, 4, 5, 6, 7, 8dicssdvh 40360 . . . . . . 7 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) β†’ (πΌβ€˜π‘„) βŠ† (Baseβ€˜π‘ˆ))
10 eqid 2730 . . . . . . . . . 10 ((LTrnβ€˜πΎ)β€˜π‘Š) = ((LTrnβ€˜πΎ)β€˜π‘Š)
11 dicvscacl.e . . . . . . . . . 10 𝐸 = ((TEndoβ€˜πΎ)β€˜π‘Š)
125, 10, 11, 7, 8dvhvbase 40261 . . . . . . . . 9 ((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) β†’ (Baseβ€˜π‘ˆ) = (((LTrnβ€˜πΎ)β€˜π‘Š) Γ— 𝐸))
1312eqcomd 2736 . . . . . . . 8 ((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) β†’ (((LTrnβ€˜πΎ)β€˜π‘Š) Γ— 𝐸) = (Baseβ€˜π‘ˆ))
1413adantr 479 . . . . . . 7 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) β†’ (((LTrnβ€˜πΎ)β€˜π‘Š) Γ— 𝐸) = (Baseβ€˜π‘ˆ))
159, 14sseqtrrd 4022 . . . . . 6 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) β†’ (πΌβ€˜π‘„) βŠ† (((LTrnβ€˜πΎ)β€˜π‘Š) Γ— 𝐸))
16153adant3 1130 . . . . 5 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ (𝑋 ∈ 𝐸 ∧ π‘Œ ∈ (πΌβ€˜π‘„))) β†’ (πΌβ€˜π‘„) βŠ† (((LTrnβ€˜πΎ)β€˜π‘Š) Γ— 𝐸))
17 simp3r 1200 . . . . 5 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ (𝑋 ∈ 𝐸 ∧ π‘Œ ∈ (πΌβ€˜π‘„))) β†’ π‘Œ ∈ (πΌβ€˜π‘„))
1816, 17sseldd 3982 . . . 4 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ (𝑋 ∈ 𝐸 ∧ π‘Œ ∈ (πΌβ€˜π‘„))) β†’ π‘Œ ∈ (((LTrnβ€˜πΎ)β€˜π‘Š) Γ— 𝐸))
19 dicvscacl.s . . . . 5 Β· = ( ·𝑠 β€˜π‘ˆ)
205, 10, 11, 7, 19dvhvsca 40275 . . . 4 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑋 ∈ 𝐸 ∧ π‘Œ ∈ (((LTrnβ€˜πΎ)β€˜π‘Š) Γ— 𝐸))) β†’ (𝑋 Β· π‘Œ) = ⟨(π‘‹β€˜(1st β€˜π‘Œ)), (𝑋 ∘ (2nd β€˜π‘Œ))⟩)
211, 2, 18, 20syl12anc 833 . . 3 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ (𝑋 ∈ 𝐸 ∧ π‘Œ ∈ (πΌβ€˜π‘„))) β†’ (𝑋 Β· π‘Œ) = ⟨(π‘‹β€˜(1st β€˜π‘Œ)), (𝑋 ∘ (2nd β€˜π‘Œ))⟩)
22 fvi 6966 . . . . . 6 (𝑋 ∈ 𝐸 β†’ ( I β€˜π‘‹) = 𝑋)
232, 22syl 17 . . . . 5 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ (𝑋 ∈ 𝐸 ∧ π‘Œ ∈ (πΌβ€˜π‘„))) β†’ ( I β€˜π‘‹) = 𝑋)
2423coeq1d 5860 . . . 4 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ (𝑋 ∈ 𝐸 ∧ π‘Œ ∈ (πΌβ€˜π‘„))) β†’ (( I β€˜π‘‹) ∘ (2nd β€˜π‘Œ)) = (𝑋 ∘ (2nd β€˜π‘Œ)))
2524opeq2d 4879 . . 3 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ (𝑋 ∈ 𝐸 ∧ π‘Œ ∈ (πΌβ€˜π‘„))) β†’ ⟨(π‘‹β€˜(1st β€˜π‘Œ)), (( I β€˜π‘‹) ∘ (2nd β€˜π‘Œ))⟩ = ⟨(π‘‹β€˜(1st β€˜π‘Œ)), (𝑋 ∘ (2nd β€˜π‘Œ))⟩)
2621, 25eqtr4d 2773 . 2 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ (𝑋 ∈ 𝐸 ∧ π‘Œ ∈ (πΌβ€˜π‘„))) β†’ (𝑋 Β· π‘Œ) = ⟨(π‘‹β€˜(1st β€˜π‘Œ)), (( I β€˜π‘‹) ∘ (2nd β€˜π‘Œ))⟩)
27 eqid 2730 . . . . . . . 8 ((ocβ€˜πΎ)β€˜π‘Š) = ((ocβ€˜πΎ)β€˜π‘Š)
283, 4, 5, 27, 10, 6dicelval1sta 40361 . . . . . . 7 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ π‘Œ ∈ (πΌβ€˜π‘„)) β†’ (1st β€˜π‘Œ) = ((2nd β€˜π‘Œ)β€˜(℩𝑔 ∈ ((LTrnβ€˜πΎ)β€˜π‘Š)(π‘”β€˜((ocβ€˜πΎ)β€˜π‘Š)) = 𝑄)))
29283adant3l 1178 . . . . . 6 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ (𝑋 ∈ 𝐸 ∧ π‘Œ ∈ (πΌβ€˜π‘„))) β†’ (1st β€˜π‘Œ) = ((2nd β€˜π‘Œ)β€˜(℩𝑔 ∈ ((LTrnβ€˜πΎ)β€˜π‘Š)(π‘”β€˜((ocβ€˜πΎ)β€˜π‘Š)) = 𝑄)))
3029fveq2d 6894 . . . . 5 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ (𝑋 ∈ 𝐸 ∧ π‘Œ ∈ (πΌβ€˜π‘„))) β†’ (π‘‹β€˜(1st β€˜π‘Œ)) = (π‘‹β€˜((2nd β€˜π‘Œ)β€˜(℩𝑔 ∈ ((LTrnβ€˜πΎ)β€˜π‘Š)(π‘”β€˜((ocβ€˜πΎ)β€˜π‘Š)) = 𝑄))))
313, 4, 5, 11, 6dicelval2nd 40363 . . . . . . . 8 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ π‘Œ ∈ (πΌβ€˜π‘„)) β†’ (2nd β€˜π‘Œ) ∈ 𝐸)
32313adant3l 1178 . . . . . . 7 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ (𝑋 ∈ 𝐸 ∧ π‘Œ ∈ (πΌβ€˜π‘„))) β†’ (2nd β€˜π‘Œ) ∈ 𝐸)
335, 10, 11tendof 39937 . . . . . . 7 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (2nd β€˜π‘Œ) ∈ 𝐸) β†’ (2nd β€˜π‘Œ):((LTrnβ€˜πΎ)β€˜π‘Š)⟢((LTrnβ€˜πΎ)β€˜π‘Š))
341, 32, 33syl2anc 582 . . . . . 6 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ (𝑋 ∈ 𝐸 ∧ π‘Œ ∈ (πΌβ€˜π‘„))) β†’ (2nd β€˜π‘Œ):((LTrnβ€˜πΎ)β€˜π‘Š)⟢((LTrnβ€˜πΎ)β€˜π‘Š))
35 eqid 2730 . . . . . . . . 9 (ocβ€˜πΎ) = (ocβ€˜πΎ)
363, 35, 4, 5lhpocnel 39192 . . . . . . . 8 ((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) β†’ (((ocβ€˜πΎ)β€˜π‘Š) ∈ 𝐴 ∧ Β¬ ((ocβ€˜πΎ)β€˜π‘Š) ≀ π‘Š))
37363ad2ant1 1131 . . . . . . 7 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ (𝑋 ∈ 𝐸 ∧ π‘Œ ∈ (πΌβ€˜π‘„))) β†’ (((ocβ€˜πΎ)β€˜π‘Š) ∈ 𝐴 ∧ Β¬ ((ocβ€˜πΎ)β€˜π‘Š) ≀ π‘Š))
38 simp2 1135 . . . . . . 7 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ (𝑋 ∈ 𝐸 ∧ π‘Œ ∈ (πΌβ€˜π‘„))) β†’ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š))
39 eqid 2730 . . . . . . . 8 (℩𝑔 ∈ ((LTrnβ€˜πΎ)β€˜π‘Š)(π‘”β€˜((ocβ€˜πΎ)β€˜π‘Š)) = 𝑄) = (℩𝑔 ∈ ((LTrnβ€˜πΎ)β€˜π‘Š)(π‘”β€˜((ocβ€˜πΎ)β€˜π‘Š)) = 𝑄)
403, 4, 5, 10, 39ltrniotacl 39753 . . . . . . 7 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (((ocβ€˜πΎ)β€˜π‘Š) ∈ 𝐴 ∧ Β¬ ((ocβ€˜πΎ)β€˜π‘Š) ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) β†’ (℩𝑔 ∈ ((LTrnβ€˜πΎ)β€˜π‘Š)(π‘”β€˜((ocβ€˜πΎ)β€˜π‘Š)) = 𝑄) ∈ ((LTrnβ€˜πΎ)β€˜π‘Š))
411, 37, 38, 40syl3anc 1369 . . . . . 6 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ (𝑋 ∈ 𝐸 ∧ π‘Œ ∈ (πΌβ€˜π‘„))) β†’ (℩𝑔 ∈ ((LTrnβ€˜πΎ)β€˜π‘Š)(π‘”β€˜((ocβ€˜πΎ)β€˜π‘Š)) = 𝑄) ∈ ((LTrnβ€˜πΎ)β€˜π‘Š))
42 fvco3 6989 . . . . . 6 (((2nd β€˜π‘Œ):((LTrnβ€˜πΎ)β€˜π‘Š)⟢((LTrnβ€˜πΎ)β€˜π‘Š) ∧ (℩𝑔 ∈ ((LTrnβ€˜πΎ)β€˜π‘Š)(π‘”β€˜((ocβ€˜πΎ)β€˜π‘Š)) = 𝑄) ∈ ((LTrnβ€˜πΎ)β€˜π‘Š)) β†’ ((𝑋 ∘ (2nd β€˜π‘Œ))β€˜(℩𝑔 ∈ ((LTrnβ€˜πΎ)β€˜π‘Š)(π‘”β€˜((ocβ€˜πΎ)β€˜π‘Š)) = 𝑄)) = (π‘‹β€˜((2nd β€˜π‘Œ)β€˜(℩𝑔 ∈ ((LTrnβ€˜πΎ)β€˜π‘Š)(π‘”β€˜((ocβ€˜πΎ)β€˜π‘Š)) = 𝑄))))
4334, 41, 42syl2anc 582 . . . . 5 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ (𝑋 ∈ 𝐸 ∧ π‘Œ ∈ (πΌβ€˜π‘„))) β†’ ((𝑋 ∘ (2nd β€˜π‘Œ))β€˜(℩𝑔 ∈ ((LTrnβ€˜πΎ)β€˜π‘Š)(π‘”β€˜((ocβ€˜πΎ)β€˜π‘Š)) = 𝑄)) = (π‘‹β€˜((2nd β€˜π‘Œ)β€˜(℩𝑔 ∈ ((LTrnβ€˜πΎ)β€˜π‘Š)(π‘”β€˜((ocβ€˜πΎ)β€˜π‘Š)) = 𝑄))))
4430, 43eqtr4d 2773 . . . 4 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ (𝑋 ∈ 𝐸 ∧ π‘Œ ∈ (πΌβ€˜π‘„))) β†’ (π‘‹β€˜(1st β€˜π‘Œ)) = ((𝑋 ∘ (2nd β€˜π‘Œ))β€˜(℩𝑔 ∈ ((LTrnβ€˜πΎ)β€˜π‘Š)(π‘”β€˜((ocβ€˜πΎ)β€˜π‘Š)) = 𝑄)))
4524fveq1d 6892 . . . 4 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ (𝑋 ∈ 𝐸 ∧ π‘Œ ∈ (πΌβ€˜π‘„))) β†’ ((( I β€˜π‘‹) ∘ (2nd β€˜π‘Œ))β€˜(℩𝑔 ∈ ((LTrnβ€˜πΎ)β€˜π‘Š)(π‘”β€˜((ocβ€˜πΎ)β€˜π‘Š)) = 𝑄)) = ((𝑋 ∘ (2nd β€˜π‘Œ))β€˜(℩𝑔 ∈ ((LTrnβ€˜πΎ)β€˜π‘Š)(π‘”β€˜((ocβ€˜πΎ)β€˜π‘Š)) = 𝑄)))
4644, 45eqtr4d 2773 . . 3 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ (𝑋 ∈ 𝐸 ∧ π‘Œ ∈ (πΌβ€˜π‘„))) β†’ (π‘‹β€˜(1st β€˜π‘Œ)) = ((( I β€˜π‘‹) ∘ (2nd β€˜π‘Œ))β€˜(℩𝑔 ∈ ((LTrnβ€˜πΎ)β€˜π‘Š)(π‘”β€˜((ocβ€˜πΎ)β€˜π‘Š)) = 𝑄)))
475, 11tendococl 39946 . . . . 5 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝑋 ∈ 𝐸 ∧ (2nd β€˜π‘Œ) ∈ 𝐸) β†’ (𝑋 ∘ (2nd β€˜π‘Œ)) ∈ 𝐸)
481, 2, 32, 47syl3anc 1369 . . . 4 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ (𝑋 ∈ 𝐸 ∧ π‘Œ ∈ (πΌβ€˜π‘„))) β†’ (𝑋 ∘ (2nd β€˜π‘Œ)) ∈ 𝐸)
4924, 48eqeltrd 2831 . . 3 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ (𝑋 ∈ 𝐸 ∧ π‘Œ ∈ (πΌβ€˜π‘„))) β†’ (( I β€˜π‘‹) ∘ (2nd β€˜π‘Œ)) ∈ 𝐸)
50 fvex 6903 . . . . 5 (π‘‹β€˜(1st β€˜π‘Œ)) ∈ V
51 fvex 6903 . . . . . 6 ( I β€˜π‘‹) ∈ V
52 fvex 6903 . . . . . 6 (2nd β€˜π‘Œ) ∈ V
5351, 52coex 7923 . . . . 5 (( I β€˜π‘‹) ∘ (2nd β€˜π‘Œ)) ∈ V
543, 4, 5, 27, 10, 11, 6, 50, 53dicopelval 40351 . . . 4 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) β†’ (⟨(π‘‹β€˜(1st β€˜π‘Œ)), (( I β€˜π‘‹) ∘ (2nd β€˜π‘Œ))⟩ ∈ (πΌβ€˜π‘„) ↔ ((π‘‹β€˜(1st β€˜π‘Œ)) = ((( I β€˜π‘‹) ∘ (2nd β€˜π‘Œ))β€˜(℩𝑔 ∈ ((LTrnβ€˜πΎ)β€˜π‘Š)(π‘”β€˜((ocβ€˜πΎ)β€˜π‘Š)) = 𝑄)) ∧ (( I β€˜π‘‹) ∘ (2nd β€˜π‘Œ)) ∈ 𝐸)))
55543adant3 1130 . . 3 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ (𝑋 ∈ 𝐸 ∧ π‘Œ ∈ (πΌβ€˜π‘„))) β†’ (⟨(π‘‹β€˜(1st β€˜π‘Œ)), (( I β€˜π‘‹) ∘ (2nd β€˜π‘Œ))⟩ ∈ (πΌβ€˜π‘„) ↔ ((π‘‹β€˜(1st β€˜π‘Œ)) = ((( I β€˜π‘‹) ∘ (2nd β€˜π‘Œ))β€˜(℩𝑔 ∈ ((LTrnβ€˜πΎ)β€˜π‘Š)(π‘”β€˜((ocβ€˜πΎ)β€˜π‘Š)) = 𝑄)) ∧ (( I β€˜π‘‹) ∘ (2nd β€˜π‘Œ)) ∈ 𝐸)))
5646, 49, 55mpbir2and 709 . 2 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ (𝑋 ∈ 𝐸 ∧ π‘Œ ∈ (πΌβ€˜π‘„))) β†’ ⟨(π‘‹β€˜(1st β€˜π‘Œ)), (( I β€˜π‘‹) ∘ (2nd β€˜π‘Œ))⟩ ∈ (πΌβ€˜π‘„))
5726, 56eqeltrd 2831 1 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ (𝑋 ∈ 𝐸 ∧ π‘Œ ∈ (πΌβ€˜π‘„))) β†’ (𝑋 Β· π‘Œ) ∈ (πΌβ€˜π‘„))
Colors of variables: wff setvar class
Syntax hints:  Β¬ wn 3   β†’ wi 4   ↔ wb 205   ∧ wa 394   ∧ w3a 1085   = wceq 1539   ∈ wcel 2104   βŠ† wss 3947  βŸ¨cop 4633   class class class wbr 5147   I cid 5572   Γ— cxp 5673   ∘ ccom 5679  βŸΆwf 6538  β€˜cfv 6542  β„©crio 7366  (class class class)co 7411  1st c1st 7975  2nd c2nd 7976  Basecbs 17148   ·𝑠 cvsca 17205  lecple 17208  occoc 17209  Atomscatm 38436  HLchlt 38523  LHypclh 39158  LTrncltrn 39275  TEndoctendo 39926  DVecHcdvh 40252  DIsoCcdic 40346
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-11 2152  ax-12 2169  ax-ext 2701  ax-rep 5284  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7727  ax-cnex 11168  ax-resscn 11169  ax-1cn 11170  ax-icn 11171  ax-addcl 11172  ax-addrcl 11173  ax-mulcl 11174  ax-mulrcl 11175  ax-mulcom 11176  ax-addass 11177  ax-mulass 11178  ax-distr 11179  ax-i2m1 11180  ax-1ne0 11181  ax-1rid 11182  ax-rnegex 11183  ax-rrecex 11184  ax-cnre 11185  ax-pre-lttri 11186  ax-pre-lttrn 11187  ax-pre-ltadd 11188  ax-pre-mulgt0 11189  ax-riotaBAD 38126
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2532  df-eu 2561  df-clab 2708  df-cleq 2722  df-clel 2808  df-nfc 2883  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3374  df-reu 3375  df-rab 3431  df-v 3474  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-tp 4632  df-op 4634  df-uni 4908  df-iun 4998  df-iin 4999  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5573  df-eprel 5579  df-po 5587  df-so 5588  df-fr 5630  df-we 5632  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-pred 6299  df-ord 6366  df-on 6367  df-lim 6368  df-suc 6369  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-riota 7367  df-ov 7414  df-oprab 7415  df-mpo 7416  df-om 7858  df-1st 7977  df-2nd 7978  df-undef 8260  df-frecs 8268  df-wrecs 8299  df-recs 8373  df-rdg 8412  df-1o 8468  df-er 8705  df-map 8824  df-en 8942  df-dom 8943  df-sdom 8944  df-fin 8945  df-pnf 11254  df-mnf 11255  df-xr 11256  df-ltxr 11257  df-le 11258  df-sub 11450  df-neg 11451  df-nn 12217  df-2 12279  df-3 12280  df-4 12281  df-5 12282  df-6 12283  df-n0 12477  df-z 12563  df-uz 12827  df-fz 13489  df-struct 17084  df-slot 17119  df-ndx 17131  df-base 17149  df-plusg 17214  df-sca 17217  df-vsca 17218  df-proset 18252  df-poset 18270  df-plt 18287  df-lub 18303  df-glb 18304  df-join 18305  df-meet 18306  df-p0 18382  df-p1 18383  df-lat 18389  df-clat 18456  df-oposet 38349  df-ol 38351  df-oml 38352  df-covers 38439  df-ats 38440  df-atl 38471  df-cvlat 38495  df-hlat 38524  df-llines 38672  df-lplanes 38673  df-lvols 38674  df-lines 38675  df-psubsp 38677  df-pmap 38678  df-padd 38970  df-lhyp 39162  df-laut 39163  df-ldil 39278  df-ltrn 39279  df-trl 39333  df-tendo 39929  df-dvech 40253  df-dic 40347
This theorem is referenced by:  diclss  40367
  Copyright terms: Public domain W3C validator