| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | simp1 1136 | . . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑋 ∈ 𝐸 ∧ 𝑌 ∈ (𝐼‘𝑄))) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) | 
| 2 |  | simp3l 1201 | . . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑋 ∈ 𝐸 ∧ 𝑌 ∈ (𝐼‘𝑄))) → 𝑋 ∈ 𝐸) | 
| 3 |  | dicvscacl.l | . . . . . . . 8
⊢  ≤ =
(le‘𝐾) | 
| 4 |  | dicvscacl.a | . . . . . . . 8
⊢ 𝐴 = (Atoms‘𝐾) | 
| 5 |  | dicvscacl.h | . . . . . . . 8
⊢ 𝐻 = (LHyp‘𝐾) | 
| 6 |  | dicvscacl.i | . . . . . . . 8
⊢ 𝐼 = ((DIsoC‘𝐾)‘𝑊) | 
| 7 |  | dicvscacl.u | . . . . . . . 8
⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) | 
| 8 |  | eqid 2736 | . . . . . . . 8
⊢
(Base‘𝑈) =
(Base‘𝑈) | 
| 9 | 3, 4, 5, 6, 7, 8 | dicssdvh 41189 | . . . . . . 7
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) → (𝐼‘𝑄) ⊆ (Base‘𝑈)) | 
| 10 |  | eqid 2736 | . . . . . . . . . 10
⊢
((LTrn‘𝐾)‘𝑊) = ((LTrn‘𝐾)‘𝑊) | 
| 11 |  | dicvscacl.e | . . . . . . . . . 10
⊢ 𝐸 = ((TEndo‘𝐾)‘𝑊) | 
| 12 | 5, 10, 11, 7, 8 | dvhvbase 41090 | . . . . . . . . 9
⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → (Base‘𝑈) = (((LTrn‘𝐾)‘𝑊) × 𝐸)) | 
| 13 | 12 | eqcomd 2742 | . . . . . . . 8
⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → (((LTrn‘𝐾)‘𝑊) × 𝐸) = (Base‘𝑈)) | 
| 14 | 13 | adantr 480 | . . . . . . 7
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) → (((LTrn‘𝐾)‘𝑊) × 𝐸) = (Base‘𝑈)) | 
| 15 | 9, 14 | sseqtrrd 4020 | . . . . . 6
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) → (𝐼‘𝑄) ⊆ (((LTrn‘𝐾)‘𝑊) × 𝐸)) | 
| 16 | 15 | 3adant3 1132 | . . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑋 ∈ 𝐸 ∧ 𝑌 ∈ (𝐼‘𝑄))) → (𝐼‘𝑄) ⊆ (((LTrn‘𝐾)‘𝑊) × 𝐸)) | 
| 17 |  | simp3r 1202 | . . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑋 ∈ 𝐸 ∧ 𝑌 ∈ (𝐼‘𝑄))) → 𝑌 ∈ (𝐼‘𝑄)) | 
| 18 | 16, 17 | sseldd 3983 | . . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑋 ∈ 𝐸 ∧ 𝑌 ∈ (𝐼‘𝑄))) → 𝑌 ∈ (((LTrn‘𝐾)‘𝑊) × 𝐸)) | 
| 19 |  | dicvscacl.s | . . . . 5
⊢  · = (
·𝑠 ‘𝑈) | 
| 20 | 5, 10, 11, 7, 19 | dvhvsca 41104 | . . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐸 ∧ 𝑌 ∈ (((LTrn‘𝐾)‘𝑊) × 𝐸))) → (𝑋 · 𝑌) = 〈(𝑋‘(1st ‘𝑌)), (𝑋 ∘ (2nd ‘𝑌))〉) | 
| 21 | 1, 2, 18, 20 | syl12anc 836 | . . 3
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑋 ∈ 𝐸 ∧ 𝑌 ∈ (𝐼‘𝑄))) → (𝑋 · 𝑌) = 〈(𝑋‘(1st ‘𝑌)), (𝑋 ∘ (2nd ‘𝑌))〉) | 
| 22 |  | fvi 6984 | . . . . . 6
⊢ (𝑋 ∈ 𝐸 → ( I ‘𝑋) = 𝑋) | 
| 23 | 2, 22 | syl 17 | . . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑋 ∈ 𝐸 ∧ 𝑌 ∈ (𝐼‘𝑄))) → ( I ‘𝑋) = 𝑋) | 
| 24 | 23 | coeq1d 5871 | . . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑋 ∈ 𝐸 ∧ 𝑌 ∈ (𝐼‘𝑄))) → (( I ‘𝑋) ∘ (2nd ‘𝑌)) = (𝑋 ∘ (2nd ‘𝑌))) | 
| 25 | 24 | opeq2d 4879 | . . 3
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑋 ∈ 𝐸 ∧ 𝑌 ∈ (𝐼‘𝑄))) → 〈(𝑋‘(1st ‘𝑌)), (( I ‘𝑋) ∘ (2nd
‘𝑌))〉 =
〈(𝑋‘(1st ‘𝑌)), (𝑋 ∘ (2nd ‘𝑌))〉) | 
| 26 | 21, 25 | eqtr4d 2779 | . 2
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑋 ∈ 𝐸 ∧ 𝑌 ∈ (𝐼‘𝑄))) → (𝑋 · 𝑌) = 〈(𝑋‘(1st ‘𝑌)), (( I ‘𝑋) ∘ (2nd
‘𝑌))〉) | 
| 27 |  | eqid 2736 | . . . . . . . 8
⊢
((oc‘𝐾)‘𝑊) = ((oc‘𝐾)‘𝑊) | 
| 28 | 3, 4, 5, 27, 10, 6 | dicelval1sta 41190 | . . . . . . 7
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ 𝑌 ∈ (𝐼‘𝑄)) → (1st ‘𝑌) = ((2nd
‘𝑌)‘(℩𝑔 ∈ ((LTrn‘𝐾)‘𝑊)(𝑔‘((oc‘𝐾)‘𝑊)) = 𝑄))) | 
| 29 | 28 | 3adant3l 1180 | . . . . . 6
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑋 ∈ 𝐸 ∧ 𝑌 ∈ (𝐼‘𝑄))) → (1st ‘𝑌) = ((2nd
‘𝑌)‘(℩𝑔 ∈ ((LTrn‘𝐾)‘𝑊)(𝑔‘((oc‘𝐾)‘𝑊)) = 𝑄))) | 
| 30 | 29 | fveq2d 6909 | . . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑋 ∈ 𝐸 ∧ 𝑌 ∈ (𝐼‘𝑄))) → (𝑋‘(1st ‘𝑌)) = (𝑋‘((2nd ‘𝑌)‘(℩𝑔 ∈ ((LTrn‘𝐾)‘𝑊)(𝑔‘((oc‘𝐾)‘𝑊)) = 𝑄)))) | 
| 31 | 3, 4, 5, 11, 6 | dicelval2nd 41192 | . . . . . . . 8
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ 𝑌 ∈ (𝐼‘𝑄)) → (2nd ‘𝑌) ∈ 𝐸) | 
| 32 | 31 | 3adant3l 1180 | . . . . . . 7
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑋 ∈ 𝐸 ∧ 𝑌 ∈ (𝐼‘𝑄))) → (2nd ‘𝑌) ∈ 𝐸) | 
| 33 | 5, 10, 11 | tendof 40766 | . . . . . . 7
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (2nd ‘𝑌) ∈ 𝐸) → (2nd ‘𝑌):((LTrn‘𝐾)‘𝑊)⟶((LTrn‘𝐾)‘𝑊)) | 
| 34 | 1, 32, 33 | syl2anc 584 | . . . . . 6
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑋 ∈ 𝐸 ∧ 𝑌 ∈ (𝐼‘𝑄))) → (2nd ‘𝑌):((LTrn‘𝐾)‘𝑊)⟶((LTrn‘𝐾)‘𝑊)) | 
| 35 |  | eqid 2736 | . . . . . . . . 9
⊢
(oc‘𝐾) =
(oc‘𝐾) | 
| 36 | 3, 35, 4, 5 | lhpocnel 40021 | . . . . . . . 8
⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → (((oc‘𝐾)‘𝑊) ∈ 𝐴 ∧ ¬ ((oc‘𝐾)‘𝑊) ≤ 𝑊)) | 
| 37 | 36 | 3ad2ant1 1133 | . . . . . . 7
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑋 ∈ 𝐸 ∧ 𝑌 ∈ (𝐼‘𝑄))) → (((oc‘𝐾)‘𝑊) ∈ 𝐴 ∧ ¬ ((oc‘𝐾)‘𝑊) ≤ 𝑊)) | 
| 38 |  | simp2 1137 | . . . . . . 7
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑋 ∈ 𝐸 ∧ 𝑌 ∈ (𝐼‘𝑄))) → (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) | 
| 39 |  | eqid 2736 | . . . . . . . 8
⊢
(℩𝑔
∈ ((LTrn‘𝐾)‘𝑊)(𝑔‘((oc‘𝐾)‘𝑊)) = 𝑄) = (℩𝑔 ∈ ((LTrn‘𝐾)‘𝑊)(𝑔‘((oc‘𝐾)‘𝑊)) = 𝑄) | 
| 40 | 3, 4, 5, 10, 39 | ltrniotacl 40582 | . . . . . . 7
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (((oc‘𝐾)‘𝑊) ∈ 𝐴 ∧ ¬ ((oc‘𝐾)‘𝑊) ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) → (℩𝑔 ∈ ((LTrn‘𝐾)‘𝑊)(𝑔‘((oc‘𝐾)‘𝑊)) = 𝑄) ∈ ((LTrn‘𝐾)‘𝑊)) | 
| 41 | 1, 37, 38, 40 | syl3anc 1372 | . . . . . 6
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑋 ∈ 𝐸 ∧ 𝑌 ∈ (𝐼‘𝑄))) → (℩𝑔 ∈ ((LTrn‘𝐾)‘𝑊)(𝑔‘((oc‘𝐾)‘𝑊)) = 𝑄) ∈ ((LTrn‘𝐾)‘𝑊)) | 
| 42 |  | fvco3 7007 | . . . . . 6
⊢
(((2nd ‘𝑌):((LTrn‘𝐾)‘𝑊)⟶((LTrn‘𝐾)‘𝑊) ∧ (℩𝑔 ∈ ((LTrn‘𝐾)‘𝑊)(𝑔‘((oc‘𝐾)‘𝑊)) = 𝑄) ∈ ((LTrn‘𝐾)‘𝑊)) → ((𝑋 ∘ (2nd ‘𝑌))‘(℩𝑔 ∈ ((LTrn‘𝐾)‘𝑊)(𝑔‘((oc‘𝐾)‘𝑊)) = 𝑄)) = (𝑋‘((2nd ‘𝑌)‘(℩𝑔 ∈ ((LTrn‘𝐾)‘𝑊)(𝑔‘((oc‘𝐾)‘𝑊)) = 𝑄)))) | 
| 43 | 34, 41, 42 | syl2anc 584 | . . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑋 ∈ 𝐸 ∧ 𝑌 ∈ (𝐼‘𝑄))) → ((𝑋 ∘ (2nd ‘𝑌))‘(℩𝑔 ∈ ((LTrn‘𝐾)‘𝑊)(𝑔‘((oc‘𝐾)‘𝑊)) = 𝑄)) = (𝑋‘((2nd ‘𝑌)‘(℩𝑔 ∈ ((LTrn‘𝐾)‘𝑊)(𝑔‘((oc‘𝐾)‘𝑊)) = 𝑄)))) | 
| 44 | 30, 43 | eqtr4d 2779 | . . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑋 ∈ 𝐸 ∧ 𝑌 ∈ (𝐼‘𝑄))) → (𝑋‘(1st ‘𝑌)) = ((𝑋 ∘ (2nd ‘𝑌))‘(℩𝑔 ∈ ((LTrn‘𝐾)‘𝑊)(𝑔‘((oc‘𝐾)‘𝑊)) = 𝑄))) | 
| 45 | 24 | fveq1d 6907 | . . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑋 ∈ 𝐸 ∧ 𝑌 ∈ (𝐼‘𝑄))) → ((( I ‘𝑋) ∘ (2nd ‘𝑌))‘(℩𝑔 ∈ ((LTrn‘𝐾)‘𝑊)(𝑔‘((oc‘𝐾)‘𝑊)) = 𝑄)) = ((𝑋 ∘ (2nd ‘𝑌))‘(℩𝑔 ∈ ((LTrn‘𝐾)‘𝑊)(𝑔‘((oc‘𝐾)‘𝑊)) = 𝑄))) | 
| 46 | 44, 45 | eqtr4d 2779 | . . 3
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑋 ∈ 𝐸 ∧ 𝑌 ∈ (𝐼‘𝑄))) → (𝑋‘(1st ‘𝑌)) = ((( I ‘𝑋) ∘ (2nd
‘𝑌))‘(℩𝑔 ∈ ((LTrn‘𝐾)‘𝑊)(𝑔‘((oc‘𝐾)‘𝑊)) = 𝑄))) | 
| 47 | 5, 11 | tendococl 40775 | . . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ∈ 𝐸 ∧ (2nd ‘𝑌) ∈ 𝐸) → (𝑋 ∘ (2nd ‘𝑌)) ∈ 𝐸) | 
| 48 | 1, 2, 32, 47 | syl3anc 1372 | . . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑋 ∈ 𝐸 ∧ 𝑌 ∈ (𝐼‘𝑄))) → (𝑋 ∘ (2nd ‘𝑌)) ∈ 𝐸) | 
| 49 | 24, 48 | eqeltrd 2840 | . . 3
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑋 ∈ 𝐸 ∧ 𝑌 ∈ (𝐼‘𝑄))) → (( I ‘𝑋) ∘ (2nd ‘𝑌)) ∈ 𝐸) | 
| 50 |  | fvex 6918 | . . . . 5
⊢ (𝑋‘(1st
‘𝑌)) ∈
V | 
| 51 |  | fvex 6918 | . . . . . 6
⊢ ( I
‘𝑋) ∈
V | 
| 52 |  | fvex 6918 | . . . . . 6
⊢
(2nd ‘𝑌) ∈ V | 
| 53 | 51, 52 | coex 7953 | . . . . 5
⊢ (( I
‘𝑋) ∘
(2nd ‘𝑌))
∈ V | 
| 54 | 3, 4, 5, 27, 10, 11, 6, 50, 53 | dicopelval 41180 | . . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) → (〈(𝑋‘(1st ‘𝑌)), (( I ‘𝑋) ∘ (2nd
‘𝑌))〉 ∈
(𝐼‘𝑄) ↔ ((𝑋‘(1st ‘𝑌)) = ((( I ‘𝑋) ∘ (2nd
‘𝑌))‘(℩𝑔 ∈ ((LTrn‘𝐾)‘𝑊)(𝑔‘((oc‘𝐾)‘𝑊)) = 𝑄)) ∧ (( I ‘𝑋) ∘ (2nd ‘𝑌)) ∈ 𝐸))) | 
| 55 | 54 | 3adant3 1132 | . . 3
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑋 ∈ 𝐸 ∧ 𝑌 ∈ (𝐼‘𝑄))) → (〈(𝑋‘(1st ‘𝑌)), (( I ‘𝑋) ∘ (2nd
‘𝑌))〉 ∈
(𝐼‘𝑄) ↔ ((𝑋‘(1st ‘𝑌)) = ((( I ‘𝑋) ∘ (2nd
‘𝑌))‘(℩𝑔 ∈ ((LTrn‘𝐾)‘𝑊)(𝑔‘((oc‘𝐾)‘𝑊)) = 𝑄)) ∧ (( I ‘𝑋) ∘ (2nd ‘𝑌)) ∈ 𝐸))) | 
| 56 | 46, 49, 55 | mpbir2and 713 | . 2
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑋 ∈ 𝐸 ∧ 𝑌 ∈ (𝐼‘𝑄))) → 〈(𝑋‘(1st ‘𝑌)), (( I ‘𝑋) ∘ (2nd
‘𝑌))〉 ∈
(𝐼‘𝑄)) | 
| 57 | 26, 56 | eqeltrd 2840 | 1
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑋 ∈ 𝐸 ∧ 𝑌 ∈ (𝐼‘𝑄))) → (𝑋 · 𝑌) ∈ (𝐼‘𝑄)) |