Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lflmul Structured version   Visualization version   GIF version

Theorem lflmul 39187
Description: Property of a linear functional. (lnfnmuli 32026 analog.) (Contributed by NM, 16-Apr-2014.)
Hypotheses
Ref Expression
lflmul.d 𝐷 = (Scalar‘𝑊)
lflmul.k 𝐾 = (Base‘𝐷)
lflmul.t × = (.r𝐷)
lflmul.v 𝑉 = (Base‘𝑊)
lflmul.s · = ( ·𝑠𝑊)
lflmul.f 𝐹 = (LFnl‘𝑊)
Assertion
Ref Expression
lflmul ((𝑊 ∈ LMod ∧ 𝐺𝐹 ∧ (𝑅𝐾𝑋𝑉)) → (𝐺‘(𝑅 · 𝑋)) = (𝑅 × (𝐺𝑋)))

Proof of Theorem lflmul
StepHypRef Expression
1 simp1 1136 . . 3 ((𝑊 ∈ LMod ∧ 𝐺𝐹 ∧ (𝑅𝐾𝑋𝑉)) → 𝑊 ∈ LMod)
2 simp2 1137 . . 3 ((𝑊 ∈ LMod ∧ 𝐺𝐹 ∧ (𝑅𝐾𝑋𝑉)) → 𝐺𝐹)
3 simp3l 1202 . . 3 ((𝑊 ∈ LMod ∧ 𝐺𝐹 ∧ (𝑅𝐾𝑋𝑉)) → 𝑅𝐾)
4 simp3r 1203 . . 3 ((𝑊 ∈ LMod ∧ 𝐺𝐹 ∧ (𝑅𝐾𝑋𝑉)) → 𝑋𝑉)
5 lflmul.v . . . . 5 𝑉 = (Base‘𝑊)
6 eqid 2733 . . . . 5 (0g𝑊) = (0g𝑊)
75, 6lmod0vcl 20826 . . . 4 (𝑊 ∈ LMod → (0g𝑊) ∈ 𝑉)
873ad2ant1 1133 . . 3 ((𝑊 ∈ LMod ∧ 𝐺𝐹 ∧ (𝑅𝐾𝑋𝑉)) → (0g𝑊) ∈ 𝑉)
9 eqid 2733 . . . 4 (+g𝑊) = (+g𝑊)
10 lflmul.d . . . 4 𝐷 = (Scalar‘𝑊)
11 lflmul.s . . . 4 · = ( ·𝑠𝑊)
12 lflmul.k . . . 4 𝐾 = (Base‘𝐷)
13 eqid 2733 . . . 4 (+g𝐷) = (+g𝐷)
14 lflmul.t . . . 4 × = (.r𝐷)
15 lflmul.f . . . 4 𝐹 = (LFnl‘𝑊)
165, 9, 10, 11, 12, 13, 14, 15lfli 39180 . . 3 ((𝑊 ∈ LMod ∧ 𝐺𝐹 ∧ (𝑅𝐾𝑋𝑉 ∧ (0g𝑊) ∈ 𝑉)) → (𝐺‘((𝑅 · 𝑋)(+g𝑊)(0g𝑊))) = ((𝑅 × (𝐺𝑋))(+g𝐷)(𝐺‘(0g𝑊))))
171, 2, 3, 4, 8, 16syl113anc 1384 . 2 ((𝑊 ∈ LMod ∧ 𝐺𝐹 ∧ (𝑅𝐾𝑋𝑉)) → (𝐺‘((𝑅 · 𝑋)(+g𝑊)(0g𝑊))) = ((𝑅 × (𝐺𝑋))(+g𝐷)(𝐺‘(0g𝑊))))
185, 10, 11, 12lmodvscl 20813 . . . . 5 ((𝑊 ∈ LMod ∧ 𝑅𝐾𝑋𝑉) → (𝑅 · 𝑋) ∈ 𝑉)
191, 3, 4, 18syl3anc 1373 . . . 4 ((𝑊 ∈ LMod ∧ 𝐺𝐹 ∧ (𝑅𝐾𝑋𝑉)) → (𝑅 · 𝑋) ∈ 𝑉)
205, 9, 6lmod0vrid 20828 . . . 4 ((𝑊 ∈ LMod ∧ (𝑅 · 𝑋) ∈ 𝑉) → ((𝑅 · 𝑋)(+g𝑊)(0g𝑊)) = (𝑅 · 𝑋))
211, 19, 20syl2anc 584 . . 3 ((𝑊 ∈ LMod ∧ 𝐺𝐹 ∧ (𝑅𝐾𝑋𝑉)) → ((𝑅 · 𝑋)(+g𝑊)(0g𝑊)) = (𝑅 · 𝑋))
2221fveq2d 6832 . 2 ((𝑊 ∈ LMod ∧ 𝐺𝐹 ∧ (𝑅𝐾𝑋𝑉)) → (𝐺‘((𝑅 · 𝑋)(+g𝑊)(0g𝑊))) = (𝐺‘(𝑅 · 𝑋)))
23 eqid 2733 . . . . . 6 (0g𝐷) = (0g𝐷)
2410, 23, 6, 15lfl0 39184 . . . . 5 ((𝑊 ∈ LMod ∧ 𝐺𝐹) → (𝐺‘(0g𝑊)) = (0g𝐷))
25243adant3 1132 . . . 4 ((𝑊 ∈ LMod ∧ 𝐺𝐹 ∧ (𝑅𝐾𝑋𝑉)) → (𝐺‘(0g𝑊)) = (0g𝐷))
2625oveq2d 7368 . . 3 ((𝑊 ∈ LMod ∧ 𝐺𝐹 ∧ (𝑅𝐾𝑋𝑉)) → ((𝑅 × (𝐺𝑋))(+g𝐷)(𝐺‘(0g𝑊))) = ((𝑅 × (𝐺𝑋))(+g𝐷)(0g𝐷)))
2710lmodfgrp 20804 . . . . 5 (𝑊 ∈ LMod → 𝐷 ∈ Grp)
28273ad2ant1 1133 . . . 4 ((𝑊 ∈ LMod ∧ 𝐺𝐹 ∧ (𝑅𝐾𝑋𝑉)) → 𝐷 ∈ Grp)
2910, 12, 5, 15lflcl 39183 . . . . . 6 ((𝑊 ∈ LMod ∧ 𝐺𝐹𝑋𝑉) → (𝐺𝑋) ∈ 𝐾)
30293adant3l 1181 . . . . 5 ((𝑊 ∈ LMod ∧ 𝐺𝐹 ∧ (𝑅𝐾𝑋𝑉)) → (𝐺𝑋) ∈ 𝐾)
3110, 12, 14lmodmcl 20808 . . . . 5 ((𝑊 ∈ LMod ∧ 𝑅𝐾 ∧ (𝐺𝑋) ∈ 𝐾) → (𝑅 × (𝐺𝑋)) ∈ 𝐾)
321, 3, 30, 31syl3anc 1373 . . . 4 ((𝑊 ∈ LMod ∧ 𝐺𝐹 ∧ (𝑅𝐾𝑋𝑉)) → (𝑅 × (𝐺𝑋)) ∈ 𝐾)
3312, 13, 23grprid 18883 . . . 4 ((𝐷 ∈ Grp ∧ (𝑅 × (𝐺𝑋)) ∈ 𝐾) → ((𝑅 × (𝐺𝑋))(+g𝐷)(0g𝐷)) = (𝑅 × (𝐺𝑋)))
3428, 32, 33syl2anc 584 . . 3 ((𝑊 ∈ LMod ∧ 𝐺𝐹 ∧ (𝑅𝐾𝑋𝑉)) → ((𝑅 × (𝐺𝑋))(+g𝐷)(0g𝐷)) = (𝑅 × (𝐺𝑋)))
3526, 34eqtrd 2768 . 2 ((𝑊 ∈ LMod ∧ 𝐺𝐹 ∧ (𝑅𝐾𝑋𝑉)) → ((𝑅 × (𝐺𝑋))(+g𝐷)(𝐺‘(0g𝑊))) = (𝑅 × (𝐺𝑋)))
3617, 22, 353eqtr3d 2776 1 ((𝑊 ∈ LMod ∧ 𝐺𝐹 ∧ (𝑅𝐾𝑋𝑉)) → (𝐺‘(𝑅 · 𝑋)) = (𝑅 × (𝐺𝑋)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1541  wcel 2113  cfv 6486  (class class class)co 7352  Basecbs 17122  +gcplusg 17163  .rcmulr 17164  Scalarcsca 17166   ·𝑠 cvsca 17167  0gc0g 17345  Grpcgrp 18848  LModclmod 20795  LFnlclfn 39176
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372  ax-un 7674  ax-cnex 11069  ax-resscn 11070  ax-1cn 11071  ax-icn 11072  ax-addcl 11073  ax-addrcl 11074  ax-mulcl 11075  ax-mulrcl 11076  ax-mulcom 11077  ax-addass 11078  ax-mulass 11079  ax-distr 11080  ax-i2m1 11081  ax-1ne0 11082  ax-1rid 11083  ax-rnegex 11084  ax-rrecex 11085  ax-cnre 11086  ax-pre-lttri 11087  ax-pre-lttrn 11088  ax-pre-ltadd 11089  ax-pre-mulgt0 11090
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-nel 3034  df-ral 3049  df-rex 3058  df-rmo 3347  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-iun 4943  df-br 5094  df-opab 5156  df-mpt 5175  df-tr 5201  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7309  df-ov 7355  df-oprab 7356  df-mpo 7357  df-om 7803  df-1st 7927  df-2nd 7928  df-frecs 8217  df-wrecs 8248  df-recs 8297  df-rdg 8335  df-er 8628  df-map 8758  df-en 8876  df-dom 8877  df-sdom 8878  df-pnf 11155  df-mnf 11156  df-xr 11157  df-ltxr 11158  df-le 11159  df-sub 11353  df-neg 11354  df-nn 12133  df-2 12195  df-sets 17077  df-slot 17095  df-ndx 17107  df-base 17123  df-plusg 17176  df-0g 17347  df-mgm 18550  df-sgrp 18629  df-mnd 18645  df-grp 18851  df-minusg 18852  df-sbg 18853  df-mgp 20061  df-ur 20102  df-ring 20155  df-lmod 20797  df-lfl 39177
This theorem is referenced by:  lfl1  39189  lfladdcl  39190  eqlkr  39218  lkrlsp  39221  dochkr1  41597  dochkr1OLDN  41598  lcfl7lem  41618  lclkrlem2m  41638  hdmaplnm1  42028
  Copyright terms: Public domain W3C validator