Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > lflmul | Structured version Visualization version GIF version |
Description: Property of a linear functional. (lnfnmuli 30406 analog.) (Contributed by NM, 16-Apr-2014.) |
Ref | Expression |
---|---|
lflmul.d | ⊢ 𝐷 = (Scalar‘𝑊) |
lflmul.k | ⊢ 𝐾 = (Base‘𝐷) |
lflmul.t | ⊢ × = (.r‘𝐷) |
lflmul.v | ⊢ 𝑉 = (Base‘𝑊) |
lflmul.s | ⊢ · = ( ·𝑠 ‘𝑊) |
lflmul.f | ⊢ 𝐹 = (LFnl‘𝑊) |
Ref | Expression |
---|---|
lflmul | ⊢ ((𝑊 ∈ LMod ∧ 𝐺 ∈ 𝐹 ∧ (𝑅 ∈ 𝐾 ∧ 𝑋 ∈ 𝑉)) → (𝐺‘(𝑅 · 𝑋)) = (𝑅 × (𝐺‘𝑋))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp1 1135 | . . 3 ⊢ ((𝑊 ∈ LMod ∧ 𝐺 ∈ 𝐹 ∧ (𝑅 ∈ 𝐾 ∧ 𝑋 ∈ 𝑉)) → 𝑊 ∈ LMod) | |
2 | simp2 1136 | . . 3 ⊢ ((𝑊 ∈ LMod ∧ 𝐺 ∈ 𝐹 ∧ (𝑅 ∈ 𝐾 ∧ 𝑋 ∈ 𝑉)) → 𝐺 ∈ 𝐹) | |
3 | simp3l 1200 | . . 3 ⊢ ((𝑊 ∈ LMod ∧ 𝐺 ∈ 𝐹 ∧ (𝑅 ∈ 𝐾 ∧ 𝑋 ∈ 𝑉)) → 𝑅 ∈ 𝐾) | |
4 | simp3r 1201 | . . 3 ⊢ ((𝑊 ∈ LMod ∧ 𝐺 ∈ 𝐹 ∧ (𝑅 ∈ 𝐾 ∧ 𝑋 ∈ 𝑉)) → 𝑋 ∈ 𝑉) | |
5 | lflmul.v | . . . . 5 ⊢ 𝑉 = (Base‘𝑊) | |
6 | eqid 2738 | . . . . 5 ⊢ (0g‘𝑊) = (0g‘𝑊) | |
7 | 5, 6 | lmod0vcl 20152 | . . . 4 ⊢ (𝑊 ∈ LMod → (0g‘𝑊) ∈ 𝑉) |
8 | 7 | 3ad2ant1 1132 | . . 3 ⊢ ((𝑊 ∈ LMod ∧ 𝐺 ∈ 𝐹 ∧ (𝑅 ∈ 𝐾 ∧ 𝑋 ∈ 𝑉)) → (0g‘𝑊) ∈ 𝑉) |
9 | eqid 2738 | . . . 4 ⊢ (+g‘𝑊) = (+g‘𝑊) | |
10 | lflmul.d | . . . 4 ⊢ 𝐷 = (Scalar‘𝑊) | |
11 | lflmul.s | . . . 4 ⊢ · = ( ·𝑠 ‘𝑊) | |
12 | lflmul.k | . . . 4 ⊢ 𝐾 = (Base‘𝐷) | |
13 | eqid 2738 | . . . 4 ⊢ (+g‘𝐷) = (+g‘𝐷) | |
14 | lflmul.t | . . . 4 ⊢ × = (.r‘𝐷) | |
15 | lflmul.f | . . . 4 ⊢ 𝐹 = (LFnl‘𝑊) | |
16 | 5, 9, 10, 11, 12, 13, 14, 15 | lfli 37075 | . . 3 ⊢ ((𝑊 ∈ LMod ∧ 𝐺 ∈ 𝐹 ∧ (𝑅 ∈ 𝐾 ∧ 𝑋 ∈ 𝑉 ∧ (0g‘𝑊) ∈ 𝑉)) → (𝐺‘((𝑅 · 𝑋)(+g‘𝑊)(0g‘𝑊))) = ((𝑅 × (𝐺‘𝑋))(+g‘𝐷)(𝐺‘(0g‘𝑊)))) |
17 | 1, 2, 3, 4, 8, 16 | syl113anc 1381 | . 2 ⊢ ((𝑊 ∈ LMod ∧ 𝐺 ∈ 𝐹 ∧ (𝑅 ∈ 𝐾 ∧ 𝑋 ∈ 𝑉)) → (𝐺‘((𝑅 · 𝑋)(+g‘𝑊)(0g‘𝑊))) = ((𝑅 × (𝐺‘𝑋))(+g‘𝐷)(𝐺‘(0g‘𝑊)))) |
18 | 5, 10, 11, 12 | lmodvscl 20140 | . . . . 5 ⊢ ((𝑊 ∈ LMod ∧ 𝑅 ∈ 𝐾 ∧ 𝑋 ∈ 𝑉) → (𝑅 · 𝑋) ∈ 𝑉) |
19 | 1, 3, 4, 18 | syl3anc 1370 | . . . 4 ⊢ ((𝑊 ∈ LMod ∧ 𝐺 ∈ 𝐹 ∧ (𝑅 ∈ 𝐾 ∧ 𝑋 ∈ 𝑉)) → (𝑅 · 𝑋) ∈ 𝑉) |
20 | 5, 9, 6 | lmod0vrid 20154 | . . . 4 ⊢ ((𝑊 ∈ LMod ∧ (𝑅 · 𝑋) ∈ 𝑉) → ((𝑅 · 𝑋)(+g‘𝑊)(0g‘𝑊)) = (𝑅 · 𝑋)) |
21 | 1, 19, 20 | syl2anc 584 | . . 3 ⊢ ((𝑊 ∈ LMod ∧ 𝐺 ∈ 𝐹 ∧ (𝑅 ∈ 𝐾 ∧ 𝑋 ∈ 𝑉)) → ((𝑅 · 𝑋)(+g‘𝑊)(0g‘𝑊)) = (𝑅 · 𝑋)) |
22 | 21 | fveq2d 6778 | . 2 ⊢ ((𝑊 ∈ LMod ∧ 𝐺 ∈ 𝐹 ∧ (𝑅 ∈ 𝐾 ∧ 𝑋 ∈ 𝑉)) → (𝐺‘((𝑅 · 𝑋)(+g‘𝑊)(0g‘𝑊))) = (𝐺‘(𝑅 · 𝑋))) |
23 | eqid 2738 | . . . . . 6 ⊢ (0g‘𝐷) = (0g‘𝐷) | |
24 | 10, 23, 6, 15 | lfl0 37079 | . . . . 5 ⊢ ((𝑊 ∈ LMod ∧ 𝐺 ∈ 𝐹) → (𝐺‘(0g‘𝑊)) = (0g‘𝐷)) |
25 | 24 | 3adant3 1131 | . . . 4 ⊢ ((𝑊 ∈ LMod ∧ 𝐺 ∈ 𝐹 ∧ (𝑅 ∈ 𝐾 ∧ 𝑋 ∈ 𝑉)) → (𝐺‘(0g‘𝑊)) = (0g‘𝐷)) |
26 | 25 | oveq2d 7291 | . . 3 ⊢ ((𝑊 ∈ LMod ∧ 𝐺 ∈ 𝐹 ∧ (𝑅 ∈ 𝐾 ∧ 𝑋 ∈ 𝑉)) → ((𝑅 × (𝐺‘𝑋))(+g‘𝐷)(𝐺‘(0g‘𝑊))) = ((𝑅 × (𝐺‘𝑋))(+g‘𝐷)(0g‘𝐷))) |
27 | 10 | lmodfgrp 20132 | . . . . 5 ⊢ (𝑊 ∈ LMod → 𝐷 ∈ Grp) |
28 | 27 | 3ad2ant1 1132 | . . . 4 ⊢ ((𝑊 ∈ LMod ∧ 𝐺 ∈ 𝐹 ∧ (𝑅 ∈ 𝐾 ∧ 𝑋 ∈ 𝑉)) → 𝐷 ∈ Grp) |
29 | 10, 12, 5, 15 | lflcl 37078 | . . . . . 6 ⊢ ((𝑊 ∈ LMod ∧ 𝐺 ∈ 𝐹 ∧ 𝑋 ∈ 𝑉) → (𝐺‘𝑋) ∈ 𝐾) |
30 | 29 | 3adant3l 1179 | . . . . 5 ⊢ ((𝑊 ∈ LMod ∧ 𝐺 ∈ 𝐹 ∧ (𝑅 ∈ 𝐾 ∧ 𝑋 ∈ 𝑉)) → (𝐺‘𝑋) ∈ 𝐾) |
31 | 10, 12, 14 | lmodmcl 20135 | . . . . 5 ⊢ ((𝑊 ∈ LMod ∧ 𝑅 ∈ 𝐾 ∧ (𝐺‘𝑋) ∈ 𝐾) → (𝑅 × (𝐺‘𝑋)) ∈ 𝐾) |
32 | 1, 3, 30, 31 | syl3anc 1370 | . . . 4 ⊢ ((𝑊 ∈ LMod ∧ 𝐺 ∈ 𝐹 ∧ (𝑅 ∈ 𝐾 ∧ 𝑋 ∈ 𝑉)) → (𝑅 × (𝐺‘𝑋)) ∈ 𝐾) |
33 | 12, 13, 23 | grprid 18610 | . . . 4 ⊢ ((𝐷 ∈ Grp ∧ (𝑅 × (𝐺‘𝑋)) ∈ 𝐾) → ((𝑅 × (𝐺‘𝑋))(+g‘𝐷)(0g‘𝐷)) = (𝑅 × (𝐺‘𝑋))) |
34 | 28, 32, 33 | syl2anc 584 | . . 3 ⊢ ((𝑊 ∈ LMod ∧ 𝐺 ∈ 𝐹 ∧ (𝑅 ∈ 𝐾 ∧ 𝑋 ∈ 𝑉)) → ((𝑅 × (𝐺‘𝑋))(+g‘𝐷)(0g‘𝐷)) = (𝑅 × (𝐺‘𝑋))) |
35 | 26, 34 | eqtrd 2778 | . 2 ⊢ ((𝑊 ∈ LMod ∧ 𝐺 ∈ 𝐹 ∧ (𝑅 ∈ 𝐾 ∧ 𝑋 ∈ 𝑉)) → ((𝑅 × (𝐺‘𝑋))(+g‘𝐷)(𝐺‘(0g‘𝑊))) = (𝑅 × (𝐺‘𝑋))) |
36 | 17, 22, 35 | 3eqtr3d 2786 | 1 ⊢ ((𝑊 ∈ LMod ∧ 𝐺 ∈ 𝐹 ∧ (𝑅 ∈ 𝐾 ∧ 𝑋 ∈ 𝑉)) → (𝐺‘(𝑅 · 𝑋)) = (𝑅 × (𝐺‘𝑋))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∧ w3a 1086 = wceq 1539 ∈ wcel 2106 ‘cfv 6433 (class class class)co 7275 Basecbs 16912 +gcplusg 16962 .rcmulr 16963 Scalarcsca 16965 ·𝑠 cvsca 16966 0gc0g 17150 Grpcgrp 18577 LModclmod 20123 LFnlclfn 37071 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 ax-cnex 10927 ax-resscn 10928 ax-1cn 10929 ax-icn 10930 ax-addcl 10931 ax-addrcl 10932 ax-mulcl 10933 ax-mulrcl 10934 ax-mulcom 10935 ax-addass 10936 ax-mulass 10937 ax-distr 10938 ax-i2m1 10939 ax-1ne0 10940 ax-1rid 10941 ax-rnegex 10942 ax-rrecex 10943 ax-cnre 10944 ax-pre-lttri 10945 ax-pre-lttrn 10946 ax-pre-ltadd 10947 ax-pre-mulgt0 10948 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-rmo 3071 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-tr 5192 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-pred 6202 df-ord 6269 df-on 6270 df-lim 6271 df-suc 6272 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-riota 7232 df-ov 7278 df-oprab 7279 df-mpo 7280 df-om 7713 df-1st 7831 df-2nd 7832 df-frecs 8097 df-wrecs 8128 df-recs 8202 df-rdg 8241 df-er 8498 df-map 8617 df-en 8734 df-dom 8735 df-sdom 8736 df-pnf 11011 df-mnf 11012 df-xr 11013 df-ltxr 11014 df-le 11015 df-sub 11207 df-neg 11208 df-nn 11974 df-2 12036 df-sets 16865 df-slot 16883 df-ndx 16895 df-base 16913 df-plusg 16975 df-0g 17152 df-mgm 18326 df-sgrp 18375 df-mnd 18386 df-grp 18580 df-minusg 18581 df-sbg 18582 df-mgp 19721 df-ur 19738 df-ring 19785 df-lmod 20125 df-lfl 37072 |
This theorem is referenced by: lfl1 37084 lfladdcl 37085 eqlkr 37113 lkrlsp 37116 dochkr1 39492 dochkr1OLDN 39493 lcfl7lem 39513 lclkrlem2m 39533 hdmaplnm1 39923 |
Copyright terms: Public domain | W3C validator |