Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lflmul Structured version   Visualization version   GIF version

Theorem lflmul 37009
Description: Property of a linear functional. (lnfnmuli 30307 analog.) (Contributed by NM, 16-Apr-2014.)
Hypotheses
Ref Expression
lflmul.d 𝐷 = (Scalar‘𝑊)
lflmul.k 𝐾 = (Base‘𝐷)
lflmul.t × = (.r𝐷)
lflmul.v 𝑉 = (Base‘𝑊)
lflmul.s · = ( ·𝑠𝑊)
lflmul.f 𝐹 = (LFnl‘𝑊)
Assertion
Ref Expression
lflmul ((𝑊 ∈ LMod ∧ 𝐺𝐹 ∧ (𝑅𝐾𝑋𝑉)) → (𝐺‘(𝑅 · 𝑋)) = (𝑅 × (𝐺𝑋)))

Proof of Theorem lflmul
StepHypRef Expression
1 simp1 1134 . . 3 ((𝑊 ∈ LMod ∧ 𝐺𝐹 ∧ (𝑅𝐾𝑋𝑉)) → 𝑊 ∈ LMod)
2 simp2 1135 . . 3 ((𝑊 ∈ LMod ∧ 𝐺𝐹 ∧ (𝑅𝐾𝑋𝑉)) → 𝐺𝐹)
3 simp3l 1199 . . 3 ((𝑊 ∈ LMod ∧ 𝐺𝐹 ∧ (𝑅𝐾𝑋𝑉)) → 𝑅𝐾)
4 simp3r 1200 . . 3 ((𝑊 ∈ LMod ∧ 𝐺𝐹 ∧ (𝑅𝐾𝑋𝑉)) → 𝑋𝑉)
5 lflmul.v . . . . 5 𝑉 = (Base‘𝑊)
6 eqid 2738 . . . . 5 (0g𝑊) = (0g𝑊)
75, 6lmod0vcl 20067 . . . 4 (𝑊 ∈ LMod → (0g𝑊) ∈ 𝑉)
873ad2ant1 1131 . . 3 ((𝑊 ∈ LMod ∧ 𝐺𝐹 ∧ (𝑅𝐾𝑋𝑉)) → (0g𝑊) ∈ 𝑉)
9 eqid 2738 . . . 4 (+g𝑊) = (+g𝑊)
10 lflmul.d . . . 4 𝐷 = (Scalar‘𝑊)
11 lflmul.s . . . 4 · = ( ·𝑠𝑊)
12 lflmul.k . . . 4 𝐾 = (Base‘𝐷)
13 eqid 2738 . . . 4 (+g𝐷) = (+g𝐷)
14 lflmul.t . . . 4 × = (.r𝐷)
15 lflmul.f . . . 4 𝐹 = (LFnl‘𝑊)
165, 9, 10, 11, 12, 13, 14, 15lfli 37002 . . 3 ((𝑊 ∈ LMod ∧ 𝐺𝐹 ∧ (𝑅𝐾𝑋𝑉 ∧ (0g𝑊) ∈ 𝑉)) → (𝐺‘((𝑅 · 𝑋)(+g𝑊)(0g𝑊))) = ((𝑅 × (𝐺𝑋))(+g𝐷)(𝐺‘(0g𝑊))))
171, 2, 3, 4, 8, 16syl113anc 1380 . 2 ((𝑊 ∈ LMod ∧ 𝐺𝐹 ∧ (𝑅𝐾𝑋𝑉)) → (𝐺‘((𝑅 · 𝑋)(+g𝑊)(0g𝑊))) = ((𝑅 × (𝐺𝑋))(+g𝐷)(𝐺‘(0g𝑊))))
185, 10, 11, 12lmodvscl 20055 . . . . 5 ((𝑊 ∈ LMod ∧ 𝑅𝐾𝑋𝑉) → (𝑅 · 𝑋) ∈ 𝑉)
191, 3, 4, 18syl3anc 1369 . . . 4 ((𝑊 ∈ LMod ∧ 𝐺𝐹 ∧ (𝑅𝐾𝑋𝑉)) → (𝑅 · 𝑋) ∈ 𝑉)
205, 9, 6lmod0vrid 20069 . . . 4 ((𝑊 ∈ LMod ∧ (𝑅 · 𝑋) ∈ 𝑉) → ((𝑅 · 𝑋)(+g𝑊)(0g𝑊)) = (𝑅 · 𝑋))
211, 19, 20syl2anc 583 . . 3 ((𝑊 ∈ LMod ∧ 𝐺𝐹 ∧ (𝑅𝐾𝑋𝑉)) → ((𝑅 · 𝑋)(+g𝑊)(0g𝑊)) = (𝑅 · 𝑋))
2221fveq2d 6760 . 2 ((𝑊 ∈ LMod ∧ 𝐺𝐹 ∧ (𝑅𝐾𝑋𝑉)) → (𝐺‘((𝑅 · 𝑋)(+g𝑊)(0g𝑊))) = (𝐺‘(𝑅 · 𝑋)))
23 eqid 2738 . . . . . 6 (0g𝐷) = (0g𝐷)
2410, 23, 6, 15lfl0 37006 . . . . 5 ((𝑊 ∈ LMod ∧ 𝐺𝐹) → (𝐺‘(0g𝑊)) = (0g𝐷))
25243adant3 1130 . . . 4 ((𝑊 ∈ LMod ∧ 𝐺𝐹 ∧ (𝑅𝐾𝑋𝑉)) → (𝐺‘(0g𝑊)) = (0g𝐷))
2625oveq2d 7271 . . 3 ((𝑊 ∈ LMod ∧ 𝐺𝐹 ∧ (𝑅𝐾𝑋𝑉)) → ((𝑅 × (𝐺𝑋))(+g𝐷)(𝐺‘(0g𝑊))) = ((𝑅 × (𝐺𝑋))(+g𝐷)(0g𝐷)))
2710lmodfgrp 20047 . . . . 5 (𝑊 ∈ LMod → 𝐷 ∈ Grp)
28273ad2ant1 1131 . . . 4 ((𝑊 ∈ LMod ∧ 𝐺𝐹 ∧ (𝑅𝐾𝑋𝑉)) → 𝐷 ∈ Grp)
2910, 12, 5, 15lflcl 37005 . . . . . 6 ((𝑊 ∈ LMod ∧ 𝐺𝐹𝑋𝑉) → (𝐺𝑋) ∈ 𝐾)
30293adant3l 1178 . . . . 5 ((𝑊 ∈ LMod ∧ 𝐺𝐹 ∧ (𝑅𝐾𝑋𝑉)) → (𝐺𝑋) ∈ 𝐾)
3110, 12, 14lmodmcl 20050 . . . . 5 ((𝑊 ∈ LMod ∧ 𝑅𝐾 ∧ (𝐺𝑋) ∈ 𝐾) → (𝑅 × (𝐺𝑋)) ∈ 𝐾)
321, 3, 30, 31syl3anc 1369 . . . 4 ((𝑊 ∈ LMod ∧ 𝐺𝐹 ∧ (𝑅𝐾𝑋𝑉)) → (𝑅 × (𝐺𝑋)) ∈ 𝐾)
3312, 13, 23grprid 18525 . . . 4 ((𝐷 ∈ Grp ∧ (𝑅 × (𝐺𝑋)) ∈ 𝐾) → ((𝑅 × (𝐺𝑋))(+g𝐷)(0g𝐷)) = (𝑅 × (𝐺𝑋)))
3428, 32, 33syl2anc 583 . . 3 ((𝑊 ∈ LMod ∧ 𝐺𝐹 ∧ (𝑅𝐾𝑋𝑉)) → ((𝑅 × (𝐺𝑋))(+g𝐷)(0g𝐷)) = (𝑅 × (𝐺𝑋)))
3526, 34eqtrd 2778 . 2 ((𝑊 ∈ LMod ∧ 𝐺𝐹 ∧ (𝑅𝐾𝑋𝑉)) → ((𝑅 × (𝐺𝑋))(+g𝐷)(𝐺‘(0g𝑊))) = (𝑅 × (𝐺𝑋)))
3617, 22, 353eqtr3d 2786 1 ((𝑊 ∈ LMod ∧ 𝐺𝐹 ∧ (𝑅𝐾𝑋𝑉)) → (𝐺‘(𝑅 · 𝑋)) = (𝑅 × (𝐺𝑋)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1085   = wceq 1539  wcel 2108  cfv 6418  (class class class)co 7255  Basecbs 16840  +gcplusg 16888  .rcmulr 16889  Scalarcsca 16891   ·𝑠 cvsca 16892  0gc0g 17067  Grpcgrp 18492  LModclmod 20038  LFnlclfn 36998
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-er 8456  df-map 8575  df-en 8692  df-dom 8693  df-sdom 8694  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-nn 11904  df-2 11966  df-sets 16793  df-slot 16811  df-ndx 16823  df-base 16841  df-plusg 16901  df-0g 17069  df-mgm 18241  df-sgrp 18290  df-mnd 18301  df-grp 18495  df-minusg 18496  df-sbg 18497  df-mgp 19636  df-ur 19653  df-ring 19700  df-lmod 20040  df-lfl 36999
This theorem is referenced by:  lfl1  37011  lfladdcl  37012  eqlkr  37040  lkrlsp  37043  dochkr1  39419  dochkr1OLDN  39420  lcfl7lem  39440  lclkrlem2m  39460  hdmaplnm1  39850
  Copyright terms: Public domain W3C validator