Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lflmul Structured version   Visualization version   GIF version

Theorem lflmul 36198
Description: Property of a linear functional. (lnfnmuli 29815 analog.) (Contributed by NM, 16-Apr-2014.)
Hypotheses
Ref Expression
lflmul.d 𝐷 = (Scalar‘𝑊)
lflmul.k 𝐾 = (Base‘𝐷)
lflmul.t × = (.r𝐷)
lflmul.v 𝑉 = (Base‘𝑊)
lflmul.s · = ( ·𝑠𝑊)
lflmul.f 𝐹 = (LFnl‘𝑊)
Assertion
Ref Expression
lflmul ((𝑊 ∈ LMod ∧ 𝐺𝐹 ∧ (𝑅𝐾𝑋𝑉)) → (𝐺‘(𝑅 · 𝑋)) = (𝑅 × (𝐺𝑋)))

Proof of Theorem lflmul
StepHypRef Expression
1 simp1 1132 . . 3 ((𝑊 ∈ LMod ∧ 𝐺𝐹 ∧ (𝑅𝐾𝑋𝑉)) → 𝑊 ∈ LMod)
2 simp2 1133 . . 3 ((𝑊 ∈ LMod ∧ 𝐺𝐹 ∧ (𝑅𝐾𝑋𝑉)) → 𝐺𝐹)
3 simp3l 1197 . . 3 ((𝑊 ∈ LMod ∧ 𝐺𝐹 ∧ (𝑅𝐾𝑋𝑉)) → 𝑅𝐾)
4 simp3r 1198 . . 3 ((𝑊 ∈ LMod ∧ 𝐺𝐹 ∧ (𝑅𝐾𝑋𝑉)) → 𝑋𝑉)
5 lflmul.v . . . . 5 𝑉 = (Base‘𝑊)
6 eqid 2821 . . . . 5 (0g𝑊) = (0g𝑊)
75, 6lmod0vcl 19657 . . . 4 (𝑊 ∈ LMod → (0g𝑊) ∈ 𝑉)
873ad2ant1 1129 . . 3 ((𝑊 ∈ LMod ∧ 𝐺𝐹 ∧ (𝑅𝐾𝑋𝑉)) → (0g𝑊) ∈ 𝑉)
9 eqid 2821 . . . 4 (+g𝑊) = (+g𝑊)
10 lflmul.d . . . 4 𝐷 = (Scalar‘𝑊)
11 lflmul.s . . . 4 · = ( ·𝑠𝑊)
12 lflmul.k . . . 4 𝐾 = (Base‘𝐷)
13 eqid 2821 . . . 4 (+g𝐷) = (+g𝐷)
14 lflmul.t . . . 4 × = (.r𝐷)
15 lflmul.f . . . 4 𝐹 = (LFnl‘𝑊)
165, 9, 10, 11, 12, 13, 14, 15lfli 36191 . . 3 ((𝑊 ∈ LMod ∧ 𝐺𝐹 ∧ (𝑅𝐾𝑋𝑉 ∧ (0g𝑊) ∈ 𝑉)) → (𝐺‘((𝑅 · 𝑋)(+g𝑊)(0g𝑊))) = ((𝑅 × (𝐺𝑋))(+g𝐷)(𝐺‘(0g𝑊))))
171, 2, 3, 4, 8, 16syl113anc 1378 . 2 ((𝑊 ∈ LMod ∧ 𝐺𝐹 ∧ (𝑅𝐾𝑋𝑉)) → (𝐺‘((𝑅 · 𝑋)(+g𝑊)(0g𝑊))) = ((𝑅 × (𝐺𝑋))(+g𝐷)(𝐺‘(0g𝑊))))
185, 10, 11, 12lmodvscl 19645 . . . . 5 ((𝑊 ∈ LMod ∧ 𝑅𝐾𝑋𝑉) → (𝑅 · 𝑋) ∈ 𝑉)
191, 3, 4, 18syl3anc 1367 . . . 4 ((𝑊 ∈ LMod ∧ 𝐺𝐹 ∧ (𝑅𝐾𝑋𝑉)) → (𝑅 · 𝑋) ∈ 𝑉)
205, 9, 6lmod0vrid 19659 . . . 4 ((𝑊 ∈ LMod ∧ (𝑅 · 𝑋) ∈ 𝑉) → ((𝑅 · 𝑋)(+g𝑊)(0g𝑊)) = (𝑅 · 𝑋))
211, 19, 20syl2anc 586 . . 3 ((𝑊 ∈ LMod ∧ 𝐺𝐹 ∧ (𝑅𝐾𝑋𝑉)) → ((𝑅 · 𝑋)(+g𝑊)(0g𝑊)) = (𝑅 · 𝑋))
2221fveq2d 6669 . 2 ((𝑊 ∈ LMod ∧ 𝐺𝐹 ∧ (𝑅𝐾𝑋𝑉)) → (𝐺‘((𝑅 · 𝑋)(+g𝑊)(0g𝑊))) = (𝐺‘(𝑅 · 𝑋)))
23 eqid 2821 . . . . . 6 (0g𝐷) = (0g𝐷)
2410, 23, 6, 15lfl0 36195 . . . . 5 ((𝑊 ∈ LMod ∧ 𝐺𝐹) → (𝐺‘(0g𝑊)) = (0g𝐷))
25243adant3 1128 . . . 4 ((𝑊 ∈ LMod ∧ 𝐺𝐹 ∧ (𝑅𝐾𝑋𝑉)) → (𝐺‘(0g𝑊)) = (0g𝐷))
2625oveq2d 7166 . . 3 ((𝑊 ∈ LMod ∧ 𝐺𝐹 ∧ (𝑅𝐾𝑋𝑉)) → ((𝑅 × (𝐺𝑋))(+g𝐷)(𝐺‘(0g𝑊))) = ((𝑅 × (𝐺𝑋))(+g𝐷)(0g𝐷)))
2710lmodfgrp 19637 . . . . 5 (𝑊 ∈ LMod → 𝐷 ∈ Grp)
28273ad2ant1 1129 . . . 4 ((𝑊 ∈ LMod ∧ 𝐺𝐹 ∧ (𝑅𝐾𝑋𝑉)) → 𝐷 ∈ Grp)
2910, 12, 5, 15lflcl 36194 . . . . . 6 ((𝑊 ∈ LMod ∧ 𝐺𝐹𝑋𝑉) → (𝐺𝑋) ∈ 𝐾)
30293adant3l 1176 . . . . 5 ((𝑊 ∈ LMod ∧ 𝐺𝐹 ∧ (𝑅𝐾𝑋𝑉)) → (𝐺𝑋) ∈ 𝐾)
3110, 12, 14lmodmcl 19640 . . . . 5 ((𝑊 ∈ LMod ∧ 𝑅𝐾 ∧ (𝐺𝑋) ∈ 𝐾) → (𝑅 × (𝐺𝑋)) ∈ 𝐾)
321, 3, 30, 31syl3anc 1367 . . . 4 ((𝑊 ∈ LMod ∧ 𝐺𝐹 ∧ (𝑅𝐾𝑋𝑉)) → (𝑅 × (𝐺𝑋)) ∈ 𝐾)
3312, 13, 23grprid 18128 . . . 4 ((𝐷 ∈ Grp ∧ (𝑅 × (𝐺𝑋)) ∈ 𝐾) → ((𝑅 × (𝐺𝑋))(+g𝐷)(0g𝐷)) = (𝑅 × (𝐺𝑋)))
3428, 32, 33syl2anc 586 . . 3 ((𝑊 ∈ LMod ∧ 𝐺𝐹 ∧ (𝑅𝐾𝑋𝑉)) → ((𝑅 × (𝐺𝑋))(+g𝐷)(0g𝐷)) = (𝑅 × (𝐺𝑋)))
3526, 34eqtrd 2856 . 2 ((𝑊 ∈ LMod ∧ 𝐺𝐹 ∧ (𝑅𝐾𝑋𝑉)) → ((𝑅 × (𝐺𝑋))(+g𝐷)(𝐺‘(0g𝑊))) = (𝑅 × (𝐺𝑋)))
3617, 22, 353eqtr3d 2864 1 ((𝑊 ∈ LMod ∧ 𝐺𝐹 ∧ (𝑅𝐾𝑋𝑉)) → (𝐺‘(𝑅 · 𝑋)) = (𝑅 × (𝐺𝑋)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398  w3a 1083   = wceq 1533  wcel 2110  cfv 6350  (class class class)co 7150  Basecbs 16477  +gcplusg 16559  .rcmulr 16560  Scalarcsca 16562   ·𝑠 cvsca 16563  0gc0g 16707  Grpcgrp 18097  LModclmod 19628  LFnlclfn 36187
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2156  ax-12 2172  ax-ext 2793  ax-sep 5196  ax-nul 5203  ax-pow 5259  ax-pr 5322  ax-un 7455  ax-cnex 10587  ax-resscn 10588  ax-1cn 10589  ax-icn 10590  ax-addcl 10591  ax-addrcl 10592  ax-mulcl 10593  ax-mulrcl 10594  ax-mulcom 10595  ax-addass 10596  ax-mulass 10597  ax-distr 10598  ax-i2m1 10599  ax-1ne0 10600  ax-1rid 10601  ax-rnegex 10602  ax-rrecex 10603  ax-cnre 10604  ax-pre-lttri 10605  ax-pre-lttrn 10606  ax-pre-ltadd 10607  ax-pre-mulgt0 10608
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3497  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4562  df-pr 4564  df-tp 4566  df-op 4568  df-uni 4833  df-iun 4914  df-br 5060  df-opab 5122  df-mpt 5140  df-tr 5166  df-id 5455  df-eprel 5460  df-po 5469  df-so 5470  df-fr 5509  df-we 5511  df-xp 5556  df-rel 5557  df-cnv 5558  df-co 5559  df-dm 5560  df-rn 5561  df-res 5562  df-ima 5563  df-pred 6143  df-ord 6189  df-on 6190  df-lim 6191  df-suc 6192  df-iota 6309  df-fun 6352  df-fn 6353  df-f 6354  df-f1 6355  df-fo 6356  df-f1o 6357  df-fv 6358  df-riota 7108  df-ov 7153  df-oprab 7154  df-mpo 7155  df-om 7575  df-1st 7683  df-2nd 7684  df-wrecs 7941  df-recs 8002  df-rdg 8040  df-er 8283  df-map 8402  df-en 8504  df-dom 8505  df-sdom 8506  df-pnf 10671  df-mnf 10672  df-xr 10673  df-ltxr 10674  df-le 10675  df-sub 10866  df-neg 10867  df-nn 11633  df-2 11694  df-ndx 16480  df-slot 16481  df-base 16483  df-sets 16484  df-plusg 16572  df-0g 16709  df-mgm 17846  df-sgrp 17895  df-mnd 17906  df-grp 18100  df-minusg 18101  df-sbg 18102  df-mgp 19234  df-ur 19246  df-ring 19293  df-lmod 19630  df-lfl 36188
This theorem is referenced by:  lfl1  36200  lfladdcl  36201  eqlkr  36229  lkrlsp  36232  dochkr1  38608  dochkr1OLDN  38609  lcfl7lem  38629  lclkrlem2m  38649  hdmaplnm1  39039
  Copyright terms: Public domain W3C validator