![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > lflmul | Structured version Visualization version GIF version |
Description: Property of a linear functional. (lnfnmuli 31977 analog.) (Contributed by NM, 16-Apr-2014.) |
Ref | Expression |
---|---|
lflmul.d | ⊢ 𝐷 = (Scalar‘𝑊) |
lflmul.k | ⊢ 𝐾 = (Base‘𝐷) |
lflmul.t | ⊢ × = (.r‘𝐷) |
lflmul.v | ⊢ 𝑉 = (Base‘𝑊) |
lflmul.s | ⊢ · = ( ·𝑠 ‘𝑊) |
lflmul.f | ⊢ 𝐹 = (LFnl‘𝑊) |
Ref | Expression |
---|---|
lflmul | ⊢ ((𝑊 ∈ LMod ∧ 𝐺 ∈ 𝐹 ∧ (𝑅 ∈ 𝐾 ∧ 𝑋 ∈ 𝑉)) → (𝐺‘(𝑅 · 𝑋)) = (𝑅 × (𝐺‘𝑋))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp1 1133 | . . 3 ⊢ ((𝑊 ∈ LMod ∧ 𝐺 ∈ 𝐹 ∧ (𝑅 ∈ 𝐾 ∧ 𝑋 ∈ 𝑉)) → 𝑊 ∈ LMod) | |
2 | simp2 1134 | . . 3 ⊢ ((𝑊 ∈ LMod ∧ 𝐺 ∈ 𝐹 ∧ (𝑅 ∈ 𝐾 ∧ 𝑋 ∈ 𝑉)) → 𝐺 ∈ 𝐹) | |
3 | simp3l 1198 | . . 3 ⊢ ((𝑊 ∈ LMod ∧ 𝐺 ∈ 𝐹 ∧ (𝑅 ∈ 𝐾 ∧ 𝑋 ∈ 𝑉)) → 𝑅 ∈ 𝐾) | |
4 | simp3r 1199 | . . 3 ⊢ ((𝑊 ∈ LMod ∧ 𝐺 ∈ 𝐹 ∧ (𝑅 ∈ 𝐾 ∧ 𝑋 ∈ 𝑉)) → 𝑋 ∈ 𝑉) | |
5 | lflmul.v | . . . . 5 ⊢ 𝑉 = (Base‘𝑊) | |
6 | eqid 2726 | . . . . 5 ⊢ (0g‘𝑊) = (0g‘𝑊) | |
7 | 5, 6 | lmod0vcl 20867 | . . . 4 ⊢ (𝑊 ∈ LMod → (0g‘𝑊) ∈ 𝑉) |
8 | 7 | 3ad2ant1 1130 | . . 3 ⊢ ((𝑊 ∈ LMod ∧ 𝐺 ∈ 𝐹 ∧ (𝑅 ∈ 𝐾 ∧ 𝑋 ∈ 𝑉)) → (0g‘𝑊) ∈ 𝑉) |
9 | eqid 2726 | . . . 4 ⊢ (+g‘𝑊) = (+g‘𝑊) | |
10 | lflmul.d | . . . 4 ⊢ 𝐷 = (Scalar‘𝑊) | |
11 | lflmul.s | . . . 4 ⊢ · = ( ·𝑠 ‘𝑊) | |
12 | lflmul.k | . . . 4 ⊢ 𝐾 = (Base‘𝐷) | |
13 | eqid 2726 | . . . 4 ⊢ (+g‘𝐷) = (+g‘𝐷) | |
14 | lflmul.t | . . . 4 ⊢ × = (.r‘𝐷) | |
15 | lflmul.f | . . . 4 ⊢ 𝐹 = (LFnl‘𝑊) | |
16 | 5, 9, 10, 11, 12, 13, 14, 15 | lfli 38759 | . . 3 ⊢ ((𝑊 ∈ LMod ∧ 𝐺 ∈ 𝐹 ∧ (𝑅 ∈ 𝐾 ∧ 𝑋 ∈ 𝑉 ∧ (0g‘𝑊) ∈ 𝑉)) → (𝐺‘((𝑅 · 𝑋)(+g‘𝑊)(0g‘𝑊))) = ((𝑅 × (𝐺‘𝑋))(+g‘𝐷)(𝐺‘(0g‘𝑊)))) |
17 | 1, 2, 3, 4, 8, 16 | syl113anc 1379 | . 2 ⊢ ((𝑊 ∈ LMod ∧ 𝐺 ∈ 𝐹 ∧ (𝑅 ∈ 𝐾 ∧ 𝑋 ∈ 𝑉)) → (𝐺‘((𝑅 · 𝑋)(+g‘𝑊)(0g‘𝑊))) = ((𝑅 × (𝐺‘𝑋))(+g‘𝐷)(𝐺‘(0g‘𝑊)))) |
18 | 5, 10, 11, 12 | lmodvscl 20854 | . . . . 5 ⊢ ((𝑊 ∈ LMod ∧ 𝑅 ∈ 𝐾 ∧ 𝑋 ∈ 𝑉) → (𝑅 · 𝑋) ∈ 𝑉) |
19 | 1, 3, 4, 18 | syl3anc 1368 | . . . 4 ⊢ ((𝑊 ∈ LMod ∧ 𝐺 ∈ 𝐹 ∧ (𝑅 ∈ 𝐾 ∧ 𝑋 ∈ 𝑉)) → (𝑅 · 𝑋) ∈ 𝑉) |
20 | 5, 9, 6 | lmod0vrid 20869 | . . . 4 ⊢ ((𝑊 ∈ LMod ∧ (𝑅 · 𝑋) ∈ 𝑉) → ((𝑅 · 𝑋)(+g‘𝑊)(0g‘𝑊)) = (𝑅 · 𝑋)) |
21 | 1, 19, 20 | syl2anc 582 | . . 3 ⊢ ((𝑊 ∈ LMod ∧ 𝐺 ∈ 𝐹 ∧ (𝑅 ∈ 𝐾 ∧ 𝑋 ∈ 𝑉)) → ((𝑅 · 𝑋)(+g‘𝑊)(0g‘𝑊)) = (𝑅 · 𝑋)) |
22 | 21 | fveq2d 6905 | . 2 ⊢ ((𝑊 ∈ LMod ∧ 𝐺 ∈ 𝐹 ∧ (𝑅 ∈ 𝐾 ∧ 𝑋 ∈ 𝑉)) → (𝐺‘((𝑅 · 𝑋)(+g‘𝑊)(0g‘𝑊))) = (𝐺‘(𝑅 · 𝑋))) |
23 | eqid 2726 | . . . . . 6 ⊢ (0g‘𝐷) = (0g‘𝐷) | |
24 | 10, 23, 6, 15 | lfl0 38763 | . . . . 5 ⊢ ((𝑊 ∈ LMod ∧ 𝐺 ∈ 𝐹) → (𝐺‘(0g‘𝑊)) = (0g‘𝐷)) |
25 | 24 | 3adant3 1129 | . . . 4 ⊢ ((𝑊 ∈ LMod ∧ 𝐺 ∈ 𝐹 ∧ (𝑅 ∈ 𝐾 ∧ 𝑋 ∈ 𝑉)) → (𝐺‘(0g‘𝑊)) = (0g‘𝐷)) |
26 | 25 | oveq2d 7440 | . . 3 ⊢ ((𝑊 ∈ LMod ∧ 𝐺 ∈ 𝐹 ∧ (𝑅 ∈ 𝐾 ∧ 𝑋 ∈ 𝑉)) → ((𝑅 × (𝐺‘𝑋))(+g‘𝐷)(𝐺‘(0g‘𝑊))) = ((𝑅 × (𝐺‘𝑋))(+g‘𝐷)(0g‘𝐷))) |
27 | 10 | lmodfgrp 20845 | . . . . 5 ⊢ (𝑊 ∈ LMod → 𝐷 ∈ Grp) |
28 | 27 | 3ad2ant1 1130 | . . . 4 ⊢ ((𝑊 ∈ LMod ∧ 𝐺 ∈ 𝐹 ∧ (𝑅 ∈ 𝐾 ∧ 𝑋 ∈ 𝑉)) → 𝐷 ∈ Grp) |
29 | 10, 12, 5, 15 | lflcl 38762 | . . . . . 6 ⊢ ((𝑊 ∈ LMod ∧ 𝐺 ∈ 𝐹 ∧ 𝑋 ∈ 𝑉) → (𝐺‘𝑋) ∈ 𝐾) |
30 | 29 | 3adant3l 1177 | . . . . 5 ⊢ ((𝑊 ∈ LMod ∧ 𝐺 ∈ 𝐹 ∧ (𝑅 ∈ 𝐾 ∧ 𝑋 ∈ 𝑉)) → (𝐺‘𝑋) ∈ 𝐾) |
31 | 10, 12, 14 | lmodmcl 20849 | . . . . 5 ⊢ ((𝑊 ∈ LMod ∧ 𝑅 ∈ 𝐾 ∧ (𝐺‘𝑋) ∈ 𝐾) → (𝑅 × (𝐺‘𝑋)) ∈ 𝐾) |
32 | 1, 3, 30, 31 | syl3anc 1368 | . . . 4 ⊢ ((𝑊 ∈ LMod ∧ 𝐺 ∈ 𝐹 ∧ (𝑅 ∈ 𝐾 ∧ 𝑋 ∈ 𝑉)) → (𝑅 × (𝐺‘𝑋)) ∈ 𝐾) |
33 | 12, 13, 23 | grprid 18963 | . . . 4 ⊢ ((𝐷 ∈ Grp ∧ (𝑅 × (𝐺‘𝑋)) ∈ 𝐾) → ((𝑅 × (𝐺‘𝑋))(+g‘𝐷)(0g‘𝐷)) = (𝑅 × (𝐺‘𝑋))) |
34 | 28, 32, 33 | syl2anc 582 | . . 3 ⊢ ((𝑊 ∈ LMod ∧ 𝐺 ∈ 𝐹 ∧ (𝑅 ∈ 𝐾 ∧ 𝑋 ∈ 𝑉)) → ((𝑅 × (𝐺‘𝑋))(+g‘𝐷)(0g‘𝐷)) = (𝑅 × (𝐺‘𝑋))) |
35 | 26, 34 | eqtrd 2766 | . 2 ⊢ ((𝑊 ∈ LMod ∧ 𝐺 ∈ 𝐹 ∧ (𝑅 ∈ 𝐾 ∧ 𝑋 ∈ 𝑉)) → ((𝑅 × (𝐺‘𝑋))(+g‘𝐷)(𝐺‘(0g‘𝑊))) = (𝑅 × (𝐺‘𝑋))) |
36 | 17, 22, 35 | 3eqtr3d 2774 | 1 ⊢ ((𝑊 ∈ LMod ∧ 𝐺 ∈ 𝐹 ∧ (𝑅 ∈ 𝐾 ∧ 𝑋 ∈ 𝑉)) → (𝐺‘(𝑅 · 𝑋)) = (𝑅 × (𝐺‘𝑋))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 394 ∧ w3a 1084 = wceq 1534 ∈ wcel 2099 ‘cfv 6554 (class class class)co 7424 Basecbs 17213 +gcplusg 17266 .rcmulr 17267 Scalarcsca 17269 ·𝑠 cvsca 17270 0gc0g 17454 Grpcgrp 18928 LModclmod 20836 LFnlclfn 38755 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2697 ax-sep 5304 ax-nul 5311 ax-pow 5369 ax-pr 5433 ax-un 7746 ax-cnex 11214 ax-resscn 11215 ax-1cn 11216 ax-icn 11217 ax-addcl 11218 ax-addrcl 11219 ax-mulcl 11220 ax-mulrcl 11221 ax-mulcom 11222 ax-addass 11223 ax-mulass 11224 ax-distr 11225 ax-i2m1 11226 ax-1ne0 11227 ax-1rid 11228 ax-rnegex 11229 ax-rrecex 11230 ax-cnre 11231 ax-pre-lttri 11232 ax-pre-lttrn 11233 ax-pre-ltadd 11234 ax-pre-mulgt0 11235 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2704 df-cleq 2718 df-clel 2803 df-nfc 2878 df-ne 2931 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3364 df-reu 3365 df-rab 3420 df-v 3464 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3967 df-nul 4326 df-if 4534 df-pw 4609 df-sn 4634 df-pr 4636 df-op 4640 df-uni 4914 df-iun 5003 df-br 5154 df-opab 5216 df-mpt 5237 df-tr 5271 df-id 5580 df-eprel 5586 df-po 5594 df-so 5595 df-fr 5637 df-we 5639 df-xp 5688 df-rel 5689 df-cnv 5690 df-co 5691 df-dm 5692 df-rn 5693 df-res 5694 df-ima 5695 df-pred 6312 df-ord 6379 df-on 6380 df-lim 6381 df-suc 6382 df-iota 6506 df-fun 6556 df-fn 6557 df-f 6558 df-f1 6559 df-fo 6560 df-f1o 6561 df-fv 6562 df-riota 7380 df-ov 7427 df-oprab 7428 df-mpo 7429 df-om 7877 df-1st 8003 df-2nd 8004 df-frecs 8296 df-wrecs 8327 df-recs 8401 df-rdg 8440 df-er 8734 df-map 8857 df-en 8975 df-dom 8976 df-sdom 8977 df-pnf 11300 df-mnf 11301 df-xr 11302 df-ltxr 11303 df-le 11304 df-sub 11496 df-neg 11497 df-nn 12265 df-2 12327 df-sets 17166 df-slot 17184 df-ndx 17196 df-base 17214 df-plusg 17279 df-0g 17456 df-mgm 18633 df-sgrp 18712 df-mnd 18728 df-grp 18931 df-minusg 18932 df-sbg 18933 df-mgp 20118 df-ur 20165 df-ring 20218 df-lmod 20838 df-lfl 38756 |
This theorem is referenced by: lfl1 38768 lfladdcl 38769 eqlkr 38797 lkrlsp 38800 dochkr1 41177 dochkr1OLDN 41178 lcfl7lem 41198 lclkrlem2m 41218 hdmaplnm1 41608 |
Copyright terms: Public domain | W3C validator |