Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lflmul Structured version   Visualization version   GIF version

Theorem lflmul 36364
Description: Property of a linear functional. (lnfnmuli 29827 analog.) (Contributed by NM, 16-Apr-2014.)
Hypotheses
Ref Expression
lflmul.d 𝐷 = (Scalar‘𝑊)
lflmul.k 𝐾 = (Base‘𝐷)
lflmul.t × = (.r𝐷)
lflmul.v 𝑉 = (Base‘𝑊)
lflmul.s · = ( ·𝑠𝑊)
lflmul.f 𝐹 = (LFnl‘𝑊)
Assertion
Ref Expression
lflmul ((𝑊 ∈ LMod ∧ 𝐺𝐹 ∧ (𝑅𝐾𝑋𝑉)) → (𝐺‘(𝑅 · 𝑋)) = (𝑅 × (𝐺𝑋)))

Proof of Theorem lflmul
StepHypRef Expression
1 simp1 1133 . . 3 ((𝑊 ∈ LMod ∧ 𝐺𝐹 ∧ (𝑅𝐾𝑋𝑉)) → 𝑊 ∈ LMod)
2 simp2 1134 . . 3 ((𝑊 ∈ LMod ∧ 𝐺𝐹 ∧ (𝑅𝐾𝑋𝑉)) → 𝐺𝐹)
3 simp3l 1198 . . 3 ((𝑊 ∈ LMod ∧ 𝐺𝐹 ∧ (𝑅𝐾𝑋𝑉)) → 𝑅𝐾)
4 simp3r 1199 . . 3 ((𝑊 ∈ LMod ∧ 𝐺𝐹 ∧ (𝑅𝐾𝑋𝑉)) → 𝑋𝑉)
5 lflmul.v . . . . 5 𝑉 = (Base‘𝑊)
6 eqid 2798 . . . . 5 (0g𝑊) = (0g𝑊)
75, 6lmod0vcl 19656 . . . 4 (𝑊 ∈ LMod → (0g𝑊) ∈ 𝑉)
873ad2ant1 1130 . . 3 ((𝑊 ∈ LMod ∧ 𝐺𝐹 ∧ (𝑅𝐾𝑋𝑉)) → (0g𝑊) ∈ 𝑉)
9 eqid 2798 . . . 4 (+g𝑊) = (+g𝑊)
10 lflmul.d . . . 4 𝐷 = (Scalar‘𝑊)
11 lflmul.s . . . 4 · = ( ·𝑠𝑊)
12 lflmul.k . . . 4 𝐾 = (Base‘𝐷)
13 eqid 2798 . . . 4 (+g𝐷) = (+g𝐷)
14 lflmul.t . . . 4 × = (.r𝐷)
15 lflmul.f . . . 4 𝐹 = (LFnl‘𝑊)
165, 9, 10, 11, 12, 13, 14, 15lfli 36357 . . 3 ((𝑊 ∈ LMod ∧ 𝐺𝐹 ∧ (𝑅𝐾𝑋𝑉 ∧ (0g𝑊) ∈ 𝑉)) → (𝐺‘((𝑅 · 𝑋)(+g𝑊)(0g𝑊))) = ((𝑅 × (𝐺𝑋))(+g𝐷)(𝐺‘(0g𝑊))))
171, 2, 3, 4, 8, 16syl113anc 1379 . 2 ((𝑊 ∈ LMod ∧ 𝐺𝐹 ∧ (𝑅𝐾𝑋𝑉)) → (𝐺‘((𝑅 · 𝑋)(+g𝑊)(0g𝑊))) = ((𝑅 × (𝐺𝑋))(+g𝐷)(𝐺‘(0g𝑊))))
185, 10, 11, 12lmodvscl 19644 . . . . 5 ((𝑊 ∈ LMod ∧ 𝑅𝐾𝑋𝑉) → (𝑅 · 𝑋) ∈ 𝑉)
191, 3, 4, 18syl3anc 1368 . . . 4 ((𝑊 ∈ LMod ∧ 𝐺𝐹 ∧ (𝑅𝐾𝑋𝑉)) → (𝑅 · 𝑋) ∈ 𝑉)
205, 9, 6lmod0vrid 19658 . . . 4 ((𝑊 ∈ LMod ∧ (𝑅 · 𝑋) ∈ 𝑉) → ((𝑅 · 𝑋)(+g𝑊)(0g𝑊)) = (𝑅 · 𝑋))
211, 19, 20syl2anc 587 . . 3 ((𝑊 ∈ LMod ∧ 𝐺𝐹 ∧ (𝑅𝐾𝑋𝑉)) → ((𝑅 · 𝑋)(+g𝑊)(0g𝑊)) = (𝑅 · 𝑋))
2221fveq2d 6649 . 2 ((𝑊 ∈ LMod ∧ 𝐺𝐹 ∧ (𝑅𝐾𝑋𝑉)) → (𝐺‘((𝑅 · 𝑋)(+g𝑊)(0g𝑊))) = (𝐺‘(𝑅 · 𝑋)))
23 eqid 2798 . . . . . 6 (0g𝐷) = (0g𝐷)
2410, 23, 6, 15lfl0 36361 . . . . 5 ((𝑊 ∈ LMod ∧ 𝐺𝐹) → (𝐺‘(0g𝑊)) = (0g𝐷))
25243adant3 1129 . . . 4 ((𝑊 ∈ LMod ∧ 𝐺𝐹 ∧ (𝑅𝐾𝑋𝑉)) → (𝐺‘(0g𝑊)) = (0g𝐷))
2625oveq2d 7151 . . 3 ((𝑊 ∈ LMod ∧ 𝐺𝐹 ∧ (𝑅𝐾𝑋𝑉)) → ((𝑅 × (𝐺𝑋))(+g𝐷)(𝐺‘(0g𝑊))) = ((𝑅 × (𝐺𝑋))(+g𝐷)(0g𝐷)))
2710lmodfgrp 19636 . . . . 5 (𝑊 ∈ LMod → 𝐷 ∈ Grp)
28273ad2ant1 1130 . . . 4 ((𝑊 ∈ LMod ∧ 𝐺𝐹 ∧ (𝑅𝐾𝑋𝑉)) → 𝐷 ∈ Grp)
2910, 12, 5, 15lflcl 36360 . . . . . 6 ((𝑊 ∈ LMod ∧ 𝐺𝐹𝑋𝑉) → (𝐺𝑋) ∈ 𝐾)
30293adant3l 1177 . . . . 5 ((𝑊 ∈ LMod ∧ 𝐺𝐹 ∧ (𝑅𝐾𝑋𝑉)) → (𝐺𝑋) ∈ 𝐾)
3110, 12, 14lmodmcl 19639 . . . . 5 ((𝑊 ∈ LMod ∧ 𝑅𝐾 ∧ (𝐺𝑋) ∈ 𝐾) → (𝑅 × (𝐺𝑋)) ∈ 𝐾)
321, 3, 30, 31syl3anc 1368 . . . 4 ((𝑊 ∈ LMod ∧ 𝐺𝐹 ∧ (𝑅𝐾𝑋𝑉)) → (𝑅 × (𝐺𝑋)) ∈ 𝐾)
3312, 13, 23grprid 18126 . . . 4 ((𝐷 ∈ Grp ∧ (𝑅 × (𝐺𝑋)) ∈ 𝐾) → ((𝑅 × (𝐺𝑋))(+g𝐷)(0g𝐷)) = (𝑅 × (𝐺𝑋)))
3428, 32, 33syl2anc 587 . . 3 ((𝑊 ∈ LMod ∧ 𝐺𝐹 ∧ (𝑅𝐾𝑋𝑉)) → ((𝑅 × (𝐺𝑋))(+g𝐷)(0g𝐷)) = (𝑅 × (𝐺𝑋)))
3526, 34eqtrd 2833 . 2 ((𝑊 ∈ LMod ∧ 𝐺𝐹 ∧ (𝑅𝐾𝑋𝑉)) → ((𝑅 × (𝐺𝑋))(+g𝐷)(𝐺‘(0g𝑊))) = (𝑅 × (𝐺𝑋)))
3617, 22, 353eqtr3d 2841 1 ((𝑊 ∈ LMod ∧ 𝐺𝐹 ∧ (𝑅𝐾𝑋𝑉)) → (𝐺‘(𝑅 · 𝑋)) = (𝑅 × (𝐺𝑋)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399  w3a 1084   = wceq 1538  wcel 2111  cfv 6324  (class class class)co 7135  Basecbs 16475  +gcplusg 16557  .rcmulr 16558  Scalarcsca 16560   ·𝑠 cvsca 16561  0gc0g 16705  Grpcgrp 18095  LModclmod 19627  LFnlclfn 36353
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-om 7561  df-1st 7671  df-2nd 7672  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-er 8272  df-map 8391  df-en 8493  df-dom 8494  df-sdom 8495  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-nn 11626  df-2 11688  df-ndx 16478  df-slot 16479  df-base 16481  df-sets 16482  df-plusg 16570  df-0g 16707  df-mgm 17844  df-sgrp 17893  df-mnd 17904  df-grp 18098  df-minusg 18099  df-sbg 18100  df-mgp 19233  df-ur 19245  df-ring 19292  df-lmod 19629  df-lfl 36354
This theorem is referenced by:  lfl1  36366  lfladdcl  36367  eqlkr  36395  lkrlsp  36398  dochkr1  38774  dochkr1OLDN  38775  lcfl7lem  38795  lclkrlem2m  38815  hdmaplnm1  39205
  Copyright terms: Public domain W3C validator