Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lflmul Structured version   Visualization version   GIF version

Theorem lflmul 36236
Description: Property of a linear functional. (lnfnmuli 29802 analog.) (Contributed by NM, 16-Apr-2014.)
Hypotheses
Ref Expression
lflmul.d 𝐷 = (Scalar‘𝑊)
lflmul.k 𝐾 = (Base‘𝐷)
lflmul.t × = (.r𝐷)
lflmul.v 𝑉 = (Base‘𝑊)
lflmul.s · = ( ·𝑠𝑊)
lflmul.f 𝐹 = (LFnl‘𝑊)
Assertion
Ref Expression
lflmul ((𝑊 ∈ LMod ∧ 𝐺𝐹 ∧ (𝑅𝐾𝑋𝑉)) → (𝐺‘(𝑅 · 𝑋)) = (𝑅 × (𝐺𝑋)))

Proof of Theorem lflmul
StepHypRef Expression
1 simp1 1132 . . 3 ((𝑊 ∈ LMod ∧ 𝐺𝐹 ∧ (𝑅𝐾𝑋𝑉)) → 𝑊 ∈ LMod)
2 simp2 1133 . . 3 ((𝑊 ∈ LMod ∧ 𝐺𝐹 ∧ (𝑅𝐾𝑋𝑉)) → 𝐺𝐹)
3 simp3l 1197 . . 3 ((𝑊 ∈ LMod ∧ 𝐺𝐹 ∧ (𝑅𝐾𝑋𝑉)) → 𝑅𝐾)
4 simp3r 1198 . . 3 ((𝑊 ∈ LMod ∧ 𝐺𝐹 ∧ (𝑅𝐾𝑋𝑉)) → 𝑋𝑉)
5 lflmul.v . . . . 5 𝑉 = (Base‘𝑊)
6 eqid 2820 . . . . 5 (0g𝑊) = (0g𝑊)
75, 6lmod0vcl 19635 . . . 4 (𝑊 ∈ LMod → (0g𝑊) ∈ 𝑉)
873ad2ant1 1129 . . 3 ((𝑊 ∈ LMod ∧ 𝐺𝐹 ∧ (𝑅𝐾𝑋𝑉)) → (0g𝑊) ∈ 𝑉)
9 eqid 2820 . . . 4 (+g𝑊) = (+g𝑊)
10 lflmul.d . . . 4 𝐷 = (Scalar‘𝑊)
11 lflmul.s . . . 4 · = ( ·𝑠𝑊)
12 lflmul.k . . . 4 𝐾 = (Base‘𝐷)
13 eqid 2820 . . . 4 (+g𝐷) = (+g𝐷)
14 lflmul.t . . . 4 × = (.r𝐷)
15 lflmul.f . . . 4 𝐹 = (LFnl‘𝑊)
165, 9, 10, 11, 12, 13, 14, 15lfli 36229 . . 3 ((𝑊 ∈ LMod ∧ 𝐺𝐹 ∧ (𝑅𝐾𝑋𝑉 ∧ (0g𝑊) ∈ 𝑉)) → (𝐺‘((𝑅 · 𝑋)(+g𝑊)(0g𝑊))) = ((𝑅 × (𝐺𝑋))(+g𝐷)(𝐺‘(0g𝑊))))
171, 2, 3, 4, 8, 16syl113anc 1378 . 2 ((𝑊 ∈ LMod ∧ 𝐺𝐹 ∧ (𝑅𝐾𝑋𝑉)) → (𝐺‘((𝑅 · 𝑋)(+g𝑊)(0g𝑊))) = ((𝑅 × (𝐺𝑋))(+g𝐷)(𝐺‘(0g𝑊))))
185, 10, 11, 12lmodvscl 19623 . . . . 5 ((𝑊 ∈ LMod ∧ 𝑅𝐾𝑋𝑉) → (𝑅 · 𝑋) ∈ 𝑉)
191, 3, 4, 18syl3anc 1367 . . . 4 ((𝑊 ∈ LMod ∧ 𝐺𝐹 ∧ (𝑅𝐾𝑋𝑉)) → (𝑅 · 𝑋) ∈ 𝑉)
205, 9, 6lmod0vrid 19637 . . . 4 ((𝑊 ∈ LMod ∧ (𝑅 · 𝑋) ∈ 𝑉) → ((𝑅 · 𝑋)(+g𝑊)(0g𝑊)) = (𝑅 · 𝑋))
211, 19, 20syl2anc 586 . . 3 ((𝑊 ∈ LMod ∧ 𝐺𝐹 ∧ (𝑅𝐾𝑋𝑉)) → ((𝑅 · 𝑋)(+g𝑊)(0g𝑊)) = (𝑅 · 𝑋))
2221fveq2d 6646 . 2 ((𝑊 ∈ LMod ∧ 𝐺𝐹 ∧ (𝑅𝐾𝑋𝑉)) → (𝐺‘((𝑅 · 𝑋)(+g𝑊)(0g𝑊))) = (𝐺‘(𝑅 · 𝑋)))
23 eqid 2820 . . . . . 6 (0g𝐷) = (0g𝐷)
2410, 23, 6, 15lfl0 36233 . . . . 5 ((𝑊 ∈ LMod ∧ 𝐺𝐹) → (𝐺‘(0g𝑊)) = (0g𝐷))
25243adant3 1128 . . . 4 ((𝑊 ∈ LMod ∧ 𝐺𝐹 ∧ (𝑅𝐾𝑋𝑉)) → (𝐺‘(0g𝑊)) = (0g𝐷))
2625oveq2d 7145 . . 3 ((𝑊 ∈ LMod ∧ 𝐺𝐹 ∧ (𝑅𝐾𝑋𝑉)) → ((𝑅 × (𝐺𝑋))(+g𝐷)(𝐺‘(0g𝑊))) = ((𝑅 × (𝐺𝑋))(+g𝐷)(0g𝐷)))
2710lmodfgrp 19615 . . . . 5 (𝑊 ∈ LMod → 𝐷 ∈ Grp)
28273ad2ant1 1129 . . . 4 ((𝑊 ∈ LMod ∧ 𝐺𝐹 ∧ (𝑅𝐾𝑋𝑉)) → 𝐷 ∈ Grp)
2910, 12, 5, 15lflcl 36232 . . . . . 6 ((𝑊 ∈ LMod ∧ 𝐺𝐹𝑋𝑉) → (𝐺𝑋) ∈ 𝐾)
30293adant3l 1176 . . . . 5 ((𝑊 ∈ LMod ∧ 𝐺𝐹 ∧ (𝑅𝐾𝑋𝑉)) → (𝐺𝑋) ∈ 𝐾)
3110, 12, 14lmodmcl 19618 . . . . 5 ((𝑊 ∈ LMod ∧ 𝑅𝐾 ∧ (𝐺𝑋) ∈ 𝐾) → (𝑅 × (𝐺𝑋)) ∈ 𝐾)
321, 3, 30, 31syl3anc 1367 . . . 4 ((𝑊 ∈ LMod ∧ 𝐺𝐹 ∧ (𝑅𝐾𝑋𝑉)) → (𝑅 × (𝐺𝑋)) ∈ 𝐾)
3312, 13, 23grprid 18109 . . . 4 ((𝐷 ∈ Grp ∧ (𝑅 × (𝐺𝑋)) ∈ 𝐾) → ((𝑅 × (𝐺𝑋))(+g𝐷)(0g𝐷)) = (𝑅 × (𝐺𝑋)))
3428, 32, 33syl2anc 586 . . 3 ((𝑊 ∈ LMod ∧ 𝐺𝐹 ∧ (𝑅𝐾𝑋𝑉)) → ((𝑅 × (𝐺𝑋))(+g𝐷)(0g𝐷)) = (𝑅 × (𝐺𝑋)))
3526, 34eqtrd 2855 . 2 ((𝑊 ∈ LMod ∧ 𝐺𝐹 ∧ (𝑅𝐾𝑋𝑉)) → ((𝑅 × (𝐺𝑋))(+g𝐷)(𝐺‘(0g𝑊))) = (𝑅 × (𝐺𝑋)))
3617, 22, 353eqtr3d 2863 1 ((𝑊 ∈ LMod ∧ 𝐺𝐹 ∧ (𝑅𝐾𝑋𝑉)) → (𝐺‘(𝑅 · 𝑋)) = (𝑅 × (𝐺𝑋)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398  w3a 1083   = wceq 1537  wcel 2114  cfv 6327  (class class class)co 7129  Basecbs 16458  +gcplusg 16540  .rcmulr 16541  Scalarcsca 16543   ·𝑠 cvsca 16544  0gc0g 16688  Grpcgrp 18078  LModclmod 19606  LFnlclfn 36225
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2792  ax-sep 5175  ax-nul 5182  ax-pow 5238  ax-pr 5302  ax-un 7435  ax-cnex 10567  ax-resscn 10568  ax-1cn 10569  ax-icn 10570  ax-addcl 10571  ax-addrcl 10572  ax-mulcl 10573  ax-mulrcl 10574  ax-mulcom 10575  ax-addass 10576  ax-mulass 10577  ax-distr 10578  ax-i2m1 10579  ax-1ne0 10580  ax-1rid 10581  ax-rnegex 10582  ax-rrecex 10583  ax-cnre 10584  ax-pre-lttri 10585  ax-pre-lttrn 10586  ax-pre-ltadd 10587  ax-pre-mulgt0 10588
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2653  df-clab 2799  df-cleq 2813  df-clel 2891  df-nfc 2959  df-ne 3007  df-nel 3111  df-ral 3130  df-rex 3131  df-reu 3132  df-rmo 3133  df-rab 3134  df-v 3472  df-sbc 3749  df-csb 3857  df-dif 3912  df-un 3914  df-in 3916  df-ss 3926  df-pss 3928  df-nul 4266  df-if 4440  df-pw 4513  df-sn 4540  df-pr 4542  df-tp 4544  df-op 4546  df-uni 4811  df-iun 4893  df-br 5039  df-opab 5101  df-mpt 5119  df-tr 5145  df-id 5432  df-eprel 5437  df-po 5446  df-so 5447  df-fr 5486  df-we 5488  df-xp 5533  df-rel 5534  df-cnv 5535  df-co 5536  df-dm 5537  df-rn 5538  df-res 5539  df-ima 5540  df-pred 6120  df-ord 6166  df-on 6167  df-lim 6168  df-suc 6169  df-iota 6286  df-fun 6329  df-fn 6330  df-f 6331  df-f1 6332  df-fo 6333  df-f1o 6334  df-fv 6335  df-riota 7087  df-ov 7132  df-oprab 7133  df-mpo 7134  df-om 7555  df-1st 7663  df-2nd 7664  df-wrecs 7921  df-recs 7982  df-rdg 8020  df-er 8263  df-map 8382  df-en 8484  df-dom 8485  df-sdom 8486  df-pnf 10651  df-mnf 10652  df-xr 10653  df-ltxr 10654  df-le 10655  df-sub 10846  df-neg 10847  df-nn 11613  df-2 11675  df-ndx 16461  df-slot 16462  df-base 16464  df-sets 16465  df-plusg 16553  df-0g 16690  df-mgm 17827  df-sgrp 17876  df-mnd 17887  df-grp 18081  df-minusg 18082  df-sbg 18083  df-mgp 19215  df-ur 19227  df-ring 19274  df-lmod 19608  df-lfl 36226
This theorem is referenced by:  lfl1  36238  lfladdcl  36239  eqlkr  36267  lkrlsp  36270  dochkr1  38646  dochkr1OLDN  38647  lcfl7lem  38667  lclkrlem2m  38687  hdmaplnm1  39077
  Copyright terms: Public domain W3C validator