Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > lflmul | Structured version Visualization version GIF version |
Description: Property of a linear functional. (lnfnmuli 30307 analog.) (Contributed by NM, 16-Apr-2014.) |
Ref | Expression |
---|---|
lflmul.d | ⊢ 𝐷 = (Scalar‘𝑊) |
lflmul.k | ⊢ 𝐾 = (Base‘𝐷) |
lflmul.t | ⊢ × = (.r‘𝐷) |
lflmul.v | ⊢ 𝑉 = (Base‘𝑊) |
lflmul.s | ⊢ · = ( ·𝑠 ‘𝑊) |
lflmul.f | ⊢ 𝐹 = (LFnl‘𝑊) |
Ref | Expression |
---|---|
lflmul | ⊢ ((𝑊 ∈ LMod ∧ 𝐺 ∈ 𝐹 ∧ (𝑅 ∈ 𝐾 ∧ 𝑋 ∈ 𝑉)) → (𝐺‘(𝑅 · 𝑋)) = (𝑅 × (𝐺‘𝑋))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp1 1134 | . . 3 ⊢ ((𝑊 ∈ LMod ∧ 𝐺 ∈ 𝐹 ∧ (𝑅 ∈ 𝐾 ∧ 𝑋 ∈ 𝑉)) → 𝑊 ∈ LMod) | |
2 | simp2 1135 | . . 3 ⊢ ((𝑊 ∈ LMod ∧ 𝐺 ∈ 𝐹 ∧ (𝑅 ∈ 𝐾 ∧ 𝑋 ∈ 𝑉)) → 𝐺 ∈ 𝐹) | |
3 | simp3l 1199 | . . 3 ⊢ ((𝑊 ∈ LMod ∧ 𝐺 ∈ 𝐹 ∧ (𝑅 ∈ 𝐾 ∧ 𝑋 ∈ 𝑉)) → 𝑅 ∈ 𝐾) | |
4 | simp3r 1200 | . . 3 ⊢ ((𝑊 ∈ LMod ∧ 𝐺 ∈ 𝐹 ∧ (𝑅 ∈ 𝐾 ∧ 𝑋 ∈ 𝑉)) → 𝑋 ∈ 𝑉) | |
5 | lflmul.v | . . . . 5 ⊢ 𝑉 = (Base‘𝑊) | |
6 | eqid 2738 | . . . . 5 ⊢ (0g‘𝑊) = (0g‘𝑊) | |
7 | 5, 6 | lmod0vcl 20067 | . . . 4 ⊢ (𝑊 ∈ LMod → (0g‘𝑊) ∈ 𝑉) |
8 | 7 | 3ad2ant1 1131 | . . 3 ⊢ ((𝑊 ∈ LMod ∧ 𝐺 ∈ 𝐹 ∧ (𝑅 ∈ 𝐾 ∧ 𝑋 ∈ 𝑉)) → (0g‘𝑊) ∈ 𝑉) |
9 | eqid 2738 | . . . 4 ⊢ (+g‘𝑊) = (+g‘𝑊) | |
10 | lflmul.d | . . . 4 ⊢ 𝐷 = (Scalar‘𝑊) | |
11 | lflmul.s | . . . 4 ⊢ · = ( ·𝑠 ‘𝑊) | |
12 | lflmul.k | . . . 4 ⊢ 𝐾 = (Base‘𝐷) | |
13 | eqid 2738 | . . . 4 ⊢ (+g‘𝐷) = (+g‘𝐷) | |
14 | lflmul.t | . . . 4 ⊢ × = (.r‘𝐷) | |
15 | lflmul.f | . . . 4 ⊢ 𝐹 = (LFnl‘𝑊) | |
16 | 5, 9, 10, 11, 12, 13, 14, 15 | lfli 37002 | . . 3 ⊢ ((𝑊 ∈ LMod ∧ 𝐺 ∈ 𝐹 ∧ (𝑅 ∈ 𝐾 ∧ 𝑋 ∈ 𝑉 ∧ (0g‘𝑊) ∈ 𝑉)) → (𝐺‘((𝑅 · 𝑋)(+g‘𝑊)(0g‘𝑊))) = ((𝑅 × (𝐺‘𝑋))(+g‘𝐷)(𝐺‘(0g‘𝑊)))) |
17 | 1, 2, 3, 4, 8, 16 | syl113anc 1380 | . 2 ⊢ ((𝑊 ∈ LMod ∧ 𝐺 ∈ 𝐹 ∧ (𝑅 ∈ 𝐾 ∧ 𝑋 ∈ 𝑉)) → (𝐺‘((𝑅 · 𝑋)(+g‘𝑊)(0g‘𝑊))) = ((𝑅 × (𝐺‘𝑋))(+g‘𝐷)(𝐺‘(0g‘𝑊)))) |
18 | 5, 10, 11, 12 | lmodvscl 20055 | . . . . 5 ⊢ ((𝑊 ∈ LMod ∧ 𝑅 ∈ 𝐾 ∧ 𝑋 ∈ 𝑉) → (𝑅 · 𝑋) ∈ 𝑉) |
19 | 1, 3, 4, 18 | syl3anc 1369 | . . . 4 ⊢ ((𝑊 ∈ LMod ∧ 𝐺 ∈ 𝐹 ∧ (𝑅 ∈ 𝐾 ∧ 𝑋 ∈ 𝑉)) → (𝑅 · 𝑋) ∈ 𝑉) |
20 | 5, 9, 6 | lmod0vrid 20069 | . . . 4 ⊢ ((𝑊 ∈ LMod ∧ (𝑅 · 𝑋) ∈ 𝑉) → ((𝑅 · 𝑋)(+g‘𝑊)(0g‘𝑊)) = (𝑅 · 𝑋)) |
21 | 1, 19, 20 | syl2anc 583 | . . 3 ⊢ ((𝑊 ∈ LMod ∧ 𝐺 ∈ 𝐹 ∧ (𝑅 ∈ 𝐾 ∧ 𝑋 ∈ 𝑉)) → ((𝑅 · 𝑋)(+g‘𝑊)(0g‘𝑊)) = (𝑅 · 𝑋)) |
22 | 21 | fveq2d 6760 | . 2 ⊢ ((𝑊 ∈ LMod ∧ 𝐺 ∈ 𝐹 ∧ (𝑅 ∈ 𝐾 ∧ 𝑋 ∈ 𝑉)) → (𝐺‘((𝑅 · 𝑋)(+g‘𝑊)(0g‘𝑊))) = (𝐺‘(𝑅 · 𝑋))) |
23 | eqid 2738 | . . . . . 6 ⊢ (0g‘𝐷) = (0g‘𝐷) | |
24 | 10, 23, 6, 15 | lfl0 37006 | . . . . 5 ⊢ ((𝑊 ∈ LMod ∧ 𝐺 ∈ 𝐹) → (𝐺‘(0g‘𝑊)) = (0g‘𝐷)) |
25 | 24 | 3adant3 1130 | . . . 4 ⊢ ((𝑊 ∈ LMod ∧ 𝐺 ∈ 𝐹 ∧ (𝑅 ∈ 𝐾 ∧ 𝑋 ∈ 𝑉)) → (𝐺‘(0g‘𝑊)) = (0g‘𝐷)) |
26 | 25 | oveq2d 7271 | . . 3 ⊢ ((𝑊 ∈ LMod ∧ 𝐺 ∈ 𝐹 ∧ (𝑅 ∈ 𝐾 ∧ 𝑋 ∈ 𝑉)) → ((𝑅 × (𝐺‘𝑋))(+g‘𝐷)(𝐺‘(0g‘𝑊))) = ((𝑅 × (𝐺‘𝑋))(+g‘𝐷)(0g‘𝐷))) |
27 | 10 | lmodfgrp 20047 | . . . . 5 ⊢ (𝑊 ∈ LMod → 𝐷 ∈ Grp) |
28 | 27 | 3ad2ant1 1131 | . . . 4 ⊢ ((𝑊 ∈ LMod ∧ 𝐺 ∈ 𝐹 ∧ (𝑅 ∈ 𝐾 ∧ 𝑋 ∈ 𝑉)) → 𝐷 ∈ Grp) |
29 | 10, 12, 5, 15 | lflcl 37005 | . . . . . 6 ⊢ ((𝑊 ∈ LMod ∧ 𝐺 ∈ 𝐹 ∧ 𝑋 ∈ 𝑉) → (𝐺‘𝑋) ∈ 𝐾) |
30 | 29 | 3adant3l 1178 | . . . . 5 ⊢ ((𝑊 ∈ LMod ∧ 𝐺 ∈ 𝐹 ∧ (𝑅 ∈ 𝐾 ∧ 𝑋 ∈ 𝑉)) → (𝐺‘𝑋) ∈ 𝐾) |
31 | 10, 12, 14 | lmodmcl 20050 | . . . . 5 ⊢ ((𝑊 ∈ LMod ∧ 𝑅 ∈ 𝐾 ∧ (𝐺‘𝑋) ∈ 𝐾) → (𝑅 × (𝐺‘𝑋)) ∈ 𝐾) |
32 | 1, 3, 30, 31 | syl3anc 1369 | . . . 4 ⊢ ((𝑊 ∈ LMod ∧ 𝐺 ∈ 𝐹 ∧ (𝑅 ∈ 𝐾 ∧ 𝑋 ∈ 𝑉)) → (𝑅 × (𝐺‘𝑋)) ∈ 𝐾) |
33 | 12, 13, 23 | grprid 18525 | . . . 4 ⊢ ((𝐷 ∈ Grp ∧ (𝑅 × (𝐺‘𝑋)) ∈ 𝐾) → ((𝑅 × (𝐺‘𝑋))(+g‘𝐷)(0g‘𝐷)) = (𝑅 × (𝐺‘𝑋))) |
34 | 28, 32, 33 | syl2anc 583 | . . 3 ⊢ ((𝑊 ∈ LMod ∧ 𝐺 ∈ 𝐹 ∧ (𝑅 ∈ 𝐾 ∧ 𝑋 ∈ 𝑉)) → ((𝑅 × (𝐺‘𝑋))(+g‘𝐷)(0g‘𝐷)) = (𝑅 × (𝐺‘𝑋))) |
35 | 26, 34 | eqtrd 2778 | . 2 ⊢ ((𝑊 ∈ LMod ∧ 𝐺 ∈ 𝐹 ∧ (𝑅 ∈ 𝐾 ∧ 𝑋 ∈ 𝑉)) → ((𝑅 × (𝐺‘𝑋))(+g‘𝐷)(𝐺‘(0g‘𝑊))) = (𝑅 × (𝐺‘𝑋))) |
36 | 17, 22, 35 | 3eqtr3d 2786 | 1 ⊢ ((𝑊 ∈ LMod ∧ 𝐺 ∈ 𝐹 ∧ (𝑅 ∈ 𝐾 ∧ 𝑋 ∈ 𝑉)) → (𝐺‘(𝑅 · 𝑋)) = (𝑅 × (𝐺‘𝑋))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1085 = wceq 1539 ∈ wcel 2108 ‘cfv 6418 (class class class)co 7255 Basecbs 16840 +gcplusg 16888 .rcmulr 16889 Scalarcsca 16891 ·𝑠 cvsca 16892 0gc0g 17067 Grpcgrp 18492 LModclmod 20038 LFnlclfn 36998 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rmo 3071 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-om 7688 df-1st 7804 df-2nd 7805 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-er 8456 df-map 8575 df-en 8692 df-dom 8693 df-sdom 8694 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-nn 11904 df-2 11966 df-sets 16793 df-slot 16811 df-ndx 16823 df-base 16841 df-plusg 16901 df-0g 17069 df-mgm 18241 df-sgrp 18290 df-mnd 18301 df-grp 18495 df-minusg 18496 df-sbg 18497 df-mgp 19636 df-ur 19653 df-ring 19700 df-lmod 20040 df-lfl 36999 |
This theorem is referenced by: lfl1 37011 lfladdcl 37012 eqlkr 37040 lkrlsp 37043 dochkr1 39419 dochkr1OLDN 39420 lcfl7lem 39440 lclkrlem2m 39460 hdmaplnm1 39850 |
Copyright terms: Public domain | W3C validator |