| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > lflmul | Structured version Visualization version GIF version | ||
| Description: Property of a linear functional. (lnfnmuli 32019 analog.) (Contributed by NM, 16-Apr-2014.) |
| Ref | Expression |
|---|---|
| lflmul.d | ⊢ 𝐷 = (Scalar‘𝑊) |
| lflmul.k | ⊢ 𝐾 = (Base‘𝐷) |
| lflmul.t | ⊢ × = (.r‘𝐷) |
| lflmul.v | ⊢ 𝑉 = (Base‘𝑊) |
| lflmul.s | ⊢ · = ( ·𝑠 ‘𝑊) |
| lflmul.f | ⊢ 𝐹 = (LFnl‘𝑊) |
| Ref | Expression |
|---|---|
| lflmul | ⊢ ((𝑊 ∈ LMod ∧ 𝐺 ∈ 𝐹 ∧ (𝑅 ∈ 𝐾 ∧ 𝑋 ∈ 𝑉)) → (𝐺‘(𝑅 · 𝑋)) = (𝑅 × (𝐺‘𝑋))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp1 1136 | . . 3 ⊢ ((𝑊 ∈ LMod ∧ 𝐺 ∈ 𝐹 ∧ (𝑅 ∈ 𝐾 ∧ 𝑋 ∈ 𝑉)) → 𝑊 ∈ LMod) | |
| 2 | simp2 1137 | . . 3 ⊢ ((𝑊 ∈ LMod ∧ 𝐺 ∈ 𝐹 ∧ (𝑅 ∈ 𝐾 ∧ 𝑋 ∈ 𝑉)) → 𝐺 ∈ 𝐹) | |
| 3 | simp3l 1202 | . . 3 ⊢ ((𝑊 ∈ LMod ∧ 𝐺 ∈ 𝐹 ∧ (𝑅 ∈ 𝐾 ∧ 𝑋 ∈ 𝑉)) → 𝑅 ∈ 𝐾) | |
| 4 | simp3r 1203 | . . 3 ⊢ ((𝑊 ∈ LMod ∧ 𝐺 ∈ 𝐹 ∧ (𝑅 ∈ 𝐾 ∧ 𝑋 ∈ 𝑉)) → 𝑋 ∈ 𝑉) | |
| 5 | lflmul.v | . . . . 5 ⊢ 𝑉 = (Base‘𝑊) | |
| 6 | eqid 2731 | . . . . 5 ⊢ (0g‘𝑊) = (0g‘𝑊) | |
| 7 | 5, 6 | lmod0vcl 20822 | . . . 4 ⊢ (𝑊 ∈ LMod → (0g‘𝑊) ∈ 𝑉) |
| 8 | 7 | 3ad2ant1 1133 | . . 3 ⊢ ((𝑊 ∈ LMod ∧ 𝐺 ∈ 𝐹 ∧ (𝑅 ∈ 𝐾 ∧ 𝑋 ∈ 𝑉)) → (0g‘𝑊) ∈ 𝑉) |
| 9 | eqid 2731 | . . . 4 ⊢ (+g‘𝑊) = (+g‘𝑊) | |
| 10 | lflmul.d | . . . 4 ⊢ 𝐷 = (Scalar‘𝑊) | |
| 11 | lflmul.s | . . . 4 ⊢ · = ( ·𝑠 ‘𝑊) | |
| 12 | lflmul.k | . . . 4 ⊢ 𝐾 = (Base‘𝐷) | |
| 13 | eqid 2731 | . . . 4 ⊢ (+g‘𝐷) = (+g‘𝐷) | |
| 14 | lflmul.t | . . . 4 ⊢ × = (.r‘𝐷) | |
| 15 | lflmul.f | . . . 4 ⊢ 𝐹 = (LFnl‘𝑊) | |
| 16 | 5, 9, 10, 11, 12, 13, 14, 15 | lfli 39099 | . . 3 ⊢ ((𝑊 ∈ LMod ∧ 𝐺 ∈ 𝐹 ∧ (𝑅 ∈ 𝐾 ∧ 𝑋 ∈ 𝑉 ∧ (0g‘𝑊) ∈ 𝑉)) → (𝐺‘((𝑅 · 𝑋)(+g‘𝑊)(0g‘𝑊))) = ((𝑅 × (𝐺‘𝑋))(+g‘𝐷)(𝐺‘(0g‘𝑊)))) |
| 17 | 1, 2, 3, 4, 8, 16 | syl113anc 1384 | . 2 ⊢ ((𝑊 ∈ LMod ∧ 𝐺 ∈ 𝐹 ∧ (𝑅 ∈ 𝐾 ∧ 𝑋 ∈ 𝑉)) → (𝐺‘((𝑅 · 𝑋)(+g‘𝑊)(0g‘𝑊))) = ((𝑅 × (𝐺‘𝑋))(+g‘𝐷)(𝐺‘(0g‘𝑊)))) |
| 18 | 5, 10, 11, 12 | lmodvscl 20809 | . . . . 5 ⊢ ((𝑊 ∈ LMod ∧ 𝑅 ∈ 𝐾 ∧ 𝑋 ∈ 𝑉) → (𝑅 · 𝑋) ∈ 𝑉) |
| 19 | 1, 3, 4, 18 | syl3anc 1373 | . . . 4 ⊢ ((𝑊 ∈ LMod ∧ 𝐺 ∈ 𝐹 ∧ (𝑅 ∈ 𝐾 ∧ 𝑋 ∈ 𝑉)) → (𝑅 · 𝑋) ∈ 𝑉) |
| 20 | 5, 9, 6 | lmod0vrid 20824 | . . . 4 ⊢ ((𝑊 ∈ LMod ∧ (𝑅 · 𝑋) ∈ 𝑉) → ((𝑅 · 𝑋)(+g‘𝑊)(0g‘𝑊)) = (𝑅 · 𝑋)) |
| 21 | 1, 19, 20 | syl2anc 584 | . . 3 ⊢ ((𝑊 ∈ LMod ∧ 𝐺 ∈ 𝐹 ∧ (𝑅 ∈ 𝐾 ∧ 𝑋 ∈ 𝑉)) → ((𝑅 · 𝑋)(+g‘𝑊)(0g‘𝑊)) = (𝑅 · 𝑋)) |
| 22 | 21 | fveq2d 6826 | . 2 ⊢ ((𝑊 ∈ LMod ∧ 𝐺 ∈ 𝐹 ∧ (𝑅 ∈ 𝐾 ∧ 𝑋 ∈ 𝑉)) → (𝐺‘((𝑅 · 𝑋)(+g‘𝑊)(0g‘𝑊))) = (𝐺‘(𝑅 · 𝑋))) |
| 23 | eqid 2731 | . . . . . 6 ⊢ (0g‘𝐷) = (0g‘𝐷) | |
| 24 | 10, 23, 6, 15 | lfl0 39103 | . . . . 5 ⊢ ((𝑊 ∈ LMod ∧ 𝐺 ∈ 𝐹) → (𝐺‘(0g‘𝑊)) = (0g‘𝐷)) |
| 25 | 24 | 3adant3 1132 | . . . 4 ⊢ ((𝑊 ∈ LMod ∧ 𝐺 ∈ 𝐹 ∧ (𝑅 ∈ 𝐾 ∧ 𝑋 ∈ 𝑉)) → (𝐺‘(0g‘𝑊)) = (0g‘𝐷)) |
| 26 | 25 | oveq2d 7362 | . . 3 ⊢ ((𝑊 ∈ LMod ∧ 𝐺 ∈ 𝐹 ∧ (𝑅 ∈ 𝐾 ∧ 𝑋 ∈ 𝑉)) → ((𝑅 × (𝐺‘𝑋))(+g‘𝐷)(𝐺‘(0g‘𝑊))) = ((𝑅 × (𝐺‘𝑋))(+g‘𝐷)(0g‘𝐷))) |
| 27 | 10 | lmodfgrp 20800 | . . . . 5 ⊢ (𝑊 ∈ LMod → 𝐷 ∈ Grp) |
| 28 | 27 | 3ad2ant1 1133 | . . . 4 ⊢ ((𝑊 ∈ LMod ∧ 𝐺 ∈ 𝐹 ∧ (𝑅 ∈ 𝐾 ∧ 𝑋 ∈ 𝑉)) → 𝐷 ∈ Grp) |
| 29 | 10, 12, 5, 15 | lflcl 39102 | . . . . . 6 ⊢ ((𝑊 ∈ LMod ∧ 𝐺 ∈ 𝐹 ∧ 𝑋 ∈ 𝑉) → (𝐺‘𝑋) ∈ 𝐾) |
| 30 | 29 | 3adant3l 1181 | . . . . 5 ⊢ ((𝑊 ∈ LMod ∧ 𝐺 ∈ 𝐹 ∧ (𝑅 ∈ 𝐾 ∧ 𝑋 ∈ 𝑉)) → (𝐺‘𝑋) ∈ 𝐾) |
| 31 | 10, 12, 14 | lmodmcl 20804 | . . . . 5 ⊢ ((𝑊 ∈ LMod ∧ 𝑅 ∈ 𝐾 ∧ (𝐺‘𝑋) ∈ 𝐾) → (𝑅 × (𝐺‘𝑋)) ∈ 𝐾) |
| 32 | 1, 3, 30, 31 | syl3anc 1373 | . . . 4 ⊢ ((𝑊 ∈ LMod ∧ 𝐺 ∈ 𝐹 ∧ (𝑅 ∈ 𝐾 ∧ 𝑋 ∈ 𝑉)) → (𝑅 × (𝐺‘𝑋)) ∈ 𝐾) |
| 33 | 12, 13, 23 | grprid 18878 | . . . 4 ⊢ ((𝐷 ∈ Grp ∧ (𝑅 × (𝐺‘𝑋)) ∈ 𝐾) → ((𝑅 × (𝐺‘𝑋))(+g‘𝐷)(0g‘𝐷)) = (𝑅 × (𝐺‘𝑋))) |
| 34 | 28, 32, 33 | syl2anc 584 | . . 3 ⊢ ((𝑊 ∈ LMod ∧ 𝐺 ∈ 𝐹 ∧ (𝑅 ∈ 𝐾 ∧ 𝑋 ∈ 𝑉)) → ((𝑅 × (𝐺‘𝑋))(+g‘𝐷)(0g‘𝐷)) = (𝑅 × (𝐺‘𝑋))) |
| 35 | 26, 34 | eqtrd 2766 | . 2 ⊢ ((𝑊 ∈ LMod ∧ 𝐺 ∈ 𝐹 ∧ (𝑅 ∈ 𝐾 ∧ 𝑋 ∈ 𝑉)) → ((𝑅 × (𝐺‘𝑋))(+g‘𝐷)(𝐺‘(0g‘𝑊))) = (𝑅 × (𝐺‘𝑋))) |
| 36 | 17, 22, 35 | 3eqtr3d 2774 | 1 ⊢ ((𝑊 ∈ LMod ∧ 𝐺 ∈ 𝐹 ∧ (𝑅 ∈ 𝐾 ∧ 𝑋 ∈ 𝑉)) → (𝐺‘(𝑅 · 𝑋)) = (𝑅 × (𝐺‘𝑋))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1541 ∈ wcel 2111 ‘cfv 6481 (class class class)co 7346 Basecbs 17117 +gcplusg 17158 .rcmulr 17159 Scalarcsca 17161 ·𝑠 cvsca 17162 0gc0g 17340 Grpcgrp 18843 LModclmod 20791 LFnlclfn 39095 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 ax-cnex 11059 ax-resscn 11060 ax-1cn 11061 ax-icn 11062 ax-addcl 11063 ax-addrcl 11064 ax-mulcl 11065 ax-mulrcl 11066 ax-mulcom 11067 ax-addass 11068 ax-mulass 11069 ax-distr 11070 ax-i2m1 11071 ax-1ne0 11072 ax-1rid 11073 ax-rnegex 11074 ax-rrecex 11075 ax-cnre 11076 ax-pre-lttri 11077 ax-pre-lttrn 11078 ax-pre-ltadd 11079 ax-pre-mulgt0 11080 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-pss 3922 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-iun 4943 df-br 5092 df-opab 5154 df-mpt 5173 df-tr 5199 df-id 5511 df-eprel 5516 df-po 5524 df-so 5525 df-fr 5569 df-we 5571 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-om 7797 df-1st 7921 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-er 8622 df-map 8752 df-en 8870 df-dom 8871 df-sdom 8872 df-pnf 11145 df-mnf 11146 df-xr 11147 df-ltxr 11148 df-le 11149 df-sub 11343 df-neg 11344 df-nn 12123 df-2 12185 df-sets 17072 df-slot 17090 df-ndx 17102 df-base 17118 df-plusg 17171 df-0g 17342 df-mgm 18545 df-sgrp 18624 df-mnd 18640 df-grp 18846 df-minusg 18847 df-sbg 18848 df-mgp 20057 df-ur 20098 df-ring 20151 df-lmod 20793 df-lfl 39096 |
| This theorem is referenced by: lfl1 39108 lfladdcl 39109 eqlkr 39137 lkrlsp 39140 dochkr1 41516 dochkr1OLDN 41517 lcfl7lem 41537 lclkrlem2m 41557 hdmaplnm1 41947 |
| Copyright terms: Public domain | W3C validator |