| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > lflmul | Structured version Visualization version GIF version | ||
| Description: Property of a linear functional. (lnfnmuli 32006 analog.) (Contributed by NM, 16-Apr-2014.) |
| Ref | Expression |
|---|---|
| lflmul.d | ⊢ 𝐷 = (Scalar‘𝑊) |
| lflmul.k | ⊢ 𝐾 = (Base‘𝐷) |
| lflmul.t | ⊢ × = (.r‘𝐷) |
| lflmul.v | ⊢ 𝑉 = (Base‘𝑊) |
| lflmul.s | ⊢ · = ( ·𝑠 ‘𝑊) |
| lflmul.f | ⊢ 𝐹 = (LFnl‘𝑊) |
| Ref | Expression |
|---|---|
| lflmul | ⊢ ((𝑊 ∈ LMod ∧ 𝐺 ∈ 𝐹 ∧ (𝑅 ∈ 𝐾 ∧ 𝑋 ∈ 𝑉)) → (𝐺‘(𝑅 · 𝑋)) = (𝑅 × (𝐺‘𝑋))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp1 1136 | . . 3 ⊢ ((𝑊 ∈ LMod ∧ 𝐺 ∈ 𝐹 ∧ (𝑅 ∈ 𝐾 ∧ 𝑋 ∈ 𝑉)) → 𝑊 ∈ LMod) | |
| 2 | simp2 1137 | . . 3 ⊢ ((𝑊 ∈ LMod ∧ 𝐺 ∈ 𝐹 ∧ (𝑅 ∈ 𝐾 ∧ 𝑋 ∈ 𝑉)) → 𝐺 ∈ 𝐹) | |
| 3 | simp3l 1202 | . . 3 ⊢ ((𝑊 ∈ LMod ∧ 𝐺 ∈ 𝐹 ∧ (𝑅 ∈ 𝐾 ∧ 𝑋 ∈ 𝑉)) → 𝑅 ∈ 𝐾) | |
| 4 | simp3r 1203 | . . 3 ⊢ ((𝑊 ∈ LMod ∧ 𝐺 ∈ 𝐹 ∧ (𝑅 ∈ 𝐾 ∧ 𝑋 ∈ 𝑉)) → 𝑋 ∈ 𝑉) | |
| 5 | lflmul.v | . . . . 5 ⊢ 𝑉 = (Base‘𝑊) | |
| 6 | eqid 2729 | . . . . 5 ⊢ (0g‘𝑊) = (0g‘𝑊) | |
| 7 | 5, 6 | lmod0vcl 20812 | . . . 4 ⊢ (𝑊 ∈ LMod → (0g‘𝑊) ∈ 𝑉) |
| 8 | 7 | 3ad2ant1 1133 | . . 3 ⊢ ((𝑊 ∈ LMod ∧ 𝐺 ∈ 𝐹 ∧ (𝑅 ∈ 𝐾 ∧ 𝑋 ∈ 𝑉)) → (0g‘𝑊) ∈ 𝑉) |
| 9 | eqid 2729 | . . . 4 ⊢ (+g‘𝑊) = (+g‘𝑊) | |
| 10 | lflmul.d | . . . 4 ⊢ 𝐷 = (Scalar‘𝑊) | |
| 11 | lflmul.s | . . . 4 ⊢ · = ( ·𝑠 ‘𝑊) | |
| 12 | lflmul.k | . . . 4 ⊢ 𝐾 = (Base‘𝐷) | |
| 13 | eqid 2729 | . . . 4 ⊢ (+g‘𝐷) = (+g‘𝐷) | |
| 14 | lflmul.t | . . . 4 ⊢ × = (.r‘𝐷) | |
| 15 | lflmul.f | . . . 4 ⊢ 𝐹 = (LFnl‘𝑊) | |
| 16 | 5, 9, 10, 11, 12, 13, 14, 15 | lfli 39039 | . . 3 ⊢ ((𝑊 ∈ LMod ∧ 𝐺 ∈ 𝐹 ∧ (𝑅 ∈ 𝐾 ∧ 𝑋 ∈ 𝑉 ∧ (0g‘𝑊) ∈ 𝑉)) → (𝐺‘((𝑅 · 𝑋)(+g‘𝑊)(0g‘𝑊))) = ((𝑅 × (𝐺‘𝑋))(+g‘𝐷)(𝐺‘(0g‘𝑊)))) |
| 17 | 1, 2, 3, 4, 8, 16 | syl113anc 1384 | . 2 ⊢ ((𝑊 ∈ LMod ∧ 𝐺 ∈ 𝐹 ∧ (𝑅 ∈ 𝐾 ∧ 𝑋 ∈ 𝑉)) → (𝐺‘((𝑅 · 𝑋)(+g‘𝑊)(0g‘𝑊))) = ((𝑅 × (𝐺‘𝑋))(+g‘𝐷)(𝐺‘(0g‘𝑊)))) |
| 18 | 5, 10, 11, 12 | lmodvscl 20799 | . . . . 5 ⊢ ((𝑊 ∈ LMod ∧ 𝑅 ∈ 𝐾 ∧ 𝑋 ∈ 𝑉) → (𝑅 · 𝑋) ∈ 𝑉) |
| 19 | 1, 3, 4, 18 | syl3anc 1373 | . . . 4 ⊢ ((𝑊 ∈ LMod ∧ 𝐺 ∈ 𝐹 ∧ (𝑅 ∈ 𝐾 ∧ 𝑋 ∈ 𝑉)) → (𝑅 · 𝑋) ∈ 𝑉) |
| 20 | 5, 9, 6 | lmod0vrid 20814 | . . . 4 ⊢ ((𝑊 ∈ LMod ∧ (𝑅 · 𝑋) ∈ 𝑉) → ((𝑅 · 𝑋)(+g‘𝑊)(0g‘𝑊)) = (𝑅 · 𝑋)) |
| 21 | 1, 19, 20 | syl2anc 584 | . . 3 ⊢ ((𝑊 ∈ LMod ∧ 𝐺 ∈ 𝐹 ∧ (𝑅 ∈ 𝐾 ∧ 𝑋 ∈ 𝑉)) → ((𝑅 · 𝑋)(+g‘𝑊)(0g‘𝑊)) = (𝑅 · 𝑋)) |
| 22 | 21 | fveq2d 6830 | . 2 ⊢ ((𝑊 ∈ LMod ∧ 𝐺 ∈ 𝐹 ∧ (𝑅 ∈ 𝐾 ∧ 𝑋 ∈ 𝑉)) → (𝐺‘((𝑅 · 𝑋)(+g‘𝑊)(0g‘𝑊))) = (𝐺‘(𝑅 · 𝑋))) |
| 23 | eqid 2729 | . . . . . 6 ⊢ (0g‘𝐷) = (0g‘𝐷) | |
| 24 | 10, 23, 6, 15 | lfl0 39043 | . . . . 5 ⊢ ((𝑊 ∈ LMod ∧ 𝐺 ∈ 𝐹) → (𝐺‘(0g‘𝑊)) = (0g‘𝐷)) |
| 25 | 24 | 3adant3 1132 | . . . 4 ⊢ ((𝑊 ∈ LMod ∧ 𝐺 ∈ 𝐹 ∧ (𝑅 ∈ 𝐾 ∧ 𝑋 ∈ 𝑉)) → (𝐺‘(0g‘𝑊)) = (0g‘𝐷)) |
| 26 | 25 | oveq2d 7369 | . . 3 ⊢ ((𝑊 ∈ LMod ∧ 𝐺 ∈ 𝐹 ∧ (𝑅 ∈ 𝐾 ∧ 𝑋 ∈ 𝑉)) → ((𝑅 × (𝐺‘𝑋))(+g‘𝐷)(𝐺‘(0g‘𝑊))) = ((𝑅 × (𝐺‘𝑋))(+g‘𝐷)(0g‘𝐷))) |
| 27 | 10 | lmodfgrp 20790 | . . . . 5 ⊢ (𝑊 ∈ LMod → 𝐷 ∈ Grp) |
| 28 | 27 | 3ad2ant1 1133 | . . . 4 ⊢ ((𝑊 ∈ LMod ∧ 𝐺 ∈ 𝐹 ∧ (𝑅 ∈ 𝐾 ∧ 𝑋 ∈ 𝑉)) → 𝐷 ∈ Grp) |
| 29 | 10, 12, 5, 15 | lflcl 39042 | . . . . . 6 ⊢ ((𝑊 ∈ LMod ∧ 𝐺 ∈ 𝐹 ∧ 𝑋 ∈ 𝑉) → (𝐺‘𝑋) ∈ 𝐾) |
| 30 | 29 | 3adant3l 1181 | . . . . 5 ⊢ ((𝑊 ∈ LMod ∧ 𝐺 ∈ 𝐹 ∧ (𝑅 ∈ 𝐾 ∧ 𝑋 ∈ 𝑉)) → (𝐺‘𝑋) ∈ 𝐾) |
| 31 | 10, 12, 14 | lmodmcl 20794 | . . . . 5 ⊢ ((𝑊 ∈ LMod ∧ 𝑅 ∈ 𝐾 ∧ (𝐺‘𝑋) ∈ 𝐾) → (𝑅 × (𝐺‘𝑋)) ∈ 𝐾) |
| 32 | 1, 3, 30, 31 | syl3anc 1373 | . . . 4 ⊢ ((𝑊 ∈ LMod ∧ 𝐺 ∈ 𝐹 ∧ (𝑅 ∈ 𝐾 ∧ 𝑋 ∈ 𝑉)) → (𝑅 × (𝐺‘𝑋)) ∈ 𝐾) |
| 33 | 12, 13, 23 | grprid 18865 | . . . 4 ⊢ ((𝐷 ∈ Grp ∧ (𝑅 × (𝐺‘𝑋)) ∈ 𝐾) → ((𝑅 × (𝐺‘𝑋))(+g‘𝐷)(0g‘𝐷)) = (𝑅 × (𝐺‘𝑋))) |
| 34 | 28, 32, 33 | syl2anc 584 | . . 3 ⊢ ((𝑊 ∈ LMod ∧ 𝐺 ∈ 𝐹 ∧ (𝑅 ∈ 𝐾 ∧ 𝑋 ∈ 𝑉)) → ((𝑅 × (𝐺‘𝑋))(+g‘𝐷)(0g‘𝐷)) = (𝑅 × (𝐺‘𝑋))) |
| 35 | 26, 34 | eqtrd 2764 | . 2 ⊢ ((𝑊 ∈ LMod ∧ 𝐺 ∈ 𝐹 ∧ (𝑅 ∈ 𝐾 ∧ 𝑋 ∈ 𝑉)) → ((𝑅 × (𝐺‘𝑋))(+g‘𝐷)(𝐺‘(0g‘𝑊))) = (𝑅 × (𝐺‘𝑋))) |
| 36 | 17, 22, 35 | 3eqtr3d 2772 | 1 ⊢ ((𝑊 ∈ LMod ∧ 𝐺 ∈ 𝐹 ∧ (𝑅 ∈ 𝐾 ∧ 𝑋 ∈ 𝑉)) → (𝐺‘(𝑅 · 𝑋)) = (𝑅 × (𝐺‘𝑋))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ‘cfv 6486 (class class class)co 7353 Basecbs 17138 +gcplusg 17179 .rcmulr 17180 Scalarcsca 17182 ·𝑠 cvsca 17183 0gc0g 17361 Grpcgrp 18830 LModclmod 20781 LFnlclfn 39035 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 ax-cnex 11084 ax-resscn 11085 ax-1cn 11086 ax-icn 11087 ax-addcl 11088 ax-addrcl 11089 ax-mulcl 11090 ax-mulrcl 11091 ax-mulcom 11092 ax-addass 11093 ax-mulass 11094 ax-distr 11095 ax-i2m1 11096 ax-1ne0 11097 ax-1rid 11098 ax-rnegex 11099 ax-rrecex 11100 ax-cnre 11101 ax-pre-lttri 11102 ax-pre-lttrn 11103 ax-pre-ltadd 11104 ax-pre-mulgt0 11105 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3345 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-pss 3925 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-iun 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5518 df-eprel 5523 df-po 5531 df-so 5532 df-fr 5576 df-we 5578 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-riota 7310 df-ov 7356 df-oprab 7357 df-mpo 7358 df-om 7807 df-1st 7931 df-2nd 7932 df-frecs 8221 df-wrecs 8252 df-recs 8301 df-rdg 8339 df-er 8632 df-map 8762 df-en 8880 df-dom 8881 df-sdom 8882 df-pnf 11170 df-mnf 11171 df-xr 11172 df-ltxr 11173 df-le 11174 df-sub 11367 df-neg 11368 df-nn 12147 df-2 12209 df-sets 17093 df-slot 17111 df-ndx 17123 df-base 17139 df-plusg 17192 df-0g 17363 df-mgm 18532 df-sgrp 18611 df-mnd 18627 df-grp 18833 df-minusg 18834 df-sbg 18835 df-mgp 20044 df-ur 20085 df-ring 20138 df-lmod 20783 df-lfl 39036 |
| This theorem is referenced by: lfl1 39048 lfladdcl 39049 eqlkr 39077 lkrlsp 39080 dochkr1 41457 dochkr1OLDN 41458 lcfl7lem 41478 lclkrlem2m 41498 hdmaplnm1 41888 |
| Copyright terms: Public domain | W3C validator |