Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  limsupre3lem Structured version   Visualization version   GIF version

Theorem limsupre3lem 43163
Description: Given a function on the extended reals, its supremum limit is real if and only if two condition holds: 1. there is a real number that is less than or equal to the function, at some point, in any upper part of the reals; 2. there is a real number that is eventually greater than or equal to the function. (Contributed by Glauco Siliprandi, 23-Oct-2021.)
Hypotheses
Ref Expression
limsupre3lem.1 𝑗𝐹
limsupre3lem.2 (𝜑𝐴 ⊆ ℝ)
limsupre3lem.3 (𝜑𝐹:𝐴⟶ℝ*)
Assertion
Ref Expression
limsupre3lem (𝜑 → ((lim sup‘𝐹) ∈ ℝ ↔ (∃𝑥 ∈ ℝ ∀𝑘 ∈ ℝ ∃𝑗𝐴 (𝑘𝑗𝑥 ≤ (𝐹𝑗)) ∧ ∃𝑥 ∈ ℝ ∃𝑘 ∈ ℝ ∀𝑗𝐴 (𝑘𝑗 → (𝐹𝑗) ≤ 𝑥))))
Distinct variable groups:   𝐴,𝑗,𝑘,𝑥   𝑘,𝐹,𝑥   𝜑,𝑗,𝑘,𝑥
Allowed substitution hint:   𝐹(𝑗)

Proof of Theorem limsupre3lem
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 limsupre3lem.1 . . 3 𝑗𝐹
2 limsupre3lem.2 . . 3 (𝜑𝐴 ⊆ ℝ)
3 limsupre3lem.3 . . 3 (𝜑𝐹:𝐴⟶ℝ*)
41, 2, 3limsupre2 43156 . 2 (𝜑 → ((lim sup‘𝐹) ∈ ℝ ↔ (∃𝑦 ∈ ℝ ∀𝑘 ∈ ℝ ∃𝑗𝐴 (𝑘𝑗𝑦 < (𝐹𝑗)) ∧ ∃𝑦 ∈ ℝ ∃𝑘 ∈ ℝ ∀𝑗𝐴 (𝑘𝑗 → (𝐹𝑗) < 𝑦))))
5 simp2 1135 . . . . . . 7 ((𝜑𝑦 ∈ ℝ ∧ ∀𝑘 ∈ ℝ ∃𝑗𝐴 (𝑘𝑗𝑦 < (𝐹𝑗))) → 𝑦 ∈ ℝ)
6 nfv 1918 . . . . . . . . . 10 𝑗(𝜑𝑦 ∈ ℝ)
7 simp3l 1199 . . . . . . . . . . . 12 (((𝜑𝑦 ∈ ℝ) ∧ 𝑗𝐴 ∧ (𝑘𝑗𝑦 < (𝐹𝑗))) → 𝑘𝑗)
8 simp1r 1196 . . . . . . . . . . . . . . 15 (((𝜑𝑦 ∈ ℝ) ∧ 𝑗𝐴𝑦 < (𝐹𝑗)) → 𝑦 ∈ ℝ)
98rexrd 10956 . . . . . . . . . . . . . 14 (((𝜑𝑦 ∈ ℝ) ∧ 𝑗𝐴𝑦 < (𝐹𝑗)) → 𝑦 ∈ ℝ*)
103ffvelrnda 6943 . . . . . . . . . . . . . . . 16 ((𝜑𝑗𝐴) → (𝐹𝑗) ∈ ℝ*)
1110adantlr 711 . . . . . . . . . . . . . . 15 (((𝜑𝑦 ∈ ℝ) ∧ 𝑗𝐴) → (𝐹𝑗) ∈ ℝ*)
12113adant3 1130 . . . . . . . . . . . . . 14 (((𝜑𝑦 ∈ ℝ) ∧ 𝑗𝐴𝑦 < (𝐹𝑗)) → (𝐹𝑗) ∈ ℝ*)
13 simp3 1136 . . . . . . . . . . . . . 14 (((𝜑𝑦 ∈ ℝ) ∧ 𝑗𝐴𝑦 < (𝐹𝑗)) → 𝑦 < (𝐹𝑗))
149, 12, 13xrltled 12813 . . . . . . . . . . . . 13 (((𝜑𝑦 ∈ ℝ) ∧ 𝑗𝐴𝑦 < (𝐹𝑗)) → 𝑦 ≤ (𝐹𝑗))
15143adant3l 1178 . . . . . . . . . . . 12 (((𝜑𝑦 ∈ ℝ) ∧ 𝑗𝐴 ∧ (𝑘𝑗𝑦 < (𝐹𝑗))) → 𝑦 ≤ (𝐹𝑗))
167, 15jca 511 . . . . . . . . . . 11 (((𝜑𝑦 ∈ ℝ) ∧ 𝑗𝐴 ∧ (𝑘𝑗𝑦 < (𝐹𝑗))) → (𝑘𝑗𝑦 ≤ (𝐹𝑗)))
17163exp 1117 . . . . . . . . . 10 ((𝜑𝑦 ∈ ℝ) → (𝑗𝐴 → ((𝑘𝑗𝑦 < (𝐹𝑗)) → (𝑘𝑗𝑦 ≤ (𝐹𝑗)))))
186, 17reximdai 3239 . . . . . . . . 9 ((𝜑𝑦 ∈ ℝ) → (∃𝑗𝐴 (𝑘𝑗𝑦 < (𝐹𝑗)) → ∃𝑗𝐴 (𝑘𝑗𝑦 ≤ (𝐹𝑗))))
1918ralimdv 3103 . . . . . . . 8 ((𝜑𝑦 ∈ ℝ) → (∀𝑘 ∈ ℝ ∃𝑗𝐴 (𝑘𝑗𝑦 < (𝐹𝑗)) → ∀𝑘 ∈ ℝ ∃𝑗𝐴 (𝑘𝑗𝑦 ≤ (𝐹𝑗))))
20193impia 1115 . . . . . . 7 ((𝜑𝑦 ∈ ℝ ∧ ∀𝑘 ∈ ℝ ∃𝑗𝐴 (𝑘𝑗𝑦 < (𝐹𝑗))) → ∀𝑘 ∈ ℝ ∃𝑗𝐴 (𝑘𝑗𝑦 ≤ (𝐹𝑗)))
21 breq1 5073 . . . . . . . . . . 11 (𝑥 = 𝑦 → (𝑥 ≤ (𝐹𝑗) ↔ 𝑦 ≤ (𝐹𝑗)))
2221anbi2d 628 . . . . . . . . . 10 (𝑥 = 𝑦 → ((𝑘𝑗𝑥 ≤ (𝐹𝑗)) ↔ (𝑘𝑗𝑦 ≤ (𝐹𝑗))))
2322rexbidv 3225 . . . . . . . . 9 (𝑥 = 𝑦 → (∃𝑗𝐴 (𝑘𝑗𝑥 ≤ (𝐹𝑗)) ↔ ∃𝑗𝐴 (𝑘𝑗𝑦 ≤ (𝐹𝑗))))
2423ralbidv 3120 . . . . . . . 8 (𝑥 = 𝑦 → (∀𝑘 ∈ ℝ ∃𝑗𝐴 (𝑘𝑗𝑥 ≤ (𝐹𝑗)) ↔ ∀𝑘 ∈ ℝ ∃𝑗𝐴 (𝑘𝑗𝑦 ≤ (𝐹𝑗))))
2524rspcev 3552 . . . . . . 7 ((𝑦 ∈ ℝ ∧ ∀𝑘 ∈ ℝ ∃𝑗𝐴 (𝑘𝑗𝑦 ≤ (𝐹𝑗))) → ∃𝑥 ∈ ℝ ∀𝑘 ∈ ℝ ∃𝑗𝐴 (𝑘𝑗𝑥 ≤ (𝐹𝑗)))
265, 20, 25syl2anc 583 . . . . . 6 ((𝜑𝑦 ∈ ℝ ∧ ∀𝑘 ∈ ℝ ∃𝑗𝐴 (𝑘𝑗𝑦 < (𝐹𝑗))) → ∃𝑥 ∈ ℝ ∀𝑘 ∈ ℝ ∃𝑗𝐴 (𝑘𝑗𝑥 ≤ (𝐹𝑗)))
27263exp 1117 . . . . 5 (𝜑 → (𝑦 ∈ ℝ → (∀𝑘 ∈ ℝ ∃𝑗𝐴 (𝑘𝑗𝑦 < (𝐹𝑗)) → ∃𝑥 ∈ ℝ ∀𝑘 ∈ ℝ ∃𝑗𝐴 (𝑘𝑗𝑥 ≤ (𝐹𝑗)))))
2827rexlimdv 3211 . . . 4 (𝜑 → (∃𝑦 ∈ ℝ ∀𝑘 ∈ ℝ ∃𝑗𝐴 (𝑘𝑗𝑦 < (𝐹𝑗)) → ∃𝑥 ∈ ℝ ∀𝑘 ∈ ℝ ∃𝑗𝐴 (𝑘𝑗𝑥 ≤ (𝐹𝑗))))
29 peano2rem 11218 . . . . . . 7 (𝑥 ∈ ℝ → (𝑥 − 1) ∈ ℝ)
3029ad2antlr 723 . . . . . 6 (((𝜑𝑥 ∈ ℝ) ∧ ∀𝑘 ∈ ℝ ∃𝑗𝐴 (𝑘𝑗𝑥 ≤ (𝐹𝑗))) → (𝑥 − 1) ∈ ℝ)
31 nfv 1918 . . . . . . . . 9 𝑗(𝜑𝑥 ∈ ℝ)
32 simp3l 1199 . . . . . . . . . . 11 (((𝜑𝑥 ∈ ℝ) ∧ 𝑗𝐴 ∧ (𝑘𝑗𝑥 ≤ (𝐹𝑗))) → 𝑘𝑗)
33 simp1r 1196 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ ℝ) ∧ 𝑗𝐴 ∧ (𝑘𝑗𝑥 ≤ (𝐹𝑗))) → 𝑥 ∈ ℝ)
3429rexrd 10956 . . . . . . . . . . . . 13 (𝑥 ∈ ℝ → (𝑥 − 1) ∈ ℝ*)
3533, 34syl 17 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ ℝ) ∧ 𝑗𝐴 ∧ (𝑘𝑗𝑥 ≤ (𝐹𝑗))) → (𝑥 − 1) ∈ ℝ*)
3633rexrd 10956 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ ℝ) ∧ 𝑗𝐴 ∧ (𝑘𝑗𝑥 ≤ (𝐹𝑗))) → 𝑥 ∈ ℝ*)
3710adantlr 711 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ ℝ) ∧ 𝑗𝐴) → (𝐹𝑗) ∈ ℝ*)
38373adant3 1130 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ ℝ) ∧ 𝑗𝐴 ∧ (𝑘𝑗𝑥 ≤ (𝐹𝑗))) → (𝐹𝑗) ∈ ℝ*)
3933ltm1d 11837 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ ℝ) ∧ 𝑗𝐴 ∧ (𝑘𝑗𝑥 ≤ (𝐹𝑗))) → (𝑥 − 1) < 𝑥)
40 simp3r 1200 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ ℝ) ∧ 𝑗𝐴 ∧ (𝑘𝑗𝑥 ≤ (𝐹𝑗))) → 𝑥 ≤ (𝐹𝑗))
4135, 36, 38, 39, 40xrltletrd 12824 . . . . . . . . . . 11 (((𝜑𝑥 ∈ ℝ) ∧ 𝑗𝐴 ∧ (𝑘𝑗𝑥 ≤ (𝐹𝑗))) → (𝑥 − 1) < (𝐹𝑗))
4232, 41jca 511 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ) ∧ 𝑗𝐴 ∧ (𝑘𝑗𝑥 ≤ (𝐹𝑗))) → (𝑘𝑗 ∧ (𝑥 − 1) < (𝐹𝑗)))
43423exp 1117 . . . . . . . . 9 ((𝜑𝑥 ∈ ℝ) → (𝑗𝐴 → ((𝑘𝑗𝑥 ≤ (𝐹𝑗)) → (𝑘𝑗 ∧ (𝑥 − 1) < (𝐹𝑗)))))
4431, 43reximdai 3239 . . . . . . . 8 ((𝜑𝑥 ∈ ℝ) → (∃𝑗𝐴 (𝑘𝑗𝑥 ≤ (𝐹𝑗)) → ∃𝑗𝐴 (𝑘𝑗 ∧ (𝑥 − 1) < (𝐹𝑗))))
4544ralimdv 3103 . . . . . . 7 ((𝜑𝑥 ∈ ℝ) → (∀𝑘 ∈ ℝ ∃𝑗𝐴 (𝑘𝑗𝑥 ≤ (𝐹𝑗)) → ∀𝑘 ∈ ℝ ∃𝑗𝐴 (𝑘𝑗 ∧ (𝑥 − 1) < (𝐹𝑗))))
4645imp 406 . . . . . 6 (((𝜑𝑥 ∈ ℝ) ∧ ∀𝑘 ∈ ℝ ∃𝑗𝐴 (𝑘𝑗𝑥 ≤ (𝐹𝑗))) → ∀𝑘 ∈ ℝ ∃𝑗𝐴 (𝑘𝑗 ∧ (𝑥 − 1) < (𝐹𝑗)))
47 breq1 5073 . . . . . . . . . 10 (𝑦 = (𝑥 − 1) → (𝑦 < (𝐹𝑗) ↔ (𝑥 − 1) < (𝐹𝑗)))
4847anbi2d 628 . . . . . . . . 9 (𝑦 = (𝑥 − 1) → ((𝑘𝑗𝑦 < (𝐹𝑗)) ↔ (𝑘𝑗 ∧ (𝑥 − 1) < (𝐹𝑗))))
4948rexbidv 3225 . . . . . . . 8 (𝑦 = (𝑥 − 1) → (∃𝑗𝐴 (𝑘𝑗𝑦 < (𝐹𝑗)) ↔ ∃𝑗𝐴 (𝑘𝑗 ∧ (𝑥 − 1) < (𝐹𝑗))))
5049ralbidv 3120 . . . . . . 7 (𝑦 = (𝑥 − 1) → (∀𝑘 ∈ ℝ ∃𝑗𝐴 (𝑘𝑗𝑦 < (𝐹𝑗)) ↔ ∀𝑘 ∈ ℝ ∃𝑗𝐴 (𝑘𝑗 ∧ (𝑥 − 1) < (𝐹𝑗))))
5150rspcev 3552 . . . . . 6 (((𝑥 − 1) ∈ ℝ ∧ ∀𝑘 ∈ ℝ ∃𝑗𝐴 (𝑘𝑗 ∧ (𝑥 − 1) < (𝐹𝑗))) → ∃𝑦 ∈ ℝ ∀𝑘 ∈ ℝ ∃𝑗𝐴 (𝑘𝑗𝑦 < (𝐹𝑗)))
5230, 46, 51syl2anc 583 . . . . 5 (((𝜑𝑥 ∈ ℝ) ∧ ∀𝑘 ∈ ℝ ∃𝑗𝐴 (𝑘𝑗𝑥 ≤ (𝐹𝑗))) → ∃𝑦 ∈ ℝ ∀𝑘 ∈ ℝ ∃𝑗𝐴 (𝑘𝑗𝑦 < (𝐹𝑗)))
5352rexlimdva2 3215 . . . 4 (𝜑 → (∃𝑥 ∈ ℝ ∀𝑘 ∈ ℝ ∃𝑗𝐴 (𝑘𝑗𝑥 ≤ (𝐹𝑗)) → ∃𝑦 ∈ ℝ ∀𝑘 ∈ ℝ ∃𝑗𝐴 (𝑘𝑗𝑦 < (𝐹𝑗))))
5428, 53impbid 211 . . 3 (𝜑 → (∃𝑦 ∈ ℝ ∀𝑘 ∈ ℝ ∃𝑗𝐴 (𝑘𝑗𝑦 < (𝐹𝑗)) ↔ ∃𝑥 ∈ ℝ ∀𝑘 ∈ ℝ ∃𝑗𝐴 (𝑘𝑗𝑥 ≤ (𝐹𝑗))))
55 simplr 765 . . . . . 6 (((𝜑𝑦 ∈ ℝ) ∧ ∃𝑘 ∈ ℝ ∀𝑗𝐴 (𝑘𝑗 → (𝐹𝑗) < 𝑦)) → 𝑦 ∈ ℝ)
5611adantr 480 . . . . . . . . . . . 12 ((((𝜑𝑦 ∈ ℝ) ∧ 𝑗𝐴) ∧ (𝐹𝑗) < 𝑦) → (𝐹𝑗) ∈ ℝ*)
57 rexr 10952 . . . . . . . . . . . . 13 (𝑦 ∈ ℝ → 𝑦 ∈ ℝ*)
5857ad3antlr 727 . . . . . . . . . . . 12 ((((𝜑𝑦 ∈ ℝ) ∧ 𝑗𝐴) ∧ (𝐹𝑗) < 𝑦) → 𝑦 ∈ ℝ*)
59 simpr 484 . . . . . . . . . . . 12 ((((𝜑𝑦 ∈ ℝ) ∧ 𝑗𝐴) ∧ (𝐹𝑗) < 𝑦) → (𝐹𝑗) < 𝑦)
6056, 58, 59xrltled 12813 . . . . . . . . . . 11 ((((𝜑𝑦 ∈ ℝ) ∧ 𝑗𝐴) ∧ (𝐹𝑗) < 𝑦) → (𝐹𝑗) ≤ 𝑦)
6160ex 412 . . . . . . . . . 10 (((𝜑𝑦 ∈ ℝ) ∧ 𝑗𝐴) → ((𝐹𝑗) < 𝑦 → (𝐹𝑗) ≤ 𝑦))
6261imim2d 57 . . . . . . . . 9 (((𝜑𝑦 ∈ ℝ) ∧ 𝑗𝐴) → ((𝑘𝑗 → (𝐹𝑗) < 𝑦) → (𝑘𝑗 → (𝐹𝑗) ≤ 𝑦)))
6362ralimdva 3102 . . . . . . . 8 ((𝜑𝑦 ∈ ℝ) → (∀𝑗𝐴 (𝑘𝑗 → (𝐹𝑗) < 𝑦) → ∀𝑗𝐴 (𝑘𝑗 → (𝐹𝑗) ≤ 𝑦)))
6463reximdv 3201 . . . . . . 7 ((𝜑𝑦 ∈ ℝ) → (∃𝑘 ∈ ℝ ∀𝑗𝐴 (𝑘𝑗 → (𝐹𝑗) < 𝑦) → ∃𝑘 ∈ ℝ ∀𝑗𝐴 (𝑘𝑗 → (𝐹𝑗) ≤ 𝑦)))
6564imp 406 . . . . . 6 (((𝜑𝑦 ∈ ℝ) ∧ ∃𝑘 ∈ ℝ ∀𝑗𝐴 (𝑘𝑗 → (𝐹𝑗) < 𝑦)) → ∃𝑘 ∈ ℝ ∀𝑗𝐴 (𝑘𝑗 → (𝐹𝑗) ≤ 𝑦))
66 breq2 5074 . . . . . . . . . 10 (𝑥 = 𝑦 → ((𝐹𝑗) ≤ 𝑥 ↔ (𝐹𝑗) ≤ 𝑦))
6766imbi2d 340 . . . . . . . . 9 (𝑥 = 𝑦 → ((𝑘𝑗 → (𝐹𝑗) ≤ 𝑥) ↔ (𝑘𝑗 → (𝐹𝑗) ≤ 𝑦)))
6867ralbidv 3120 . . . . . . . 8 (𝑥 = 𝑦 → (∀𝑗𝐴 (𝑘𝑗 → (𝐹𝑗) ≤ 𝑥) ↔ ∀𝑗𝐴 (𝑘𝑗 → (𝐹𝑗) ≤ 𝑦)))
6968rexbidv 3225 . . . . . . 7 (𝑥 = 𝑦 → (∃𝑘 ∈ ℝ ∀𝑗𝐴 (𝑘𝑗 → (𝐹𝑗) ≤ 𝑥) ↔ ∃𝑘 ∈ ℝ ∀𝑗𝐴 (𝑘𝑗 → (𝐹𝑗) ≤ 𝑦)))
7069rspcev 3552 . . . . . 6 ((𝑦 ∈ ℝ ∧ ∃𝑘 ∈ ℝ ∀𝑗𝐴 (𝑘𝑗 → (𝐹𝑗) ≤ 𝑦)) → ∃𝑥 ∈ ℝ ∃𝑘 ∈ ℝ ∀𝑗𝐴 (𝑘𝑗 → (𝐹𝑗) ≤ 𝑥))
7155, 65, 70syl2anc 583 . . . . 5 (((𝜑𝑦 ∈ ℝ) ∧ ∃𝑘 ∈ ℝ ∀𝑗𝐴 (𝑘𝑗 → (𝐹𝑗) < 𝑦)) → ∃𝑥 ∈ ℝ ∃𝑘 ∈ ℝ ∀𝑗𝐴 (𝑘𝑗 → (𝐹𝑗) ≤ 𝑥))
7271rexlimdva2 3215 . . . 4 (𝜑 → (∃𝑦 ∈ ℝ ∃𝑘 ∈ ℝ ∀𝑗𝐴 (𝑘𝑗 → (𝐹𝑗) < 𝑦) → ∃𝑥 ∈ ℝ ∃𝑘 ∈ ℝ ∀𝑗𝐴 (𝑘𝑗 → (𝐹𝑗) ≤ 𝑥)))
73 peano2re 11078 . . . . . . 7 (𝑥 ∈ ℝ → (𝑥 + 1) ∈ ℝ)
7473ad2antlr 723 . . . . . 6 (((𝜑𝑥 ∈ ℝ) ∧ ∃𝑘 ∈ ℝ ∀𝑗𝐴 (𝑘𝑗 → (𝐹𝑗) ≤ 𝑥)) → (𝑥 + 1) ∈ ℝ)
7537adantr 480 . . . . . . . . . . . 12 ((((𝜑𝑥 ∈ ℝ) ∧ 𝑗𝐴) ∧ (𝐹𝑗) ≤ 𝑥) → (𝐹𝑗) ∈ ℝ*)
76 rexr 10952 . . . . . . . . . . . . 13 (𝑥 ∈ ℝ → 𝑥 ∈ ℝ*)
7776ad3antlr 727 . . . . . . . . . . . 12 ((((𝜑𝑥 ∈ ℝ) ∧ 𝑗𝐴) ∧ (𝐹𝑗) ≤ 𝑥) → 𝑥 ∈ ℝ*)
7873rexrd 10956 . . . . . . . . . . . . 13 (𝑥 ∈ ℝ → (𝑥 + 1) ∈ ℝ*)
7978ad3antlr 727 . . . . . . . . . . . 12 ((((𝜑𝑥 ∈ ℝ) ∧ 𝑗𝐴) ∧ (𝐹𝑗) ≤ 𝑥) → (𝑥 + 1) ∈ ℝ*)
80 simpr 484 . . . . . . . . . . . 12 ((((𝜑𝑥 ∈ ℝ) ∧ 𝑗𝐴) ∧ (𝐹𝑗) ≤ 𝑥) → (𝐹𝑗) ≤ 𝑥)
81 ltp1 11745 . . . . . . . . . . . . 13 (𝑥 ∈ ℝ → 𝑥 < (𝑥 + 1))
8281ad3antlr 727 . . . . . . . . . . . 12 ((((𝜑𝑥 ∈ ℝ) ∧ 𝑗𝐴) ∧ (𝐹𝑗) ≤ 𝑥) → 𝑥 < (𝑥 + 1))
8375, 77, 79, 80, 82xrlelttrd 12823 . . . . . . . . . . 11 ((((𝜑𝑥 ∈ ℝ) ∧ 𝑗𝐴) ∧ (𝐹𝑗) ≤ 𝑥) → (𝐹𝑗) < (𝑥 + 1))
8483ex 412 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ) ∧ 𝑗𝐴) → ((𝐹𝑗) ≤ 𝑥 → (𝐹𝑗) < (𝑥 + 1)))
8584imim2d 57 . . . . . . . . 9 (((𝜑𝑥 ∈ ℝ) ∧ 𝑗𝐴) → ((𝑘𝑗 → (𝐹𝑗) ≤ 𝑥) → (𝑘𝑗 → (𝐹𝑗) < (𝑥 + 1))))
8685ralimdva 3102 . . . . . . . 8 ((𝜑𝑥 ∈ ℝ) → (∀𝑗𝐴 (𝑘𝑗 → (𝐹𝑗) ≤ 𝑥) → ∀𝑗𝐴 (𝑘𝑗 → (𝐹𝑗) < (𝑥 + 1))))
8786reximdv 3201 . . . . . . 7 ((𝜑𝑥 ∈ ℝ) → (∃𝑘 ∈ ℝ ∀𝑗𝐴 (𝑘𝑗 → (𝐹𝑗) ≤ 𝑥) → ∃𝑘 ∈ ℝ ∀𝑗𝐴 (𝑘𝑗 → (𝐹𝑗) < (𝑥 + 1))))
8887imp 406 . . . . . 6 (((𝜑𝑥 ∈ ℝ) ∧ ∃𝑘 ∈ ℝ ∀𝑗𝐴 (𝑘𝑗 → (𝐹𝑗) ≤ 𝑥)) → ∃𝑘 ∈ ℝ ∀𝑗𝐴 (𝑘𝑗 → (𝐹𝑗) < (𝑥 + 1)))
89 breq2 5074 . . . . . . . . . 10 (𝑦 = (𝑥 + 1) → ((𝐹𝑗) < 𝑦 ↔ (𝐹𝑗) < (𝑥 + 1)))
9089imbi2d 340 . . . . . . . . 9 (𝑦 = (𝑥 + 1) → ((𝑘𝑗 → (𝐹𝑗) < 𝑦) ↔ (𝑘𝑗 → (𝐹𝑗) < (𝑥 + 1))))
9190ralbidv 3120 . . . . . . . 8 (𝑦 = (𝑥 + 1) → (∀𝑗𝐴 (𝑘𝑗 → (𝐹𝑗) < 𝑦) ↔ ∀𝑗𝐴 (𝑘𝑗 → (𝐹𝑗) < (𝑥 + 1))))
9291rexbidv 3225 . . . . . . 7 (𝑦 = (𝑥 + 1) → (∃𝑘 ∈ ℝ ∀𝑗𝐴 (𝑘𝑗 → (𝐹𝑗) < 𝑦) ↔ ∃𝑘 ∈ ℝ ∀𝑗𝐴 (𝑘𝑗 → (𝐹𝑗) < (𝑥 + 1))))
9392rspcev 3552 . . . . . 6 (((𝑥 + 1) ∈ ℝ ∧ ∃𝑘 ∈ ℝ ∀𝑗𝐴 (𝑘𝑗 → (𝐹𝑗) < (𝑥 + 1))) → ∃𝑦 ∈ ℝ ∃𝑘 ∈ ℝ ∀𝑗𝐴 (𝑘𝑗 → (𝐹𝑗) < 𝑦))
9474, 88, 93syl2anc 583 . . . . 5 (((𝜑𝑥 ∈ ℝ) ∧ ∃𝑘 ∈ ℝ ∀𝑗𝐴 (𝑘𝑗 → (𝐹𝑗) ≤ 𝑥)) → ∃𝑦 ∈ ℝ ∃𝑘 ∈ ℝ ∀𝑗𝐴 (𝑘𝑗 → (𝐹𝑗) < 𝑦))
9594rexlimdva2 3215 . . . 4 (𝜑 → (∃𝑥 ∈ ℝ ∃𝑘 ∈ ℝ ∀𝑗𝐴 (𝑘𝑗 → (𝐹𝑗) ≤ 𝑥) → ∃𝑦 ∈ ℝ ∃𝑘 ∈ ℝ ∀𝑗𝐴 (𝑘𝑗 → (𝐹𝑗) < 𝑦)))
9672, 95impbid 211 . . 3 (𝜑 → (∃𝑦 ∈ ℝ ∃𝑘 ∈ ℝ ∀𝑗𝐴 (𝑘𝑗 → (𝐹𝑗) < 𝑦) ↔ ∃𝑥 ∈ ℝ ∃𝑘 ∈ ℝ ∀𝑗𝐴 (𝑘𝑗 → (𝐹𝑗) ≤ 𝑥)))
9754, 96anbi12d 630 . 2 (𝜑 → ((∃𝑦 ∈ ℝ ∀𝑘 ∈ ℝ ∃𝑗𝐴 (𝑘𝑗𝑦 < (𝐹𝑗)) ∧ ∃𝑦 ∈ ℝ ∃𝑘 ∈ ℝ ∀𝑗𝐴 (𝑘𝑗 → (𝐹𝑗) < 𝑦)) ↔ (∃𝑥 ∈ ℝ ∀𝑘 ∈ ℝ ∃𝑗𝐴 (𝑘𝑗𝑥 ≤ (𝐹𝑗)) ∧ ∃𝑥 ∈ ℝ ∃𝑘 ∈ ℝ ∀𝑗𝐴 (𝑘𝑗 → (𝐹𝑗) ≤ 𝑥))))
984, 97bitrd 278 1 (𝜑 → ((lim sup‘𝐹) ∈ ℝ ↔ (∃𝑥 ∈ ℝ ∀𝑘 ∈ ℝ ∃𝑗𝐴 (𝑘𝑗𝑥 ≤ (𝐹𝑗)) ∧ ∃𝑥 ∈ ℝ ∃𝑘 ∈ ℝ ∀𝑗𝐴 (𝑘𝑗 → (𝐹𝑗) ≤ 𝑥))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  w3a 1085   = wceq 1539  wcel 2108  wnfc 2886  wral 3063  wrex 3064  wss 3883   class class class wbr 5070  wf 6414  cfv 6418  (class class class)co 7255  cr 10801  1c1 10803   + caddc 10805  *cxr 10939   < clt 10940  cle 10941  cmin 11135  lim supclsp 15107
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879  ax-pre-sup 10880
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-po 5494  df-so 5495  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-er 8456  df-en 8692  df-dom 8693  df-sdom 8694  df-sup 9131  df-inf 9132  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-ico 13014  df-limsup 15108
This theorem is referenced by:  limsupre3  43164
  Copyright terms: Public domain W3C validator