Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  limsupre3lem Structured version   Visualization version   GIF version

Theorem limsupre3lem 45653
Description: Given a function on the extended reals, its supremum limit is real if and only if two condition holds: 1. there is a real number that is less than or equal to the function, at some point, in any upper part of the reals; 2. there is a real number that is eventually greater than or equal to the function. (Contributed by Glauco Siliprandi, 23-Oct-2021.)
Hypotheses
Ref Expression
limsupre3lem.1 𝑗𝐹
limsupre3lem.2 (𝜑𝐴 ⊆ ℝ)
limsupre3lem.3 (𝜑𝐹:𝐴⟶ℝ*)
Assertion
Ref Expression
limsupre3lem (𝜑 → ((lim sup‘𝐹) ∈ ℝ ↔ (∃𝑥 ∈ ℝ ∀𝑘 ∈ ℝ ∃𝑗𝐴 (𝑘𝑗𝑥 ≤ (𝐹𝑗)) ∧ ∃𝑥 ∈ ℝ ∃𝑘 ∈ ℝ ∀𝑗𝐴 (𝑘𝑗 → (𝐹𝑗) ≤ 𝑥))))
Distinct variable groups:   𝐴,𝑗,𝑘,𝑥   𝑘,𝐹,𝑥   𝜑,𝑗,𝑘,𝑥
Allowed substitution hint:   𝐹(𝑗)

Proof of Theorem limsupre3lem
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 limsupre3lem.1 . . 3 𝑗𝐹
2 limsupre3lem.2 . . 3 (𝜑𝐴 ⊆ ℝ)
3 limsupre3lem.3 . . 3 (𝜑𝐹:𝐴⟶ℝ*)
41, 2, 3limsupre2 45646 . 2 (𝜑 → ((lim sup‘𝐹) ∈ ℝ ↔ (∃𝑦 ∈ ℝ ∀𝑘 ∈ ℝ ∃𝑗𝐴 (𝑘𝑗𝑦 < (𝐹𝑗)) ∧ ∃𝑦 ∈ ℝ ∃𝑘 ∈ ℝ ∀𝑗𝐴 (𝑘𝑗 → (𝐹𝑗) < 𝑦))))
5 simp2 1137 . . . . . . 7 ((𝜑𝑦 ∈ ℝ ∧ ∀𝑘 ∈ ℝ ∃𝑗𝐴 (𝑘𝑗𝑦 < (𝐹𝑗))) → 𝑦 ∈ ℝ)
6 nfv 1913 . . . . . . . . . 10 𝑗(𝜑𝑦 ∈ ℝ)
7 simp3l 1201 . . . . . . . . . . . 12 (((𝜑𝑦 ∈ ℝ) ∧ 𝑗𝐴 ∧ (𝑘𝑗𝑦 < (𝐹𝑗))) → 𝑘𝑗)
8 simp1r 1198 . . . . . . . . . . . . . . 15 (((𝜑𝑦 ∈ ℝ) ∧ 𝑗𝐴𝑦 < (𝐹𝑗)) → 𝑦 ∈ ℝ)
98rexrd 11340 . . . . . . . . . . . . . 14 (((𝜑𝑦 ∈ ℝ) ∧ 𝑗𝐴𝑦 < (𝐹𝑗)) → 𝑦 ∈ ℝ*)
103ffvelcdmda 7118 . . . . . . . . . . . . . . . 16 ((𝜑𝑗𝐴) → (𝐹𝑗) ∈ ℝ*)
1110adantlr 714 . . . . . . . . . . . . . . 15 (((𝜑𝑦 ∈ ℝ) ∧ 𝑗𝐴) → (𝐹𝑗) ∈ ℝ*)
12113adant3 1132 . . . . . . . . . . . . . 14 (((𝜑𝑦 ∈ ℝ) ∧ 𝑗𝐴𝑦 < (𝐹𝑗)) → (𝐹𝑗) ∈ ℝ*)
13 simp3 1138 . . . . . . . . . . . . . 14 (((𝜑𝑦 ∈ ℝ) ∧ 𝑗𝐴𝑦 < (𝐹𝑗)) → 𝑦 < (𝐹𝑗))
149, 12, 13xrltled 13212 . . . . . . . . . . . . 13 (((𝜑𝑦 ∈ ℝ) ∧ 𝑗𝐴𝑦 < (𝐹𝑗)) → 𝑦 ≤ (𝐹𝑗))
15143adant3l 1180 . . . . . . . . . . . 12 (((𝜑𝑦 ∈ ℝ) ∧ 𝑗𝐴 ∧ (𝑘𝑗𝑦 < (𝐹𝑗))) → 𝑦 ≤ (𝐹𝑗))
167, 15jca 511 . . . . . . . . . . 11 (((𝜑𝑦 ∈ ℝ) ∧ 𝑗𝐴 ∧ (𝑘𝑗𝑦 < (𝐹𝑗))) → (𝑘𝑗𝑦 ≤ (𝐹𝑗)))
17163exp 1119 . . . . . . . . . 10 ((𝜑𝑦 ∈ ℝ) → (𝑗𝐴 → ((𝑘𝑗𝑦 < (𝐹𝑗)) → (𝑘𝑗𝑦 ≤ (𝐹𝑗)))))
186, 17reximdai 3267 . . . . . . . . 9 ((𝜑𝑦 ∈ ℝ) → (∃𝑗𝐴 (𝑘𝑗𝑦 < (𝐹𝑗)) → ∃𝑗𝐴 (𝑘𝑗𝑦 ≤ (𝐹𝑗))))
1918ralimdv 3175 . . . . . . . 8 ((𝜑𝑦 ∈ ℝ) → (∀𝑘 ∈ ℝ ∃𝑗𝐴 (𝑘𝑗𝑦 < (𝐹𝑗)) → ∀𝑘 ∈ ℝ ∃𝑗𝐴 (𝑘𝑗𝑦 ≤ (𝐹𝑗))))
20193impia 1117 . . . . . . 7 ((𝜑𝑦 ∈ ℝ ∧ ∀𝑘 ∈ ℝ ∃𝑗𝐴 (𝑘𝑗𝑦 < (𝐹𝑗))) → ∀𝑘 ∈ ℝ ∃𝑗𝐴 (𝑘𝑗𝑦 ≤ (𝐹𝑗)))
21 breq1 5169 . . . . . . . . . . 11 (𝑥 = 𝑦 → (𝑥 ≤ (𝐹𝑗) ↔ 𝑦 ≤ (𝐹𝑗)))
2221anbi2d 629 . . . . . . . . . 10 (𝑥 = 𝑦 → ((𝑘𝑗𝑥 ≤ (𝐹𝑗)) ↔ (𝑘𝑗𝑦 ≤ (𝐹𝑗))))
2322rexbidv 3185 . . . . . . . . 9 (𝑥 = 𝑦 → (∃𝑗𝐴 (𝑘𝑗𝑥 ≤ (𝐹𝑗)) ↔ ∃𝑗𝐴 (𝑘𝑗𝑦 ≤ (𝐹𝑗))))
2423ralbidv 3184 . . . . . . . 8 (𝑥 = 𝑦 → (∀𝑘 ∈ ℝ ∃𝑗𝐴 (𝑘𝑗𝑥 ≤ (𝐹𝑗)) ↔ ∀𝑘 ∈ ℝ ∃𝑗𝐴 (𝑘𝑗𝑦 ≤ (𝐹𝑗))))
2524rspcev 3635 . . . . . . 7 ((𝑦 ∈ ℝ ∧ ∀𝑘 ∈ ℝ ∃𝑗𝐴 (𝑘𝑗𝑦 ≤ (𝐹𝑗))) → ∃𝑥 ∈ ℝ ∀𝑘 ∈ ℝ ∃𝑗𝐴 (𝑘𝑗𝑥 ≤ (𝐹𝑗)))
265, 20, 25syl2anc 583 . . . . . 6 ((𝜑𝑦 ∈ ℝ ∧ ∀𝑘 ∈ ℝ ∃𝑗𝐴 (𝑘𝑗𝑦 < (𝐹𝑗))) → ∃𝑥 ∈ ℝ ∀𝑘 ∈ ℝ ∃𝑗𝐴 (𝑘𝑗𝑥 ≤ (𝐹𝑗)))
27263exp 1119 . . . . 5 (𝜑 → (𝑦 ∈ ℝ → (∀𝑘 ∈ ℝ ∃𝑗𝐴 (𝑘𝑗𝑦 < (𝐹𝑗)) → ∃𝑥 ∈ ℝ ∀𝑘 ∈ ℝ ∃𝑗𝐴 (𝑘𝑗𝑥 ≤ (𝐹𝑗)))))
2827rexlimdv 3159 . . . 4 (𝜑 → (∃𝑦 ∈ ℝ ∀𝑘 ∈ ℝ ∃𝑗𝐴 (𝑘𝑗𝑦 < (𝐹𝑗)) → ∃𝑥 ∈ ℝ ∀𝑘 ∈ ℝ ∃𝑗𝐴 (𝑘𝑗𝑥 ≤ (𝐹𝑗))))
29 peano2rem 11603 . . . . . . 7 (𝑥 ∈ ℝ → (𝑥 − 1) ∈ ℝ)
3029ad2antlr 726 . . . . . 6 (((𝜑𝑥 ∈ ℝ) ∧ ∀𝑘 ∈ ℝ ∃𝑗𝐴 (𝑘𝑗𝑥 ≤ (𝐹𝑗))) → (𝑥 − 1) ∈ ℝ)
31 nfv 1913 . . . . . . . . 9 𝑗(𝜑𝑥 ∈ ℝ)
32 simp3l 1201 . . . . . . . . . . 11 (((𝜑𝑥 ∈ ℝ) ∧ 𝑗𝐴 ∧ (𝑘𝑗𝑥 ≤ (𝐹𝑗))) → 𝑘𝑗)
33 simp1r 1198 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ ℝ) ∧ 𝑗𝐴 ∧ (𝑘𝑗𝑥 ≤ (𝐹𝑗))) → 𝑥 ∈ ℝ)
3429rexrd 11340 . . . . . . . . . . . . 13 (𝑥 ∈ ℝ → (𝑥 − 1) ∈ ℝ*)
3533, 34syl 17 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ ℝ) ∧ 𝑗𝐴 ∧ (𝑘𝑗𝑥 ≤ (𝐹𝑗))) → (𝑥 − 1) ∈ ℝ*)
3633rexrd 11340 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ ℝ) ∧ 𝑗𝐴 ∧ (𝑘𝑗𝑥 ≤ (𝐹𝑗))) → 𝑥 ∈ ℝ*)
3710adantlr 714 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ ℝ) ∧ 𝑗𝐴) → (𝐹𝑗) ∈ ℝ*)
38373adant3 1132 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ ℝ) ∧ 𝑗𝐴 ∧ (𝑘𝑗𝑥 ≤ (𝐹𝑗))) → (𝐹𝑗) ∈ ℝ*)
3933ltm1d 12227 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ ℝ) ∧ 𝑗𝐴 ∧ (𝑘𝑗𝑥 ≤ (𝐹𝑗))) → (𝑥 − 1) < 𝑥)
40 simp3r 1202 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ ℝ) ∧ 𝑗𝐴 ∧ (𝑘𝑗𝑥 ≤ (𝐹𝑗))) → 𝑥 ≤ (𝐹𝑗))
4135, 36, 38, 39, 40xrltletrd 13223 . . . . . . . . . . 11 (((𝜑𝑥 ∈ ℝ) ∧ 𝑗𝐴 ∧ (𝑘𝑗𝑥 ≤ (𝐹𝑗))) → (𝑥 − 1) < (𝐹𝑗))
4232, 41jca 511 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ) ∧ 𝑗𝐴 ∧ (𝑘𝑗𝑥 ≤ (𝐹𝑗))) → (𝑘𝑗 ∧ (𝑥 − 1) < (𝐹𝑗)))
43423exp 1119 . . . . . . . . 9 ((𝜑𝑥 ∈ ℝ) → (𝑗𝐴 → ((𝑘𝑗𝑥 ≤ (𝐹𝑗)) → (𝑘𝑗 ∧ (𝑥 − 1) < (𝐹𝑗)))))
4431, 43reximdai 3267 . . . . . . . 8 ((𝜑𝑥 ∈ ℝ) → (∃𝑗𝐴 (𝑘𝑗𝑥 ≤ (𝐹𝑗)) → ∃𝑗𝐴 (𝑘𝑗 ∧ (𝑥 − 1) < (𝐹𝑗))))
4544ralimdv 3175 . . . . . . 7 ((𝜑𝑥 ∈ ℝ) → (∀𝑘 ∈ ℝ ∃𝑗𝐴 (𝑘𝑗𝑥 ≤ (𝐹𝑗)) → ∀𝑘 ∈ ℝ ∃𝑗𝐴 (𝑘𝑗 ∧ (𝑥 − 1) < (𝐹𝑗))))
4645imp 406 . . . . . 6 (((𝜑𝑥 ∈ ℝ) ∧ ∀𝑘 ∈ ℝ ∃𝑗𝐴 (𝑘𝑗𝑥 ≤ (𝐹𝑗))) → ∀𝑘 ∈ ℝ ∃𝑗𝐴 (𝑘𝑗 ∧ (𝑥 − 1) < (𝐹𝑗)))
47 breq1 5169 . . . . . . . . . 10 (𝑦 = (𝑥 − 1) → (𝑦 < (𝐹𝑗) ↔ (𝑥 − 1) < (𝐹𝑗)))
4847anbi2d 629 . . . . . . . . 9 (𝑦 = (𝑥 − 1) → ((𝑘𝑗𝑦 < (𝐹𝑗)) ↔ (𝑘𝑗 ∧ (𝑥 − 1) < (𝐹𝑗))))
4948rexbidv 3185 . . . . . . . 8 (𝑦 = (𝑥 − 1) → (∃𝑗𝐴 (𝑘𝑗𝑦 < (𝐹𝑗)) ↔ ∃𝑗𝐴 (𝑘𝑗 ∧ (𝑥 − 1) < (𝐹𝑗))))
5049ralbidv 3184 . . . . . . 7 (𝑦 = (𝑥 − 1) → (∀𝑘 ∈ ℝ ∃𝑗𝐴 (𝑘𝑗𝑦 < (𝐹𝑗)) ↔ ∀𝑘 ∈ ℝ ∃𝑗𝐴 (𝑘𝑗 ∧ (𝑥 − 1) < (𝐹𝑗))))
5150rspcev 3635 . . . . . 6 (((𝑥 − 1) ∈ ℝ ∧ ∀𝑘 ∈ ℝ ∃𝑗𝐴 (𝑘𝑗 ∧ (𝑥 − 1) < (𝐹𝑗))) → ∃𝑦 ∈ ℝ ∀𝑘 ∈ ℝ ∃𝑗𝐴 (𝑘𝑗𝑦 < (𝐹𝑗)))
5230, 46, 51syl2anc 583 . . . . 5 (((𝜑𝑥 ∈ ℝ) ∧ ∀𝑘 ∈ ℝ ∃𝑗𝐴 (𝑘𝑗𝑥 ≤ (𝐹𝑗))) → ∃𝑦 ∈ ℝ ∀𝑘 ∈ ℝ ∃𝑗𝐴 (𝑘𝑗𝑦 < (𝐹𝑗)))
5352rexlimdva2 3163 . . . 4 (𝜑 → (∃𝑥 ∈ ℝ ∀𝑘 ∈ ℝ ∃𝑗𝐴 (𝑘𝑗𝑥 ≤ (𝐹𝑗)) → ∃𝑦 ∈ ℝ ∀𝑘 ∈ ℝ ∃𝑗𝐴 (𝑘𝑗𝑦 < (𝐹𝑗))))
5428, 53impbid 212 . . 3 (𝜑 → (∃𝑦 ∈ ℝ ∀𝑘 ∈ ℝ ∃𝑗𝐴 (𝑘𝑗𝑦 < (𝐹𝑗)) ↔ ∃𝑥 ∈ ℝ ∀𝑘 ∈ ℝ ∃𝑗𝐴 (𝑘𝑗𝑥 ≤ (𝐹𝑗))))
55 simplr 768 . . . . . 6 (((𝜑𝑦 ∈ ℝ) ∧ ∃𝑘 ∈ ℝ ∀𝑗𝐴 (𝑘𝑗 → (𝐹𝑗) < 𝑦)) → 𝑦 ∈ ℝ)
5611adantr 480 . . . . . . . . . . . 12 ((((𝜑𝑦 ∈ ℝ) ∧ 𝑗𝐴) ∧ (𝐹𝑗) < 𝑦) → (𝐹𝑗) ∈ ℝ*)
57 rexr 11336 . . . . . . . . . . . . 13 (𝑦 ∈ ℝ → 𝑦 ∈ ℝ*)
5857ad3antlr 730 . . . . . . . . . . . 12 ((((𝜑𝑦 ∈ ℝ) ∧ 𝑗𝐴) ∧ (𝐹𝑗) < 𝑦) → 𝑦 ∈ ℝ*)
59 simpr 484 . . . . . . . . . . . 12 ((((𝜑𝑦 ∈ ℝ) ∧ 𝑗𝐴) ∧ (𝐹𝑗) < 𝑦) → (𝐹𝑗) < 𝑦)
6056, 58, 59xrltled 13212 . . . . . . . . . . 11 ((((𝜑𝑦 ∈ ℝ) ∧ 𝑗𝐴) ∧ (𝐹𝑗) < 𝑦) → (𝐹𝑗) ≤ 𝑦)
6160ex 412 . . . . . . . . . 10 (((𝜑𝑦 ∈ ℝ) ∧ 𝑗𝐴) → ((𝐹𝑗) < 𝑦 → (𝐹𝑗) ≤ 𝑦))
6261imim2d 57 . . . . . . . . 9 (((𝜑𝑦 ∈ ℝ) ∧ 𝑗𝐴) → ((𝑘𝑗 → (𝐹𝑗) < 𝑦) → (𝑘𝑗 → (𝐹𝑗) ≤ 𝑦)))
6362ralimdva 3173 . . . . . . . 8 ((𝜑𝑦 ∈ ℝ) → (∀𝑗𝐴 (𝑘𝑗 → (𝐹𝑗) < 𝑦) → ∀𝑗𝐴 (𝑘𝑗 → (𝐹𝑗) ≤ 𝑦)))
6463reximdv 3176 . . . . . . 7 ((𝜑𝑦 ∈ ℝ) → (∃𝑘 ∈ ℝ ∀𝑗𝐴 (𝑘𝑗 → (𝐹𝑗) < 𝑦) → ∃𝑘 ∈ ℝ ∀𝑗𝐴 (𝑘𝑗 → (𝐹𝑗) ≤ 𝑦)))
6564imp 406 . . . . . 6 (((𝜑𝑦 ∈ ℝ) ∧ ∃𝑘 ∈ ℝ ∀𝑗𝐴 (𝑘𝑗 → (𝐹𝑗) < 𝑦)) → ∃𝑘 ∈ ℝ ∀𝑗𝐴 (𝑘𝑗 → (𝐹𝑗) ≤ 𝑦))
66 breq2 5170 . . . . . . . . . 10 (𝑥 = 𝑦 → ((𝐹𝑗) ≤ 𝑥 ↔ (𝐹𝑗) ≤ 𝑦))
6766imbi2d 340 . . . . . . . . 9 (𝑥 = 𝑦 → ((𝑘𝑗 → (𝐹𝑗) ≤ 𝑥) ↔ (𝑘𝑗 → (𝐹𝑗) ≤ 𝑦)))
6867ralbidv 3184 . . . . . . . 8 (𝑥 = 𝑦 → (∀𝑗𝐴 (𝑘𝑗 → (𝐹𝑗) ≤ 𝑥) ↔ ∀𝑗𝐴 (𝑘𝑗 → (𝐹𝑗) ≤ 𝑦)))
6968rexbidv 3185 . . . . . . 7 (𝑥 = 𝑦 → (∃𝑘 ∈ ℝ ∀𝑗𝐴 (𝑘𝑗 → (𝐹𝑗) ≤ 𝑥) ↔ ∃𝑘 ∈ ℝ ∀𝑗𝐴 (𝑘𝑗 → (𝐹𝑗) ≤ 𝑦)))
7069rspcev 3635 . . . . . 6 ((𝑦 ∈ ℝ ∧ ∃𝑘 ∈ ℝ ∀𝑗𝐴 (𝑘𝑗 → (𝐹𝑗) ≤ 𝑦)) → ∃𝑥 ∈ ℝ ∃𝑘 ∈ ℝ ∀𝑗𝐴 (𝑘𝑗 → (𝐹𝑗) ≤ 𝑥))
7155, 65, 70syl2anc 583 . . . . 5 (((𝜑𝑦 ∈ ℝ) ∧ ∃𝑘 ∈ ℝ ∀𝑗𝐴 (𝑘𝑗 → (𝐹𝑗) < 𝑦)) → ∃𝑥 ∈ ℝ ∃𝑘 ∈ ℝ ∀𝑗𝐴 (𝑘𝑗 → (𝐹𝑗) ≤ 𝑥))
7271rexlimdva2 3163 . . . 4 (𝜑 → (∃𝑦 ∈ ℝ ∃𝑘 ∈ ℝ ∀𝑗𝐴 (𝑘𝑗 → (𝐹𝑗) < 𝑦) → ∃𝑥 ∈ ℝ ∃𝑘 ∈ ℝ ∀𝑗𝐴 (𝑘𝑗 → (𝐹𝑗) ≤ 𝑥)))
73 peano2re 11463 . . . . . . 7 (𝑥 ∈ ℝ → (𝑥 + 1) ∈ ℝ)
7473ad2antlr 726 . . . . . 6 (((𝜑𝑥 ∈ ℝ) ∧ ∃𝑘 ∈ ℝ ∀𝑗𝐴 (𝑘𝑗 → (𝐹𝑗) ≤ 𝑥)) → (𝑥 + 1) ∈ ℝ)
7537adantr 480 . . . . . . . . . . . 12 ((((𝜑𝑥 ∈ ℝ) ∧ 𝑗𝐴) ∧ (𝐹𝑗) ≤ 𝑥) → (𝐹𝑗) ∈ ℝ*)
76 rexr 11336 . . . . . . . . . . . . 13 (𝑥 ∈ ℝ → 𝑥 ∈ ℝ*)
7776ad3antlr 730 . . . . . . . . . . . 12 ((((𝜑𝑥 ∈ ℝ) ∧ 𝑗𝐴) ∧ (𝐹𝑗) ≤ 𝑥) → 𝑥 ∈ ℝ*)
7873rexrd 11340 . . . . . . . . . . . . 13 (𝑥 ∈ ℝ → (𝑥 + 1) ∈ ℝ*)
7978ad3antlr 730 . . . . . . . . . . . 12 ((((𝜑𝑥 ∈ ℝ) ∧ 𝑗𝐴) ∧ (𝐹𝑗) ≤ 𝑥) → (𝑥 + 1) ∈ ℝ*)
80 simpr 484 . . . . . . . . . . . 12 ((((𝜑𝑥 ∈ ℝ) ∧ 𝑗𝐴) ∧ (𝐹𝑗) ≤ 𝑥) → (𝐹𝑗) ≤ 𝑥)
81 ltp1 12134 . . . . . . . . . . . . 13 (𝑥 ∈ ℝ → 𝑥 < (𝑥 + 1))
8281ad3antlr 730 . . . . . . . . . . . 12 ((((𝜑𝑥 ∈ ℝ) ∧ 𝑗𝐴) ∧ (𝐹𝑗) ≤ 𝑥) → 𝑥 < (𝑥 + 1))
8375, 77, 79, 80, 82xrlelttrd 13222 . . . . . . . . . . 11 ((((𝜑𝑥 ∈ ℝ) ∧ 𝑗𝐴) ∧ (𝐹𝑗) ≤ 𝑥) → (𝐹𝑗) < (𝑥 + 1))
8483ex 412 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ) ∧ 𝑗𝐴) → ((𝐹𝑗) ≤ 𝑥 → (𝐹𝑗) < (𝑥 + 1)))
8584imim2d 57 . . . . . . . . 9 (((𝜑𝑥 ∈ ℝ) ∧ 𝑗𝐴) → ((𝑘𝑗 → (𝐹𝑗) ≤ 𝑥) → (𝑘𝑗 → (𝐹𝑗) < (𝑥 + 1))))
8685ralimdva 3173 . . . . . . . 8 ((𝜑𝑥 ∈ ℝ) → (∀𝑗𝐴 (𝑘𝑗 → (𝐹𝑗) ≤ 𝑥) → ∀𝑗𝐴 (𝑘𝑗 → (𝐹𝑗) < (𝑥 + 1))))
8786reximdv 3176 . . . . . . 7 ((𝜑𝑥 ∈ ℝ) → (∃𝑘 ∈ ℝ ∀𝑗𝐴 (𝑘𝑗 → (𝐹𝑗) ≤ 𝑥) → ∃𝑘 ∈ ℝ ∀𝑗𝐴 (𝑘𝑗 → (𝐹𝑗) < (𝑥 + 1))))
8887imp 406 . . . . . 6 (((𝜑𝑥 ∈ ℝ) ∧ ∃𝑘 ∈ ℝ ∀𝑗𝐴 (𝑘𝑗 → (𝐹𝑗) ≤ 𝑥)) → ∃𝑘 ∈ ℝ ∀𝑗𝐴 (𝑘𝑗 → (𝐹𝑗) < (𝑥 + 1)))
89 breq2 5170 . . . . . . . . . 10 (𝑦 = (𝑥 + 1) → ((𝐹𝑗) < 𝑦 ↔ (𝐹𝑗) < (𝑥 + 1)))
9089imbi2d 340 . . . . . . . . 9 (𝑦 = (𝑥 + 1) → ((𝑘𝑗 → (𝐹𝑗) < 𝑦) ↔ (𝑘𝑗 → (𝐹𝑗) < (𝑥 + 1))))
9190ralbidv 3184 . . . . . . . 8 (𝑦 = (𝑥 + 1) → (∀𝑗𝐴 (𝑘𝑗 → (𝐹𝑗) < 𝑦) ↔ ∀𝑗𝐴 (𝑘𝑗 → (𝐹𝑗) < (𝑥 + 1))))
9291rexbidv 3185 . . . . . . 7 (𝑦 = (𝑥 + 1) → (∃𝑘 ∈ ℝ ∀𝑗𝐴 (𝑘𝑗 → (𝐹𝑗) < 𝑦) ↔ ∃𝑘 ∈ ℝ ∀𝑗𝐴 (𝑘𝑗 → (𝐹𝑗) < (𝑥 + 1))))
9392rspcev 3635 . . . . . 6 (((𝑥 + 1) ∈ ℝ ∧ ∃𝑘 ∈ ℝ ∀𝑗𝐴 (𝑘𝑗 → (𝐹𝑗) < (𝑥 + 1))) → ∃𝑦 ∈ ℝ ∃𝑘 ∈ ℝ ∀𝑗𝐴 (𝑘𝑗 → (𝐹𝑗) < 𝑦))
9474, 88, 93syl2anc 583 . . . . 5 (((𝜑𝑥 ∈ ℝ) ∧ ∃𝑘 ∈ ℝ ∀𝑗𝐴 (𝑘𝑗 → (𝐹𝑗) ≤ 𝑥)) → ∃𝑦 ∈ ℝ ∃𝑘 ∈ ℝ ∀𝑗𝐴 (𝑘𝑗 → (𝐹𝑗) < 𝑦))
9594rexlimdva2 3163 . . . 4 (𝜑 → (∃𝑥 ∈ ℝ ∃𝑘 ∈ ℝ ∀𝑗𝐴 (𝑘𝑗 → (𝐹𝑗) ≤ 𝑥) → ∃𝑦 ∈ ℝ ∃𝑘 ∈ ℝ ∀𝑗𝐴 (𝑘𝑗 → (𝐹𝑗) < 𝑦)))
9672, 95impbid 212 . . 3 (𝜑 → (∃𝑦 ∈ ℝ ∃𝑘 ∈ ℝ ∀𝑗𝐴 (𝑘𝑗 → (𝐹𝑗) < 𝑦) ↔ ∃𝑥 ∈ ℝ ∃𝑘 ∈ ℝ ∀𝑗𝐴 (𝑘𝑗 → (𝐹𝑗) ≤ 𝑥)))
9754, 96anbi12d 631 . 2 (𝜑 → ((∃𝑦 ∈ ℝ ∀𝑘 ∈ ℝ ∃𝑗𝐴 (𝑘𝑗𝑦 < (𝐹𝑗)) ∧ ∃𝑦 ∈ ℝ ∃𝑘 ∈ ℝ ∀𝑗𝐴 (𝑘𝑗 → (𝐹𝑗) < 𝑦)) ↔ (∃𝑥 ∈ ℝ ∀𝑘 ∈ ℝ ∃𝑗𝐴 (𝑘𝑗𝑥 ≤ (𝐹𝑗)) ∧ ∃𝑥 ∈ ℝ ∃𝑘 ∈ ℝ ∀𝑗𝐴 (𝑘𝑗 → (𝐹𝑗) ≤ 𝑥))))
984, 97bitrd 279 1 (𝜑 → ((lim sup‘𝐹) ∈ ℝ ↔ (∃𝑥 ∈ ℝ ∀𝑘 ∈ ℝ ∃𝑗𝐴 (𝑘𝑗𝑥 ≤ (𝐹𝑗)) ∧ ∃𝑥 ∈ ℝ ∃𝑘 ∈ ℝ ∀𝑗𝐴 (𝑘𝑗 → (𝐹𝑗) ≤ 𝑥))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1087   = wceq 1537  wcel 2108  wnfc 2893  wral 3067  wrex 3076  wss 3976   class class class wbr 5166  wf 6569  cfv 6573  (class class class)co 7448  cr 11183  1c1 11185   + caddc 11187  *cxr 11323   < clt 11324  cle 11325  cmin 11520  lim supclsp 15516
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261  ax-pre-sup 11262
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-po 5607  df-so 5608  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-er 8763  df-en 9004  df-dom 9005  df-sdom 9006  df-sup 9511  df-inf 9512  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-ico 13413  df-limsup 15517
This theorem is referenced by:  limsupre3  45654
  Copyright terms: Public domain W3C validator