Step | Hyp | Ref
| Expression |
1 | | limsupre3lem.1 |
. . 3
⊢
Ⅎ𝑗𝐹 |
2 | | limsupre3lem.2 |
. . 3
⊢ (𝜑 → 𝐴 ⊆ ℝ) |
3 | | limsupre3lem.3 |
. . 3
⊢ (𝜑 → 𝐹:𝐴⟶ℝ*) |
4 | 1, 2, 3 | limsupre2 43156 |
. 2
⊢ (𝜑 → ((lim sup‘𝐹) ∈ ℝ ↔
(∃𝑦 ∈ ℝ
∀𝑘 ∈ ℝ
∃𝑗 ∈ 𝐴 (𝑘 ≤ 𝑗 ∧ 𝑦 < (𝐹‘𝑗)) ∧ ∃𝑦 ∈ ℝ ∃𝑘 ∈ ℝ ∀𝑗 ∈ 𝐴 (𝑘 ≤ 𝑗 → (𝐹‘𝑗) < 𝑦)))) |
5 | | simp2 1135 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑦 ∈ ℝ ∧ ∀𝑘 ∈ ℝ ∃𝑗 ∈ 𝐴 (𝑘 ≤ 𝑗 ∧ 𝑦 < (𝐹‘𝑗))) → 𝑦 ∈ ℝ) |
6 | | nfv 1918 |
. . . . . . . . . 10
⊢
Ⅎ𝑗(𝜑 ∧ 𝑦 ∈ ℝ) |
7 | | simp3l 1199 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑦 ∈ ℝ) ∧ 𝑗 ∈ 𝐴 ∧ (𝑘 ≤ 𝑗 ∧ 𝑦 < (𝐹‘𝑗))) → 𝑘 ≤ 𝑗) |
8 | | simp1r 1196 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑦 ∈ ℝ) ∧ 𝑗 ∈ 𝐴 ∧ 𝑦 < (𝐹‘𝑗)) → 𝑦 ∈ ℝ) |
9 | 8 | rexrd 10956 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑦 ∈ ℝ) ∧ 𝑗 ∈ 𝐴 ∧ 𝑦 < (𝐹‘𝑗)) → 𝑦 ∈ ℝ*) |
10 | 3 | ffvelrnda 6943 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑗 ∈ 𝐴) → (𝐹‘𝑗) ∈
ℝ*) |
11 | 10 | adantlr 711 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑦 ∈ ℝ) ∧ 𝑗 ∈ 𝐴) → (𝐹‘𝑗) ∈
ℝ*) |
12 | 11 | 3adant3 1130 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑦 ∈ ℝ) ∧ 𝑗 ∈ 𝐴 ∧ 𝑦 < (𝐹‘𝑗)) → (𝐹‘𝑗) ∈
ℝ*) |
13 | | simp3 1136 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑦 ∈ ℝ) ∧ 𝑗 ∈ 𝐴 ∧ 𝑦 < (𝐹‘𝑗)) → 𝑦 < (𝐹‘𝑗)) |
14 | 9, 12, 13 | xrltled 12813 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑦 ∈ ℝ) ∧ 𝑗 ∈ 𝐴 ∧ 𝑦 < (𝐹‘𝑗)) → 𝑦 ≤ (𝐹‘𝑗)) |
15 | 14 | 3adant3l 1178 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑦 ∈ ℝ) ∧ 𝑗 ∈ 𝐴 ∧ (𝑘 ≤ 𝑗 ∧ 𝑦 < (𝐹‘𝑗))) → 𝑦 ≤ (𝐹‘𝑗)) |
16 | 7, 15 | jca 511 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑦 ∈ ℝ) ∧ 𝑗 ∈ 𝐴 ∧ (𝑘 ≤ 𝑗 ∧ 𝑦 < (𝐹‘𝑗))) → (𝑘 ≤ 𝑗 ∧ 𝑦 ≤ (𝐹‘𝑗))) |
17 | 16 | 3exp 1117 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑦 ∈ ℝ) → (𝑗 ∈ 𝐴 → ((𝑘 ≤ 𝑗 ∧ 𝑦 < (𝐹‘𝑗)) → (𝑘 ≤ 𝑗 ∧ 𝑦 ≤ (𝐹‘𝑗))))) |
18 | 6, 17 | reximdai 3239 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑦 ∈ ℝ) → (∃𝑗 ∈ 𝐴 (𝑘 ≤ 𝑗 ∧ 𝑦 < (𝐹‘𝑗)) → ∃𝑗 ∈ 𝐴 (𝑘 ≤ 𝑗 ∧ 𝑦 ≤ (𝐹‘𝑗)))) |
19 | 18 | ralimdv 3103 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑦 ∈ ℝ) → (∀𝑘 ∈ ℝ ∃𝑗 ∈ 𝐴 (𝑘 ≤ 𝑗 ∧ 𝑦 < (𝐹‘𝑗)) → ∀𝑘 ∈ ℝ ∃𝑗 ∈ 𝐴 (𝑘 ≤ 𝑗 ∧ 𝑦 ≤ (𝐹‘𝑗)))) |
20 | 19 | 3impia 1115 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑦 ∈ ℝ ∧ ∀𝑘 ∈ ℝ ∃𝑗 ∈ 𝐴 (𝑘 ≤ 𝑗 ∧ 𝑦 < (𝐹‘𝑗))) → ∀𝑘 ∈ ℝ ∃𝑗 ∈ 𝐴 (𝑘 ≤ 𝑗 ∧ 𝑦 ≤ (𝐹‘𝑗))) |
21 | | breq1 5073 |
. . . . . . . . . . 11
⊢ (𝑥 = 𝑦 → (𝑥 ≤ (𝐹‘𝑗) ↔ 𝑦 ≤ (𝐹‘𝑗))) |
22 | 21 | anbi2d 628 |
. . . . . . . . . 10
⊢ (𝑥 = 𝑦 → ((𝑘 ≤ 𝑗 ∧ 𝑥 ≤ (𝐹‘𝑗)) ↔ (𝑘 ≤ 𝑗 ∧ 𝑦 ≤ (𝐹‘𝑗)))) |
23 | 22 | rexbidv 3225 |
. . . . . . . . 9
⊢ (𝑥 = 𝑦 → (∃𝑗 ∈ 𝐴 (𝑘 ≤ 𝑗 ∧ 𝑥 ≤ (𝐹‘𝑗)) ↔ ∃𝑗 ∈ 𝐴 (𝑘 ≤ 𝑗 ∧ 𝑦 ≤ (𝐹‘𝑗)))) |
24 | 23 | ralbidv 3120 |
. . . . . . . 8
⊢ (𝑥 = 𝑦 → (∀𝑘 ∈ ℝ ∃𝑗 ∈ 𝐴 (𝑘 ≤ 𝑗 ∧ 𝑥 ≤ (𝐹‘𝑗)) ↔ ∀𝑘 ∈ ℝ ∃𝑗 ∈ 𝐴 (𝑘 ≤ 𝑗 ∧ 𝑦 ≤ (𝐹‘𝑗)))) |
25 | 24 | rspcev 3552 |
. . . . . . 7
⊢ ((𝑦 ∈ ℝ ∧
∀𝑘 ∈ ℝ
∃𝑗 ∈ 𝐴 (𝑘 ≤ 𝑗 ∧ 𝑦 ≤ (𝐹‘𝑗))) → ∃𝑥 ∈ ℝ ∀𝑘 ∈ ℝ ∃𝑗 ∈ 𝐴 (𝑘 ≤ 𝑗 ∧ 𝑥 ≤ (𝐹‘𝑗))) |
26 | 5, 20, 25 | syl2anc 583 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑦 ∈ ℝ ∧ ∀𝑘 ∈ ℝ ∃𝑗 ∈ 𝐴 (𝑘 ≤ 𝑗 ∧ 𝑦 < (𝐹‘𝑗))) → ∃𝑥 ∈ ℝ ∀𝑘 ∈ ℝ ∃𝑗 ∈ 𝐴 (𝑘 ≤ 𝑗 ∧ 𝑥 ≤ (𝐹‘𝑗))) |
27 | 26 | 3exp 1117 |
. . . . 5
⊢ (𝜑 → (𝑦 ∈ ℝ → (∀𝑘 ∈ ℝ ∃𝑗 ∈ 𝐴 (𝑘 ≤ 𝑗 ∧ 𝑦 < (𝐹‘𝑗)) → ∃𝑥 ∈ ℝ ∀𝑘 ∈ ℝ ∃𝑗 ∈ 𝐴 (𝑘 ≤ 𝑗 ∧ 𝑥 ≤ (𝐹‘𝑗))))) |
28 | 27 | rexlimdv 3211 |
. . . 4
⊢ (𝜑 → (∃𝑦 ∈ ℝ ∀𝑘 ∈ ℝ ∃𝑗 ∈ 𝐴 (𝑘 ≤ 𝑗 ∧ 𝑦 < (𝐹‘𝑗)) → ∃𝑥 ∈ ℝ ∀𝑘 ∈ ℝ ∃𝑗 ∈ 𝐴 (𝑘 ≤ 𝑗 ∧ 𝑥 ≤ (𝐹‘𝑗)))) |
29 | | peano2rem 11218 |
. . . . . . 7
⊢ (𝑥 ∈ ℝ → (𝑥 − 1) ∈
ℝ) |
30 | 29 | ad2antlr 723 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ) ∧ ∀𝑘 ∈ ℝ ∃𝑗 ∈ 𝐴 (𝑘 ≤ 𝑗 ∧ 𝑥 ≤ (𝐹‘𝑗))) → (𝑥 − 1) ∈ ℝ) |
31 | | nfv 1918 |
. . . . . . . . 9
⊢
Ⅎ𝑗(𝜑 ∧ 𝑥 ∈ ℝ) |
32 | | simp3l 1199 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ) ∧ 𝑗 ∈ 𝐴 ∧ (𝑘 ≤ 𝑗 ∧ 𝑥 ≤ (𝐹‘𝑗))) → 𝑘 ≤ 𝑗) |
33 | | simp1r 1196 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ) ∧ 𝑗 ∈ 𝐴 ∧ (𝑘 ≤ 𝑗 ∧ 𝑥 ≤ (𝐹‘𝑗))) → 𝑥 ∈ ℝ) |
34 | 29 | rexrd 10956 |
. . . . . . . . . . . . 13
⊢ (𝑥 ∈ ℝ → (𝑥 − 1) ∈
ℝ*) |
35 | 33, 34 | syl 17 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ) ∧ 𝑗 ∈ 𝐴 ∧ (𝑘 ≤ 𝑗 ∧ 𝑥 ≤ (𝐹‘𝑗))) → (𝑥 − 1) ∈
ℝ*) |
36 | 33 | rexrd 10956 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ) ∧ 𝑗 ∈ 𝐴 ∧ (𝑘 ≤ 𝑗 ∧ 𝑥 ≤ (𝐹‘𝑗))) → 𝑥 ∈ ℝ*) |
37 | 10 | adantlr 711 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ) ∧ 𝑗 ∈ 𝐴) → (𝐹‘𝑗) ∈
ℝ*) |
38 | 37 | 3adant3 1130 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ) ∧ 𝑗 ∈ 𝐴 ∧ (𝑘 ≤ 𝑗 ∧ 𝑥 ≤ (𝐹‘𝑗))) → (𝐹‘𝑗) ∈
ℝ*) |
39 | 33 | ltm1d 11837 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ) ∧ 𝑗 ∈ 𝐴 ∧ (𝑘 ≤ 𝑗 ∧ 𝑥 ≤ (𝐹‘𝑗))) → (𝑥 − 1) < 𝑥) |
40 | | simp3r 1200 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ) ∧ 𝑗 ∈ 𝐴 ∧ (𝑘 ≤ 𝑗 ∧ 𝑥 ≤ (𝐹‘𝑗))) → 𝑥 ≤ (𝐹‘𝑗)) |
41 | 35, 36, 38, 39, 40 | xrltletrd 12824 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ) ∧ 𝑗 ∈ 𝐴 ∧ (𝑘 ≤ 𝑗 ∧ 𝑥 ≤ (𝐹‘𝑗))) → (𝑥 − 1) < (𝐹‘𝑗)) |
42 | 32, 41 | jca 511 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ) ∧ 𝑗 ∈ 𝐴 ∧ (𝑘 ≤ 𝑗 ∧ 𝑥 ≤ (𝐹‘𝑗))) → (𝑘 ≤ 𝑗 ∧ (𝑥 − 1) < (𝐹‘𝑗))) |
43 | 42 | 3exp 1117 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → (𝑗 ∈ 𝐴 → ((𝑘 ≤ 𝑗 ∧ 𝑥 ≤ (𝐹‘𝑗)) → (𝑘 ≤ 𝑗 ∧ (𝑥 − 1) < (𝐹‘𝑗))))) |
44 | 31, 43 | reximdai 3239 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → (∃𝑗 ∈ 𝐴 (𝑘 ≤ 𝑗 ∧ 𝑥 ≤ (𝐹‘𝑗)) → ∃𝑗 ∈ 𝐴 (𝑘 ≤ 𝑗 ∧ (𝑥 − 1) < (𝐹‘𝑗)))) |
45 | 44 | ralimdv 3103 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → (∀𝑘 ∈ ℝ ∃𝑗 ∈ 𝐴 (𝑘 ≤ 𝑗 ∧ 𝑥 ≤ (𝐹‘𝑗)) → ∀𝑘 ∈ ℝ ∃𝑗 ∈ 𝐴 (𝑘 ≤ 𝑗 ∧ (𝑥 − 1) < (𝐹‘𝑗)))) |
46 | 45 | imp 406 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ) ∧ ∀𝑘 ∈ ℝ ∃𝑗 ∈ 𝐴 (𝑘 ≤ 𝑗 ∧ 𝑥 ≤ (𝐹‘𝑗))) → ∀𝑘 ∈ ℝ ∃𝑗 ∈ 𝐴 (𝑘 ≤ 𝑗 ∧ (𝑥 − 1) < (𝐹‘𝑗))) |
47 | | breq1 5073 |
. . . . . . . . . 10
⊢ (𝑦 = (𝑥 − 1) → (𝑦 < (𝐹‘𝑗) ↔ (𝑥 − 1) < (𝐹‘𝑗))) |
48 | 47 | anbi2d 628 |
. . . . . . . . 9
⊢ (𝑦 = (𝑥 − 1) → ((𝑘 ≤ 𝑗 ∧ 𝑦 < (𝐹‘𝑗)) ↔ (𝑘 ≤ 𝑗 ∧ (𝑥 − 1) < (𝐹‘𝑗)))) |
49 | 48 | rexbidv 3225 |
. . . . . . . 8
⊢ (𝑦 = (𝑥 − 1) → (∃𝑗 ∈ 𝐴 (𝑘 ≤ 𝑗 ∧ 𝑦 < (𝐹‘𝑗)) ↔ ∃𝑗 ∈ 𝐴 (𝑘 ≤ 𝑗 ∧ (𝑥 − 1) < (𝐹‘𝑗)))) |
50 | 49 | ralbidv 3120 |
. . . . . . 7
⊢ (𝑦 = (𝑥 − 1) → (∀𝑘 ∈ ℝ ∃𝑗 ∈ 𝐴 (𝑘 ≤ 𝑗 ∧ 𝑦 < (𝐹‘𝑗)) ↔ ∀𝑘 ∈ ℝ ∃𝑗 ∈ 𝐴 (𝑘 ≤ 𝑗 ∧ (𝑥 − 1) < (𝐹‘𝑗)))) |
51 | 50 | rspcev 3552 |
. . . . . 6
⊢ (((𝑥 − 1) ∈ ℝ ∧
∀𝑘 ∈ ℝ
∃𝑗 ∈ 𝐴 (𝑘 ≤ 𝑗 ∧ (𝑥 − 1) < (𝐹‘𝑗))) → ∃𝑦 ∈ ℝ ∀𝑘 ∈ ℝ ∃𝑗 ∈ 𝐴 (𝑘 ≤ 𝑗 ∧ 𝑦 < (𝐹‘𝑗))) |
52 | 30, 46, 51 | syl2anc 583 |
. . . . 5
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ) ∧ ∀𝑘 ∈ ℝ ∃𝑗 ∈ 𝐴 (𝑘 ≤ 𝑗 ∧ 𝑥 ≤ (𝐹‘𝑗))) → ∃𝑦 ∈ ℝ ∀𝑘 ∈ ℝ ∃𝑗 ∈ 𝐴 (𝑘 ≤ 𝑗 ∧ 𝑦 < (𝐹‘𝑗))) |
53 | 52 | rexlimdva2 3215 |
. . . 4
⊢ (𝜑 → (∃𝑥 ∈ ℝ ∀𝑘 ∈ ℝ ∃𝑗 ∈ 𝐴 (𝑘 ≤ 𝑗 ∧ 𝑥 ≤ (𝐹‘𝑗)) → ∃𝑦 ∈ ℝ ∀𝑘 ∈ ℝ ∃𝑗 ∈ 𝐴 (𝑘 ≤ 𝑗 ∧ 𝑦 < (𝐹‘𝑗)))) |
54 | 28, 53 | impbid 211 |
. . 3
⊢ (𝜑 → (∃𝑦 ∈ ℝ ∀𝑘 ∈ ℝ ∃𝑗 ∈ 𝐴 (𝑘 ≤ 𝑗 ∧ 𝑦 < (𝐹‘𝑗)) ↔ ∃𝑥 ∈ ℝ ∀𝑘 ∈ ℝ ∃𝑗 ∈ 𝐴 (𝑘 ≤ 𝑗 ∧ 𝑥 ≤ (𝐹‘𝑗)))) |
55 | | simplr 765 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑦 ∈ ℝ) ∧ ∃𝑘 ∈ ℝ ∀𝑗 ∈ 𝐴 (𝑘 ≤ 𝑗 → (𝐹‘𝑗) < 𝑦)) → 𝑦 ∈ ℝ) |
56 | 11 | adantr 480 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑦 ∈ ℝ) ∧ 𝑗 ∈ 𝐴) ∧ (𝐹‘𝑗) < 𝑦) → (𝐹‘𝑗) ∈
ℝ*) |
57 | | rexr 10952 |
. . . . . . . . . . . . 13
⊢ (𝑦 ∈ ℝ → 𝑦 ∈
ℝ*) |
58 | 57 | ad3antlr 727 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑦 ∈ ℝ) ∧ 𝑗 ∈ 𝐴) ∧ (𝐹‘𝑗) < 𝑦) → 𝑦 ∈ ℝ*) |
59 | | simpr 484 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑦 ∈ ℝ) ∧ 𝑗 ∈ 𝐴) ∧ (𝐹‘𝑗) < 𝑦) → (𝐹‘𝑗) < 𝑦) |
60 | 56, 58, 59 | xrltled 12813 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑦 ∈ ℝ) ∧ 𝑗 ∈ 𝐴) ∧ (𝐹‘𝑗) < 𝑦) → (𝐹‘𝑗) ≤ 𝑦) |
61 | 60 | ex 412 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑦 ∈ ℝ) ∧ 𝑗 ∈ 𝐴) → ((𝐹‘𝑗) < 𝑦 → (𝐹‘𝑗) ≤ 𝑦)) |
62 | 61 | imim2d 57 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑦 ∈ ℝ) ∧ 𝑗 ∈ 𝐴) → ((𝑘 ≤ 𝑗 → (𝐹‘𝑗) < 𝑦) → (𝑘 ≤ 𝑗 → (𝐹‘𝑗) ≤ 𝑦))) |
63 | 62 | ralimdva 3102 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑦 ∈ ℝ) → (∀𝑗 ∈ 𝐴 (𝑘 ≤ 𝑗 → (𝐹‘𝑗) < 𝑦) → ∀𝑗 ∈ 𝐴 (𝑘 ≤ 𝑗 → (𝐹‘𝑗) ≤ 𝑦))) |
64 | 63 | reximdv 3201 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑦 ∈ ℝ) → (∃𝑘 ∈ ℝ ∀𝑗 ∈ 𝐴 (𝑘 ≤ 𝑗 → (𝐹‘𝑗) < 𝑦) → ∃𝑘 ∈ ℝ ∀𝑗 ∈ 𝐴 (𝑘 ≤ 𝑗 → (𝐹‘𝑗) ≤ 𝑦))) |
65 | 64 | imp 406 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑦 ∈ ℝ) ∧ ∃𝑘 ∈ ℝ ∀𝑗 ∈ 𝐴 (𝑘 ≤ 𝑗 → (𝐹‘𝑗) < 𝑦)) → ∃𝑘 ∈ ℝ ∀𝑗 ∈ 𝐴 (𝑘 ≤ 𝑗 → (𝐹‘𝑗) ≤ 𝑦)) |
66 | | breq2 5074 |
. . . . . . . . . 10
⊢ (𝑥 = 𝑦 → ((𝐹‘𝑗) ≤ 𝑥 ↔ (𝐹‘𝑗) ≤ 𝑦)) |
67 | 66 | imbi2d 340 |
. . . . . . . . 9
⊢ (𝑥 = 𝑦 → ((𝑘 ≤ 𝑗 → (𝐹‘𝑗) ≤ 𝑥) ↔ (𝑘 ≤ 𝑗 → (𝐹‘𝑗) ≤ 𝑦))) |
68 | 67 | ralbidv 3120 |
. . . . . . . 8
⊢ (𝑥 = 𝑦 → (∀𝑗 ∈ 𝐴 (𝑘 ≤ 𝑗 → (𝐹‘𝑗) ≤ 𝑥) ↔ ∀𝑗 ∈ 𝐴 (𝑘 ≤ 𝑗 → (𝐹‘𝑗) ≤ 𝑦))) |
69 | 68 | rexbidv 3225 |
. . . . . . 7
⊢ (𝑥 = 𝑦 → (∃𝑘 ∈ ℝ ∀𝑗 ∈ 𝐴 (𝑘 ≤ 𝑗 → (𝐹‘𝑗) ≤ 𝑥) ↔ ∃𝑘 ∈ ℝ ∀𝑗 ∈ 𝐴 (𝑘 ≤ 𝑗 → (𝐹‘𝑗) ≤ 𝑦))) |
70 | 69 | rspcev 3552 |
. . . . . 6
⊢ ((𝑦 ∈ ℝ ∧
∃𝑘 ∈ ℝ
∀𝑗 ∈ 𝐴 (𝑘 ≤ 𝑗 → (𝐹‘𝑗) ≤ 𝑦)) → ∃𝑥 ∈ ℝ ∃𝑘 ∈ ℝ ∀𝑗 ∈ 𝐴 (𝑘 ≤ 𝑗 → (𝐹‘𝑗) ≤ 𝑥)) |
71 | 55, 65, 70 | syl2anc 583 |
. . . . 5
⊢ (((𝜑 ∧ 𝑦 ∈ ℝ) ∧ ∃𝑘 ∈ ℝ ∀𝑗 ∈ 𝐴 (𝑘 ≤ 𝑗 → (𝐹‘𝑗) < 𝑦)) → ∃𝑥 ∈ ℝ ∃𝑘 ∈ ℝ ∀𝑗 ∈ 𝐴 (𝑘 ≤ 𝑗 → (𝐹‘𝑗) ≤ 𝑥)) |
72 | 71 | rexlimdva2 3215 |
. . . 4
⊢ (𝜑 → (∃𝑦 ∈ ℝ ∃𝑘 ∈ ℝ ∀𝑗 ∈ 𝐴 (𝑘 ≤ 𝑗 → (𝐹‘𝑗) < 𝑦) → ∃𝑥 ∈ ℝ ∃𝑘 ∈ ℝ ∀𝑗 ∈ 𝐴 (𝑘 ≤ 𝑗 → (𝐹‘𝑗) ≤ 𝑥))) |
73 | | peano2re 11078 |
. . . . . . 7
⊢ (𝑥 ∈ ℝ → (𝑥 + 1) ∈
ℝ) |
74 | 73 | ad2antlr 723 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ) ∧ ∃𝑘 ∈ ℝ ∀𝑗 ∈ 𝐴 (𝑘 ≤ 𝑗 → (𝐹‘𝑗) ≤ 𝑥)) → (𝑥 + 1) ∈ ℝ) |
75 | 37 | adantr 480 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ) ∧ 𝑗 ∈ 𝐴) ∧ (𝐹‘𝑗) ≤ 𝑥) → (𝐹‘𝑗) ∈
ℝ*) |
76 | | rexr 10952 |
. . . . . . . . . . . . 13
⊢ (𝑥 ∈ ℝ → 𝑥 ∈
ℝ*) |
77 | 76 | ad3antlr 727 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ) ∧ 𝑗 ∈ 𝐴) ∧ (𝐹‘𝑗) ≤ 𝑥) → 𝑥 ∈ ℝ*) |
78 | 73 | rexrd 10956 |
. . . . . . . . . . . . 13
⊢ (𝑥 ∈ ℝ → (𝑥 + 1) ∈
ℝ*) |
79 | 78 | ad3antlr 727 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ) ∧ 𝑗 ∈ 𝐴) ∧ (𝐹‘𝑗) ≤ 𝑥) → (𝑥 + 1) ∈
ℝ*) |
80 | | simpr 484 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ) ∧ 𝑗 ∈ 𝐴) ∧ (𝐹‘𝑗) ≤ 𝑥) → (𝐹‘𝑗) ≤ 𝑥) |
81 | | ltp1 11745 |
. . . . . . . . . . . . 13
⊢ (𝑥 ∈ ℝ → 𝑥 < (𝑥 + 1)) |
82 | 81 | ad3antlr 727 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ) ∧ 𝑗 ∈ 𝐴) ∧ (𝐹‘𝑗) ≤ 𝑥) → 𝑥 < (𝑥 + 1)) |
83 | 75, 77, 79, 80, 82 | xrlelttrd 12823 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ) ∧ 𝑗 ∈ 𝐴) ∧ (𝐹‘𝑗) ≤ 𝑥) → (𝐹‘𝑗) < (𝑥 + 1)) |
84 | 83 | ex 412 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ) ∧ 𝑗 ∈ 𝐴) → ((𝐹‘𝑗) ≤ 𝑥 → (𝐹‘𝑗) < (𝑥 + 1))) |
85 | 84 | imim2d 57 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ) ∧ 𝑗 ∈ 𝐴) → ((𝑘 ≤ 𝑗 → (𝐹‘𝑗) ≤ 𝑥) → (𝑘 ≤ 𝑗 → (𝐹‘𝑗) < (𝑥 + 1)))) |
86 | 85 | ralimdva 3102 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → (∀𝑗 ∈ 𝐴 (𝑘 ≤ 𝑗 → (𝐹‘𝑗) ≤ 𝑥) → ∀𝑗 ∈ 𝐴 (𝑘 ≤ 𝑗 → (𝐹‘𝑗) < (𝑥 + 1)))) |
87 | 86 | reximdv 3201 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → (∃𝑘 ∈ ℝ ∀𝑗 ∈ 𝐴 (𝑘 ≤ 𝑗 → (𝐹‘𝑗) ≤ 𝑥) → ∃𝑘 ∈ ℝ ∀𝑗 ∈ 𝐴 (𝑘 ≤ 𝑗 → (𝐹‘𝑗) < (𝑥 + 1)))) |
88 | 87 | imp 406 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ) ∧ ∃𝑘 ∈ ℝ ∀𝑗 ∈ 𝐴 (𝑘 ≤ 𝑗 → (𝐹‘𝑗) ≤ 𝑥)) → ∃𝑘 ∈ ℝ ∀𝑗 ∈ 𝐴 (𝑘 ≤ 𝑗 → (𝐹‘𝑗) < (𝑥 + 1))) |
89 | | breq2 5074 |
. . . . . . . . . 10
⊢ (𝑦 = (𝑥 + 1) → ((𝐹‘𝑗) < 𝑦 ↔ (𝐹‘𝑗) < (𝑥 + 1))) |
90 | 89 | imbi2d 340 |
. . . . . . . . 9
⊢ (𝑦 = (𝑥 + 1) → ((𝑘 ≤ 𝑗 → (𝐹‘𝑗) < 𝑦) ↔ (𝑘 ≤ 𝑗 → (𝐹‘𝑗) < (𝑥 + 1)))) |
91 | 90 | ralbidv 3120 |
. . . . . . . 8
⊢ (𝑦 = (𝑥 + 1) → (∀𝑗 ∈ 𝐴 (𝑘 ≤ 𝑗 → (𝐹‘𝑗) < 𝑦) ↔ ∀𝑗 ∈ 𝐴 (𝑘 ≤ 𝑗 → (𝐹‘𝑗) < (𝑥 + 1)))) |
92 | 91 | rexbidv 3225 |
. . . . . . 7
⊢ (𝑦 = (𝑥 + 1) → (∃𝑘 ∈ ℝ ∀𝑗 ∈ 𝐴 (𝑘 ≤ 𝑗 → (𝐹‘𝑗) < 𝑦) ↔ ∃𝑘 ∈ ℝ ∀𝑗 ∈ 𝐴 (𝑘 ≤ 𝑗 → (𝐹‘𝑗) < (𝑥 + 1)))) |
93 | 92 | rspcev 3552 |
. . . . . 6
⊢ (((𝑥 + 1) ∈ ℝ ∧
∃𝑘 ∈ ℝ
∀𝑗 ∈ 𝐴 (𝑘 ≤ 𝑗 → (𝐹‘𝑗) < (𝑥 + 1))) → ∃𝑦 ∈ ℝ ∃𝑘 ∈ ℝ ∀𝑗 ∈ 𝐴 (𝑘 ≤ 𝑗 → (𝐹‘𝑗) < 𝑦)) |
94 | 74, 88, 93 | syl2anc 583 |
. . . . 5
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ) ∧ ∃𝑘 ∈ ℝ ∀𝑗 ∈ 𝐴 (𝑘 ≤ 𝑗 → (𝐹‘𝑗) ≤ 𝑥)) → ∃𝑦 ∈ ℝ ∃𝑘 ∈ ℝ ∀𝑗 ∈ 𝐴 (𝑘 ≤ 𝑗 → (𝐹‘𝑗) < 𝑦)) |
95 | 94 | rexlimdva2 3215 |
. . . 4
⊢ (𝜑 → (∃𝑥 ∈ ℝ ∃𝑘 ∈ ℝ ∀𝑗 ∈ 𝐴 (𝑘 ≤ 𝑗 → (𝐹‘𝑗) ≤ 𝑥) → ∃𝑦 ∈ ℝ ∃𝑘 ∈ ℝ ∀𝑗 ∈ 𝐴 (𝑘 ≤ 𝑗 → (𝐹‘𝑗) < 𝑦))) |
96 | 72, 95 | impbid 211 |
. . 3
⊢ (𝜑 → (∃𝑦 ∈ ℝ ∃𝑘 ∈ ℝ ∀𝑗 ∈ 𝐴 (𝑘 ≤ 𝑗 → (𝐹‘𝑗) < 𝑦) ↔ ∃𝑥 ∈ ℝ ∃𝑘 ∈ ℝ ∀𝑗 ∈ 𝐴 (𝑘 ≤ 𝑗 → (𝐹‘𝑗) ≤ 𝑥))) |
97 | 54, 96 | anbi12d 630 |
. 2
⊢ (𝜑 → ((∃𝑦 ∈ ℝ ∀𝑘 ∈ ℝ ∃𝑗 ∈ 𝐴 (𝑘 ≤ 𝑗 ∧ 𝑦 < (𝐹‘𝑗)) ∧ ∃𝑦 ∈ ℝ ∃𝑘 ∈ ℝ ∀𝑗 ∈ 𝐴 (𝑘 ≤ 𝑗 → (𝐹‘𝑗) < 𝑦)) ↔ (∃𝑥 ∈ ℝ ∀𝑘 ∈ ℝ ∃𝑗 ∈ 𝐴 (𝑘 ≤ 𝑗 ∧ 𝑥 ≤ (𝐹‘𝑗)) ∧ ∃𝑥 ∈ ℝ ∃𝑘 ∈ ℝ ∀𝑗 ∈ 𝐴 (𝑘 ≤ 𝑗 → (𝐹‘𝑗) ≤ 𝑥)))) |
98 | 4, 97 | bitrd 278 |
1
⊢ (𝜑 → ((lim sup‘𝐹) ∈ ℝ ↔
(∃𝑥 ∈ ℝ
∀𝑘 ∈ ℝ
∃𝑗 ∈ 𝐴 (𝑘 ≤ 𝑗 ∧ 𝑥 ≤ (𝐹‘𝑗)) ∧ ∃𝑥 ∈ ℝ ∃𝑘 ∈ ℝ ∀𝑗 ∈ 𝐴 (𝑘 ≤ 𝑗 → (𝐹‘𝑗) ≤ 𝑥)))) |