| Step | Hyp | Ref
| Expression |
| 1 | | limsupre3lem.1 |
. . 3
⊢
Ⅎ𝑗𝐹 |
| 2 | | limsupre3lem.2 |
. . 3
⊢ (𝜑 → 𝐴 ⊆ ℝ) |
| 3 | | limsupre3lem.3 |
. . 3
⊢ (𝜑 → 𝐹:𝐴⟶ℝ*) |
| 4 | 1, 2, 3 | limsupre2 45721 |
. 2
⊢ (𝜑 → ((lim sup‘𝐹) ∈ ℝ ↔
(∃𝑦 ∈ ℝ
∀𝑘 ∈ ℝ
∃𝑗 ∈ 𝐴 (𝑘 ≤ 𝑗 ∧ 𝑦 < (𝐹‘𝑗)) ∧ ∃𝑦 ∈ ℝ ∃𝑘 ∈ ℝ ∀𝑗 ∈ 𝐴 (𝑘 ≤ 𝑗 → (𝐹‘𝑗) < 𝑦)))) |
| 5 | | simp2 1137 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑦 ∈ ℝ ∧ ∀𝑘 ∈ ℝ ∃𝑗 ∈ 𝐴 (𝑘 ≤ 𝑗 ∧ 𝑦 < (𝐹‘𝑗))) → 𝑦 ∈ ℝ) |
| 6 | | nfv 1914 |
. . . . . . . . . 10
⊢
Ⅎ𝑗(𝜑 ∧ 𝑦 ∈ ℝ) |
| 7 | | simp3l 1202 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑦 ∈ ℝ) ∧ 𝑗 ∈ 𝐴 ∧ (𝑘 ≤ 𝑗 ∧ 𝑦 < (𝐹‘𝑗))) → 𝑘 ≤ 𝑗) |
| 8 | | simp1r 1199 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑦 ∈ ℝ) ∧ 𝑗 ∈ 𝐴 ∧ 𝑦 < (𝐹‘𝑗)) → 𝑦 ∈ ℝ) |
| 9 | 8 | rexrd 11290 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑦 ∈ ℝ) ∧ 𝑗 ∈ 𝐴 ∧ 𝑦 < (𝐹‘𝑗)) → 𝑦 ∈ ℝ*) |
| 10 | 3 | ffvelcdmda 7079 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑗 ∈ 𝐴) → (𝐹‘𝑗) ∈
ℝ*) |
| 11 | 10 | adantlr 715 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑦 ∈ ℝ) ∧ 𝑗 ∈ 𝐴) → (𝐹‘𝑗) ∈
ℝ*) |
| 12 | 11 | 3adant3 1132 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑦 ∈ ℝ) ∧ 𝑗 ∈ 𝐴 ∧ 𝑦 < (𝐹‘𝑗)) → (𝐹‘𝑗) ∈
ℝ*) |
| 13 | | simp3 1138 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑦 ∈ ℝ) ∧ 𝑗 ∈ 𝐴 ∧ 𝑦 < (𝐹‘𝑗)) → 𝑦 < (𝐹‘𝑗)) |
| 14 | 9, 12, 13 | xrltled 13171 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑦 ∈ ℝ) ∧ 𝑗 ∈ 𝐴 ∧ 𝑦 < (𝐹‘𝑗)) → 𝑦 ≤ (𝐹‘𝑗)) |
| 15 | 14 | 3adant3l 1181 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑦 ∈ ℝ) ∧ 𝑗 ∈ 𝐴 ∧ (𝑘 ≤ 𝑗 ∧ 𝑦 < (𝐹‘𝑗))) → 𝑦 ≤ (𝐹‘𝑗)) |
| 16 | 7, 15 | jca 511 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑦 ∈ ℝ) ∧ 𝑗 ∈ 𝐴 ∧ (𝑘 ≤ 𝑗 ∧ 𝑦 < (𝐹‘𝑗))) → (𝑘 ≤ 𝑗 ∧ 𝑦 ≤ (𝐹‘𝑗))) |
| 17 | 16 | 3exp 1119 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑦 ∈ ℝ) → (𝑗 ∈ 𝐴 → ((𝑘 ≤ 𝑗 ∧ 𝑦 < (𝐹‘𝑗)) → (𝑘 ≤ 𝑗 ∧ 𝑦 ≤ (𝐹‘𝑗))))) |
| 18 | 6, 17 | reximdai 3248 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑦 ∈ ℝ) → (∃𝑗 ∈ 𝐴 (𝑘 ≤ 𝑗 ∧ 𝑦 < (𝐹‘𝑗)) → ∃𝑗 ∈ 𝐴 (𝑘 ≤ 𝑗 ∧ 𝑦 ≤ (𝐹‘𝑗)))) |
| 19 | 18 | ralimdv 3155 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑦 ∈ ℝ) → (∀𝑘 ∈ ℝ ∃𝑗 ∈ 𝐴 (𝑘 ≤ 𝑗 ∧ 𝑦 < (𝐹‘𝑗)) → ∀𝑘 ∈ ℝ ∃𝑗 ∈ 𝐴 (𝑘 ≤ 𝑗 ∧ 𝑦 ≤ (𝐹‘𝑗)))) |
| 20 | 19 | 3impia 1117 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑦 ∈ ℝ ∧ ∀𝑘 ∈ ℝ ∃𝑗 ∈ 𝐴 (𝑘 ≤ 𝑗 ∧ 𝑦 < (𝐹‘𝑗))) → ∀𝑘 ∈ ℝ ∃𝑗 ∈ 𝐴 (𝑘 ≤ 𝑗 ∧ 𝑦 ≤ (𝐹‘𝑗))) |
| 21 | | breq1 5127 |
. . . . . . . . . . 11
⊢ (𝑥 = 𝑦 → (𝑥 ≤ (𝐹‘𝑗) ↔ 𝑦 ≤ (𝐹‘𝑗))) |
| 22 | 21 | anbi2d 630 |
. . . . . . . . . 10
⊢ (𝑥 = 𝑦 → ((𝑘 ≤ 𝑗 ∧ 𝑥 ≤ (𝐹‘𝑗)) ↔ (𝑘 ≤ 𝑗 ∧ 𝑦 ≤ (𝐹‘𝑗)))) |
| 23 | 22 | rexbidv 3165 |
. . . . . . . . 9
⊢ (𝑥 = 𝑦 → (∃𝑗 ∈ 𝐴 (𝑘 ≤ 𝑗 ∧ 𝑥 ≤ (𝐹‘𝑗)) ↔ ∃𝑗 ∈ 𝐴 (𝑘 ≤ 𝑗 ∧ 𝑦 ≤ (𝐹‘𝑗)))) |
| 24 | 23 | ralbidv 3164 |
. . . . . . . 8
⊢ (𝑥 = 𝑦 → (∀𝑘 ∈ ℝ ∃𝑗 ∈ 𝐴 (𝑘 ≤ 𝑗 ∧ 𝑥 ≤ (𝐹‘𝑗)) ↔ ∀𝑘 ∈ ℝ ∃𝑗 ∈ 𝐴 (𝑘 ≤ 𝑗 ∧ 𝑦 ≤ (𝐹‘𝑗)))) |
| 25 | 24 | rspcev 3606 |
. . . . . . 7
⊢ ((𝑦 ∈ ℝ ∧
∀𝑘 ∈ ℝ
∃𝑗 ∈ 𝐴 (𝑘 ≤ 𝑗 ∧ 𝑦 ≤ (𝐹‘𝑗))) → ∃𝑥 ∈ ℝ ∀𝑘 ∈ ℝ ∃𝑗 ∈ 𝐴 (𝑘 ≤ 𝑗 ∧ 𝑥 ≤ (𝐹‘𝑗))) |
| 26 | 5, 20, 25 | syl2anc 584 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑦 ∈ ℝ ∧ ∀𝑘 ∈ ℝ ∃𝑗 ∈ 𝐴 (𝑘 ≤ 𝑗 ∧ 𝑦 < (𝐹‘𝑗))) → ∃𝑥 ∈ ℝ ∀𝑘 ∈ ℝ ∃𝑗 ∈ 𝐴 (𝑘 ≤ 𝑗 ∧ 𝑥 ≤ (𝐹‘𝑗))) |
| 27 | 26 | 3exp 1119 |
. . . . 5
⊢ (𝜑 → (𝑦 ∈ ℝ → (∀𝑘 ∈ ℝ ∃𝑗 ∈ 𝐴 (𝑘 ≤ 𝑗 ∧ 𝑦 < (𝐹‘𝑗)) → ∃𝑥 ∈ ℝ ∀𝑘 ∈ ℝ ∃𝑗 ∈ 𝐴 (𝑘 ≤ 𝑗 ∧ 𝑥 ≤ (𝐹‘𝑗))))) |
| 28 | 27 | rexlimdv 3140 |
. . . 4
⊢ (𝜑 → (∃𝑦 ∈ ℝ ∀𝑘 ∈ ℝ ∃𝑗 ∈ 𝐴 (𝑘 ≤ 𝑗 ∧ 𝑦 < (𝐹‘𝑗)) → ∃𝑥 ∈ ℝ ∀𝑘 ∈ ℝ ∃𝑗 ∈ 𝐴 (𝑘 ≤ 𝑗 ∧ 𝑥 ≤ (𝐹‘𝑗)))) |
| 29 | | peano2rem 11555 |
. . . . . . 7
⊢ (𝑥 ∈ ℝ → (𝑥 − 1) ∈
ℝ) |
| 30 | 29 | ad2antlr 727 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ) ∧ ∀𝑘 ∈ ℝ ∃𝑗 ∈ 𝐴 (𝑘 ≤ 𝑗 ∧ 𝑥 ≤ (𝐹‘𝑗))) → (𝑥 − 1) ∈ ℝ) |
| 31 | | nfv 1914 |
. . . . . . . . 9
⊢
Ⅎ𝑗(𝜑 ∧ 𝑥 ∈ ℝ) |
| 32 | | simp3l 1202 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ) ∧ 𝑗 ∈ 𝐴 ∧ (𝑘 ≤ 𝑗 ∧ 𝑥 ≤ (𝐹‘𝑗))) → 𝑘 ≤ 𝑗) |
| 33 | | simp1r 1199 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ) ∧ 𝑗 ∈ 𝐴 ∧ (𝑘 ≤ 𝑗 ∧ 𝑥 ≤ (𝐹‘𝑗))) → 𝑥 ∈ ℝ) |
| 34 | 29 | rexrd 11290 |
. . . . . . . . . . . . 13
⊢ (𝑥 ∈ ℝ → (𝑥 − 1) ∈
ℝ*) |
| 35 | 33, 34 | syl 17 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ) ∧ 𝑗 ∈ 𝐴 ∧ (𝑘 ≤ 𝑗 ∧ 𝑥 ≤ (𝐹‘𝑗))) → (𝑥 − 1) ∈
ℝ*) |
| 36 | 33 | rexrd 11290 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ) ∧ 𝑗 ∈ 𝐴 ∧ (𝑘 ≤ 𝑗 ∧ 𝑥 ≤ (𝐹‘𝑗))) → 𝑥 ∈ ℝ*) |
| 37 | 10 | adantlr 715 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ) ∧ 𝑗 ∈ 𝐴) → (𝐹‘𝑗) ∈
ℝ*) |
| 38 | 37 | 3adant3 1132 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ) ∧ 𝑗 ∈ 𝐴 ∧ (𝑘 ≤ 𝑗 ∧ 𝑥 ≤ (𝐹‘𝑗))) → (𝐹‘𝑗) ∈
ℝ*) |
| 39 | 33 | ltm1d 12179 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ) ∧ 𝑗 ∈ 𝐴 ∧ (𝑘 ≤ 𝑗 ∧ 𝑥 ≤ (𝐹‘𝑗))) → (𝑥 − 1) < 𝑥) |
| 40 | | simp3r 1203 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ) ∧ 𝑗 ∈ 𝐴 ∧ (𝑘 ≤ 𝑗 ∧ 𝑥 ≤ (𝐹‘𝑗))) → 𝑥 ≤ (𝐹‘𝑗)) |
| 41 | 35, 36, 38, 39, 40 | xrltletrd 13182 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ) ∧ 𝑗 ∈ 𝐴 ∧ (𝑘 ≤ 𝑗 ∧ 𝑥 ≤ (𝐹‘𝑗))) → (𝑥 − 1) < (𝐹‘𝑗)) |
| 42 | 32, 41 | jca 511 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ) ∧ 𝑗 ∈ 𝐴 ∧ (𝑘 ≤ 𝑗 ∧ 𝑥 ≤ (𝐹‘𝑗))) → (𝑘 ≤ 𝑗 ∧ (𝑥 − 1) < (𝐹‘𝑗))) |
| 43 | 42 | 3exp 1119 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → (𝑗 ∈ 𝐴 → ((𝑘 ≤ 𝑗 ∧ 𝑥 ≤ (𝐹‘𝑗)) → (𝑘 ≤ 𝑗 ∧ (𝑥 − 1) < (𝐹‘𝑗))))) |
| 44 | 31, 43 | reximdai 3248 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → (∃𝑗 ∈ 𝐴 (𝑘 ≤ 𝑗 ∧ 𝑥 ≤ (𝐹‘𝑗)) → ∃𝑗 ∈ 𝐴 (𝑘 ≤ 𝑗 ∧ (𝑥 − 1) < (𝐹‘𝑗)))) |
| 45 | 44 | ralimdv 3155 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → (∀𝑘 ∈ ℝ ∃𝑗 ∈ 𝐴 (𝑘 ≤ 𝑗 ∧ 𝑥 ≤ (𝐹‘𝑗)) → ∀𝑘 ∈ ℝ ∃𝑗 ∈ 𝐴 (𝑘 ≤ 𝑗 ∧ (𝑥 − 1) < (𝐹‘𝑗)))) |
| 46 | 45 | imp 406 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ) ∧ ∀𝑘 ∈ ℝ ∃𝑗 ∈ 𝐴 (𝑘 ≤ 𝑗 ∧ 𝑥 ≤ (𝐹‘𝑗))) → ∀𝑘 ∈ ℝ ∃𝑗 ∈ 𝐴 (𝑘 ≤ 𝑗 ∧ (𝑥 − 1) < (𝐹‘𝑗))) |
| 47 | | breq1 5127 |
. . . . . . . . . 10
⊢ (𝑦 = (𝑥 − 1) → (𝑦 < (𝐹‘𝑗) ↔ (𝑥 − 1) < (𝐹‘𝑗))) |
| 48 | 47 | anbi2d 630 |
. . . . . . . . 9
⊢ (𝑦 = (𝑥 − 1) → ((𝑘 ≤ 𝑗 ∧ 𝑦 < (𝐹‘𝑗)) ↔ (𝑘 ≤ 𝑗 ∧ (𝑥 − 1) < (𝐹‘𝑗)))) |
| 49 | 48 | rexbidv 3165 |
. . . . . . . 8
⊢ (𝑦 = (𝑥 − 1) → (∃𝑗 ∈ 𝐴 (𝑘 ≤ 𝑗 ∧ 𝑦 < (𝐹‘𝑗)) ↔ ∃𝑗 ∈ 𝐴 (𝑘 ≤ 𝑗 ∧ (𝑥 − 1) < (𝐹‘𝑗)))) |
| 50 | 49 | ralbidv 3164 |
. . . . . . 7
⊢ (𝑦 = (𝑥 − 1) → (∀𝑘 ∈ ℝ ∃𝑗 ∈ 𝐴 (𝑘 ≤ 𝑗 ∧ 𝑦 < (𝐹‘𝑗)) ↔ ∀𝑘 ∈ ℝ ∃𝑗 ∈ 𝐴 (𝑘 ≤ 𝑗 ∧ (𝑥 − 1) < (𝐹‘𝑗)))) |
| 51 | 50 | rspcev 3606 |
. . . . . 6
⊢ (((𝑥 − 1) ∈ ℝ ∧
∀𝑘 ∈ ℝ
∃𝑗 ∈ 𝐴 (𝑘 ≤ 𝑗 ∧ (𝑥 − 1) < (𝐹‘𝑗))) → ∃𝑦 ∈ ℝ ∀𝑘 ∈ ℝ ∃𝑗 ∈ 𝐴 (𝑘 ≤ 𝑗 ∧ 𝑦 < (𝐹‘𝑗))) |
| 52 | 30, 46, 51 | syl2anc 584 |
. . . . 5
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ) ∧ ∀𝑘 ∈ ℝ ∃𝑗 ∈ 𝐴 (𝑘 ≤ 𝑗 ∧ 𝑥 ≤ (𝐹‘𝑗))) → ∃𝑦 ∈ ℝ ∀𝑘 ∈ ℝ ∃𝑗 ∈ 𝐴 (𝑘 ≤ 𝑗 ∧ 𝑦 < (𝐹‘𝑗))) |
| 53 | 52 | rexlimdva2 3144 |
. . . 4
⊢ (𝜑 → (∃𝑥 ∈ ℝ ∀𝑘 ∈ ℝ ∃𝑗 ∈ 𝐴 (𝑘 ≤ 𝑗 ∧ 𝑥 ≤ (𝐹‘𝑗)) → ∃𝑦 ∈ ℝ ∀𝑘 ∈ ℝ ∃𝑗 ∈ 𝐴 (𝑘 ≤ 𝑗 ∧ 𝑦 < (𝐹‘𝑗)))) |
| 54 | 28, 53 | impbid 212 |
. . 3
⊢ (𝜑 → (∃𝑦 ∈ ℝ ∀𝑘 ∈ ℝ ∃𝑗 ∈ 𝐴 (𝑘 ≤ 𝑗 ∧ 𝑦 < (𝐹‘𝑗)) ↔ ∃𝑥 ∈ ℝ ∀𝑘 ∈ ℝ ∃𝑗 ∈ 𝐴 (𝑘 ≤ 𝑗 ∧ 𝑥 ≤ (𝐹‘𝑗)))) |
| 55 | | simplr 768 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑦 ∈ ℝ) ∧ ∃𝑘 ∈ ℝ ∀𝑗 ∈ 𝐴 (𝑘 ≤ 𝑗 → (𝐹‘𝑗) < 𝑦)) → 𝑦 ∈ ℝ) |
| 56 | 11 | adantr 480 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑦 ∈ ℝ) ∧ 𝑗 ∈ 𝐴) ∧ (𝐹‘𝑗) < 𝑦) → (𝐹‘𝑗) ∈
ℝ*) |
| 57 | | rexr 11286 |
. . . . . . . . . . . . 13
⊢ (𝑦 ∈ ℝ → 𝑦 ∈
ℝ*) |
| 58 | 57 | ad3antlr 731 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑦 ∈ ℝ) ∧ 𝑗 ∈ 𝐴) ∧ (𝐹‘𝑗) < 𝑦) → 𝑦 ∈ ℝ*) |
| 59 | | simpr 484 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑦 ∈ ℝ) ∧ 𝑗 ∈ 𝐴) ∧ (𝐹‘𝑗) < 𝑦) → (𝐹‘𝑗) < 𝑦) |
| 60 | 56, 58, 59 | xrltled 13171 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑦 ∈ ℝ) ∧ 𝑗 ∈ 𝐴) ∧ (𝐹‘𝑗) < 𝑦) → (𝐹‘𝑗) ≤ 𝑦) |
| 61 | 60 | ex 412 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑦 ∈ ℝ) ∧ 𝑗 ∈ 𝐴) → ((𝐹‘𝑗) < 𝑦 → (𝐹‘𝑗) ≤ 𝑦)) |
| 62 | 61 | imim2d 57 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑦 ∈ ℝ) ∧ 𝑗 ∈ 𝐴) → ((𝑘 ≤ 𝑗 → (𝐹‘𝑗) < 𝑦) → (𝑘 ≤ 𝑗 → (𝐹‘𝑗) ≤ 𝑦))) |
| 63 | 62 | ralimdva 3153 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑦 ∈ ℝ) → (∀𝑗 ∈ 𝐴 (𝑘 ≤ 𝑗 → (𝐹‘𝑗) < 𝑦) → ∀𝑗 ∈ 𝐴 (𝑘 ≤ 𝑗 → (𝐹‘𝑗) ≤ 𝑦))) |
| 64 | 63 | reximdv 3156 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑦 ∈ ℝ) → (∃𝑘 ∈ ℝ ∀𝑗 ∈ 𝐴 (𝑘 ≤ 𝑗 → (𝐹‘𝑗) < 𝑦) → ∃𝑘 ∈ ℝ ∀𝑗 ∈ 𝐴 (𝑘 ≤ 𝑗 → (𝐹‘𝑗) ≤ 𝑦))) |
| 65 | 64 | imp 406 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑦 ∈ ℝ) ∧ ∃𝑘 ∈ ℝ ∀𝑗 ∈ 𝐴 (𝑘 ≤ 𝑗 → (𝐹‘𝑗) < 𝑦)) → ∃𝑘 ∈ ℝ ∀𝑗 ∈ 𝐴 (𝑘 ≤ 𝑗 → (𝐹‘𝑗) ≤ 𝑦)) |
| 66 | | breq2 5128 |
. . . . . . . . . 10
⊢ (𝑥 = 𝑦 → ((𝐹‘𝑗) ≤ 𝑥 ↔ (𝐹‘𝑗) ≤ 𝑦)) |
| 67 | 66 | imbi2d 340 |
. . . . . . . . 9
⊢ (𝑥 = 𝑦 → ((𝑘 ≤ 𝑗 → (𝐹‘𝑗) ≤ 𝑥) ↔ (𝑘 ≤ 𝑗 → (𝐹‘𝑗) ≤ 𝑦))) |
| 68 | 67 | ralbidv 3164 |
. . . . . . . 8
⊢ (𝑥 = 𝑦 → (∀𝑗 ∈ 𝐴 (𝑘 ≤ 𝑗 → (𝐹‘𝑗) ≤ 𝑥) ↔ ∀𝑗 ∈ 𝐴 (𝑘 ≤ 𝑗 → (𝐹‘𝑗) ≤ 𝑦))) |
| 69 | 68 | rexbidv 3165 |
. . . . . . 7
⊢ (𝑥 = 𝑦 → (∃𝑘 ∈ ℝ ∀𝑗 ∈ 𝐴 (𝑘 ≤ 𝑗 → (𝐹‘𝑗) ≤ 𝑥) ↔ ∃𝑘 ∈ ℝ ∀𝑗 ∈ 𝐴 (𝑘 ≤ 𝑗 → (𝐹‘𝑗) ≤ 𝑦))) |
| 70 | 69 | rspcev 3606 |
. . . . . 6
⊢ ((𝑦 ∈ ℝ ∧
∃𝑘 ∈ ℝ
∀𝑗 ∈ 𝐴 (𝑘 ≤ 𝑗 → (𝐹‘𝑗) ≤ 𝑦)) → ∃𝑥 ∈ ℝ ∃𝑘 ∈ ℝ ∀𝑗 ∈ 𝐴 (𝑘 ≤ 𝑗 → (𝐹‘𝑗) ≤ 𝑥)) |
| 71 | 55, 65, 70 | syl2anc 584 |
. . . . 5
⊢ (((𝜑 ∧ 𝑦 ∈ ℝ) ∧ ∃𝑘 ∈ ℝ ∀𝑗 ∈ 𝐴 (𝑘 ≤ 𝑗 → (𝐹‘𝑗) < 𝑦)) → ∃𝑥 ∈ ℝ ∃𝑘 ∈ ℝ ∀𝑗 ∈ 𝐴 (𝑘 ≤ 𝑗 → (𝐹‘𝑗) ≤ 𝑥)) |
| 72 | 71 | rexlimdva2 3144 |
. . . 4
⊢ (𝜑 → (∃𝑦 ∈ ℝ ∃𝑘 ∈ ℝ ∀𝑗 ∈ 𝐴 (𝑘 ≤ 𝑗 → (𝐹‘𝑗) < 𝑦) → ∃𝑥 ∈ ℝ ∃𝑘 ∈ ℝ ∀𝑗 ∈ 𝐴 (𝑘 ≤ 𝑗 → (𝐹‘𝑗) ≤ 𝑥))) |
| 73 | | peano2re 11413 |
. . . . . . 7
⊢ (𝑥 ∈ ℝ → (𝑥 + 1) ∈
ℝ) |
| 74 | 73 | ad2antlr 727 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ) ∧ ∃𝑘 ∈ ℝ ∀𝑗 ∈ 𝐴 (𝑘 ≤ 𝑗 → (𝐹‘𝑗) ≤ 𝑥)) → (𝑥 + 1) ∈ ℝ) |
| 75 | 37 | adantr 480 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ) ∧ 𝑗 ∈ 𝐴) ∧ (𝐹‘𝑗) ≤ 𝑥) → (𝐹‘𝑗) ∈
ℝ*) |
| 76 | | rexr 11286 |
. . . . . . . . . . . . 13
⊢ (𝑥 ∈ ℝ → 𝑥 ∈
ℝ*) |
| 77 | 76 | ad3antlr 731 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ) ∧ 𝑗 ∈ 𝐴) ∧ (𝐹‘𝑗) ≤ 𝑥) → 𝑥 ∈ ℝ*) |
| 78 | 73 | rexrd 11290 |
. . . . . . . . . . . . 13
⊢ (𝑥 ∈ ℝ → (𝑥 + 1) ∈
ℝ*) |
| 79 | 78 | ad3antlr 731 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ) ∧ 𝑗 ∈ 𝐴) ∧ (𝐹‘𝑗) ≤ 𝑥) → (𝑥 + 1) ∈
ℝ*) |
| 80 | | simpr 484 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ) ∧ 𝑗 ∈ 𝐴) ∧ (𝐹‘𝑗) ≤ 𝑥) → (𝐹‘𝑗) ≤ 𝑥) |
| 81 | | ltp1 12086 |
. . . . . . . . . . . . 13
⊢ (𝑥 ∈ ℝ → 𝑥 < (𝑥 + 1)) |
| 82 | 81 | ad3antlr 731 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ) ∧ 𝑗 ∈ 𝐴) ∧ (𝐹‘𝑗) ≤ 𝑥) → 𝑥 < (𝑥 + 1)) |
| 83 | 75, 77, 79, 80, 82 | xrlelttrd 13181 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ) ∧ 𝑗 ∈ 𝐴) ∧ (𝐹‘𝑗) ≤ 𝑥) → (𝐹‘𝑗) < (𝑥 + 1)) |
| 84 | 83 | ex 412 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ) ∧ 𝑗 ∈ 𝐴) → ((𝐹‘𝑗) ≤ 𝑥 → (𝐹‘𝑗) < (𝑥 + 1))) |
| 85 | 84 | imim2d 57 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ) ∧ 𝑗 ∈ 𝐴) → ((𝑘 ≤ 𝑗 → (𝐹‘𝑗) ≤ 𝑥) → (𝑘 ≤ 𝑗 → (𝐹‘𝑗) < (𝑥 + 1)))) |
| 86 | 85 | ralimdva 3153 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → (∀𝑗 ∈ 𝐴 (𝑘 ≤ 𝑗 → (𝐹‘𝑗) ≤ 𝑥) → ∀𝑗 ∈ 𝐴 (𝑘 ≤ 𝑗 → (𝐹‘𝑗) < (𝑥 + 1)))) |
| 87 | 86 | reximdv 3156 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → (∃𝑘 ∈ ℝ ∀𝑗 ∈ 𝐴 (𝑘 ≤ 𝑗 → (𝐹‘𝑗) ≤ 𝑥) → ∃𝑘 ∈ ℝ ∀𝑗 ∈ 𝐴 (𝑘 ≤ 𝑗 → (𝐹‘𝑗) < (𝑥 + 1)))) |
| 88 | 87 | imp 406 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ) ∧ ∃𝑘 ∈ ℝ ∀𝑗 ∈ 𝐴 (𝑘 ≤ 𝑗 → (𝐹‘𝑗) ≤ 𝑥)) → ∃𝑘 ∈ ℝ ∀𝑗 ∈ 𝐴 (𝑘 ≤ 𝑗 → (𝐹‘𝑗) < (𝑥 + 1))) |
| 89 | | breq2 5128 |
. . . . . . . . . 10
⊢ (𝑦 = (𝑥 + 1) → ((𝐹‘𝑗) < 𝑦 ↔ (𝐹‘𝑗) < (𝑥 + 1))) |
| 90 | 89 | imbi2d 340 |
. . . . . . . . 9
⊢ (𝑦 = (𝑥 + 1) → ((𝑘 ≤ 𝑗 → (𝐹‘𝑗) < 𝑦) ↔ (𝑘 ≤ 𝑗 → (𝐹‘𝑗) < (𝑥 + 1)))) |
| 91 | 90 | ralbidv 3164 |
. . . . . . . 8
⊢ (𝑦 = (𝑥 + 1) → (∀𝑗 ∈ 𝐴 (𝑘 ≤ 𝑗 → (𝐹‘𝑗) < 𝑦) ↔ ∀𝑗 ∈ 𝐴 (𝑘 ≤ 𝑗 → (𝐹‘𝑗) < (𝑥 + 1)))) |
| 92 | 91 | rexbidv 3165 |
. . . . . . 7
⊢ (𝑦 = (𝑥 + 1) → (∃𝑘 ∈ ℝ ∀𝑗 ∈ 𝐴 (𝑘 ≤ 𝑗 → (𝐹‘𝑗) < 𝑦) ↔ ∃𝑘 ∈ ℝ ∀𝑗 ∈ 𝐴 (𝑘 ≤ 𝑗 → (𝐹‘𝑗) < (𝑥 + 1)))) |
| 93 | 92 | rspcev 3606 |
. . . . . 6
⊢ (((𝑥 + 1) ∈ ℝ ∧
∃𝑘 ∈ ℝ
∀𝑗 ∈ 𝐴 (𝑘 ≤ 𝑗 → (𝐹‘𝑗) < (𝑥 + 1))) → ∃𝑦 ∈ ℝ ∃𝑘 ∈ ℝ ∀𝑗 ∈ 𝐴 (𝑘 ≤ 𝑗 → (𝐹‘𝑗) < 𝑦)) |
| 94 | 74, 88, 93 | syl2anc 584 |
. . . . 5
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ) ∧ ∃𝑘 ∈ ℝ ∀𝑗 ∈ 𝐴 (𝑘 ≤ 𝑗 → (𝐹‘𝑗) ≤ 𝑥)) → ∃𝑦 ∈ ℝ ∃𝑘 ∈ ℝ ∀𝑗 ∈ 𝐴 (𝑘 ≤ 𝑗 → (𝐹‘𝑗) < 𝑦)) |
| 95 | 94 | rexlimdva2 3144 |
. . . 4
⊢ (𝜑 → (∃𝑥 ∈ ℝ ∃𝑘 ∈ ℝ ∀𝑗 ∈ 𝐴 (𝑘 ≤ 𝑗 → (𝐹‘𝑗) ≤ 𝑥) → ∃𝑦 ∈ ℝ ∃𝑘 ∈ ℝ ∀𝑗 ∈ 𝐴 (𝑘 ≤ 𝑗 → (𝐹‘𝑗) < 𝑦))) |
| 96 | 72, 95 | impbid 212 |
. . 3
⊢ (𝜑 → (∃𝑦 ∈ ℝ ∃𝑘 ∈ ℝ ∀𝑗 ∈ 𝐴 (𝑘 ≤ 𝑗 → (𝐹‘𝑗) < 𝑦) ↔ ∃𝑥 ∈ ℝ ∃𝑘 ∈ ℝ ∀𝑗 ∈ 𝐴 (𝑘 ≤ 𝑗 → (𝐹‘𝑗) ≤ 𝑥))) |
| 97 | 54, 96 | anbi12d 632 |
. 2
⊢ (𝜑 → ((∃𝑦 ∈ ℝ ∀𝑘 ∈ ℝ ∃𝑗 ∈ 𝐴 (𝑘 ≤ 𝑗 ∧ 𝑦 < (𝐹‘𝑗)) ∧ ∃𝑦 ∈ ℝ ∃𝑘 ∈ ℝ ∀𝑗 ∈ 𝐴 (𝑘 ≤ 𝑗 → (𝐹‘𝑗) < 𝑦)) ↔ (∃𝑥 ∈ ℝ ∀𝑘 ∈ ℝ ∃𝑗 ∈ 𝐴 (𝑘 ≤ 𝑗 ∧ 𝑥 ≤ (𝐹‘𝑗)) ∧ ∃𝑥 ∈ ℝ ∃𝑘 ∈ ℝ ∀𝑗 ∈ 𝐴 (𝑘 ≤ 𝑗 → (𝐹‘𝑗) ≤ 𝑥)))) |
| 98 | 4, 97 | bitrd 279 |
1
⊢ (𝜑 → ((lim sup‘𝐹) ∈ ℝ ↔
(∃𝑥 ∈ ℝ
∀𝑘 ∈ ℝ
∃𝑗 ∈ 𝐴 (𝑘 ≤ 𝑗 ∧ 𝑥 ≤ (𝐹‘𝑗)) ∧ ∃𝑥 ∈ ℝ ∃𝑘 ∈ ℝ ∀𝑗 ∈ 𝐴 (𝑘 ≤ 𝑗 → (𝐹‘𝑗) ≤ 𝑥)))) |