![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > ovnsupge0 | Structured version Visualization version GIF version |
Description: The set used in the definition of the Lebesgue outer measure is a subset of the nonnegative extended reals. This is a substep for (a)(i) of the proof of Proposition 115D (a) of [Fremlin1] p. 30. (Contributed by Glauco Siliprandi, 11-Oct-2020.) |
Ref | Expression |
---|---|
ovnsupge0.1 | ⊢ (𝜑 → 𝑋 ∈ Fin) |
ovnsupge0.2 | ⊢ (𝜑 → 𝐴 ⊆ (ℝ ↑m 𝑋)) |
ovnsupge0.3 | ⊢ 𝑀 = {𝑧 ∈ ℝ* ∣ ∃𝑖 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ)(𝐴 ⊆ ∪ 𝑗 ∈ ℕ X𝑘 ∈ 𝑋 (([,) ∘ (𝑖‘𝑗))‘𝑘) ∧ 𝑧 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘 ∈ 𝑋 (vol‘(([,) ∘ (𝑖‘𝑗))‘𝑘)))))} |
Ref | Expression |
---|---|
ovnsupge0 | ⊢ (𝜑 → 𝑀 ⊆ (0[,]+∞)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ovnsupge0.3 | . 2 ⊢ 𝑀 = {𝑧 ∈ ℝ* ∣ ∃𝑖 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ)(𝐴 ⊆ ∪ 𝑗 ∈ ℕ X𝑘 ∈ 𝑋 (([,) ∘ (𝑖‘𝑗))‘𝑘) ∧ 𝑧 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘 ∈ 𝑋 (vol‘(([,) ∘ (𝑖‘𝑗))‘𝑘)))))} | |
2 | simp3 1135 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑖 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ) ∧ 𝑧 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘 ∈ 𝑋 (vol‘(([,) ∘ (𝑖‘𝑗))‘𝑘))))) → 𝑧 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘 ∈ 𝑋 (vol‘(([,) ∘ (𝑖‘𝑗))‘𝑘))))) | |
3 | nnex 12251 | . . . . . . . . . . . 12 ⊢ ℕ ∈ V | |
4 | 3 | a1i 11 | . . . . . . . . . . 11 ⊢ ((𝜑 ∧ 𝑖 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ)) → ℕ ∈ V) |
5 | icossicc 13448 | . . . . . . . . . . . . 13 ⊢ (0[,)+∞) ⊆ (0[,]+∞) | |
6 | nfv 1909 | . . . . . . . . . . . . . 14 ⊢ Ⅎ𝑘((𝜑 ∧ 𝑖 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ)) ∧ 𝑗 ∈ ℕ) | |
7 | ovnsupge0.1 | . . . . . . . . . . . . . . 15 ⊢ (𝜑 → 𝑋 ∈ Fin) | |
8 | 7 | ad2antrr 724 | . . . . . . . . . . . . . 14 ⊢ (((𝜑 ∧ 𝑖 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ)) ∧ 𝑗 ∈ ℕ) → 𝑋 ∈ Fin) |
9 | elmapi 8868 | . . . . . . . . . . . . . . 15 ⊢ (𝑖 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ) → 𝑖:ℕ⟶((ℝ × ℝ) ↑m 𝑋)) | |
10 | 9 | ad2antlr 725 | . . . . . . . . . . . . . 14 ⊢ (((𝜑 ∧ 𝑖 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ)) ∧ 𝑗 ∈ ℕ) → 𝑖:ℕ⟶((ℝ × ℝ) ↑m 𝑋)) |
11 | simpr 483 | . . . . . . . . . . . . . 14 ⊢ (((𝜑 ∧ 𝑖 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ)) ∧ 𝑗 ∈ ℕ) → 𝑗 ∈ ℕ) | |
12 | 6, 8, 10, 11 | ovnprodcl 46080 | . . . . . . . . . . . . 13 ⊢ (((𝜑 ∧ 𝑖 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ)) ∧ 𝑗 ∈ ℕ) → ∏𝑘 ∈ 𝑋 (vol‘(([,) ∘ (𝑖‘𝑗))‘𝑘)) ∈ (0[,)+∞)) |
13 | 5, 12 | sselid 3974 | . . . . . . . . . . . 12 ⊢ (((𝜑 ∧ 𝑖 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ)) ∧ 𝑗 ∈ ℕ) → ∏𝑘 ∈ 𝑋 (vol‘(([,) ∘ (𝑖‘𝑗))‘𝑘)) ∈ (0[,]+∞)) |
14 | eqid 2725 | . . . . . . . . . . . 12 ⊢ (𝑗 ∈ ℕ ↦ ∏𝑘 ∈ 𝑋 (vol‘(([,) ∘ (𝑖‘𝑗))‘𝑘))) = (𝑗 ∈ ℕ ↦ ∏𝑘 ∈ 𝑋 (vol‘(([,) ∘ (𝑖‘𝑗))‘𝑘))) | |
15 | 13, 14 | fmptd 7123 | . . . . . . . . . . 11 ⊢ ((𝜑 ∧ 𝑖 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ)) → (𝑗 ∈ ℕ ↦ ∏𝑘 ∈ 𝑋 (vol‘(([,) ∘ (𝑖‘𝑗))‘𝑘))):ℕ⟶(0[,]+∞)) |
16 | 4, 15 | sge0cl 45907 | . . . . . . . . . 10 ⊢ ((𝜑 ∧ 𝑖 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ)) → (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘 ∈ 𝑋 (vol‘(([,) ∘ (𝑖‘𝑗))‘𝑘)))) ∈ (0[,]+∞)) |
17 | 16 | 3adant3 1129 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑖 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ) ∧ 𝑧 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘 ∈ 𝑋 (vol‘(([,) ∘ (𝑖‘𝑗))‘𝑘))))) → (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘 ∈ 𝑋 (vol‘(([,) ∘ (𝑖‘𝑗))‘𝑘)))) ∈ (0[,]+∞)) |
18 | 2, 17 | eqeltrd 2825 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑖 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ) ∧ 𝑧 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘 ∈ 𝑋 (vol‘(([,) ∘ (𝑖‘𝑗))‘𝑘))))) → 𝑧 ∈ (0[,]+∞)) |
19 | 18 | 3adant3l 1177 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑖 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ) ∧ (𝐴 ⊆ ∪ 𝑗 ∈ ℕ X𝑘 ∈ 𝑋 (([,) ∘ (𝑖‘𝑗))‘𝑘) ∧ 𝑧 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘 ∈ 𝑋 (vol‘(([,) ∘ (𝑖‘𝑗))‘𝑘)))))) → 𝑧 ∈ (0[,]+∞)) |
20 | 19 | 3exp 1116 | . . . . . 6 ⊢ (𝜑 → (𝑖 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ) → ((𝐴 ⊆ ∪ 𝑗 ∈ ℕ X𝑘 ∈ 𝑋 (([,) ∘ (𝑖‘𝑗))‘𝑘) ∧ 𝑧 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘 ∈ 𝑋 (vol‘(([,) ∘ (𝑖‘𝑗))‘𝑘))))) → 𝑧 ∈ (0[,]+∞)))) |
21 | 20 | adantr 479 | . . . . 5 ⊢ ((𝜑 ∧ 𝑧 ∈ ℝ*) → (𝑖 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ) → ((𝐴 ⊆ ∪ 𝑗 ∈ ℕ X𝑘 ∈ 𝑋 (([,) ∘ (𝑖‘𝑗))‘𝑘) ∧ 𝑧 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘 ∈ 𝑋 (vol‘(([,) ∘ (𝑖‘𝑗))‘𝑘))))) → 𝑧 ∈ (0[,]+∞)))) |
22 | 21 | rexlimdv 3142 | . . . 4 ⊢ ((𝜑 ∧ 𝑧 ∈ ℝ*) → (∃𝑖 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ)(𝐴 ⊆ ∪ 𝑗 ∈ ℕ X𝑘 ∈ 𝑋 (([,) ∘ (𝑖‘𝑗))‘𝑘) ∧ 𝑧 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘 ∈ 𝑋 (vol‘(([,) ∘ (𝑖‘𝑗))‘𝑘))))) → 𝑧 ∈ (0[,]+∞))) |
23 | 22 | ralrimiva 3135 | . . 3 ⊢ (𝜑 → ∀𝑧 ∈ ℝ* (∃𝑖 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ)(𝐴 ⊆ ∪ 𝑗 ∈ ℕ X𝑘 ∈ 𝑋 (([,) ∘ (𝑖‘𝑗))‘𝑘) ∧ 𝑧 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘 ∈ 𝑋 (vol‘(([,) ∘ (𝑖‘𝑗))‘𝑘))))) → 𝑧 ∈ (0[,]+∞))) |
24 | rabss 4065 | . . 3 ⊢ ({𝑧 ∈ ℝ* ∣ ∃𝑖 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ)(𝐴 ⊆ ∪ 𝑗 ∈ ℕ X𝑘 ∈ 𝑋 (([,) ∘ (𝑖‘𝑗))‘𝑘) ∧ 𝑧 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘 ∈ 𝑋 (vol‘(([,) ∘ (𝑖‘𝑗))‘𝑘)))))} ⊆ (0[,]+∞) ↔ ∀𝑧 ∈ ℝ* (∃𝑖 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ)(𝐴 ⊆ ∪ 𝑗 ∈ ℕ X𝑘 ∈ 𝑋 (([,) ∘ (𝑖‘𝑗))‘𝑘) ∧ 𝑧 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘 ∈ 𝑋 (vol‘(([,) ∘ (𝑖‘𝑗))‘𝑘))))) → 𝑧 ∈ (0[,]+∞))) | |
25 | 23, 24 | sylibr 233 | . 2 ⊢ (𝜑 → {𝑧 ∈ ℝ* ∣ ∃𝑖 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ)(𝐴 ⊆ ∪ 𝑗 ∈ ℕ X𝑘 ∈ 𝑋 (([,) ∘ (𝑖‘𝑗))‘𝑘) ∧ 𝑧 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘 ∈ 𝑋 (vol‘(([,) ∘ (𝑖‘𝑗))‘𝑘)))))} ⊆ (0[,]+∞)) |
26 | 1, 25 | eqsstrid 4025 | 1 ⊢ (𝜑 → 𝑀 ⊆ (0[,]+∞)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 394 ∧ w3a 1084 = wceq 1533 ∈ wcel 2098 ∀wral 3050 ∃wrex 3059 {crab 3418 Vcvv 3461 ⊆ wss 3944 ∪ ciun 4997 ↦ cmpt 5232 × cxp 5676 ∘ ccom 5682 ⟶wf 6545 ‘cfv 6549 (class class class)co 7419 ↑m cmap 8845 Xcixp 8916 Fincfn 8964 ℝcr 11139 0cc0 11140 +∞cpnf 11277 ℝ*cxr 11279 ℕcn 12245 [,)cico 13361 [,]cicc 13362 ∏cprod 15885 volcvol 25436 Σ^csumge0 45888 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-rep 5286 ax-sep 5300 ax-nul 5307 ax-pow 5365 ax-pr 5429 ax-un 7741 ax-inf2 9666 ax-cnex 11196 ax-resscn 11197 ax-1cn 11198 ax-icn 11199 ax-addcl 11200 ax-addrcl 11201 ax-mulcl 11202 ax-mulrcl 11203 ax-mulcom 11204 ax-addass 11205 ax-mulass 11206 ax-distr 11207 ax-i2m1 11208 ax-1ne0 11209 ax-1rid 11210 ax-rnegex 11211 ax-rrecex 11212 ax-cnre 11213 ax-pre-lttri 11214 ax-pre-lttrn 11215 ax-pre-ltadd 11216 ax-pre-mulgt0 11217 ax-pre-sup 11218 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2930 df-nel 3036 df-ral 3051 df-rex 3060 df-rmo 3363 df-reu 3364 df-rab 3419 df-v 3463 df-sbc 3774 df-csb 3890 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-pss 3964 df-nul 4323 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4910 df-int 4951 df-iun 4999 df-br 5150 df-opab 5212 df-mpt 5233 df-tr 5267 df-id 5576 df-eprel 5582 df-po 5590 df-so 5591 df-fr 5633 df-se 5634 df-we 5635 df-xp 5684 df-rel 5685 df-cnv 5686 df-co 5687 df-dm 5688 df-rn 5689 df-res 5690 df-ima 5691 df-pred 6307 df-ord 6374 df-on 6375 df-lim 6376 df-suc 6377 df-iota 6501 df-fun 6551 df-fn 6552 df-f 6553 df-f1 6554 df-fo 6555 df-f1o 6556 df-fv 6557 df-isom 6558 df-riota 7375 df-ov 7422 df-oprab 7423 df-mpo 7424 df-of 7685 df-om 7872 df-1st 7994 df-2nd 7995 df-frecs 8287 df-wrecs 8318 df-recs 8392 df-rdg 8431 df-1o 8487 df-2o 8488 df-er 8725 df-map 8847 df-pm 8848 df-en 8965 df-dom 8966 df-sdom 8967 df-fin 8968 df-fi 9436 df-sup 9467 df-inf 9468 df-oi 9535 df-dju 9926 df-card 9964 df-pnf 11282 df-mnf 11283 df-xr 11284 df-ltxr 11285 df-le 11286 df-sub 11478 df-neg 11479 df-div 11904 df-nn 12246 df-2 12308 df-3 12309 df-n0 12506 df-z 12592 df-uz 12856 df-q 12966 df-rp 13010 df-xneg 13127 df-xadd 13128 df-xmul 13129 df-ioo 13363 df-ico 13365 df-icc 13366 df-fz 13520 df-fzo 13663 df-fl 13793 df-seq 14003 df-exp 14063 df-hash 14326 df-cj 15082 df-re 15083 df-im 15084 df-sqrt 15218 df-abs 15219 df-clim 15468 df-rlim 15469 df-sum 15669 df-prod 15886 df-rest 17407 df-topgen 17428 df-psmet 21288 df-xmet 21289 df-met 21290 df-bl 21291 df-mopn 21292 df-top 22840 df-topon 22857 df-bases 22893 df-cmp 23335 df-ovol 25437 df-vol 25438 df-sumge0 45889 |
This theorem is referenced by: ovnlerp 46088 ovnf 46089 |
Copyright terms: Public domain | W3C validator |