| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > ovnsupge0 | Structured version Visualization version GIF version | ||
| Description: The set used in the definition of the Lebesgue outer measure is a subset of the nonnegative extended reals. This is a substep for (a)(i) of the proof of Proposition 115D (a) of [Fremlin1] p. 30. (Contributed by Glauco Siliprandi, 11-Oct-2020.) |
| Ref | Expression |
|---|---|
| ovnsupge0.1 | ⊢ (𝜑 → 𝑋 ∈ Fin) |
| ovnsupge0.2 | ⊢ (𝜑 → 𝐴 ⊆ (ℝ ↑m 𝑋)) |
| ovnsupge0.3 | ⊢ 𝑀 = {𝑧 ∈ ℝ* ∣ ∃𝑖 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ)(𝐴 ⊆ ∪ 𝑗 ∈ ℕ X𝑘 ∈ 𝑋 (([,) ∘ (𝑖‘𝑗))‘𝑘) ∧ 𝑧 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘 ∈ 𝑋 (vol‘(([,) ∘ (𝑖‘𝑗))‘𝑘)))))} |
| Ref | Expression |
|---|---|
| ovnsupge0 | ⊢ (𝜑 → 𝑀 ⊆ (0[,]+∞)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ovnsupge0.3 | . 2 ⊢ 𝑀 = {𝑧 ∈ ℝ* ∣ ∃𝑖 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ)(𝐴 ⊆ ∪ 𝑗 ∈ ℕ X𝑘 ∈ 𝑋 (([,) ∘ (𝑖‘𝑗))‘𝑘) ∧ 𝑧 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘 ∈ 𝑋 (vol‘(([,) ∘ (𝑖‘𝑗))‘𝑘)))))} | |
| 2 | simp3 1138 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑖 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ) ∧ 𝑧 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘 ∈ 𝑋 (vol‘(([,) ∘ (𝑖‘𝑗))‘𝑘))))) → 𝑧 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘 ∈ 𝑋 (vol‘(([,) ∘ (𝑖‘𝑗))‘𝑘))))) | |
| 3 | nnex 12153 | . . . . . . . . . . . 12 ⊢ ℕ ∈ V | |
| 4 | 3 | a1i 11 | . . . . . . . . . . 11 ⊢ ((𝜑 ∧ 𝑖 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ)) → ℕ ∈ V) |
| 5 | icossicc 13358 | . . . . . . . . . . . . 13 ⊢ (0[,)+∞) ⊆ (0[,]+∞) | |
| 6 | nfv 1914 | . . . . . . . . . . . . . 14 ⊢ Ⅎ𝑘((𝜑 ∧ 𝑖 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ)) ∧ 𝑗 ∈ ℕ) | |
| 7 | ovnsupge0.1 | . . . . . . . . . . . . . . 15 ⊢ (𝜑 → 𝑋 ∈ Fin) | |
| 8 | 7 | ad2antrr 726 | . . . . . . . . . . . . . 14 ⊢ (((𝜑 ∧ 𝑖 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ)) ∧ 𝑗 ∈ ℕ) → 𝑋 ∈ Fin) |
| 9 | elmapi 8783 | . . . . . . . . . . . . . . 15 ⊢ (𝑖 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ) → 𝑖:ℕ⟶((ℝ × ℝ) ↑m 𝑋)) | |
| 10 | 9 | ad2antlr 727 | . . . . . . . . . . . . . 14 ⊢ (((𝜑 ∧ 𝑖 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ)) ∧ 𝑗 ∈ ℕ) → 𝑖:ℕ⟶((ℝ × ℝ) ↑m 𝑋)) |
| 11 | simpr 484 | . . . . . . . . . . . . . 14 ⊢ (((𝜑 ∧ 𝑖 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ)) ∧ 𝑗 ∈ ℕ) → 𝑗 ∈ ℕ) | |
| 12 | 6, 8, 10, 11 | ovnprodcl 46555 | . . . . . . . . . . . . 13 ⊢ (((𝜑 ∧ 𝑖 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ)) ∧ 𝑗 ∈ ℕ) → ∏𝑘 ∈ 𝑋 (vol‘(([,) ∘ (𝑖‘𝑗))‘𝑘)) ∈ (0[,)+∞)) |
| 13 | 5, 12 | sselid 3935 | . . . . . . . . . . . 12 ⊢ (((𝜑 ∧ 𝑖 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ)) ∧ 𝑗 ∈ ℕ) → ∏𝑘 ∈ 𝑋 (vol‘(([,) ∘ (𝑖‘𝑗))‘𝑘)) ∈ (0[,]+∞)) |
| 14 | eqid 2729 | . . . . . . . . . . . 12 ⊢ (𝑗 ∈ ℕ ↦ ∏𝑘 ∈ 𝑋 (vol‘(([,) ∘ (𝑖‘𝑗))‘𝑘))) = (𝑗 ∈ ℕ ↦ ∏𝑘 ∈ 𝑋 (vol‘(([,) ∘ (𝑖‘𝑗))‘𝑘))) | |
| 15 | 13, 14 | fmptd 7052 | . . . . . . . . . . 11 ⊢ ((𝜑 ∧ 𝑖 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ)) → (𝑗 ∈ ℕ ↦ ∏𝑘 ∈ 𝑋 (vol‘(([,) ∘ (𝑖‘𝑗))‘𝑘))):ℕ⟶(0[,]+∞)) |
| 16 | 4, 15 | sge0cl 46382 | . . . . . . . . . 10 ⊢ ((𝜑 ∧ 𝑖 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ)) → (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘 ∈ 𝑋 (vol‘(([,) ∘ (𝑖‘𝑗))‘𝑘)))) ∈ (0[,]+∞)) |
| 17 | 16 | 3adant3 1132 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑖 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ) ∧ 𝑧 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘 ∈ 𝑋 (vol‘(([,) ∘ (𝑖‘𝑗))‘𝑘))))) → (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘 ∈ 𝑋 (vol‘(([,) ∘ (𝑖‘𝑗))‘𝑘)))) ∈ (0[,]+∞)) |
| 18 | 2, 17 | eqeltrd 2828 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑖 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ) ∧ 𝑧 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘 ∈ 𝑋 (vol‘(([,) ∘ (𝑖‘𝑗))‘𝑘))))) → 𝑧 ∈ (0[,]+∞)) |
| 19 | 18 | 3adant3l 1181 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑖 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ) ∧ (𝐴 ⊆ ∪ 𝑗 ∈ ℕ X𝑘 ∈ 𝑋 (([,) ∘ (𝑖‘𝑗))‘𝑘) ∧ 𝑧 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘 ∈ 𝑋 (vol‘(([,) ∘ (𝑖‘𝑗))‘𝑘)))))) → 𝑧 ∈ (0[,]+∞)) |
| 20 | 19 | 3exp 1119 | . . . . . 6 ⊢ (𝜑 → (𝑖 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ) → ((𝐴 ⊆ ∪ 𝑗 ∈ ℕ X𝑘 ∈ 𝑋 (([,) ∘ (𝑖‘𝑗))‘𝑘) ∧ 𝑧 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘 ∈ 𝑋 (vol‘(([,) ∘ (𝑖‘𝑗))‘𝑘))))) → 𝑧 ∈ (0[,]+∞)))) |
| 21 | 20 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ 𝑧 ∈ ℝ*) → (𝑖 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ) → ((𝐴 ⊆ ∪ 𝑗 ∈ ℕ X𝑘 ∈ 𝑋 (([,) ∘ (𝑖‘𝑗))‘𝑘) ∧ 𝑧 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘 ∈ 𝑋 (vol‘(([,) ∘ (𝑖‘𝑗))‘𝑘))))) → 𝑧 ∈ (0[,]+∞)))) |
| 22 | 21 | rexlimdv 3128 | . . . 4 ⊢ ((𝜑 ∧ 𝑧 ∈ ℝ*) → (∃𝑖 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ)(𝐴 ⊆ ∪ 𝑗 ∈ ℕ X𝑘 ∈ 𝑋 (([,) ∘ (𝑖‘𝑗))‘𝑘) ∧ 𝑧 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘 ∈ 𝑋 (vol‘(([,) ∘ (𝑖‘𝑗))‘𝑘))))) → 𝑧 ∈ (0[,]+∞))) |
| 23 | 22 | ralrimiva 3121 | . . 3 ⊢ (𝜑 → ∀𝑧 ∈ ℝ* (∃𝑖 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ)(𝐴 ⊆ ∪ 𝑗 ∈ ℕ X𝑘 ∈ 𝑋 (([,) ∘ (𝑖‘𝑗))‘𝑘) ∧ 𝑧 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘 ∈ 𝑋 (vol‘(([,) ∘ (𝑖‘𝑗))‘𝑘))))) → 𝑧 ∈ (0[,]+∞))) |
| 24 | rabss 4025 | . . 3 ⊢ ({𝑧 ∈ ℝ* ∣ ∃𝑖 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ)(𝐴 ⊆ ∪ 𝑗 ∈ ℕ X𝑘 ∈ 𝑋 (([,) ∘ (𝑖‘𝑗))‘𝑘) ∧ 𝑧 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘 ∈ 𝑋 (vol‘(([,) ∘ (𝑖‘𝑗))‘𝑘)))))} ⊆ (0[,]+∞) ↔ ∀𝑧 ∈ ℝ* (∃𝑖 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ)(𝐴 ⊆ ∪ 𝑗 ∈ ℕ X𝑘 ∈ 𝑋 (([,) ∘ (𝑖‘𝑗))‘𝑘) ∧ 𝑧 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘 ∈ 𝑋 (vol‘(([,) ∘ (𝑖‘𝑗))‘𝑘))))) → 𝑧 ∈ (0[,]+∞))) | |
| 25 | 23, 24 | sylibr 234 | . 2 ⊢ (𝜑 → {𝑧 ∈ ℝ* ∣ ∃𝑖 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ)(𝐴 ⊆ ∪ 𝑗 ∈ ℕ X𝑘 ∈ 𝑋 (([,) ∘ (𝑖‘𝑗))‘𝑘) ∧ 𝑧 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘 ∈ 𝑋 (vol‘(([,) ∘ (𝑖‘𝑗))‘𝑘)))))} ⊆ (0[,]+∞)) |
| 26 | 1, 25 | eqsstrid 3976 | 1 ⊢ (𝜑 → 𝑀 ⊆ (0[,]+∞)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ∀wral 3044 ∃wrex 3053 {crab 3396 Vcvv 3438 ⊆ wss 3905 ∪ ciun 4944 ↦ cmpt 5176 × cxp 5621 ∘ ccom 5627 ⟶wf 6482 ‘cfv 6486 (class class class)co 7353 ↑m cmap 8760 Xcixp 8831 Fincfn 8879 ℝcr 11027 0cc0 11028 +∞cpnf 11165 ℝ*cxr 11167 ℕcn 12147 [,)cico 13269 [,]cicc 13270 ∏cprod 15829 volcvol 25381 Σ^csumge0 46363 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 ax-inf2 9556 ax-cnex 11084 ax-resscn 11085 ax-1cn 11086 ax-icn 11087 ax-addcl 11088 ax-addrcl 11089 ax-mulcl 11090 ax-mulrcl 11091 ax-mulcom 11092 ax-addass 11093 ax-mulass 11094 ax-distr 11095 ax-i2m1 11096 ax-1ne0 11097 ax-1rid 11098 ax-rnegex 11099 ax-rrecex 11100 ax-cnre 11101 ax-pre-lttri 11102 ax-pre-lttrn 11103 ax-pre-ltadd 11104 ax-pre-mulgt0 11105 ax-pre-sup 11106 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3345 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-pss 3925 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-int 4900 df-iun 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5518 df-eprel 5523 df-po 5531 df-so 5532 df-fr 5576 df-se 5577 df-we 5578 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-isom 6495 df-riota 7310 df-ov 7356 df-oprab 7357 df-mpo 7358 df-of 7617 df-om 7807 df-1st 7931 df-2nd 7932 df-frecs 8221 df-wrecs 8252 df-recs 8301 df-rdg 8339 df-1o 8395 df-2o 8396 df-er 8632 df-map 8762 df-pm 8763 df-en 8880 df-dom 8881 df-sdom 8882 df-fin 8883 df-fi 9320 df-sup 9351 df-inf 9352 df-oi 9421 df-dju 9816 df-card 9854 df-pnf 11170 df-mnf 11171 df-xr 11172 df-ltxr 11173 df-le 11174 df-sub 11368 df-neg 11369 df-div 11797 df-nn 12148 df-2 12210 df-3 12211 df-n0 12404 df-z 12491 df-uz 12755 df-q 12869 df-rp 12913 df-xneg 13033 df-xadd 13034 df-xmul 13035 df-ioo 13271 df-ico 13273 df-icc 13274 df-fz 13430 df-fzo 13577 df-fl 13715 df-seq 13928 df-exp 13988 df-hash 14257 df-cj 15025 df-re 15026 df-im 15027 df-sqrt 15161 df-abs 15162 df-clim 15414 df-rlim 15415 df-sum 15613 df-prod 15830 df-rest 17345 df-topgen 17366 df-psmet 21272 df-xmet 21273 df-met 21274 df-bl 21275 df-mopn 21276 df-top 22798 df-topon 22815 df-bases 22850 df-cmp 23291 df-ovol 25382 df-vol 25383 df-sumge0 46364 |
| This theorem is referenced by: ovnlerp 46563 ovnf 46564 |
| Copyright terms: Public domain | W3C validator |