Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ovnsupge0 Structured version   Visualization version   GIF version

Theorem ovnsupge0 43985
Description: The set used in the definition of the Lebesgue outer measure is a subset of the nonnegative extended reals. This is a substep for (a)(i) of the proof of Proposition 115D (a) of [Fremlin1] p. 30. (Contributed by Glauco Siliprandi, 11-Oct-2020.)
Hypotheses
Ref Expression
ovnsupge0.1 (𝜑𝑋 ∈ Fin)
ovnsupge0.2 (𝜑𝐴 ⊆ (ℝ ↑m 𝑋))
ovnsupge0.3 𝑀 = {𝑧 ∈ ℝ* ∣ ∃𝑖 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ)(𝐴 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝑖𝑗))‘𝑘) ∧ 𝑧 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ (𝑖𝑗))‘𝑘)))))}
Assertion
Ref Expression
ovnsupge0 (𝜑𝑀 ⊆ (0[,]+∞))
Distinct variable groups:   𝑗,𝑋,𝑘   𝑖,𝑗,𝑘,𝜑   𝑧,𝑖,𝜑
Allowed substitution hints:   𝐴(𝑧,𝑖,𝑗,𝑘)   𝑀(𝑧,𝑖,𝑗,𝑘)   𝑋(𝑧,𝑖)

Proof of Theorem ovnsupge0
StepHypRef Expression
1 ovnsupge0.3 . 2 𝑀 = {𝑧 ∈ ℝ* ∣ ∃𝑖 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ)(𝐴 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝑖𝑗))‘𝑘) ∧ 𝑧 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ (𝑖𝑗))‘𝑘)))))}
2 simp3 1136 . . . . . . . . 9 ((𝜑𝑖 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ) ∧ 𝑧 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ (𝑖𝑗))‘𝑘))))) → 𝑧 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ (𝑖𝑗))‘𝑘)))))
3 nnex 11909 . . . . . . . . . . . 12 ℕ ∈ V
43a1i 11 . . . . . . . . . . 11 ((𝜑𝑖 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ)) → ℕ ∈ V)
5 icossicc 13097 . . . . . . . . . . . . 13 (0[,)+∞) ⊆ (0[,]+∞)
6 nfv 1918 . . . . . . . . . . . . . 14 𝑘((𝜑𝑖 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ)) ∧ 𝑗 ∈ ℕ)
7 ovnsupge0.1 . . . . . . . . . . . . . . 15 (𝜑𝑋 ∈ Fin)
87ad2antrr 722 . . . . . . . . . . . . . 14 (((𝜑𝑖 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ)) ∧ 𝑗 ∈ ℕ) → 𝑋 ∈ Fin)
9 elmapi 8595 . . . . . . . . . . . . . . 15 (𝑖 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ) → 𝑖:ℕ⟶((ℝ × ℝ) ↑m 𝑋))
109ad2antlr 723 . . . . . . . . . . . . . 14 (((𝜑𝑖 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ)) ∧ 𝑗 ∈ ℕ) → 𝑖:ℕ⟶((ℝ × ℝ) ↑m 𝑋))
11 simpr 484 . . . . . . . . . . . . . 14 (((𝜑𝑖 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ)) ∧ 𝑗 ∈ ℕ) → 𝑗 ∈ ℕ)
126, 8, 10, 11ovnprodcl 43982 . . . . . . . . . . . . 13 (((𝜑𝑖 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ)) ∧ 𝑗 ∈ ℕ) → ∏𝑘𝑋 (vol‘(([,) ∘ (𝑖𝑗))‘𝑘)) ∈ (0[,)+∞))
135, 12sselid 3915 . . . . . . . . . . . 12 (((𝜑𝑖 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ)) ∧ 𝑗 ∈ ℕ) → ∏𝑘𝑋 (vol‘(([,) ∘ (𝑖𝑗))‘𝑘)) ∈ (0[,]+∞))
14 eqid 2738 . . . . . . . . . . . 12 (𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ (𝑖𝑗))‘𝑘))) = (𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ (𝑖𝑗))‘𝑘)))
1513, 14fmptd 6970 . . . . . . . . . . 11 ((𝜑𝑖 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ)) → (𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ (𝑖𝑗))‘𝑘))):ℕ⟶(0[,]+∞))
164, 15sge0cl 43809 . . . . . . . . . 10 ((𝜑𝑖 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ)) → (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ (𝑖𝑗))‘𝑘)))) ∈ (0[,]+∞))
17163adant3 1130 . . . . . . . . 9 ((𝜑𝑖 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ) ∧ 𝑧 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ (𝑖𝑗))‘𝑘))))) → (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ (𝑖𝑗))‘𝑘)))) ∈ (0[,]+∞))
182, 17eqeltrd 2839 . . . . . . . 8 ((𝜑𝑖 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ) ∧ 𝑧 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ (𝑖𝑗))‘𝑘))))) → 𝑧 ∈ (0[,]+∞))
19183adant3l 1178 . . . . . . 7 ((𝜑𝑖 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ) ∧ (𝐴 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝑖𝑗))‘𝑘) ∧ 𝑧 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ (𝑖𝑗))‘𝑘)))))) → 𝑧 ∈ (0[,]+∞))
20193exp 1117 . . . . . 6 (𝜑 → (𝑖 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ) → ((𝐴 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝑖𝑗))‘𝑘) ∧ 𝑧 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ (𝑖𝑗))‘𝑘))))) → 𝑧 ∈ (0[,]+∞))))
2120adantr 480 . . . . 5 ((𝜑𝑧 ∈ ℝ*) → (𝑖 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ) → ((𝐴 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝑖𝑗))‘𝑘) ∧ 𝑧 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ (𝑖𝑗))‘𝑘))))) → 𝑧 ∈ (0[,]+∞))))
2221rexlimdv 3211 . . . 4 ((𝜑𝑧 ∈ ℝ*) → (∃𝑖 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ)(𝐴 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝑖𝑗))‘𝑘) ∧ 𝑧 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ (𝑖𝑗))‘𝑘))))) → 𝑧 ∈ (0[,]+∞)))
2322ralrimiva 3107 . . 3 (𝜑 → ∀𝑧 ∈ ℝ* (∃𝑖 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ)(𝐴 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝑖𝑗))‘𝑘) ∧ 𝑧 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ (𝑖𝑗))‘𝑘))))) → 𝑧 ∈ (0[,]+∞)))
24 rabss 4001 . . 3 ({𝑧 ∈ ℝ* ∣ ∃𝑖 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ)(𝐴 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝑖𝑗))‘𝑘) ∧ 𝑧 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ (𝑖𝑗))‘𝑘)))))} ⊆ (0[,]+∞) ↔ ∀𝑧 ∈ ℝ* (∃𝑖 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ)(𝐴 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝑖𝑗))‘𝑘) ∧ 𝑧 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ (𝑖𝑗))‘𝑘))))) → 𝑧 ∈ (0[,]+∞)))
2523, 24sylibr 233 . 2 (𝜑 → {𝑧 ∈ ℝ* ∣ ∃𝑖 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ)(𝐴 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝑖𝑗))‘𝑘) ∧ 𝑧 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ (𝑖𝑗))‘𝑘)))))} ⊆ (0[,]+∞))
261, 25eqsstrid 3965 1 (𝜑𝑀 ⊆ (0[,]+∞))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1085   = wceq 1539  wcel 2108  wral 3063  wrex 3064  {crab 3067  Vcvv 3422  wss 3883   ciun 4921  cmpt 5153   × cxp 5578  ccom 5584  wf 6414  cfv 6418  (class class class)co 7255  m cmap 8573  Xcixp 8643  Fincfn 8691  cr 10801  0cc0 10802  +∞cpnf 10937  *cxr 10939  cn 11903  [,)cico 13010  [,]cicc 13011  cprod 15543  volcvol 24532  Σ^csumge0 43790
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-inf2 9329  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879  ax-pre-sup 10880
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-se 5536  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-isom 6427  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-of 7511  df-om 7688  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-2o 8268  df-er 8456  df-map 8575  df-pm 8576  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-fi 9100  df-sup 9131  df-inf 9132  df-oi 9199  df-dju 9590  df-card 9628  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-div 11563  df-nn 11904  df-2 11966  df-3 11967  df-n0 12164  df-z 12250  df-uz 12512  df-q 12618  df-rp 12660  df-xneg 12777  df-xadd 12778  df-xmul 12779  df-ioo 13012  df-ico 13014  df-icc 13015  df-fz 13169  df-fzo 13312  df-fl 13440  df-seq 13650  df-exp 13711  df-hash 13973  df-cj 14738  df-re 14739  df-im 14740  df-sqrt 14874  df-abs 14875  df-clim 15125  df-rlim 15126  df-sum 15326  df-prod 15544  df-rest 17050  df-topgen 17071  df-psmet 20502  df-xmet 20503  df-met 20504  df-bl 20505  df-mopn 20506  df-top 21951  df-topon 21968  df-bases 22004  df-cmp 22446  df-ovol 24533  df-vol 24534  df-sumge0 43791
This theorem is referenced by:  ovnlerp  43990  ovnf  43991
  Copyright terms: Public domain W3C validator