![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > ovnsupge0 | Structured version Visualization version GIF version |
Description: The set used in the definition of the Lebesgue outer measure is a subset of the nonnegative extended reals. This is a substep for (a)(i) of the proof of Proposition 115D (a) of [Fremlin1] p. 30. (Contributed by Glauco Siliprandi, 11-Oct-2020.) |
Ref | Expression |
---|---|
ovnsupge0.1 | ⊢ (𝜑 → 𝑋 ∈ Fin) |
ovnsupge0.2 | ⊢ (𝜑 → 𝐴 ⊆ (ℝ ↑𝑚 𝑋)) |
ovnsupge0.3 | ⊢ 𝑀 = {𝑧 ∈ ℝ* ∣ ∃𝑖 ∈ (((ℝ × ℝ) ↑𝑚 𝑋) ↑𝑚 ℕ)(𝐴 ⊆ ∪ 𝑗 ∈ ℕ X𝑘 ∈ 𝑋 (([,) ∘ (𝑖‘𝑗))‘𝑘) ∧ 𝑧 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘 ∈ 𝑋 (vol‘(([,) ∘ (𝑖‘𝑗))‘𝑘)))))} |
Ref | Expression |
---|---|
ovnsupge0 | ⊢ (𝜑 → 𝑀 ⊆ (0[,]+∞)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ovnsupge0.3 | . 2 ⊢ 𝑀 = {𝑧 ∈ ℝ* ∣ ∃𝑖 ∈ (((ℝ × ℝ) ↑𝑚 𝑋) ↑𝑚 ℕ)(𝐴 ⊆ ∪ 𝑗 ∈ ℕ X𝑘 ∈ 𝑋 (([,) ∘ (𝑖‘𝑗))‘𝑘) ∧ 𝑧 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘 ∈ 𝑋 (vol‘(([,) ∘ (𝑖‘𝑗))‘𝑘)))))} | |
2 | simp3 1169 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑖 ∈ (((ℝ × ℝ) ↑𝑚 𝑋) ↑𝑚 ℕ) ∧ 𝑧 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘 ∈ 𝑋 (vol‘(([,) ∘ (𝑖‘𝑗))‘𝑘))))) → 𝑧 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘 ∈ 𝑋 (vol‘(([,) ∘ (𝑖‘𝑗))‘𝑘))))) | |
3 | nnex 11317 | . . . . . . . . . . . 12 ⊢ ℕ ∈ V | |
4 | 3 | a1i 11 | . . . . . . . . . . 11 ⊢ ((𝜑 ∧ 𝑖 ∈ (((ℝ × ℝ) ↑𝑚 𝑋) ↑𝑚 ℕ)) → ℕ ∈ V) |
5 | icossicc 12506 | . . . . . . . . . . . . 13 ⊢ (0[,)+∞) ⊆ (0[,]+∞) | |
6 | nfv 2010 | . . . . . . . . . . . . . 14 ⊢ Ⅎ𝑘((𝜑 ∧ 𝑖 ∈ (((ℝ × ℝ) ↑𝑚 𝑋) ↑𝑚 ℕ)) ∧ 𝑗 ∈ ℕ) | |
7 | ovnsupge0.1 | . . . . . . . . . . . . . . 15 ⊢ (𝜑 → 𝑋 ∈ Fin) | |
8 | 7 | ad2antrr 718 | . . . . . . . . . . . . . 14 ⊢ (((𝜑 ∧ 𝑖 ∈ (((ℝ × ℝ) ↑𝑚 𝑋) ↑𝑚 ℕ)) ∧ 𝑗 ∈ ℕ) → 𝑋 ∈ Fin) |
9 | elmapi 8115 | . . . . . . . . . . . . . . 15 ⊢ (𝑖 ∈ (((ℝ × ℝ) ↑𝑚 𝑋) ↑𝑚 ℕ) → 𝑖:ℕ⟶((ℝ × ℝ) ↑𝑚 𝑋)) | |
10 | 9 | ad2antlr 719 | . . . . . . . . . . . . . 14 ⊢ (((𝜑 ∧ 𝑖 ∈ (((ℝ × ℝ) ↑𝑚 𝑋) ↑𝑚 ℕ)) ∧ 𝑗 ∈ ℕ) → 𝑖:ℕ⟶((ℝ × ℝ) ↑𝑚 𝑋)) |
11 | simpr 478 | . . . . . . . . . . . . . 14 ⊢ (((𝜑 ∧ 𝑖 ∈ (((ℝ × ℝ) ↑𝑚 𝑋) ↑𝑚 ℕ)) ∧ 𝑗 ∈ ℕ) → 𝑗 ∈ ℕ) | |
12 | 6, 8, 10, 11 | ovnprodcl 41502 | . . . . . . . . . . . . 13 ⊢ (((𝜑 ∧ 𝑖 ∈ (((ℝ × ℝ) ↑𝑚 𝑋) ↑𝑚 ℕ)) ∧ 𝑗 ∈ ℕ) → ∏𝑘 ∈ 𝑋 (vol‘(([,) ∘ (𝑖‘𝑗))‘𝑘)) ∈ (0[,)+∞)) |
13 | 5, 12 | sseldi 3794 | . . . . . . . . . . . 12 ⊢ (((𝜑 ∧ 𝑖 ∈ (((ℝ × ℝ) ↑𝑚 𝑋) ↑𝑚 ℕ)) ∧ 𝑗 ∈ ℕ) → ∏𝑘 ∈ 𝑋 (vol‘(([,) ∘ (𝑖‘𝑗))‘𝑘)) ∈ (0[,]+∞)) |
14 | eqid 2797 | . . . . . . . . . . . 12 ⊢ (𝑗 ∈ ℕ ↦ ∏𝑘 ∈ 𝑋 (vol‘(([,) ∘ (𝑖‘𝑗))‘𝑘))) = (𝑗 ∈ ℕ ↦ ∏𝑘 ∈ 𝑋 (vol‘(([,) ∘ (𝑖‘𝑗))‘𝑘))) | |
15 | 13, 14 | fmptd 6608 | . . . . . . . . . . 11 ⊢ ((𝜑 ∧ 𝑖 ∈ (((ℝ × ℝ) ↑𝑚 𝑋) ↑𝑚 ℕ)) → (𝑗 ∈ ℕ ↦ ∏𝑘 ∈ 𝑋 (vol‘(([,) ∘ (𝑖‘𝑗))‘𝑘))):ℕ⟶(0[,]+∞)) |
16 | 4, 15 | sge0cl 41329 | . . . . . . . . . 10 ⊢ ((𝜑 ∧ 𝑖 ∈ (((ℝ × ℝ) ↑𝑚 𝑋) ↑𝑚 ℕ)) → (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘 ∈ 𝑋 (vol‘(([,) ∘ (𝑖‘𝑗))‘𝑘)))) ∈ (0[,]+∞)) |
17 | 16 | 3adant3 1163 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑖 ∈ (((ℝ × ℝ) ↑𝑚 𝑋) ↑𝑚 ℕ) ∧ 𝑧 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘 ∈ 𝑋 (vol‘(([,) ∘ (𝑖‘𝑗))‘𝑘))))) → (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘 ∈ 𝑋 (vol‘(([,) ∘ (𝑖‘𝑗))‘𝑘)))) ∈ (0[,]+∞)) |
18 | 2, 17 | eqeltrd 2876 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑖 ∈ (((ℝ × ℝ) ↑𝑚 𝑋) ↑𝑚 ℕ) ∧ 𝑧 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘 ∈ 𝑋 (vol‘(([,) ∘ (𝑖‘𝑗))‘𝑘))))) → 𝑧 ∈ (0[,]+∞)) |
19 | 18 | 3adant3l 1230 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑖 ∈ (((ℝ × ℝ) ↑𝑚 𝑋) ↑𝑚 ℕ) ∧ (𝐴 ⊆ ∪ 𝑗 ∈ ℕ X𝑘 ∈ 𝑋 (([,) ∘ (𝑖‘𝑗))‘𝑘) ∧ 𝑧 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘 ∈ 𝑋 (vol‘(([,) ∘ (𝑖‘𝑗))‘𝑘)))))) → 𝑧 ∈ (0[,]+∞)) |
20 | 19 | 3exp 1149 | . . . . . 6 ⊢ (𝜑 → (𝑖 ∈ (((ℝ × ℝ) ↑𝑚 𝑋) ↑𝑚 ℕ) → ((𝐴 ⊆ ∪ 𝑗 ∈ ℕ X𝑘 ∈ 𝑋 (([,) ∘ (𝑖‘𝑗))‘𝑘) ∧ 𝑧 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘 ∈ 𝑋 (vol‘(([,) ∘ (𝑖‘𝑗))‘𝑘))))) → 𝑧 ∈ (0[,]+∞)))) |
21 | 20 | adantr 473 | . . . . 5 ⊢ ((𝜑 ∧ 𝑧 ∈ ℝ*) → (𝑖 ∈ (((ℝ × ℝ) ↑𝑚 𝑋) ↑𝑚 ℕ) → ((𝐴 ⊆ ∪ 𝑗 ∈ ℕ X𝑘 ∈ 𝑋 (([,) ∘ (𝑖‘𝑗))‘𝑘) ∧ 𝑧 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘 ∈ 𝑋 (vol‘(([,) ∘ (𝑖‘𝑗))‘𝑘))))) → 𝑧 ∈ (0[,]+∞)))) |
22 | 21 | rexlimdv 3209 | . . . 4 ⊢ ((𝜑 ∧ 𝑧 ∈ ℝ*) → (∃𝑖 ∈ (((ℝ × ℝ) ↑𝑚 𝑋) ↑𝑚 ℕ)(𝐴 ⊆ ∪ 𝑗 ∈ ℕ X𝑘 ∈ 𝑋 (([,) ∘ (𝑖‘𝑗))‘𝑘) ∧ 𝑧 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘 ∈ 𝑋 (vol‘(([,) ∘ (𝑖‘𝑗))‘𝑘))))) → 𝑧 ∈ (0[,]+∞))) |
23 | 22 | ralrimiva 3145 | . . 3 ⊢ (𝜑 → ∀𝑧 ∈ ℝ* (∃𝑖 ∈ (((ℝ × ℝ) ↑𝑚 𝑋) ↑𝑚 ℕ)(𝐴 ⊆ ∪ 𝑗 ∈ ℕ X𝑘 ∈ 𝑋 (([,) ∘ (𝑖‘𝑗))‘𝑘) ∧ 𝑧 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘 ∈ 𝑋 (vol‘(([,) ∘ (𝑖‘𝑗))‘𝑘))))) → 𝑧 ∈ (0[,]+∞))) |
24 | rabss 3873 | . . 3 ⊢ ({𝑧 ∈ ℝ* ∣ ∃𝑖 ∈ (((ℝ × ℝ) ↑𝑚 𝑋) ↑𝑚 ℕ)(𝐴 ⊆ ∪ 𝑗 ∈ ℕ X𝑘 ∈ 𝑋 (([,) ∘ (𝑖‘𝑗))‘𝑘) ∧ 𝑧 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘 ∈ 𝑋 (vol‘(([,) ∘ (𝑖‘𝑗))‘𝑘)))))} ⊆ (0[,]+∞) ↔ ∀𝑧 ∈ ℝ* (∃𝑖 ∈ (((ℝ × ℝ) ↑𝑚 𝑋) ↑𝑚 ℕ)(𝐴 ⊆ ∪ 𝑗 ∈ ℕ X𝑘 ∈ 𝑋 (([,) ∘ (𝑖‘𝑗))‘𝑘) ∧ 𝑧 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘 ∈ 𝑋 (vol‘(([,) ∘ (𝑖‘𝑗))‘𝑘))))) → 𝑧 ∈ (0[,]+∞))) | |
25 | 23, 24 | sylibr 226 | . 2 ⊢ (𝜑 → {𝑧 ∈ ℝ* ∣ ∃𝑖 ∈ (((ℝ × ℝ) ↑𝑚 𝑋) ↑𝑚 ℕ)(𝐴 ⊆ ∪ 𝑗 ∈ ℕ X𝑘 ∈ 𝑋 (([,) ∘ (𝑖‘𝑗))‘𝑘) ∧ 𝑧 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘 ∈ 𝑋 (vol‘(([,) ∘ (𝑖‘𝑗))‘𝑘)))))} ⊆ (0[,]+∞)) |
26 | 1, 25 | syl5eqss 3843 | 1 ⊢ (𝜑 → 𝑀 ⊆ (0[,]+∞)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 385 ∧ w3a 1108 = wceq 1653 ∈ wcel 2157 ∀wral 3087 ∃wrex 3088 {crab 3091 Vcvv 3383 ⊆ wss 3767 ∪ ciun 4708 ↦ cmpt 4920 × cxp 5308 ∘ ccom 5314 ⟶wf 6095 ‘cfv 6099 (class class class)co 6876 ↑𝑚 cmap 8093 Xcixp 8146 Fincfn 8193 ℝcr 10221 0cc0 10222 +∞cpnf 10358 ℝ*cxr 10360 ℕcn 11310 [,)cico 12422 [,]cicc 12423 ∏cprod 14969 volcvol 23568 Σ^csumge0 41310 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 ax-5 2006 ax-6 2072 ax-7 2107 ax-8 2159 ax-9 2166 ax-10 2185 ax-11 2200 ax-12 2213 ax-13 2354 ax-ext 2775 ax-rep 4962 ax-sep 4973 ax-nul 4981 ax-pow 5033 ax-pr 5095 ax-un 7181 ax-inf2 8786 ax-cnex 10278 ax-resscn 10279 ax-1cn 10280 ax-icn 10281 ax-addcl 10282 ax-addrcl 10283 ax-mulcl 10284 ax-mulrcl 10285 ax-mulcom 10286 ax-addass 10287 ax-mulass 10288 ax-distr 10289 ax-i2m1 10290 ax-1ne0 10291 ax-1rid 10292 ax-rnegex 10293 ax-rrecex 10294 ax-cnre 10295 ax-pre-lttri 10296 ax-pre-lttrn 10297 ax-pre-ltadd 10298 ax-pre-mulgt0 10299 ax-pre-sup 10300 |
This theorem depends on definitions: df-bi 199 df-an 386 df-or 875 df-3or 1109 df-3an 1110 df-tru 1657 df-fal 1667 df-ex 1876 df-nf 1880 df-sb 2065 df-mo 2590 df-eu 2607 df-clab 2784 df-cleq 2790 df-clel 2793 df-nfc 2928 df-ne 2970 df-nel 3073 df-ral 3092 df-rex 3093 df-reu 3094 df-rmo 3095 df-rab 3096 df-v 3385 df-sbc 3632 df-csb 3727 df-dif 3770 df-un 3772 df-in 3774 df-ss 3781 df-pss 3783 df-nul 4114 df-if 4276 df-pw 4349 df-sn 4367 df-pr 4369 df-tp 4371 df-op 4373 df-uni 4627 df-int 4666 df-iun 4710 df-br 4842 df-opab 4904 df-mpt 4921 df-tr 4944 df-id 5218 df-eprel 5223 df-po 5231 df-so 5232 df-fr 5269 df-se 5270 df-we 5271 df-xp 5316 df-rel 5317 df-cnv 5318 df-co 5319 df-dm 5320 df-rn 5321 df-res 5322 df-ima 5323 df-pred 5896 df-ord 5942 df-on 5943 df-lim 5944 df-suc 5945 df-iota 6062 df-fun 6101 df-fn 6102 df-f 6103 df-f1 6104 df-fo 6105 df-f1o 6106 df-fv 6107 df-isom 6108 df-riota 6837 df-ov 6879 df-oprab 6880 df-mpt2 6881 df-of 7129 df-om 7298 df-1st 7399 df-2nd 7400 df-wrecs 7643 df-recs 7705 df-rdg 7743 df-1o 7797 df-2o 7798 df-oadd 7801 df-er 7980 df-map 8095 df-pm 8096 df-en 8194 df-dom 8195 df-sdom 8196 df-fin 8197 df-fi 8557 df-sup 8588 df-inf 8589 df-oi 8655 df-card 9049 df-cda 9276 df-pnf 10363 df-mnf 10364 df-xr 10365 df-ltxr 10366 df-le 10367 df-sub 10556 df-neg 10557 df-div 10975 df-nn 11311 df-2 11372 df-3 11373 df-n0 11577 df-z 11663 df-uz 11927 df-q 12030 df-rp 12071 df-xneg 12189 df-xadd 12190 df-xmul 12191 df-ioo 12424 df-ico 12426 df-icc 12427 df-fz 12577 df-fzo 12717 df-fl 12844 df-seq 13052 df-exp 13111 df-hash 13367 df-cj 14177 df-re 14178 df-im 14179 df-sqrt 14313 df-abs 14314 df-clim 14557 df-rlim 14558 df-sum 14755 df-prod 14970 df-rest 16395 df-topgen 16416 df-psmet 20057 df-xmet 20058 df-met 20059 df-bl 20060 df-mopn 20061 df-top 21024 df-topon 21041 df-bases 21076 df-cmp 21516 df-ovol 23569 df-vol 23570 df-sumge0 41311 |
This theorem is referenced by: ovnlerp 41510 ovnf 41511 |
Copyright terms: Public domain | W3C validator |