Step | Hyp | Ref
| Expression |
1 | | fourierdlem113.f |
. 2
⊢ (𝜑 → 𝐹:ℝ⟶ℝ) |
2 | | oveq1 7276 |
. . . . . . 7
⊢ (𝑤 = 𝑦 → (𝑤 mod (2 · π)) = (𝑦 mod (2 · π))) |
3 | 2 | eqeq1d 2742 |
. . . . . 6
⊢ (𝑤 = 𝑦 → ((𝑤 mod (2 · π)) = 0 ↔ (𝑦 mod (2 · π)) =
0)) |
4 | | oveq2 7277 |
. . . . . . . 8
⊢ (𝑤 = 𝑦 → ((𝑘 + (1 / 2)) · 𝑤) = ((𝑘 + (1 / 2)) · 𝑦)) |
5 | 4 | fveq2d 6773 |
. . . . . . 7
⊢ (𝑤 = 𝑦 → (sin‘((𝑘 + (1 / 2)) · 𝑤)) = (sin‘((𝑘 + (1 / 2)) · 𝑦))) |
6 | | oveq1 7276 |
. . . . . . . . 9
⊢ (𝑤 = 𝑦 → (𝑤 / 2) = (𝑦 / 2)) |
7 | 6 | fveq2d 6773 |
. . . . . . . 8
⊢ (𝑤 = 𝑦 → (sin‘(𝑤 / 2)) = (sin‘(𝑦 / 2))) |
8 | 7 | oveq2d 7285 |
. . . . . . 7
⊢ (𝑤 = 𝑦 → ((2 · π) ·
(sin‘(𝑤 / 2))) = ((2
· π) · (sin‘(𝑦 / 2)))) |
9 | 5, 8 | oveq12d 7287 |
. . . . . 6
⊢ (𝑤 = 𝑦 → ((sin‘((𝑘 + (1 / 2)) · 𝑤)) / ((2 · π) ·
(sin‘(𝑤 / 2)))) =
((sin‘((𝑘 + (1 / 2))
· 𝑦)) / ((2 ·
π) · (sin‘(𝑦 / 2))))) |
10 | 3, 9 | ifbieq2d 4491 |
. . . . 5
⊢ (𝑤 = 𝑦 → if((𝑤 mod (2 · π)) = 0, (((2 ·
𝑘) + 1) / (2 ·
π)), ((sin‘((𝑘 +
(1 / 2)) · 𝑤)) / ((2
· π) · (sin‘(𝑤 / 2))))) = if((𝑦 mod (2 · π)) = 0, (((2 ·
𝑘) + 1) / (2 ·
π)), ((sin‘((𝑘 +
(1 / 2)) · 𝑦)) / ((2
· π) · (sin‘(𝑦 / 2)))))) |
11 | 10 | cbvmptv 5192 |
. . . 4
⊢ (𝑤 ∈ ℝ ↦
if((𝑤 mod (2 ·
π)) = 0, (((2 · 𝑘) + 1) / (2 · π)),
((sin‘((𝑘 + (1 / 2))
· 𝑤)) / ((2 ·
π) · (sin‘(𝑤 / 2)))))) = (𝑦 ∈ ℝ ↦ if((𝑦 mod (2 · π)) = 0,
(((2 · 𝑘) + 1) / (2
· π)), ((sin‘((𝑘 + (1 / 2)) · 𝑦)) / ((2 · π) ·
(sin‘(𝑦 /
2)))))) |
12 | | oveq2 7277 |
. . . . . . . 8
⊢ (𝑘 = 𝑚 → (2 · 𝑘) = (2 · 𝑚)) |
13 | 12 | oveq1d 7284 |
. . . . . . 7
⊢ (𝑘 = 𝑚 → ((2 · 𝑘) + 1) = ((2 · 𝑚) + 1)) |
14 | 13 | oveq1d 7284 |
. . . . . 6
⊢ (𝑘 = 𝑚 → (((2 · 𝑘) + 1) / (2 · π)) = (((2 ·
𝑚) + 1) / (2 ·
π))) |
15 | | oveq1 7276 |
. . . . . . . . 9
⊢ (𝑘 = 𝑚 → (𝑘 + (1 / 2)) = (𝑚 + (1 / 2))) |
16 | 15 | oveq1d 7284 |
. . . . . . . 8
⊢ (𝑘 = 𝑚 → ((𝑘 + (1 / 2)) · 𝑦) = ((𝑚 + (1 / 2)) · 𝑦)) |
17 | 16 | fveq2d 6773 |
. . . . . . 7
⊢ (𝑘 = 𝑚 → (sin‘((𝑘 + (1 / 2)) · 𝑦)) = (sin‘((𝑚 + (1 / 2)) · 𝑦))) |
18 | 17 | oveq1d 7284 |
. . . . . 6
⊢ (𝑘 = 𝑚 → ((sin‘((𝑘 + (1 / 2)) · 𝑦)) / ((2 · π) ·
(sin‘(𝑦 / 2)))) =
((sin‘((𝑚 + (1 / 2))
· 𝑦)) / ((2 ·
π) · (sin‘(𝑦 / 2))))) |
19 | 14, 18 | ifeq12d 4486 |
. . . . 5
⊢ (𝑘 = 𝑚 → if((𝑦 mod (2 · π)) = 0, (((2 ·
𝑘) + 1) / (2 ·
π)), ((sin‘((𝑘 +
(1 / 2)) · 𝑦)) / ((2
· π) · (sin‘(𝑦 / 2))))) = if((𝑦 mod (2 · π)) = 0, (((2 ·
𝑚) + 1) / (2 ·
π)), ((sin‘((𝑚 +
(1 / 2)) · 𝑦)) / ((2
· π) · (sin‘(𝑦 / 2)))))) |
20 | 19 | mpteq2dv 5181 |
. . . 4
⊢ (𝑘 = 𝑚 → (𝑦 ∈ ℝ ↦ if((𝑦 mod (2 · π)) = 0,
(((2 · 𝑘) + 1) / (2
· π)), ((sin‘((𝑘 + (1 / 2)) · 𝑦)) / ((2 · π) ·
(sin‘(𝑦 / 2)))))) =
(𝑦 ∈ ℝ ↦
if((𝑦 mod (2 ·
π)) = 0, (((2 · 𝑚) + 1) / (2 · π)),
((sin‘((𝑚 + (1 / 2))
· 𝑦)) / ((2 ·
π) · (sin‘(𝑦 / 2))))))) |
21 | 11, 20 | eqtrid 2792 |
. . 3
⊢ (𝑘 = 𝑚 → (𝑤 ∈ ℝ ↦ if((𝑤 mod (2 · π)) = 0,
(((2 · 𝑘) + 1) / (2
· π)), ((sin‘((𝑘 + (1 / 2)) · 𝑤)) / ((2 · π) ·
(sin‘(𝑤 / 2)))))) =
(𝑦 ∈ ℝ ↦
if((𝑦 mod (2 ·
π)) = 0, (((2 · 𝑚) + 1) / (2 · π)),
((sin‘((𝑚 + (1 / 2))
· 𝑦)) / ((2 ·
π) · (sin‘(𝑦 / 2))))))) |
22 | 21 | cbvmptv 5192 |
. 2
⊢ (𝑘 ∈ ℕ ↦ (𝑤 ∈ ℝ ↦
if((𝑤 mod (2 ·
π)) = 0, (((2 · 𝑘) + 1) / (2 · π)),
((sin‘((𝑘 + (1 / 2))
· 𝑤)) / ((2 ·
π) · (sin‘(𝑤 / 2))))))) = (𝑚 ∈ ℕ ↦ (𝑦 ∈ ℝ ↦ if((𝑦 mod (2 · π)) = 0,
(((2 · 𝑚) + 1) / (2
· π)), ((sin‘((𝑚 + (1 / 2)) · 𝑦)) / ((2 · π) ·
(sin‘(𝑦 /
2))))))) |
23 | | fourierdlem113.p |
. 2
⊢ 𝑃 = (𝑛 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑m
(0...𝑛)) ∣ (((𝑝‘0) = -π ∧ (𝑝‘𝑛) = π) ∧ ∀𝑖 ∈ (0..^𝑛)(𝑝‘𝑖) < (𝑝‘(𝑖 + 1)))}) |
24 | | fourierdlem113.m |
. 2
⊢ (𝜑 → 𝑀 ∈ ℕ) |
25 | | fourierdlem113.q |
. 2
⊢ (𝜑 → 𝑄 ∈ (𝑃‘𝑀)) |
26 | | oveq1 7276 |
. . . . . . . 8
⊢ (𝑤 = 𝑦 → (𝑤 + (𝑗 · 𝑇)) = (𝑦 + (𝑗 · 𝑇))) |
27 | 26 | eleq1d 2825 |
. . . . . . 7
⊢ (𝑤 = 𝑦 → ((𝑤 + (𝑗 · 𝑇)) ∈ ran 𝑄 ↔ (𝑦 + (𝑗 · 𝑇)) ∈ ran 𝑄)) |
28 | 27 | rexbidv 3228 |
. . . . . 6
⊢ (𝑤 = 𝑦 → (∃𝑗 ∈ ℤ (𝑤 + (𝑗 · 𝑇)) ∈ ran 𝑄 ↔ ∃𝑗 ∈ ℤ (𝑦 + (𝑗 · 𝑇)) ∈ ran 𝑄)) |
29 | 28 | cbvrabv 3425 |
. . . . 5
⊢ {𝑤 ∈ ((-π + 𝑋)[,](π + 𝑋)) ∣ ∃𝑗 ∈ ℤ (𝑤 + (𝑗 · 𝑇)) ∈ ran 𝑄} = {𝑦 ∈ ((-π + 𝑋)[,](π + 𝑋)) ∣ ∃𝑗 ∈ ℤ (𝑦 + (𝑗 · 𝑇)) ∈ ran 𝑄} |
30 | 29 | uneq2i 4099 |
. . . 4
⊢ ({(-π
+ 𝑋), (π + 𝑋)} ∪ {𝑤 ∈ ((-π + 𝑋)[,](π + 𝑋)) ∣ ∃𝑗 ∈ ℤ (𝑤 + (𝑗 · 𝑇)) ∈ ran 𝑄}) = ({(-π + 𝑋), (π + 𝑋)} ∪ {𝑦 ∈ ((-π + 𝑋)[,](π + 𝑋)) ∣ ∃𝑗 ∈ ℤ (𝑦 + (𝑗 · 𝑇)) ∈ ran 𝑄}) |
31 | 30 | fveq2i 6772 |
. . 3
⊢
(♯‘({(-π + 𝑋), (π + 𝑋)} ∪ {𝑤 ∈ ((-π + 𝑋)[,](π + 𝑋)) ∣ ∃𝑗 ∈ ℤ (𝑤 + (𝑗 · 𝑇)) ∈ ran 𝑄})) = (♯‘({(-π + 𝑋), (π + 𝑋)} ∪ {𝑦 ∈ ((-π + 𝑋)[,](π + 𝑋)) ∣ ∃𝑗 ∈ ℤ (𝑦 + (𝑗 · 𝑇)) ∈ ran 𝑄})) |
32 | 31 | oveq1i 7279 |
. 2
⊢
((♯‘({(-π + 𝑋), (π + 𝑋)} ∪ {𝑤 ∈ ((-π + 𝑋)[,](π + 𝑋)) ∣ ∃𝑗 ∈ ℤ (𝑤 + (𝑗 · 𝑇)) ∈ ran 𝑄})) − 1) = ((♯‘({(-π +
𝑋), (π + 𝑋)} ∪ {𝑦 ∈ ((-π + 𝑋)[,](π + 𝑋)) ∣ ∃𝑗 ∈ ℤ (𝑦 + (𝑗 · 𝑇)) ∈ ran 𝑄})) − 1) |
33 | | oveq1 7276 |
. . . . . . . . . . . 12
⊢ (𝑘 = 𝑗 → (𝑘 · 𝑇) = (𝑗 · 𝑇)) |
34 | 33 | oveq2d 7285 |
. . . . . . . . . . 11
⊢ (𝑘 = 𝑗 → (𝑦 + (𝑘 · 𝑇)) = (𝑦 + (𝑗 · 𝑇))) |
35 | 34 | eleq1d 2825 |
. . . . . . . . . 10
⊢ (𝑘 = 𝑗 → ((𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄 ↔ (𝑦 + (𝑗 · 𝑇)) ∈ ran 𝑄)) |
36 | 35 | cbvrexvw 3382 |
. . . . . . . . 9
⊢
(∃𝑘 ∈
ℤ (𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄 ↔ ∃𝑗 ∈ ℤ (𝑦 + (𝑗 · 𝑇)) ∈ ran 𝑄) |
37 | 36 | a1i 11 |
. . . . . . . 8
⊢ (𝑦 ∈ ((-π + 𝑋)[,](π + 𝑋)) → (∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄 ↔ ∃𝑗 ∈ ℤ (𝑦 + (𝑗 · 𝑇)) ∈ ran 𝑄)) |
38 | 37 | rabbiia 3405 |
. . . . . . 7
⊢ {𝑦 ∈ ((-π + 𝑋)[,](π + 𝑋)) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄} = {𝑦 ∈ ((-π + 𝑋)[,](π + 𝑋)) ∣ ∃𝑗 ∈ ℤ (𝑦 + (𝑗 · 𝑇)) ∈ ran 𝑄} |
39 | 38 | uneq2i 4099 |
. . . . . 6
⊢ ({(-π
+ 𝑋), (π + 𝑋)} ∪ {𝑦 ∈ ((-π + 𝑋)[,](π + 𝑋)) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄}) = ({(-π + 𝑋), (π + 𝑋)} ∪ {𝑦 ∈ ((-π + 𝑋)[,](π + 𝑋)) ∣ ∃𝑗 ∈ ℤ (𝑦 + (𝑗 · 𝑇)) ∈ ran 𝑄}) |
40 | | isoeq5 7186 |
. . . . . 6
⊢ (({(-π
+ 𝑋), (π + 𝑋)} ∪ {𝑦 ∈ ((-π + 𝑋)[,](π + 𝑋)) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄}) = ({(-π + 𝑋), (π + 𝑋)} ∪ {𝑦 ∈ ((-π + 𝑋)[,](π + 𝑋)) ∣ ∃𝑗 ∈ ℤ (𝑦 + (𝑗 · 𝑇)) ∈ ran 𝑄}) → (𝑔 Isom < , <
((0...((♯‘({(-π + 𝑋), (π + 𝑋)} ∪ {𝑤 ∈ ((-π + 𝑋)[,](π + 𝑋)) ∣ ∃𝑘 ∈ ℤ (𝑤 + (𝑘 · 𝑇)) ∈ ran 𝑄})) − 1)), ({(-π + 𝑋), (π + 𝑋)} ∪ {𝑦 ∈ ((-π + 𝑋)[,](π + 𝑋)) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄})) ↔ 𝑔 Isom < , <
((0...((♯‘({(-π + 𝑋), (π + 𝑋)} ∪ {𝑤 ∈ ((-π + 𝑋)[,](π + 𝑋)) ∣ ∃𝑘 ∈ ℤ (𝑤 + (𝑘 · 𝑇)) ∈ ran 𝑄})) − 1)), ({(-π + 𝑋), (π + 𝑋)} ∪ {𝑦 ∈ ((-π + 𝑋)[,](π + 𝑋)) ∣ ∃𝑗 ∈ ℤ (𝑦 + (𝑗 · 𝑇)) ∈ ran 𝑄})))) |
41 | 39, 40 | ax-mp 5 |
. . . . 5
⊢ (𝑔 Isom < , <
((0...((♯‘({(-π + 𝑋), (π + 𝑋)} ∪ {𝑤 ∈ ((-π + 𝑋)[,](π + 𝑋)) ∣ ∃𝑘 ∈ ℤ (𝑤 + (𝑘 · 𝑇)) ∈ ran 𝑄})) − 1)), ({(-π + 𝑋), (π + 𝑋)} ∪ {𝑦 ∈ ((-π + 𝑋)[,](π + 𝑋)) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄})) ↔ 𝑔 Isom < , <
((0...((♯‘({(-π + 𝑋), (π + 𝑋)} ∪ {𝑤 ∈ ((-π + 𝑋)[,](π + 𝑋)) ∣ ∃𝑘 ∈ ℤ (𝑤 + (𝑘 · 𝑇)) ∈ ran 𝑄})) − 1)), ({(-π + 𝑋), (π + 𝑋)} ∪ {𝑦 ∈ ((-π + 𝑋)[,](π + 𝑋)) ∣ ∃𝑗 ∈ ℤ (𝑦 + (𝑗 · 𝑇)) ∈ ran 𝑄}))) |
42 | 41 | a1i 11 |
. . . 4
⊢ (𝑔 = 𝑓 → (𝑔 Isom < , <
((0...((♯‘({(-π + 𝑋), (π + 𝑋)} ∪ {𝑤 ∈ ((-π + 𝑋)[,](π + 𝑋)) ∣ ∃𝑘 ∈ ℤ (𝑤 + (𝑘 · 𝑇)) ∈ ran 𝑄})) − 1)), ({(-π + 𝑋), (π + 𝑋)} ∪ {𝑦 ∈ ((-π + 𝑋)[,](π + 𝑋)) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄})) ↔ 𝑔 Isom < , <
((0...((♯‘({(-π + 𝑋), (π + 𝑋)} ∪ {𝑤 ∈ ((-π + 𝑋)[,](π + 𝑋)) ∣ ∃𝑘 ∈ ℤ (𝑤 + (𝑘 · 𝑇)) ∈ ran 𝑄})) − 1)), ({(-π + 𝑋), (π + 𝑋)} ∪ {𝑦 ∈ ((-π + 𝑋)[,](π + 𝑋)) ∣ ∃𝑗 ∈ ℤ (𝑦 + (𝑗 · 𝑇)) ∈ ran 𝑄})))) |
43 | 33 | oveq2d 7285 |
. . . . . . . . . . . . . 14
⊢ (𝑘 = 𝑗 → (𝑤 + (𝑘 · 𝑇)) = (𝑤 + (𝑗 · 𝑇))) |
44 | 43 | eleq1d 2825 |
. . . . . . . . . . . . 13
⊢ (𝑘 = 𝑗 → ((𝑤 + (𝑘 · 𝑇)) ∈ ran 𝑄 ↔ (𝑤 + (𝑗 · 𝑇)) ∈ ran 𝑄)) |
45 | 44 | cbvrexvw 3382 |
. . . . . . . . . . . 12
⊢
(∃𝑘 ∈
ℤ (𝑤 + (𝑘 · 𝑇)) ∈ ran 𝑄 ↔ ∃𝑗 ∈ ℤ (𝑤 + (𝑗 · 𝑇)) ∈ ran 𝑄) |
46 | 45 | a1i 11 |
. . . . . . . . . . 11
⊢ (𝑤 ∈ ((-π + 𝑋)[,](π + 𝑋)) → (∃𝑘 ∈ ℤ (𝑤 + (𝑘 · 𝑇)) ∈ ran 𝑄 ↔ ∃𝑗 ∈ ℤ (𝑤 + (𝑗 · 𝑇)) ∈ ran 𝑄)) |
47 | 46 | rabbiia 3405 |
. . . . . . . . . 10
⊢ {𝑤 ∈ ((-π + 𝑋)[,](π + 𝑋)) ∣ ∃𝑘 ∈ ℤ (𝑤 + (𝑘 · 𝑇)) ∈ ran 𝑄} = {𝑤 ∈ ((-π + 𝑋)[,](π + 𝑋)) ∣ ∃𝑗 ∈ ℤ (𝑤 + (𝑗 · 𝑇)) ∈ ran 𝑄} |
48 | 47 | uneq2i 4099 |
. . . . . . . . 9
⊢ ({(-π
+ 𝑋), (π + 𝑋)} ∪ {𝑤 ∈ ((-π + 𝑋)[,](π + 𝑋)) ∣ ∃𝑘 ∈ ℤ (𝑤 + (𝑘 · 𝑇)) ∈ ran 𝑄}) = ({(-π + 𝑋), (π + 𝑋)} ∪ {𝑤 ∈ ((-π + 𝑋)[,](π + 𝑋)) ∣ ∃𝑗 ∈ ℤ (𝑤 + (𝑗 · 𝑇)) ∈ ran 𝑄}) |
49 | 48 | fveq2i 6772 |
. . . . . . . 8
⊢
(♯‘({(-π + 𝑋), (π + 𝑋)} ∪ {𝑤 ∈ ((-π + 𝑋)[,](π + 𝑋)) ∣ ∃𝑘 ∈ ℤ (𝑤 + (𝑘 · 𝑇)) ∈ ran 𝑄})) = (♯‘({(-π + 𝑋), (π + 𝑋)} ∪ {𝑤 ∈ ((-π + 𝑋)[,](π + 𝑋)) ∣ ∃𝑗 ∈ ℤ (𝑤 + (𝑗 · 𝑇)) ∈ ran 𝑄})) |
50 | 49 | oveq1i 7279 |
. . . . . . 7
⊢
((♯‘({(-π + 𝑋), (π + 𝑋)} ∪ {𝑤 ∈ ((-π + 𝑋)[,](π + 𝑋)) ∣ ∃𝑘 ∈ ℤ (𝑤 + (𝑘 · 𝑇)) ∈ ran 𝑄})) − 1) = ((♯‘({(-π +
𝑋), (π + 𝑋)} ∪ {𝑤 ∈ ((-π + 𝑋)[,](π + 𝑋)) ∣ ∃𝑗 ∈ ℤ (𝑤 + (𝑗 · 𝑇)) ∈ ran 𝑄})) − 1) |
51 | 50 | oveq2i 7280 |
. . . . . 6
⊢
(0...((♯‘({(-π + 𝑋), (π + 𝑋)} ∪ {𝑤 ∈ ((-π + 𝑋)[,](π + 𝑋)) ∣ ∃𝑘 ∈ ℤ (𝑤 + (𝑘 · 𝑇)) ∈ ran 𝑄})) − 1)) =
(0...((♯‘({(-π + 𝑋), (π + 𝑋)} ∪ {𝑤 ∈ ((-π + 𝑋)[,](π + 𝑋)) ∣ ∃𝑗 ∈ ℤ (𝑤 + (𝑗 · 𝑇)) ∈ ran 𝑄})) − 1)) |
52 | | isoeq4 7185 |
. . . . . 6
⊢
((0...((♯‘({(-π + 𝑋), (π + 𝑋)} ∪ {𝑤 ∈ ((-π + 𝑋)[,](π + 𝑋)) ∣ ∃𝑘 ∈ ℤ (𝑤 + (𝑘 · 𝑇)) ∈ ran 𝑄})) − 1)) =
(0...((♯‘({(-π + 𝑋), (π + 𝑋)} ∪ {𝑤 ∈ ((-π + 𝑋)[,](π + 𝑋)) ∣ ∃𝑗 ∈ ℤ (𝑤 + (𝑗 · 𝑇)) ∈ ran 𝑄})) − 1)) → (𝑔 Isom < , <
((0...((♯‘({(-π + 𝑋), (π + 𝑋)} ∪ {𝑤 ∈ ((-π + 𝑋)[,](π + 𝑋)) ∣ ∃𝑘 ∈ ℤ (𝑤 + (𝑘 · 𝑇)) ∈ ran 𝑄})) − 1)), ({(-π + 𝑋), (π + 𝑋)} ∪ {𝑦 ∈ ((-π + 𝑋)[,](π + 𝑋)) ∣ ∃𝑗 ∈ ℤ (𝑦 + (𝑗 · 𝑇)) ∈ ran 𝑄})) ↔ 𝑔 Isom < , <
((0...((♯‘({(-π + 𝑋), (π + 𝑋)} ∪ {𝑤 ∈ ((-π + 𝑋)[,](π + 𝑋)) ∣ ∃𝑗 ∈ ℤ (𝑤 + (𝑗 · 𝑇)) ∈ ran 𝑄})) − 1)), ({(-π + 𝑋), (π + 𝑋)} ∪ {𝑦 ∈ ((-π + 𝑋)[,](π + 𝑋)) ∣ ∃𝑗 ∈ ℤ (𝑦 + (𝑗 · 𝑇)) ∈ ran 𝑄})))) |
53 | 51, 52 | ax-mp 5 |
. . . . 5
⊢ (𝑔 Isom < , <
((0...((♯‘({(-π + 𝑋), (π + 𝑋)} ∪ {𝑤 ∈ ((-π + 𝑋)[,](π + 𝑋)) ∣ ∃𝑘 ∈ ℤ (𝑤 + (𝑘 · 𝑇)) ∈ ran 𝑄})) − 1)), ({(-π + 𝑋), (π + 𝑋)} ∪ {𝑦 ∈ ((-π + 𝑋)[,](π + 𝑋)) ∣ ∃𝑗 ∈ ℤ (𝑦 + (𝑗 · 𝑇)) ∈ ran 𝑄})) ↔ 𝑔 Isom < , <
((0...((♯‘({(-π + 𝑋), (π + 𝑋)} ∪ {𝑤 ∈ ((-π + 𝑋)[,](π + 𝑋)) ∣ ∃𝑗 ∈ ℤ (𝑤 + (𝑗 · 𝑇)) ∈ ran 𝑄})) − 1)), ({(-π + 𝑋), (π + 𝑋)} ∪ {𝑦 ∈ ((-π + 𝑋)[,](π + 𝑋)) ∣ ∃𝑗 ∈ ℤ (𝑦 + (𝑗 · 𝑇)) ∈ ran 𝑄}))) |
54 | 53 | a1i 11 |
. . . 4
⊢ (𝑔 = 𝑓 → (𝑔 Isom < , <
((0...((♯‘({(-π + 𝑋), (π + 𝑋)} ∪ {𝑤 ∈ ((-π + 𝑋)[,](π + 𝑋)) ∣ ∃𝑘 ∈ ℤ (𝑤 + (𝑘 · 𝑇)) ∈ ran 𝑄})) − 1)), ({(-π + 𝑋), (π + 𝑋)} ∪ {𝑦 ∈ ((-π + 𝑋)[,](π + 𝑋)) ∣ ∃𝑗 ∈ ℤ (𝑦 + (𝑗 · 𝑇)) ∈ ran 𝑄})) ↔ 𝑔 Isom < , <
((0...((♯‘({(-π + 𝑋), (π + 𝑋)} ∪ {𝑤 ∈ ((-π + 𝑋)[,](π + 𝑋)) ∣ ∃𝑗 ∈ ℤ (𝑤 + (𝑗 · 𝑇)) ∈ ran 𝑄})) − 1)), ({(-π + 𝑋), (π + 𝑋)} ∪ {𝑦 ∈ ((-π + 𝑋)[,](π + 𝑋)) ∣ ∃𝑗 ∈ ℤ (𝑦 + (𝑗 · 𝑇)) ∈ ran 𝑄})))) |
55 | | isoeq1 7182 |
. . . 4
⊢ (𝑔 = 𝑓 → (𝑔 Isom < , <
((0...((♯‘({(-π + 𝑋), (π + 𝑋)} ∪ {𝑤 ∈ ((-π + 𝑋)[,](π + 𝑋)) ∣ ∃𝑗 ∈ ℤ (𝑤 + (𝑗 · 𝑇)) ∈ ran 𝑄})) − 1)), ({(-π + 𝑋), (π + 𝑋)} ∪ {𝑦 ∈ ((-π + 𝑋)[,](π + 𝑋)) ∣ ∃𝑗 ∈ ℤ (𝑦 + (𝑗 · 𝑇)) ∈ ran 𝑄})) ↔ 𝑓 Isom < , <
((0...((♯‘({(-π + 𝑋), (π + 𝑋)} ∪ {𝑤 ∈ ((-π + 𝑋)[,](π + 𝑋)) ∣ ∃𝑗 ∈ ℤ (𝑤 + (𝑗 · 𝑇)) ∈ ran 𝑄})) − 1)), ({(-π + 𝑋), (π + 𝑋)} ∪ {𝑦 ∈ ((-π + 𝑋)[,](π + 𝑋)) ∣ ∃𝑗 ∈ ℤ (𝑦 + (𝑗 · 𝑇)) ∈ ran 𝑄})))) |
56 | 42, 54, 55 | 3bitrd 305 |
. . 3
⊢ (𝑔 = 𝑓 → (𝑔 Isom < , <
((0...((♯‘({(-π + 𝑋), (π + 𝑋)} ∪ {𝑤 ∈ ((-π + 𝑋)[,](π + 𝑋)) ∣ ∃𝑘 ∈ ℤ (𝑤 + (𝑘 · 𝑇)) ∈ ran 𝑄})) − 1)), ({(-π + 𝑋), (π + 𝑋)} ∪ {𝑦 ∈ ((-π + 𝑋)[,](π + 𝑋)) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄})) ↔ 𝑓 Isom < , <
((0...((♯‘({(-π + 𝑋), (π + 𝑋)} ∪ {𝑤 ∈ ((-π + 𝑋)[,](π + 𝑋)) ∣ ∃𝑗 ∈ ℤ (𝑤 + (𝑗 · 𝑇)) ∈ ran 𝑄})) − 1)), ({(-π + 𝑋), (π + 𝑋)} ∪ {𝑦 ∈ ((-π + 𝑋)[,](π + 𝑋)) ∣ ∃𝑗 ∈ ℤ (𝑦 + (𝑗 · 𝑇)) ∈ ran 𝑄})))) |
57 | 56 | cbviotavw 6397 |
. 2
⊢
(℩𝑔𝑔 Isom < , <
((0...((♯‘({(-π + 𝑋), (π + 𝑋)} ∪ {𝑤 ∈ ((-π + 𝑋)[,](π + 𝑋)) ∣ ∃𝑘 ∈ ℤ (𝑤 + (𝑘 · 𝑇)) ∈ ran 𝑄})) − 1)), ({(-π + 𝑋), (π + 𝑋)} ∪ {𝑦 ∈ ((-π + 𝑋)[,](π + 𝑋)) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄}))) = (℩𝑓𝑓 Isom < , <
((0...((♯‘({(-π + 𝑋), (π + 𝑋)} ∪ {𝑤 ∈ ((-π + 𝑋)[,](π + 𝑋)) ∣ ∃𝑗 ∈ ℤ (𝑤 + (𝑗 · 𝑇)) ∈ ran 𝑄})) − 1)), ({(-π + 𝑋), (π + 𝑋)} ∪ {𝑦 ∈ ((-π + 𝑋)[,](π + 𝑋)) ∣ ∃𝑗 ∈ ℤ (𝑦 + (𝑗 · 𝑇)) ∈ ran 𝑄}))) |
58 | | fourierdlem113.x |
. 2
⊢ (𝜑 → 𝑋 ∈ ℝ) |
59 | | pire 25611 |
. . . . 5
⊢ π
∈ ℝ |
60 | 59 | renegcli 11280 |
. . . 4
⊢ -π
∈ ℝ |
61 | 60 | a1i 11 |
. . 3
⊢ (𝜑 → -π ∈
ℝ) |
62 | 59 | a1i 11 |
. . 3
⊢ (𝜑 → π ∈
ℝ) |
63 | | negpilt0 42787 |
. . . 4
⊢ -π
< 0 |
64 | 63 | a1i 11 |
. . 3
⊢ (𝜑 → -π <
0) |
65 | | pipos 25613 |
. . . 4
⊢ 0 <
π |
66 | 65 | a1i 11 |
. . 3
⊢ (𝜑 → 0 <
π) |
67 | | picn 25612 |
. . . . 5
⊢ π
∈ ℂ |
68 | 67 | 2timesi 12109 |
. . . 4
⊢ (2
· π) = (π + π) |
69 | | fourierdlem113.t |
. . . 4
⊢ 𝑇 = (2 ·
π) |
70 | 67, 67 | subnegi 11298 |
. . . 4
⊢ (π
− -π) = (π + π) |
71 | 68, 69, 70 | 3eqtr4i 2778 |
. . 3
⊢ 𝑇 = (π −
-π) |
72 | 23 | fourierdlem2 43619 |
. . . . . . . 8
⊢ (𝑀 ∈ ℕ → (𝑄 ∈ (𝑃‘𝑀) ↔ (𝑄 ∈ (ℝ ↑m
(0...𝑀)) ∧ (((𝑄‘0) = -π ∧ (𝑄‘𝑀) = π) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑄‘𝑖) < (𝑄‘(𝑖 + 1)))))) |
73 | 24, 72 | syl 17 |
. . . . . . 7
⊢ (𝜑 → (𝑄 ∈ (𝑃‘𝑀) ↔ (𝑄 ∈ (ℝ ↑m
(0...𝑀)) ∧ (((𝑄‘0) = -π ∧ (𝑄‘𝑀) = π) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑄‘𝑖) < (𝑄‘(𝑖 + 1)))))) |
74 | 25, 73 | mpbid 231 |
. . . . . 6
⊢ (𝜑 → (𝑄 ∈ (ℝ ↑m
(0...𝑀)) ∧ (((𝑄‘0) = -π ∧ (𝑄‘𝑀) = π) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑄‘𝑖) < (𝑄‘(𝑖 + 1))))) |
75 | 74 | simpld 495 |
. . . . 5
⊢ (𝜑 → 𝑄 ∈ (ℝ ↑m
(0...𝑀))) |
76 | | elmapi 8618 |
. . . . 5
⊢ (𝑄 ∈ (ℝ
↑m (0...𝑀))
→ 𝑄:(0...𝑀)⟶ℝ) |
77 | 75, 76 | syl 17 |
. . . 4
⊢ (𝜑 → 𝑄:(0...𝑀)⟶ℝ) |
78 | | fzfid 13689 |
. . . 4
⊢ (𝜑 → (0...𝑀) ∈ Fin) |
79 | | rnffi 42679 |
. . . 4
⊢ ((𝑄:(0...𝑀)⟶ℝ ∧ (0...𝑀) ∈ Fin) → ran 𝑄 ∈ Fin) |
80 | 77, 78, 79 | syl2anc 584 |
. . 3
⊢ (𝜑 → ran 𝑄 ∈ Fin) |
81 | 23, 24, 25 | fourierdlem15 43632 |
. . . 4
⊢ (𝜑 → 𝑄:(0...𝑀)⟶(-π[,]π)) |
82 | | frn 6604 |
. . . 4
⊢ (𝑄:(0...𝑀)⟶(-π[,]π) → ran 𝑄 ⊆
(-π[,]π)) |
83 | 81, 82 | syl 17 |
. . 3
⊢ (𝜑 → ran 𝑄 ⊆ (-π[,]π)) |
84 | 74 | simprd 496 |
. . . . 5
⊢ (𝜑 → (((𝑄‘0) = -π ∧ (𝑄‘𝑀) = π) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑄‘𝑖) < (𝑄‘(𝑖 + 1)))) |
85 | 84 | simplrd 767 |
. . . 4
⊢ (𝜑 → (𝑄‘𝑀) = π) |
86 | | ffun 6600 |
. . . . . 6
⊢ (𝑄:(0...𝑀)⟶(-π[,]π) → Fun 𝑄) |
87 | 81, 86 | syl 17 |
. . . . 5
⊢ (𝜑 → Fun 𝑄) |
88 | 24 | nnnn0d 12291 |
. . . . . . . 8
⊢ (𝜑 → 𝑀 ∈
ℕ0) |
89 | | nn0uz 12617 |
. . . . . . . 8
⊢
ℕ0 = (ℤ≥‘0) |
90 | 88, 89 | eleqtrdi 2851 |
. . . . . . 7
⊢ (𝜑 → 𝑀 ∈
(ℤ≥‘0)) |
91 | | eluzfz2 13261 |
. . . . . . 7
⊢ (𝑀 ∈
(ℤ≥‘0) → 𝑀 ∈ (0...𝑀)) |
92 | 90, 91 | syl 17 |
. . . . . 6
⊢ (𝜑 → 𝑀 ∈ (0...𝑀)) |
93 | | fdm 6606 |
. . . . . . . 8
⊢ (𝑄:(0...𝑀)⟶(-π[,]π) → dom 𝑄 = (0...𝑀)) |
94 | 81, 93 | syl 17 |
. . . . . . 7
⊢ (𝜑 → dom 𝑄 = (0...𝑀)) |
95 | 94 | eqcomd 2746 |
. . . . . 6
⊢ (𝜑 → (0...𝑀) = dom 𝑄) |
96 | 92, 95 | eleqtrd 2843 |
. . . . 5
⊢ (𝜑 → 𝑀 ∈ dom 𝑄) |
97 | | fvelrn 6949 |
. . . . 5
⊢ ((Fun
𝑄 ∧ 𝑀 ∈ dom 𝑄) → (𝑄‘𝑀) ∈ ran 𝑄) |
98 | 87, 96, 97 | syl2anc 584 |
. . . 4
⊢ (𝜑 → (𝑄‘𝑀) ∈ ran 𝑄) |
99 | 85, 98 | eqeltrrd 2842 |
. . 3
⊢ (𝜑 → π ∈ ran 𝑄) |
100 | | fourierdlem113.e |
. . 3
⊢ 𝐸 = (𝑥 ∈ ℝ ↦ (𝑥 + ((⌊‘((π − 𝑥) / 𝑇)) · 𝑇))) |
101 | | fourierdlem113.exq |
. . 3
⊢ (𝜑 → (𝐸‘𝑋) ∈ ran 𝑄) |
102 | | eqid 2740 |
. . 3
⊢ ({(-π
+ 𝑋), (π + 𝑋)} ∪ {𝑤 ∈ ((-π + 𝑋)[,](π + 𝑋)) ∣ ∃𝑘 ∈ ℤ (𝑤 + (𝑘 · 𝑇)) ∈ ran 𝑄}) = ({(-π + 𝑋), (π + 𝑋)} ∪ {𝑤 ∈ ((-π + 𝑋)[,](π + 𝑋)) ∣ ∃𝑘 ∈ ℤ (𝑤 + (𝑘 · 𝑇)) ∈ ran 𝑄}) |
103 | | isoeq1 7182 |
. . . . 5
⊢ (𝑔 = 𝑓 → (𝑔 Isom < , <
((0...((♯‘({(-π + 𝑋), (π + 𝑋)} ∪ {𝑤 ∈ ((-π + 𝑋)[,](π + 𝑋)) ∣ ∃𝑘 ∈ ℤ (𝑤 + (𝑘 · 𝑇)) ∈ ran 𝑄})) − 1)), ({(-π + 𝑋), (π + 𝑋)} ∪ {𝑦 ∈ ((-π + 𝑋)[,](π + 𝑋)) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄})) ↔ 𝑓 Isom < , <
((0...((♯‘({(-π + 𝑋), (π + 𝑋)} ∪ {𝑤 ∈ ((-π + 𝑋)[,](π + 𝑋)) ∣ ∃𝑘 ∈ ℤ (𝑤 + (𝑘 · 𝑇)) ∈ ran 𝑄})) − 1)), ({(-π + 𝑋), (π + 𝑋)} ∪ {𝑦 ∈ ((-π + 𝑋)[,](π + 𝑋)) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄})))) |
104 | 30, 48, 39 | 3eqtr4ri 2779 |
. . . . . 6
⊢ ({(-π
+ 𝑋), (π + 𝑋)} ∪ {𝑦 ∈ ((-π + 𝑋)[,](π + 𝑋)) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄}) = ({(-π + 𝑋), (π + 𝑋)} ∪ {𝑤 ∈ ((-π + 𝑋)[,](π + 𝑋)) ∣ ∃𝑘 ∈ ℤ (𝑤 + (𝑘 · 𝑇)) ∈ ran 𝑄}) |
105 | | isoeq5 7186 |
. . . . . 6
⊢ (({(-π
+ 𝑋), (π + 𝑋)} ∪ {𝑦 ∈ ((-π + 𝑋)[,](π + 𝑋)) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄}) = ({(-π + 𝑋), (π + 𝑋)} ∪ {𝑤 ∈ ((-π + 𝑋)[,](π + 𝑋)) ∣ ∃𝑘 ∈ ℤ (𝑤 + (𝑘 · 𝑇)) ∈ ran 𝑄}) → (𝑓 Isom < , <
((0...((♯‘({(-π + 𝑋), (π + 𝑋)} ∪ {𝑤 ∈ ((-π + 𝑋)[,](π + 𝑋)) ∣ ∃𝑘 ∈ ℤ (𝑤 + (𝑘 · 𝑇)) ∈ ran 𝑄})) − 1)), ({(-π + 𝑋), (π + 𝑋)} ∪ {𝑦 ∈ ((-π + 𝑋)[,](π + 𝑋)) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄})) ↔ 𝑓 Isom < , <
((0...((♯‘({(-π + 𝑋), (π + 𝑋)} ∪ {𝑤 ∈ ((-π + 𝑋)[,](π + 𝑋)) ∣ ∃𝑘 ∈ ℤ (𝑤 + (𝑘 · 𝑇)) ∈ ran 𝑄})) − 1)), ({(-π + 𝑋), (π + 𝑋)} ∪ {𝑤 ∈ ((-π + 𝑋)[,](π + 𝑋)) ∣ ∃𝑘 ∈ ℤ (𝑤 + (𝑘 · 𝑇)) ∈ ran 𝑄})))) |
106 | 104, 105 | ax-mp 5 |
. . . . 5
⊢ (𝑓 Isom < , <
((0...((♯‘({(-π + 𝑋), (π + 𝑋)} ∪ {𝑤 ∈ ((-π + 𝑋)[,](π + 𝑋)) ∣ ∃𝑘 ∈ ℤ (𝑤 + (𝑘 · 𝑇)) ∈ ran 𝑄})) − 1)), ({(-π + 𝑋), (π + 𝑋)} ∪ {𝑦 ∈ ((-π + 𝑋)[,](π + 𝑋)) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄})) ↔ 𝑓 Isom < , <
((0...((♯‘({(-π + 𝑋), (π + 𝑋)} ∪ {𝑤 ∈ ((-π + 𝑋)[,](π + 𝑋)) ∣ ∃𝑘 ∈ ℤ (𝑤 + (𝑘 · 𝑇)) ∈ ran 𝑄})) − 1)), ({(-π + 𝑋), (π + 𝑋)} ∪ {𝑤 ∈ ((-π + 𝑋)[,](π + 𝑋)) ∣ ∃𝑘 ∈ ℤ (𝑤 + (𝑘 · 𝑇)) ∈ ran 𝑄}))) |
107 | 103, 106 | bitrdi 287 |
. . . 4
⊢ (𝑔 = 𝑓 → (𝑔 Isom < , <
((0...((♯‘({(-π + 𝑋), (π + 𝑋)} ∪ {𝑤 ∈ ((-π + 𝑋)[,](π + 𝑋)) ∣ ∃𝑘 ∈ ℤ (𝑤 + (𝑘 · 𝑇)) ∈ ran 𝑄})) − 1)), ({(-π + 𝑋), (π + 𝑋)} ∪ {𝑦 ∈ ((-π + 𝑋)[,](π + 𝑋)) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄})) ↔ 𝑓 Isom < , <
((0...((♯‘({(-π + 𝑋), (π + 𝑋)} ∪ {𝑤 ∈ ((-π + 𝑋)[,](π + 𝑋)) ∣ ∃𝑘 ∈ ℤ (𝑤 + (𝑘 · 𝑇)) ∈ ran 𝑄})) − 1)), ({(-π + 𝑋), (π + 𝑋)} ∪ {𝑤 ∈ ((-π + 𝑋)[,](π + 𝑋)) ∣ ∃𝑘 ∈ ℤ (𝑤 + (𝑘 · 𝑇)) ∈ ran 𝑄})))) |
108 | 107 | cbviotavw 6397 |
. . 3
⊢
(℩𝑔𝑔 Isom < , <
((0...((♯‘({(-π + 𝑋), (π + 𝑋)} ∪ {𝑤 ∈ ((-π + 𝑋)[,](π + 𝑋)) ∣ ∃𝑘 ∈ ℤ (𝑤 + (𝑘 · 𝑇)) ∈ ran 𝑄})) − 1)), ({(-π + 𝑋), (π + 𝑋)} ∪ {𝑦 ∈ ((-π + 𝑋)[,](π + 𝑋)) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄}))) = (℩𝑓𝑓 Isom < , <
((0...((♯‘({(-π + 𝑋), (π + 𝑋)} ∪ {𝑤 ∈ ((-π + 𝑋)[,](π + 𝑋)) ∣ ∃𝑘 ∈ ℤ (𝑤 + (𝑘 · 𝑇)) ∈ ran 𝑄})) − 1)), ({(-π + 𝑋), (π + 𝑋)} ∪ {𝑤 ∈ ((-π + 𝑋)[,](π + 𝑋)) ∣ ∃𝑘 ∈ ℤ (𝑤 + (𝑘 · 𝑇)) ∈ ran 𝑄}))) |
109 | | eqid 2740 |
. . 3
⊢ {𝑤 ∈ ((-π + 𝑋)(,](π + 𝑋)) ∣ ∃𝑘 ∈ ℤ (𝑤 + (𝑘 · 𝑇)) ∈ ran 𝑄} = {𝑤 ∈ ((-π + 𝑋)(,](π + 𝑋)) ∣ ∃𝑘 ∈ ℤ (𝑤 + (𝑘 · 𝑇)) ∈ ran 𝑄} |
110 | 61, 62, 64, 66, 71, 80, 83, 99, 100, 58, 101, 102, 108, 109 | fourierdlem51 43667 |
. 2
⊢ (𝜑 → 𝑋 ∈ ran (℩𝑔𝑔 Isom < , <
((0...((♯‘({(-π + 𝑋), (π + 𝑋)} ∪ {𝑤 ∈ ((-π + 𝑋)[,](π + 𝑋)) ∣ ∃𝑘 ∈ ℤ (𝑤 + (𝑘 · 𝑇)) ∈ ran 𝑄})) − 1)), ({(-π + 𝑋), (π + 𝑋)} ∪ {𝑦 ∈ ((-π + 𝑋)[,](π + 𝑋)) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄})))) |
111 | | fourierdlem113.per |
. 2
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → (𝐹‘(𝑥 + 𝑇)) = (𝐹‘𝑥)) |
112 | | ax-resscn 10927 |
. . . 4
⊢ ℝ
⊆ ℂ |
113 | 112 | a1i 11 |
. . 3
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → ℝ ⊆
ℂ) |
114 | | ioossre 13137 |
. . . . . . 7
⊢ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ⊆ ℝ |
115 | 114 | a1i 11 |
. . . . . 6
⊢ (𝜑 → ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ⊆ ℝ) |
116 | 1, 115 | fssresd 6638 |
. . . . 5
⊢ (𝜑 → (𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))):((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))⟶ℝ) |
117 | 112 | a1i 11 |
. . . . 5
⊢ (𝜑 → ℝ ⊆
ℂ) |
118 | 116, 117 | fssd 6615 |
. . . 4
⊢ (𝜑 → (𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))):((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))⟶ℂ) |
119 | 118 | adantr 481 |
. . 3
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))):((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))⟶ℂ) |
120 | 114 | a1i 11 |
. . 3
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ⊆ ℝ) |
121 | 1, 117 | fssd 6615 |
. . . . . . 7
⊢ (𝜑 → 𝐹:ℝ⟶ℂ) |
122 | 121 | adantr 481 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → 𝐹:ℝ⟶ℂ) |
123 | | ssid 3948 |
. . . . . . 7
⊢ ℝ
⊆ ℝ |
124 | 123 | a1i 11 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → ℝ ⊆
ℝ) |
125 | | eqid 2740 |
. . . . . . 7
⊢
(TopOpen‘ℂfld) =
(TopOpen‘ℂfld) |
126 | 125 | tgioo2 23962 |
. . . . . . 7
⊢
(topGen‘ran (,)) = ((TopOpen‘ℂfld)
↾t ℝ) |
127 | 125, 126 | dvres 25071 |
. . . . . 6
⊢
(((ℝ ⊆ ℂ ∧ 𝐹:ℝ⟶ℂ) ∧ (ℝ
⊆ ℝ ∧ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ⊆ ℝ)) → (ℝ D
(𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))))) = ((ℝ D 𝐹) ↾ ((int‘(topGen‘ran
(,)))‘((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))))) |
128 | 113, 122,
124, 120, 127 | syl22anc 836 |
. . . . 5
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (ℝ D (𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))))) = ((ℝ D 𝐹) ↾ ((int‘(topGen‘ran
(,)))‘((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))))) |
129 | 128 | dmeqd 5812 |
. . . 4
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → dom (ℝ D (𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))))) = dom ((ℝ D 𝐹) ↾ ((int‘(topGen‘ran
(,)))‘((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))))) |
130 | | ioontr 43018 |
. . . . . . 7
⊢
((int‘(topGen‘ran (,)))‘((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) = ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) |
131 | 130 | reseq2i 5886 |
. . . . . 6
⊢ ((ℝ
D 𝐹) ↾
((int‘(topGen‘ran (,)))‘((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))))) = ((ℝ D 𝐹) ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) |
132 | 131 | dmeqi 5811 |
. . . . 5
⊢ dom
((ℝ D 𝐹) ↾
((int‘(topGen‘ran (,)))‘((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))))) = dom ((ℝ D 𝐹) ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) |
133 | 132 | a1i 11 |
. . . 4
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → dom ((ℝ D 𝐹) ↾ ((int‘(topGen‘ran
(,)))‘((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))))) = dom ((ℝ D 𝐹) ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))))) |
134 | | fourierdlem113.dvcn |
. . . . 5
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → ((ℝ D 𝐹) ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) ∈ (((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))–cn→ℂ)) |
135 | | cncff 24052 |
. . . . 5
⊢
(((ℝ D 𝐹)
↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) ∈ (((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))–cn→ℂ) → ((ℝ D 𝐹) ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))):((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))⟶ℂ) |
136 | | fdm 6606 |
. . . . 5
⊢
(((ℝ D 𝐹)
↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))):((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))⟶ℂ → dom ((ℝ D
𝐹) ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) = ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) |
137 | 134, 135,
136 | 3syl 18 |
. . . 4
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → dom ((ℝ D 𝐹) ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) = ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) |
138 | 129, 133,
137 | 3eqtrd 2784 |
. . 3
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → dom (ℝ D (𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))))) = ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) |
139 | | dvcn 25081 |
. . 3
⊢
(((ℝ ⊆ ℂ ∧ (𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))):((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))⟶ℂ ∧ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ⊆ ℝ) ∧ dom (ℝ D
(𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))))) = ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) → (𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) ∈ (((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))–cn→ℂ)) |
140 | 113, 119,
120, 138, 139 | syl31anc 1372 |
. 2
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) ∈ (((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))–cn→ℂ)) |
141 | 120, 113 | sstrd 3936 |
. . 3
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ⊆ ℂ) |
142 | 77 | adantr 481 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → 𝑄:(0...𝑀)⟶ℝ) |
143 | | fzofzp1 13480 |
. . . . . . 7
⊢ (𝑖 ∈ (0..^𝑀) → (𝑖 + 1) ∈ (0...𝑀)) |
144 | 143 | adantl 482 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝑖 + 1) ∈ (0...𝑀)) |
145 | 142, 144 | ffvelrnd 6957 |
. . . . 5
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝑄‘(𝑖 + 1)) ∈ ℝ) |
146 | 145 | rexrd 11024 |
. . . 4
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝑄‘(𝑖 + 1)) ∈
ℝ*) |
147 | | elfzofz 13399 |
. . . . . 6
⊢ (𝑖 ∈ (0..^𝑀) → 𝑖 ∈ (0...𝑀)) |
148 | 147 | adantl 482 |
. . . . 5
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → 𝑖 ∈ (0...𝑀)) |
149 | 142, 148 | ffvelrnd 6957 |
. . . 4
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝑄‘𝑖) ∈ ℝ) |
150 | 74 | simprrd 771 |
. . . . 5
⊢ (𝜑 → ∀𝑖 ∈ (0..^𝑀)(𝑄‘𝑖) < (𝑄‘(𝑖 + 1))) |
151 | 150 | r19.21bi 3135 |
. . . 4
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝑄‘𝑖) < (𝑄‘(𝑖 + 1))) |
152 | 125, 146,
149, 151 | lptioo1cn 43156 |
. . 3
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝑄‘𝑖) ∈
((limPt‘(TopOpen‘ℂfld))‘((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))))) |
153 | 116 | adantr 481 |
. . . 4
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))):((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))⟶ℝ) |
154 | 123 | a1i 11 |
. . . . . . . 8
⊢ (𝜑 → ℝ ⊆
ℝ) |
155 | 117, 121,
154 | dvbss 25061 |
. . . . . . 7
⊢ (𝜑 → dom (ℝ D 𝐹) ⊆
ℝ) |
156 | | dvfre 25111 |
. . . . . . . 8
⊢ ((𝐹:ℝ⟶ℝ ∧
ℝ ⊆ ℝ) → (ℝ D 𝐹):dom (ℝ D 𝐹)⟶ℝ) |
157 | 1, 154, 156 | syl2anc 584 |
. . . . . . 7
⊢ (𝜑 → (ℝ D 𝐹):dom (ℝ D 𝐹)⟶ℝ) |
158 | | 0re 10976 |
. . . . . . . . . 10
⊢ 0 ∈
ℝ |
159 | 60, 158, 59 | lttri 11099 |
. . . . . . . . 9
⊢ ((-π
< 0 ∧ 0 < π) → -π < π) |
160 | 63, 65, 159 | mp2an 689 |
. . . . . . . 8
⊢ -π
< π |
161 | 160 | a1i 11 |
. . . . . . 7
⊢ (𝜑 → -π <
π) |
162 | 84 | simplld 765 |
. . . . . . 7
⊢ (𝜑 → (𝑄‘0) = -π) |
163 | 134, 135 | syl 17 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → ((ℝ D 𝐹) ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))):((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))⟶ℂ) |
164 | | fourierdlem113.dvlb |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (((ℝ D 𝐹) ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) limℂ (𝑄‘𝑖)) ≠ ∅) |
165 | 163, 141,
152, 164, 125 | ellimciota 43124 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (℩𝑥𝑥 ∈ (((ℝ D 𝐹) ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) limℂ (𝑄‘𝑖))) ∈ (((ℝ D 𝐹) ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) limℂ (𝑄‘𝑖))) |
166 | 149 | rexrd 11024 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝑄‘𝑖) ∈
ℝ*) |
167 | 125, 166,
145, 151 | lptioo2cn 43155 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝑄‘(𝑖 + 1)) ∈
((limPt‘(TopOpen‘ℂfld))‘((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))))) |
168 | | fourierdlem113.dvub |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (((ℝ D 𝐹) ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) limℂ (𝑄‘(𝑖 + 1))) ≠ ∅) |
169 | 163, 141,
167, 168, 125 | ellimciota 43124 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (℩𝑥𝑥 ∈ (((ℝ D 𝐹) ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) limℂ (𝑄‘(𝑖 + 1)))) ∈ (((ℝ D 𝐹) ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) limℂ (𝑄‘(𝑖 + 1)))) |
170 | 121 | adantr 481 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑘 ∈ ℤ) → 𝐹:ℝ⟶ℂ) |
171 | | zre 12321 |
. . . . . . . . . . . 12
⊢ (𝑘 ∈ ℤ → 𝑘 ∈
ℝ) |
172 | 171 | adantl 482 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑘 ∈ ℤ) → 𝑘 ∈ ℝ) |
173 | | 2re 12045 |
. . . . . . . . . . . . . . 15
⊢ 2 ∈
ℝ |
174 | 173, 59 | remulcli 10990 |
. . . . . . . . . . . . . 14
⊢ (2
· π) ∈ ℝ |
175 | 174 | a1i 11 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (2 · π) ∈
ℝ) |
176 | 69, 175 | eqeltrid 2845 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝑇 ∈ ℝ) |
177 | 176 | adantr 481 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑘 ∈ ℤ) → 𝑇 ∈ ℝ) |
178 | 172, 177 | remulcld 11004 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑘 ∈ ℤ) → (𝑘 · 𝑇) ∈ ℝ) |
179 | 170 | adantr 481 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑘 ∈ ℤ) ∧ 𝑡 ∈ ℝ) → 𝐹:ℝ⟶ℂ) |
180 | 177 | adantr 481 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑘 ∈ ℤ) ∧ 𝑡 ∈ ℝ) → 𝑇 ∈ ℝ) |
181 | | simplr 766 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑘 ∈ ℤ) ∧ 𝑡 ∈ ℝ) → 𝑘 ∈ ℤ) |
182 | | simpr 485 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑘 ∈ ℤ) ∧ 𝑡 ∈ ℝ) → 𝑡 ∈ ℝ) |
183 | 111 | ad4ant14 749 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑘 ∈ ℤ) ∧ 𝑡 ∈ ℝ) ∧ 𝑥 ∈ ℝ) → (𝐹‘(𝑥 + 𝑇)) = (𝐹‘𝑥)) |
184 | 179, 180,
181, 182, 183 | fperiodmul 42812 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑘 ∈ ℤ) ∧ 𝑡 ∈ ℝ) → (𝐹‘(𝑡 + (𝑘 · 𝑇))) = (𝐹‘𝑡)) |
185 | | eqid 2740 |
. . . . . . . . . 10
⊢ (ℝ
D 𝐹) = (ℝ D 𝐹) |
186 | 170, 178,
184, 185 | fperdvper 43429 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑘 ∈ ℤ) ∧ 𝑡 ∈ dom (ℝ D 𝐹)) → ((𝑡 + (𝑘 · 𝑇)) ∈ dom (ℝ D 𝐹) ∧ ((ℝ D 𝐹)‘(𝑡 + (𝑘 · 𝑇))) = ((ℝ D 𝐹)‘𝑡))) |
187 | 186 | an32s 649 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑡 ∈ dom (ℝ D 𝐹)) ∧ 𝑘 ∈ ℤ) → ((𝑡 + (𝑘 · 𝑇)) ∈ dom (ℝ D 𝐹) ∧ ((ℝ D 𝐹)‘(𝑡 + (𝑘 · 𝑇))) = ((ℝ D 𝐹)‘𝑡))) |
188 | 187 | simpld 495 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑡 ∈ dom (ℝ D 𝐹)) ∧ 𝑘 ∈ ℤ) → (𝑡 + (𝑘 · 𝑇)) ∈ dom (ℝ D 𝐹)) |
189 | 187 | simprd 496 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑡 ∈ dom (ℝ D 𝐹)) ∧ 𝑘 ∈ ℤ) → ((ℝ D 𝐹)‘(𝑡 + (𝑘 · 𝑇))) = ((ℝ D 𝐹)‘𝑡)) |
190 | | fveq2 6769 |
. . . . . . . . 9
⊢ (𝑗 = 𝑖 → (𝑄‘𝑗) = (𝑄‘𝑖)) |
191 | | oveq1 7276 |
. . . . . . . . . 10
⊢ (𝑗 = 𝑖 → (𝑗 + 1) = (𝑖 + 1)) |
192 | 191 | fveq2d 6773 |
. . . . . . . . 9
⊢ (𝑗 = 𝑖 → (𝑄‘(𝑗 + 1)) = (𝑄‘(𝑖 + 1))) |
193 | 190, 192 | oveq12d 7287 |
. . . . . . . 8
⊢ (𝑗 = 𝑖 → ((𝑄‘𝑗)(,)(𝑄‘(𝑗 + 1))) = ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) |
194 | 193 | cbvmptv 5192 |
. . . . . . 7
⊢ (𝑗 ∈ (0..^𝑀) ↦ ((𝑄‘𝑗)(,)(𝑄‘(𝑗 + 1)))) = (𝑖 ∈ (0..^𝑀) ↦ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) |
195 | | eqid 2740 |
. . . . . . 7
⊢ (𝑡 ∈ ℝ ↦ (𝑡 + ((⌊‘((π
− 𝑡) / 𝑇)) · 𝑇))) = (𝑡 ∈ ℝ ↦ (𝑡 + ((⌊‘((π − 𝑡) / 𝑇)) · 𝑇))) |
196 | 155, 157,
61, 62, 161, 71, 24, 77, 162, 85, 134, 165, 169, 188, 189, 194, 195 | fourierdlem71 43687 |
. . . . . 6
⊢ (𝜑 → ∃𝑧 ∈ ℝ ∀𝑡 ∈ dom (ℝ D 𝐹)(abs‘((ℝ D 𝐹)‘𝑡)) ≤ 𝑧) |
197 | 196 | adantr 481 |
. . . . 5
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → ∃𝑧 ∈ ℝ ∀𝑡 ∈ dom (ℝ D 𝐹)(abs‘((ℝ D 𝐹)‘𝑡)) ≤ 𝑧) |
198 | | nfv 1921 |
. . . . . . . . 9
⊢
Ⅎ𝑡(𝜑 ∧ 𝑖 ∈ (0..^𝑀)) |
199 | | nfra1 3145 |
. . . . . . . . 9
⊢
Ⅎ𝑡∀𝑡 ∈ dom (ℝ D 𝐹)(abs‘((ℝ D 𝐹)‘𝑡)) ≤ 𝑧 |
200 | 198, 199 | nfan 1906 |
. . . . . . . 8
⊢
Ⅎ𝑡((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ ∀𝑡 ∈ dom (ℝ D 𝐹)(abs‘((ℝ D 𝐹)‘𝑡)) ≤ 𝑧) |
201 | 128, 131 | eqtrdi 2796 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (ℝ D (𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))))) = ((ℝ D 𝐹) ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))))) |
202 | 201 | fveq1d 6771 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → ((ℝ D (𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))))‘𝑡) = (((ℝ D 𝐹) ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))))‘𝑡)) |
203 | | fvres 6788 |
. . . . . . . . . . . . 13
⊢ (𝑡 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) → (((ℝ D 𝐹) ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))))‘𝑡) = ((ℝ D 𝐹)‘𝑡)) |
204 | 202, 203 | sylan9eq 2800 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑡 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) → ((ℝ D (𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))))‘𝑡) = ((ℝ D 𝐹)‘𝑡)) |
205 | 204 | fveq2d 6773 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑡 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) → (abs‘((ℝ D (𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))))‘𝑡)) = (abs‘((ℝ D 𝐹)‘𝑡))) |
206 | 205 | adantlr 712 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ ∀𝑡 ∈ dom (ℝ D 𝐹)(abs‘((ℝ D 𝐹)‘𝑡)) ≤ 𝑧) ∧ 𝑡 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) → (abs‘((ℝ D (𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))))‘𝑡)) = (abs‘((ℝ D 𝐹)‘𝑡))) |
207 | | simplr 766 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ ∀𝑡 ∈ dom (ℝ D 𝐹)(abs‘((ℝ D 𝐹)‘𝑡)) ≤ 𝑧) ∧ 𝑡 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) → ∀𝑡 ∈ dom (ℝ D 𝐹)(abs‘((ℝ D 𝐹)‘𝑡)) ≤ 𝑧) |
208 | | ssdmres 5912 |
. . . . . . . . . . . . . 14
⊢ (((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ⊆ dom (ℝ D 𝐹) ↔ dom ((ℝ D 𝐹) ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) = ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) |
209 | 137, 208 | sylibr 233 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ⊆ dom (ℝ D 𝐹)) |
210 | 209 | ad2antrr 723 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ ∀𝑡 ∈ dom (ℝ D 𝐹)(abs‘((ℝ D 𝐹)‘𝑡)) ≤ 𝑧) ∧ 𝑡 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) → ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ⊆ dom (ℝ D 𝐹)) |
211 | | simpr 485 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ ∀𝑡 ∈ dom (ℝ D 𝐹)(abs‘((ℝ D 𝐹)‘𝑡)) ≤ 𝑧) ∧ 𝑡 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) → 𝑡 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) |
212 | 210, 211 | sseldd 3927 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ ∀𝑡 ∈ dom (ℝ D 𝐹)(abs‘((ℝ D 𝐹)‘𝑡)) ≤ 𝑧) ∧ 𝑡 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) → 𝑡 ∈ dom (ℝ D 𝐹)) |
213 | | rspa 3133 |
. . . . . . . . . . 11
⊢
((∀𝑡 ∈
dom (ℝ D 𝐹)(abs‘((ℝ D 𝐹)‘𝑡)) ≤ 𝑧 ∧ 𝑡 ∈ dom (ℝ D 𝐹)) → (abs‘((ℝ D 𝐹)‘𝑡)) ≤ 𝑧) |
214 | 207, 212,
213 | syl2anc 584 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ ∀𝑡 ∈ dom (ℝ D 𝐹)(abs‘((ℝ D 𝐹)‘𝑡)) ≤ 𝑧) ∧ 𝑡 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) → (abs‘((ℝ D 𝐹)‘𝑡)) ≤ 𝑧) |
215 | 206, 214 | eqbrtrd 5101 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ ∀𝑡 ∈ dom (ℝ D 𝐹)(abs‘((ℝ D 𝐹)‘𝑡)) ≤ 𝑧) ∧ 𝑡 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) → (abs‘((ℝ D (𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))))‘𝑡)) ≤ 𝑧) |
216 | 215 | ex 413 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ ∀𝑡 ∈ dom (ℝ D 𝐹)(abs‘((ℝ D 𝐹)‘𝑡)) ≤ 𝑧) → (𝑡 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) → (abs‘((ℝ D (𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))))‘𝑡)) ≤ 𝑧)) |
217 | 200, 216 | ralrimi 3142 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ ∀𝑡 ∈ dom (ℝ D 𝐹)(abs‘((ℝ D 𝐹)‘𝑡)) ≤ 𝑧) → ∀𝑡 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))(abs‘((ℝ D (𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))))‘𝑡)) ≤ 𝑧) |
218 | 217 | ex 413 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (∀𝑡 ∈ dom (ℝ D 𝐹)(abs‘((ℝ D 𝐹)‘𝑡)) ≤ 𝑧 → ∀𝑡 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))(abs‘((ℝ D (𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))))‘𝑡)) ≤ 𝑧)) |
219 | 218 | reximdv 3204 |
. . . . 5
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (∃𝑧 ∈ ℝ ∀𝑡 ∈ dom (ℝ D 𝐹)(abs‘((ℝ D 𝐹)‘𝑡)) ≤ 𝑧 → ∃𝑧 ∈ ℝ ∀𝑡 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))(abs‘((ℝ D (𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))))‘𝑡)) ≤ 𝑧)) |
220 | 197, 219 | mpd 15 |
. . . 4
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → ∃𝑧 ∈ ℝ ∀𝑡 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))(abs‘((ℝ D (𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))))‘𝑡)) ≤ 𝑧) |
221 | 149, 145,
153, 138, 220 | ioodvbdlimc1 43443 |
. . 3
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → ((𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) limℂ (𝑄‘𝑖)) ≠ ∅) |
222 | 119, 141,
152, 221, 125 | ellimciota 43124 |
. 2
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (℩𝑦𝑦 ∈ ((𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) limℂ (𝑄‘𝑖))) ∈ ((𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) limℂ (𝑄‘𝑖))) |
223 | 149, 145,
153, 138, 220 | ioodvbdlimc2 43445 |
. . 3
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → ((𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) limℂ (𝑄‘(𝑖 + 1))) ≠ ∅) |
224 | 119, 141,
167, 223, 125 | ellimciota 43124 |
. 2
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (℩𝑦𝑦 ∈ ((𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) limℂ (𝑄‘(𝑖 + 1)))) ∈ ((𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) limℂ (𝑄‘(𝑖 + 1)))) |
225 | | frel 6602 |
. . . . . . 7
⊢ ((ℝ
D 𝐹):dom (ℝ D 𝐹)⟶ℝ → Rel
(ℝ D 𝐹)) |
226 | 157, 225 | syl 17 |
. . . . . 6
⊢ (𝜑 → Rel (ℝ D 𝐹)) |
227 | | resindm 5938 |
. . . . . 6
⊢ (Rel
(ℝ D 𝐹) →
((ℝ D 𝐹) ↾
((-∞(,)𝑋) ∩ dom
(ℝ D 𝐹))) = ((ℝ
D 𝐹) ↾
(-∞(,)𝑋))) |
228 | 226, 227 | syl 17 |
. . . . 5
⊢ (𝜑 → ((ℝ D 𝐹) ↾ ((-∞(,)𝑋) ∩ dom (ℝ D 𝐹))) = ((ℝ D 𝐹) ↾ (-∞(,)𝑋))) |
229 | | inss2 4169 |
. . . . . . 7
⊢
((-∞(,)𝑋)
∩ dom (ℝ D 𝐹))
⊆ dom (ℝ D 𝐹) |
230 | 229 | a1i 11 |
. . . . . 6
⊢ (𝜑 → ((-∞(,)𝑋) ∩ dom (ℝ D 𝐹)) ⊆ dom (ℝ D 𝐹)) |
231 | 157, 230 | fssresd 6638 |
. . . . 5
⊢ (𝜑 → ((ℝ D 𝐹) ↾ ((-∞(,)𝑋) ∩ dom (ℝ D 𝐹))):((-∞(,)𝑋) ∩ dom (ℝ D 𝐹))⟶ℝ) |
232 | 228, 231 | feq1dd 42671 |
. . . 4
⊢ (𝜑 → ((ℝ D 𝐹) ↾ (-∞(,)𝑋)):((-∞(,)𝑋) ∩ dom (ℝ D 𝐹))⟶ℝ) |
233 | 232, 117 | fssd 6615 |
. . 3
⊢ (𝜑 → ((ℝ D 𝐹) ↾ (-∞(,)𝑋)):((-∞(,)𝑋) ∩ dom (ℝ D 𝐹))⟶ℂ) |
234 | | ioosscn 13138 |
. . . . 5
⊢
(-∞(,)𝑋)
⊆ ℂ |
235 | | ssinss1 4177 |
. . . . 5
⊢
((-∞(,)𝑋)
⊆ ℂ → ((-∞(,)𝑋) ∩ dom (ℝ D 𝐹)) ⊆ ℂ) |
236 | 234, 235 | ax-mp 5 |
. . . 4
⊢
((-∞(,)𝑋)
∩ dom (ℝ D 𝐹))
⊆ ℂ |
237 | 236 | a1i 11 |
. . 3
⊢ (𝜑 → ((-∞(,)𝑋) ∩ dom (ℝ D 𝐹)) ⊆
ℂ) |
238 | | 3simpb 1148 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ dom (ℝ D 𝐹) ∧ 𝑘 ∈ ℤ) → (𝜑 ∧ 𝑘 ∈ ℤ)) |
239 | | simp2 1136 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ dom (ℝ D 𝐹) ∧ 𝑘 ∈ ℤ) → 𝑥 ∈ dom (ℝ D 𝐹)) |
240 | 170 | adantr 481 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑘 ∈ ℤ) ∧ 𝑥 ∈ ℝ) → 𝐹:ℝ⟶ℂ) |
241 | 177 | adantr 481 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑘 ∈ ℤ) ∧ 𝑥 ∈ ℝ) → 𝑇 ∈ ℝ) |
242 | | simplr 766 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑘 ∈ ℤ) ∧ 𝑥 ∈ ℝ) → 𝑘 ∈ ℤ) |
243 | | simpr 485 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑘 ∈ ℤ) ∧ 𝑥 ∈ ℝ) → 𝑥 ∈ ℝ) |
244 | | eleq1w 2823 |
. . . . . . . . . . . . . 14
⊢ (𝑥 = 𝑦 → (𝑥 ∈ ℝ ↔ 𝑦 ∈ ℝ)) |
245 | 244 | anbi2d 629 |
. . . . . . . . . . . . 13
⊢ (𝑥 = 𝑦 → ((𝜑 ∧ 𝑥 ∈ ℝ) ↔ (𝜑 ∧ 𝑦 ∈ ℝ))) |
246 | | oveq1 7276 |
. . . . . . . . . . . . . . 15
⊢ (𝑥 = 𝑦 → (𝑥 + 𝑇) = (𝑦 + 𝑇)) |
247 | 246 | fveq2d 6773 |
. . . . . . . . . . . . . 14
⊢ (𝑥 = 𝑦 → (𝐹‘(𝑥 + 𝑇)) = (𝐹‘(𝑦 + 𝑇))) |
248 | | fveq2 6769 |
. . . . . . . . . . . . . 14
⊢ (𝑥 = 𝑦 → (𝐹‘𝑥) = (𝐹‘𝑦)) |
249 | 247, 248 | eqeq12d 2756 |
. . . . . . . . . . . . 13
⊢ (𝑥 = 𝑦 → ((𝐹‘(𝑥 + 𝑇)) = (𝐹‘𝑥) ↔ (𝐹‘(𝑦 + 𝑇)) = (𝐹‘𝑦))) |
250 | 245, 249 | imbi12d 345 |
. . . . . . . . . . . 12
⊢ (𝑥 = 𝑦 → (((𝜑 ∧ 𝑥 ∈ ℝ) → (𝐹‘(𝑥 + 𝑇)) = (𝐹‘𝑥)) ↔ ((𝜑 ∧ 𝑦 ∈ ℝ) → (𝐹‘(𝑦 + 𝑇)) = (𝐹‘𝑦)))) |
251 | 250, 111 | chvarvv 2006 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑦 ∈ ℝ) → (𝐹‘(𝑦 + 𝑇)) = (𝐹‘𝑦)) |
252 | 251 | ad4ant14 749 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑘 ∈ ℤ) ∧ 𝑥 ∈ ℝ) ∧ 𝑦 ∈ ℝ) → (𝐹‘(𝑦 + 𝑇)) = (𝐹‘𝑦)) |
253 | 240, 241,
242, 243, 252 | fperiodmul 42812 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑘 ∈ ℤ) ∧ 𝑥 ∈ ℝ) → (𝐹‘(𝑥 + (𝑘 · 𝑇))) = (𝐹‘𝑥)) |
254 | 170, 178,
253, 185 | fperdvper 43429 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑘 ∈ ℤ) ∧ 𝑥 ∈ dom (ℝ D 𝐹)) → ((𝑥 + (𝑘 · 𝑇)) ∈ dom (ℝ D 𝐹) ∧ ((ℝ D 𝐹)‘(𝑥 + (𝑘 · 𝑇))) = ((ℝ D 𝐹)‘𝑥))) |
255 | 238, 239,
254 | syl2anc 584 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ dom (ℝ D 𝐹) ∧ 𝑘 ∈ ℤ) → ((𝑥 + (𝑘 · 𝑇)) ∈ dom (ℝ D 𝐹) ∧ ((ℝ D 𝐹)‘(𝑥 + (𝑘 · 𝑇))) = ((ℝ D 𝐹)‘𝑥))) |
256 | 255 | simpld 495 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ dom (ℝ D 𝐹) ∧ 𝑘 ∈ ℤ) → (𝑥 + (𝑘 · 𝑇)) ∈ dom (ℝ D 𝐹)) |
257 | | oveq2 7277 |
. . . . . . . . . 10
⊢ (𝑤 = 𝑥 → (π − 𝑤) = (π − 𝑥)) |
258 | 257 | oveq1d 7284 |
. . . . . . . . 9
⊢ (𝑤 = 𝑥 → ((π − 𝑤) / 𝑇) = ((π − 𝑥) / 𝑇)) |
259 | 258 | fveq2d 6773 |
. . . . . . . 8
⊢ (𝑤 = 𝑥 → (⌊‘((π − 𝑤) / 𝑇)) = (⌊‘((π − 𝑥) / 𝑇))) |
260 | 259 | oveq1d 7284 |
. . . . . . 7
⊢ (𝑤 = 𝑥 → ((⌊‘((π − 𝑤) / 𝑇)) · 𝑇) = ((⌊‘((π − 𝑥) / 𝑇)) · 𝑇)) |
261 | 260 | cbvmptv 5192 |
. . . . . 6
⊢ (𝑤 ∈ ℝ ↦
((⌊‘((π − 𝑤) / 𝑇)) · 𝑇)) = (𝑥 ∈ ℝ ↦
((⌊‘((π − 𝑥) / 𝑇)) · 𝑇)) |
262 | | eqid 2740 |
. . . . . 6
⊢ (𝑥 ∈ ℝ ↦ (𝑥 + ((𝑤 ∈ ℝ ↦
((⌊‘((π − 𝑤) / 𝑇)) · 𝑇))‘𝑥))) = (𝑥 ∈ ℝ ↦ (𝑥 + ((𝑤 ∈ ℝ ↦
((⌊‘((π − 𝑤) / 𝑇)) · 𝑇))‘𝑥))) |
263 | 61, 62, 161, 71, 256, 58, 261, 262, 23, 24, 25, 209 | fourierdlem41 43658 |
. . . . 5
⊢ (𝜑 → (∃𝑦 ∈ ℝ (𝑦 < 𝑋 ∧ (𝑦(,)𝑋) ⊆ dom (ℝ D 𝐹)) ∧ ∃𝑦 ∈ ℝ (𝑋 < 𝑦 ∧ (𝑋(,)𝑦) ⊆ dom (ℝ D 𝐹)))) |
264 | 263 | simpld 495 |
. . . 4
⊢ (𝜑 → ∃𝑦 ∈ ℝ (𝑦 < 𝑋 ∧ (𝑦(,)𝑋) ⊆ dom (ℝ D 𝐹))) |
265 | 125 | cnfldtop 23943 |
. . . . . . . . 9
⊢
(TopOpen‘ℂfld) ∈ Top |
266 | 265 | a1i 11 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑦 ∈ ℝ ∧ (𝑦(,)𝑋) ⊆ dom (ℝ D 𝐹)) →
(TopOpen‘ℂfld) ∈ Top) |
267 | 236 | a1i 11 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑦 ∈ ℝ ∧ (𝑦(,)𝑋) ⊆ dom (ℝ D 𝐹)) → ((-∞(,)𝑋) ∩ dom (ℝ D 𝐹)) ⊆ ℂ) |
268 | | mnfxr 11031 |
. . . . . . . . . . . 12
⊢ -∞
∈ ℝ* |
269 | 268 | a1i 11 |
. . . . . . . . . . 11
⊢ (𝑦 ∈ ℝ → -∞
∈ ℝ*) |
270 | | rexr 11020 |
. . . . . . . . . . . 12
⊢ (𝑦 ∈ ℝ → 𝑦 ∈
ℝ*) |
271 | | mnflt 12856 |
. . . . . . . . . . . 12
⊢ (𝑦 ∈ ℝ → -∞
< 𝑦) |
272 | 269, 270,
271 | xrltled 12881 |
. . . . . . . . . . 11
⊢ (𝑦 ∈ ℝ → -∞
≤ 𝑦) |
273 | | iooss1 13111 |
. . . . . . . . . . 11
⊢
((-∞ ∈ ℝ* ∧ -∞ ≤ 𝑦) → (𝑦(,)𝑋) ⊆ (-∞(,)𝑋)) |
274 | 269, 272,
273 | syl2anc 584 |
. . . . . . . . . 10
⊢ (𝑦 ∈ ℝ → (𝑦(,)𝑋) ⊆ (-∞(,)𝑋)) |
275 | 274 | 3ad2ant2 1133 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑦 ∈ ℝ ∧ (𝑦(,)𝑋) ⊆ dom (ℝ D 𝐹)) → (𝑦(,)𝑋) ⊆ (-∞(,)𝑋)) |
276 | | simp3 1137 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑦 ∈ ℝ ∧ (𝑦(,)𝑋) ⊆ dom (ℝ D 𝐹)) → (𝑦(,)𝑋) ⊆ dom (ℝ D 𝐹)) |
277 | 275, 276 | ssind 4172 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑦 ∈ ℝ ∧ (𝑦(,)𝑋) ⊆ dom (ℝ D 𝐹)) → (𝑦(,)𝑋) ⊆ ((-∞(,)𝑋) ∩ dom (ℝ D 𝐹))) |
278 | | unicntop 23945 |
. . . . . . . . 9
⊢ ℂ =
∪
(TopOpen‘ℂfld) |
279 | 278 | lpss3 22291 |
. . . . . . . 8
⊢
(((TopOpen‘ℂfld) ∈ Top ∧
((-∞(,)𝑋) ∩ dom
(ℝ D 𝐹)) ⊆
ℂ ∧ (𝑦(,)𝑋) ⊆ ((-∞(,)𝑋) ∩ dom (ℝ D 𝐹))) →
((limPt‘(TopOpen‘ℂfld))‘(𝑦(,)𝑋)) ⊆
((limPt‘(TopOpen‘ℂfld))‘((-∞(,)𝑋) ∩ dom (ℝ D 𝐹)))) |
280 | 266, 267,
277, 279 | syl3anc 1370 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑦 ∈ ℝ ∧ (𝑦(,)𝑋) ⊆ dom (ℝ D 𝐹)) →
((limPt‘(TopOpen‘ℂfld))‘(𝑦(,)𝑋)) ⊆
((limPt‘(TopOpen‘ℂfld))‘((-∞(,)𝑋) ∩ dom (ℝ D 𝐹)))) |
281 | 280 | 3adant3l 1179 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑦 ∈ ℝ ∧ (𝑦 < 𝑋 ∧ (𝑦(,)𝑋) ⊆ dom (ℝ D 𝐹))) →
((limPt‘(TopOpen‘ℂfld))‘(𝑦(,)𝑋)) ⊆
((limPt‘(TopOpen‘ℂfld))‘((-∞(,)𝑋) ∩ dom (ℝ D 𝐹)))) |
282 | 270 | 3ad2ant2 1133 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑦 ∈ ℝ ∧ (𝑦 < 𝑋 ∧ (𝑦(,)𝑋) ⊆ dom (ℝ D 𝐹))) → 𝑦 ∈ ℝ*) |
283 | 58 | 3ad2ant1 1132 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑦 ∈ ℝ ∧ (𝑦 < 𝑋 ∧ (𝑦(,)𝑋) ⊆ dom (ℝ D 𝐹))) → 𝑋 ∈ ℝ) |
284 | | simp3l 1200 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑦 ∈ ℝ ∧ (𝑦 < 𝑋 ∧ (𝑦(,)𝑋) ⊆ dom (ℝ D 𝐹))) → 𝑦 < 𝑋) |
285 | 125, 282,
283, 284 | lptioo2cn 43155 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑦 ∈ ℝ ∧ (𝑦 < 𝑋 ∧ (𝑦(,)𝑋) ⊆ dom (ℝ D 𝐹))) → 𝑋 ∈
((limPt‘(TopOpen‘ℂfld))‘(𝑦(,)𝑋))) |
286 | 281, 285 | sseldd 3927 |
. . . . 5
⊢ ((𝜑 ∧ 𝑦 ∈ ℝ ∧ (𝑦 < 𝑋 ∧ (𝑦(,)𝑋) ⊆ dom (ℝ D 𝐹))) → 𝑋 ∈
((limPt‘(TopOpen‘ℂfld))‘((-∞(,)𝑋) ∩ dom (ℝ D 𝐹)))) |
287 | 286 | rexlimdv3a 3217 |
. . . 4
⊢ (𝜑 → (∃𝑦 ∈ ℝ (𝑦 < 𝑋 ∧ (𝑦(,)𝑋) ⊆ dom (ℝ D 𝐹)) → 𝑋 ∈
((limPt‘(TopOpen‘ℂfld))‘((-∞(,)𝑋) ∩ dom (ℝ D 𝐹))))) |
288 | 264, 287 | mpd 15 |
. . 3
⊢ (𝜑 → 𝑋 ∈
((limPt‘(TopOpen‘ℂfld))‘((-∞(,)𝑋) ∩ dom (ℝ D 𝐹)))) |
289 | 255 | simprd 496 |
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ dom (ℝ D 𝐹) ∧ 𝑘 ∈ ℤ) → ((ℝ D 𝐹)‘(𝑥 + (𝑘 · 𝑇))) = ((ℝ D 𝐹)‘𝑥)) |
290 | | oveq2 7277 |
. . . . . . . 8
⊢ (𝑦 = 𝑥 → (π − 𝑦) = (π − 𝑥)) |
291 | 290 | oveq1d 7284 |
. . . . . . 7
⊢ (𝑦 = 𝑥 → ((π − 𝑦) / 𝑇) = ((π − 𝑥) / 𝑇)) |
292 | 291 | fveq2d 6773 |
. . . . . 6
⊢ (𝑦 = 𝑥 → (⌊‘((π − 𝑦) / 𝑇)) = (⌊‘((π − 𝑥) / 𝑇))) |
293 | 292 | oveq1d 7284 |
. . . . 5
⊢ (𝑦 = 𝑥 → ((⌊‘((π − 𝑦) / 𝑇)) · 𝑇) = ((⌊‘((π − 𝑥) / 𝑇)) · 𝑇)) |
294 | 293 | cbvmptv 5192 |
. . . 4
⊢ (𝑦 ∈ ℝ ↦
((⌊‘((π − 𝑦) / 𝑇)) · 𝑇)) = (𝑥 ∈ ℝ ↦
((⌊‘((π − 𝑥) / 𝑇)) · 𝑇)) |
295 | | id 22 |
. . . . . 6
⊢ (𝑧 = 𝑥 → 𝑧 = 𝑥) |
296 | | fveq2 6769 |
. . . . . 6
⊢ (𝑧 = 𝑥 → ((𝑦 ∈ ℝ ↦
((⌊‘((π − 𝑦) / 𝑇)) · 𝑇))‘𝑧) = ((𝑦 ∈ ℝ ↦
((⌊‘((π − 𝑦) / 𝑇)) · 𝑇))‘𝑥)) |
297 | 295, 296 | oveq12d 7287 |
. . . . 5
⊢ (𝑧 = 𝑥 → (𝑧 + ((𝑦 ∈ ℝ ↦
((⌊‘((π − 𝑦) / 𝑇)) · 𝑇))‘𝑧)) = (𝑥 + ((𝑦 ∈ ℝ ↦
((⌊‘((π − 𝑦) / 𝑇)) · 𝑇))‘𝑥))) |
298 | 297 | cbvmptv 5192 |
. . . 4
⊢ (𝑧 ∈ ℝ ↦ (𝑧 + ((𝑦 ∈ ℝ ↦
((⌊‘((π − 𝑦) / 𝑇)) · 𝑇))‘𝑧))) = (𝑥 ∈ ℝ ↦ (𝑥 + ((𝑦 ∈ ℝ ↦
((⌊‘((π − 𝑦) / 𝑇)) · 𝑇))‘𝑥))) |
299 | 61, 62, 161, 23, 71, 24, 25, 155, 157, 256, 289, 134, 169, 58, 294, 298 | fourierdlem49 43665 |
. . 3
⊢ (𝜑 → (((ℝ D 𝐹) ↾ (-∞(,)𝑋)) limℂ 𝑋) ≠ ∅) |
300 | 233, 237,
288, 299, 125 | ellimciota 43124 |
. 2
⊢ (𝜑 → (℩𝑥𝑥 ∈ (((ℝ D 𝐹) ↾ (-∞(,)𝑋)) limℂ 𝑋)) ∈ (((ℝ D 𝐹) ↾ (-∞(,)𝑋)) limℂ 𝑋)) |
301 | | resindm 5938 |
. . . . . 6
⊢ (Rel
(ℝ D 𝐹) →
((ℝ D 𝐹) ↾
((𝑋(,)+∞) ∩ dom
(ℝ D 𝐹))) = ((ℝ
D 𝐹) ↾ (𝑋(,)+∞))) |
302 | 226, 301 | syl 17 |
. . . . 5
⊢ (𝜑 → ((ℝ D 𝐹) ↾ ((𝑋(,)+∞) ∩ dom (ℝ D 𝐹))) = ((ℝ D 𝐹) ↾ (𝑋(,)+∞))) |
303 | | inss2 4169 |
. . . . . . 7
⊢ ((𝑋(,)+∞) ∩ dom (ℝ
D 𝐹)) ⊆ dom (ℝ
D 𝐹) |
304 | 303 | a1i 11 |
. . . . . 6
⊢ (𝜑 → ((𝑋(,)+∞) ∩ dom (ℝ D 𝐹)) ⊆ dom (ℝ D 𝐹)) |
305 | 157, 304 | fssresd 6638 |
. . . . 5
⊢ (𝜑 → ((ℝ D 𝐹) ↾ ((𝑋(,)+∞) ∩ dom (ℝ D 𝐹))):((𝑋(,)+∞) ∩ dom (ℝ D 𝐹))⟶ℝ) |
306 | 302, 305 | feq1dd 42671 |
. . . 4
⊢ (𝜑 → ((ℝ D 𝐹) ↾ (𝑋(,)+∞)):((𝑋(,)+∞) ∩ dom (ℝ D 𝐹))⟶ℝ) |
307 | 306, 117 | fssd 6615 |
. . 3
⊢ (𝜑 → ((ℝ D 𝐹) ↾ (𝑋(,)+∞)):((𝑋(,)+∞) ∩ dom (ℝ D 𝐹))⟶ℂ) |
308 | | ioosscn 13138 |
. . . . 5
⊢ (𝑋(,)+∞) ⊆
ℂ |
309 | | ssinss1 4177 |
. . . . 5
⊢ ((𝑋(,)+∞) ⊆ ℂ
→ ((𝑋(,)+∞)
∩ dom (ℝ D 𝐹))
⊆ ℂ) |
310 | 308, 309 | ax-mp 5 |
. . . 4
⊢ ((𝑋(,)+∞) ∩ dom (ℝ
D 𝐹)) ⊆
ℂ |
311 | 310 | a1i 11 |
. . 3
⊢ (𝜑 → ((𝑋(,)+∞) ∩ dom (ℝ D 𝐹)) ⊆
ℂ) |
312 | 263 | simprd 496 |
. . . 4
⊢ (𝜑 → ∃𝑦 ∈ ℝ (𝑋 < 𝑦 ∧ (𝑋(,)𝑦) ⊆ dom (ℝ D 𝐹))) |
313 | 265 | a1i 11 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑦 ∈ ℝ ∧ (𝑋(,)𝑦) ⊆ dom (ℝ D 𝐹)) →
(TopOpen‘ℂfld) ∈ Top) |
314 | 310 | a1i 11 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑦 ∈ ℝ ∧ (𝑋(,)𝑦) ⊆ dom (ℝ D 𝐹)) → ((𝑋(,)+∞) ∩ dom (ℝ D 𝐹)) ⊆
ℂ) |
315 | | pnfxr 11028 |
. . . . . . . . . . . 12
⊢ +∞
∈ ℝ* |
316 | 315 | a1i 11 |
. . . . . . . . . . 11
⊢ (𝑦 ∈ ℝ → +∞
∈ ℝ*) |
317 | | ltpnf 12853 |
. . . . . . . . . . . 12
⊢ (𝑦 ∈ ℝ → 𝑦 < +∞) |
318 | 270, 316,
317 | xrltled 12881 |
. . . . . . . . . . 11
⊢ (𝑦 ∈ ℝ → 𝑦 ≤ +∞) |
319 | | iooss2 13112 |
. . . . . . . . . . 11
⊢
((+∞ ∈ ℝ* ∧ 𝑦 ≤ +∞) → (𝑋(,)𝑦) ⊆ (𝑋(,)+∞)) |
320 | 316, 318,
319 | syl2anc 584 |
. . . . . . . . . 10
⊢ (𝑦 ∈ ℝ → (𝑋(,)𝑦) ⊆ (𝑋(,)+∞)) |
321 | 320 | 3ad2ant2 1133 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑦 ∈ ℝ ∧ (𝑋(,)𝑦) ⊆ dom (ℝ D 𝐹)) → (𝑋(,)𝑦) ⊆ (𝑋(,)+∞)) |
322 | | simp3 1137 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑦 ∈ ℝ ∧ (𝑋(,)𝑦) ⊆ dom (ℝ D 𝐹)) → (𝑋(,)𝑦) ⊆ dom (ℝ D 𝐹)) |
323 | 321, 322 | ssind 4172 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑦 ∈ ℝ ∧ (𝑋(,)𝑦) ⊆ dom (ℝ D 𝐹)) → (𝑋(,)𝑦) ⊆ ((𝑋(,)+∞) ∩ dom (ℝ D 𝐹))) |
324 | 278 | lpss3 22291 |
. . . . . . . 8
⊢
(((TopOpen‘ℂfld) ∈ Top ∧ ((𝑋(,)+∞) ∩ dom (ℝ
D 𝐹)) ⊆ ℂ ∧
(𝑋(,)𝑦) ⊆ ((𝑋(,)+∞) ∩ dom (ℝ D 𝐹))) →
((limPt‘(TopOpen‘ℂfld))‘(𝑋(,)𝑦)) ⊆
((limPt‘(TopOpen‘ℂfld))‘((𝑋(,)+∞) ∩ dom (ℝ D 𝐹)))) |
325 | 313, 314,
323, 324 | syl3anc 1370 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑦 ∈ ℝ ∧ (𝑋(,)𝑦) ⊆ dom (ℝ D 𝐹)) →
((limPt‘(TopOpen‘ℂfld))‘(𝑋(,)𝑦)) ⊆
((limPt‘(TopOpen‘ℂfld))‘((𝑋(,)+∞) ∩ dom (ℝ D 𝐹)))) |
326 | 325 | 3adant3l 1179 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑦 ∈ ℝ ∧ (𝑋 < 𝑦 ∧ (𝑋(,)𝑦) ⊆ dom (ℝ D 𝐹))) →
((limPt‘(TopOpen‘ℂfld))‘(𝑋(,)𝑦)) ⊆
((limPt‘(TopOpen‘ℂfld))‘((𝑋(,)+∞) ∩ dom (ℝ D 𝐹)))) |
327 | 270 | 3ad2ant2 1133 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑦 ∈ ℝ ∧ (𝑋 < 𝑦 ∧ (𝑋(,)𝑦) ⊆ dom (ℝ D 𝐹))) → 𝑦 ∈ ℝ*) |
328 | 58 | 3ad2ant1 1132 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑦 ∈ ℝ ∧ (𝑋 < 𝑦 ∧ (𝑋(,)𝑦) ⊆ dom (ℝ D 𝐹))) → 𝑋 ∈ ℝ) |
329 | | simp3l 1200 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑦 ∈ ℝ ∧ (𝑋 < 𝑦 ∧ (𝑋(,)𝑦) ⊆ dom (ℝ D 𝐹))) → 𝑋 < 𝑦) |
330 | 125, 327,
328, 329 | lptioo1cn 43156 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑦 ∈ ℝ ∧ (𝑋 < 𝑦 ∧ (𝑋(,)𝑦) ⊆ dom (ℝ D 𝐹))) → 𝑋 ∈
((limPt‘(TopOpen‘ℂfld))‘(𝑋(,)𝑦))) |
331 | 326, 330 | sseldd 3927 |
. . . . 5
⊢ ((𝜑 ∧ 𝑦 ∈ ℝ ∧ (𝑋 < 𝑦 ∧ (𝑋(,)𝑦) ⊆ dom (ℝ D 𝐹))) → 𝑋 ∈
((limPt‘(TopOpen‘ℂfld))‘((𝑋(,)+∞) ∩ dom (ℝ D 𝐹)))) |
332 | 331 | rexlimdv3a 3217 |
. . . 4
⊢ (𝜑 → (∃𝑦 ∈ ℝ (𝑋 < 𝑦 ∧ (𝑋(,)𝑦) ⊆ dom (ℝ D 𝐹)) → 𝑋 ∈
((limPt‘(TopOpen‘ℂfld))‘((𝑋(,)+∞) ∩ dom (ℝ D 𝐹))))) |
333 | 312, 332 | mpd 15 |
. . 3
⊢ (𝜑 → 𝑋 ∈
((limPt‘(TopOpen‘ℂfld))‘((𝑋(,)+∞) ∩ dom (ℝ D 𝐹)))) |
334 | | biid 260 |
. . . 4
⊢
(((((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑤 ∈ ((𝑄‘𝑖)[,)(𝑄‘(𝑖 + 1)))) ∧ 𝑘 ∈ ℤ) ∧ 𝑤 = (𝑋 + (𝑘 · 𝑇))) ↔ ((((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑤 ∈ ((𝑄‘𝑖)[,)(𝑄‘(𝑖 + 1)))) ∧ 𝑘 ∈ ℤ) ∧ 𝑤 = (𝑋 + (𝑘 · 𝑇)))) |
335 | 61, 62, 161, 23, 71, 24, 25, 157, 256, 289, 134, 165, 58, 294, 298, 334 | fourierdlem48 43664 |
. . 3
⊢ (𝜑 → (((ℝ D 𝐹) ↾ (𝑋(,)+∞)) limℂ 𝑋) ≠ ∅) |
336 | 307, 311,
333, 335, 125 | ellimciota 43124 |
. 2
⊢ (𝜑 → (℩𝑥𝑥 ∈ (((ℝ D 𝐹) ↾ (𝑋(,)+∞)) limℂ 𝑋)) ∈ (((ℝ D 𝐹) ↾ (𝑋(,)+∞)) limℂ 𝑋)) |
337 | | fourierdlem113.l |
. 2
⊢ (𝜑 → 𝐿 ∈ ((𝐹 ↾ (-∞(,)𝑋)) limℂ 𝑋)) |
338 | | fourierdlem113.r |
. 2
⊢ (𝜑 → 𝑅 ∈ ((𝐹 ↾ (𝑋(,)+∞)) limℂ 𝑋)) |
339 | | fourierdlem113.a |
. 2
⊢ 𝐴 = (𝑛 ∈ ℕ0 ↦
(∫(-π(,)π)((𝐹‘𝑥) · (cos‘(𝑛 · 𝑥))) d𝑥 / π)) |
340 | | fourierdlem113.b |
. 2
⊢ 𝐵 = (𝑛 ∈ ℕ ↦
(∫(-π(,)π)((𝐹‘𝑥) · (sin‘(𝑛 · 𝑥))) d𝑥 / π)) |
341 | | fveq2 6769 |
. . . . . . . 8
⊢ (𝑛 = 𝑘 → (𝐴‘𝑛) = (𝐴‘𝑘)) |
342 | | oveq1 7276 |
. . . . . . . . 9
⊢ (𝑛 = 𝑘 → (𝑛 · 𝑋) = (𝑘 · 𝑋)) |
343 | 342 | fveq2d 6773 |
. . . . . . . 8
⊢ (𝑛 = 𝑘 → (cos‘(𝑛 · 𝑋)) = (cos‘(𝑘 · 𝑋))) |
344 | 341, 343 | oveq12d 7287 |
. . . . . . 7
⊢ (𝑛 = 𝑘 → ((𝐴‘𝑛) · (cos‘(𝑛 · 𝑋))) = ((𝐴‘𝑘) · (cos‘(𝑘 · 𝑋)))) |
345 | | fveq2 6769 |
. . . . . . . 8
⊢ (𝑛 = 𝑘 → (𝐵‘𝑛) = (𝐵‘𝑘)) |
346 | 342 | fveq2d 6773 |
. . . . . . . 8
⊢ (𝑛 = 𝑘 → (sin‘(𝑛 · 𝑋)) = (sin‘(𝑘 · 𝑋))) |
347 | 345, 346 | oveq12d 7287 |
. . . . . . 7
⊢ (𝑛 = 𝑘 → ((𝐵‘𝑛) · (sin‘(𝑛 · 𝑋))) = ((𝐵‘𝑘) · (sin‘(𝑘 · 𝑋)))) |
348 | 344, 347 | oveq12d 7287 |
. . . . . 6
⊢ (𝑛 = 𝑘 → (((𝐴‘𝑛) · (cos‘(𝑛 · 𝑋))) + ((𝐵‘𝑛) · (sin‘(𝑛 · 𝑋)))) = (((𝐴‘𝑘) · (cos‘(𝑘 · 𝑋))) + ((𝐵‘𝑘) · (sin‘(𝑘 · 𝑋))))) |
349 | 348 | cbvsumv 15404 |
. . . . 5
⊢
Σ𝑛 ∈
(1...𝑚)(((𝐴‘𝑛) · (cos‘(𝑛 · 𝑋))) + ((𝐵‘𝑛) · (sin‘(𝑛 · 𝑋)))) = Σ𝑘 ∈ (1...𝑚)(((𝐴‘𝑘) · (cos‘(𝑘 · 𝑋))) + ((𝐵‘𝑘) · (sin‘(𝑘 · 𝑋)))) |
350 | | oveq2 7277 |
. . . . . . 7
⊢ (𝑗 = 𝑚 → (1...𝑗) = (1...𝑚)) |
351 | 350 | eqcomd 2746 |
. . . . . 6
⊢ (𝑗 = 𝑚 → (1...𝑚) = (1...𝑗)) |
352 | 351 | sumeq1d 15409 |
. . . . 5
⊢ (𝑗 = 𝑚 → Σ𝑘 ∈ (1...𝑚)(((𝐴‘𝑘) · (cos‘(𝑘 · 𝑋))) + ((𝐵‘𝑘) · (sin‘(𝑘 · 𝑋)))) = Σ𝑘 ∈ (1...𝑗)(((𝐴‘𝑘) · (cos‘(𝑘 · 𝑋))) + ((𝐵‘𝑘) · (sin‘(𝑘 · 𝑋))))) |
353 | 349, 352 | eqtr2id 2793 |
. . . 4
⊢ (𝑗 = 𝑚 → Σ𝑘 ∈ (1...𝑗)(((𝐴‘𝑘) · (cos‘(𝑘 · 𝑋))) + ((𝐵‘𝑘) · (sin‘(𝑘 · 𝑋)))) = Σ𝑛 ∈ (1...𝑚)(((𝐴‘𝑛) · (cos‘(𝑛 · 𝑋))) + ((𝐵‘𝑛) · (sin‘(𝑛 · 𝑋))))) |
354 | 353 | oveq2d 7285 |
. . 3
⊢ (𝑗 = 𝑚 → (((𝐴‘0) / 2) + Σ𝑘 ∈ (1...𝑗)(((𝐴‘𝑘) · (cos‘(𝑘 · 𝑋))) + ((𝐵‘𝑘) · (sin‘(𝑘 · 𝑋))))) = (((𝐴‘0) / 2) + Σ𝑛 ∈ (1...𝑚)(((𝐴‘𝑛) · (cos‘(𝑛 · 𝑋))) + ((𝐵‘𝑛) · (sin‘(𝑛 · 𝑋)))))) |
355 | 354 | cbvmptv 5192 |
. 2
⊢ (𝑗 ∈ ℕ ↦ (((𝐴‘0) / 2) + Σ𝑘 ∈ (1...𝑗)(((𝐴‘𝑘) · (cos‘(𝑘 · 𝑋))) + ((𝐵‘𝑘) · (sin‘(𝑘 · 𝑋)))))) = (𝑚 ∈ ℕ ↦ (((𝐴‘0) / 2) + Σ𝑛 ∈ (1...𝑚)(((𝐴‘𝑛) · (cos‘(𝑛 · 𝑋))) + ((𝐵‘𝑛) · (sin‘(𝑛 · 𝑋)))))) |
356 | | fourierdlem113.15 |
. 2
⊢ 𝑆 = (𝑛 ∈ ℕ ↦ (((𝐴‘𝑛) · (cos‘(𝑛 · 𝑋))) + ((𝐵‘𝑛) · (sin‘(𝑛 · 𝑋))))) |
357 | | fdm 6606 |
. . . . . 6
⊢ (𝐹:ℝ⟶ℝ →
dom 𝐹 =
ℝ) |
358 | 1, 357 | syl 17 |
. . . . 5
⊢ (𝜑 → dom 𝐹 = ℝ) |
359 | 358, 154 | eqsstrd 3964 |
. . . 4
⊢ (𝜑 → dom 𝐹 ⊆ ℝ) |
360 | 358 | feq2d 6583 |
. . . . 5
⊢ (𝜑 → (𝐹:dom 𝐹⟶ℝ ↔ 𝐹:ℝ⟶ℝ)) |
361 | 1, 360 | mpbird 256 |
. . . 4
⊢ (𝜑 → 𝐹:dom 𝐹⟶ℝ) |
362 | 359 | sselda 3926 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑡 ∈ dom 𝐹) → 𝑡 ∈ ℝ) |
363 | 362 | adantr 481 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑡 ∈ dom 𝐹) ∧ 𝑘 ∈ ℤ) → 𝑡 ∈ ℝ) |
364 | 171 | adantl 482 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑡 ∈ dom 𝐹) ∧ 𝑘 ∈ ℤ) → 𝑘 ∈ ℝ) |
365 | 177 | adantlr 712 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑡 ∈ dom 𝐹) ∧ 𝑘 ∈ ℤ) → 𝑇 ∈ ℝ) |
366 | 364, 365 | remulcld 11004 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑡 ∈ dom 𝐹) ∧ 𝑘 ∈ ℤ) → (𝑘 · 𝑇) ∈ ℝ) |
367 | 363, 366 | readdcld 11003 |
. . . . 5
⊢ (((𝜑 ∧ 𝑡 ∈ dom 𝐹) ∧ 𝑘 ∈ ℤ) → (𝑡 + (𝑘 · 𝑇)) ∈ ℝ) |
368 | 358 | eqcomd 2746 |
. . . . . 6
⊢ (𝜑 → ℝ = dom 𝐹) |
369 | 368 | ad2antrr 723 |
. . . . 5
⊢ (((𝜑 ∧ 𝑡 ∈ dom 𝐹) ∧ 𝑘 ∈ ℤ) → ℝ = dom 𝐹) |
370 | 367, 369 | eleqtrd 2843 |
. . . 4
⊢ (((𝜑 ∧ 𝑡 ∈ dom 𝐹) ∧ 𝑘 ∈ ℤ) → (𝑡 + (𝑘 · 𝑇)) ∈ dom 𝐹) |
371 | | id 22 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ ℤ) → (𝜑 ∧ 𝑘 ∈ ℤ)) |
372 | 371 | adantlr 712 |
. . . . 5
⊢ (((𝜑 ∧ 𝑡 ∈ dom 𝐹) ∧ 𝑘 ∈ ℤ) → (𝜑 ∧ 𝑘 ∈ ℤ)) |
373 | 372, 363,
184 | syl2anc 584 |
. . . 4
⊢ (((𝜑 ∧ 𝑡 ∈ dom 𝐹) ∧ 𝑘 ∈ ℤ) → (𝐹‘(𝑡 + (𝑘 · 𝑇))) = (𝐹‘𝑡)) |
374 | 359, 361,
61, 62, 161, 71, 24, 77, 162, 85, 140, 222, 224, 370, 373, 194, 195 | fourierdlem71 43687 |
. . 3
⊢ (𝜑 → ∃𝑢 ∈ ℝ ∀𝑡 ∈ dom 𝐹(abs‘(𝐹‘𝑡)) ≤ 𝑢) |
375 | 358 | raleqdv 3347 |
. . . 4
⊢ (𝜑 → (∀𝑡 ∈ dom 𝐹(abs‘(𝐹‘𝑡)) ≤ 𝑢 ↔ ∀𝑡 ∈ ℝ (abs‘(𝐹‘𝑡)) ≤ 𝑢)) |
376 | 375 | rexbidv 3228 |
. . 3
⊢ (𝜑 → (∃𝑢 ∈ ℝ ∀𝑡 ∈ dom 𝐹(abs‘(𝐹‘𝑡)) ≤ 𝑢 ↔ ∃𝑢 ∈ ℝ ∀𝑡 ∈ ℝ (abs‘(𝐹‘𝑡)) ≤ 𝑢)) |
377 | 374, 376 | mpbid 231 |
. 2
⊢ (𝜑 → ∃𝑢 ∈ ℝ ∀𝑡 ∈ ℝ (abs‘(𝐹‘𝑡)) ≤ 𝑢) |
378 | 1, 22, 23, 24, 25, 32, 57, 58, 110, 69, 111, 140, 222, 224, 134, 300, 336, 337, 338, 339, 340, 355, 356, 377, 196, 58 | fourierdlem112 43728 |
1
⊢ (𝜑 → (seq1( + , 𝑆) ⇝ (((𝐿 + 𝑅) / 2) − ((𝐴‘0) / 2)) ∧ (((𝐴‘0) / 2) + Σ𝑛 ∈ ℕ (((𝐴‘𝑛) · (cos‘(𝑛 · 𝑋))) + ((𝐵‘𝑛) · (sin‘(𝑛 · 𝑋))))) = ((𝐿 + 𝑅) / 2))) |