Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fourierdlem113 Structured version   Visualization version   GIF version

Theorem fourierdlem113 46190
Description: Fourier series convergence for periodic, piecewise smooth functions. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
fourierdlem113.f (𝜑𝐹:ℝ⟶ℝ)
fourierdlem113.t 𝑇 = (2 · π)
fourierdlem113.per ((𝜑𝑥 ∈ ℝ) → (𝐹‘(𝑥 + 𝑇)) = (𝐹𝑥))
fourierdlem113.x (𝜑𝑋 ∈ ℝ)
fourierdlem113.l (𝜑𝐿 ∈ ((𝐹 ↾ (-∞(,)𝑋)) lim 𝑋))
fourierdlem113.r (𝜑𝑅 ∈ ((𝐹 ↾ (𝑋(,)+∞)) lim 𝑋))
fourierdlem113.p 𝑃 = (𝑛 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑m (0...𝑛)) ∣ (((𝑝‘0) = -π ∧ (𝑝𝑛) = π) ∧ ∀𝑖 ∈ (0..^𝑛)(𝑝𝑖) < (𝑝‘(𝑖 + 1)))})
fourierdlem113.m (𝜑𝑀 ∈ ℕ)
fourierdlem113.q (𝜑𝑄 ∈ (𝑃𝑀))
fourierdlem113.dvcn ((𝜑𝑖 ∈ (0..^𝑀)) → ((ℝ D 𝐹) ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) ∈ (((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))–cn→ℂ))
fourierdlem113.dvlb ((𝜑𝑖 ∈ (0..^𝑀)) → (((ℝ D 𝐹) ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) lim (𝑄𝑖)) ≠ ∅)
fourierdlem113.dvub ((𝜑𝑖 ∈ (0..^𝑀)) → (((ℝ D 𝐹) ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) lim (𝑄‘(𝑖 + 1))) ≠ ∅)
fourierdlem113.a 𝐴 = (𝑛 ∈ ℕ0 ↦ (∫(-π(,)π)((𝐹𝑥) · (cos‘(𝑛 · 𝑥))) d𝑥 / π))
fourierdlem113.b 𝐵 = (𝑛 ∈ ℕ ↦ (∫(-π(,)π)((𝐹𝑥) · (sin‘(𝑛 · 𝑥))) d𝑥 / π))
fourierdlem113.15 𝑆 = (𝑛 ∈ ℕ ↦ (((𝐴𝑛) · (cos‘(𝑛 · 𝑋))) + ((𝐵𝑛) · (sin‘(𝑛 · 𝑋)))))
fourierdlem113.e 𝐸 = (𝑥 ∈ ℝ ↦ (𝑥 + ((⌊‘((π − 𝑥) / 𝑇)) · 𝑇)))
fourierdlem113.exq (𝜑 → (𝐸𝑋) ∈ ran 𝑄)
Assertion
Ref Expression
fourierdlem113 (𝜑 → (seq1( + , 𝑆) ⇝ (((𝐿 + 𝑅) / 2) − ((𝐴‘0) / 2)) ∧ (((𝐴‘0) / 2) + Σ𝑛 ∈ ℕ (((𝐴𝑛) · (cos‘(𝑛 · 𝑋))) + ((𝐵𝑛) · (sin‘(𝑛 · 𝑋))))) = ((𝐿 + 𝑅) / 2)))
Distinct variable groups:   𝐴,𝑛   𝐵,𝑛   𝑥,𝐸   𝑖,𝐹,𝑛,𝑥   𝑖,𝐿,𝑛   𝑖,𝑀,𝑥,𝑛   𝑀,𝑝,𝑖,𝑛   𝑄,𝑖,𝑥,𝑛   𝑄,𝑝   𝑅,𝑖,𝑛   𝑇,𝑖,𝑥,𝑛   𝑇,𝑝   𝑖,𝑋,𝑥,𝑛   𝑋,𝑝   𝜑,𝑖,𝑥,𝑛
Allowed substitution hints:   𝜑(𝑝)   𝐴(𝑥,𝑖,𝑝)   𝐵(𝑥,𝑖,𝑝)   𝑃(𝑥,𝑖,𝑛,𝑝)   𝑅(𝑥,𝑝)   𝑆(𝑥,𝑖,𝑛,𝑝)   𝐸(𝑖,𝑛,𝑝)   𝐹(𝑝)   𝐿(𝑥,𝑝)

Proof of Theorem fourierdlem113
Dummy variables 𝑗 𝑘 𝑚 𝑤 𝑦 𝑡 𝑢 𝑧 𝑓 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fourierdlem113.f . 2 (𝜑𝐹:ℝ⟶ℝ)
2 oveq1 7376 . . . . . . 7 (𝑤 = 𝑦 → (𝑤 mod (2 · π)) = (𝑦 mod (2 · π)))
32eqeq1d 2731 . . . . . 6 (𝑤 = 𝑦 → ((𝑤 mod (2 · π)) = 0 ↔ (𝑦 mod (2 · π)) = 0))
4 oveq2 7377 . . . . . . . 8 (𝑤 = 𝑦 → ((𝑘 + (1 / 2)) · 𝑤) = ((𝑘 + (1 / 2)) · 𝑦))
54fveq2d 6844 . . . . . . 7 (𝑤 = 𝑦 → (sin‘((𝑘 + (1 / 2)) · 𝑤)) = (sin‘((𝑘 + (1 / 2)) · 𝑦)))
6 oveq1 7376 . . . . . . . . 9 (𝑤 = 𝑦 → (𝑤 / 2) = (𝑦 / 2))
76fveq2d 6844 . . . . . . . 8 (𝑤 = 𝑦 → (sin‘(𝑤 / 2)) = (sin‘(𝑦 / 2)))
87oveq2d 7385 . . . . . . 7 (𝑤 = 𝑦 → ((2 · π) · (sin‘(𝑤 / 2))) = ((2 · π) · (sin‘(𝑦 / 2))))
95, 8oveq12d 7387 . . . . . 6 (𝑤 = 𝑦 → ((sin‘((𝑘 + (1 / 2)) · 𝑤)) / ((2 · π) · (sin‘(𝑤 / 2)))) = ((sin‘((𝑘 + (1 / 2)) · 𝑦)) / ((2 · π) · (sin‘(𝑦 / 2)))))
103, 9ifbieq2d 4511 . . . . 5 (𝑤 = 𝑦 → if((𝑤 mod (2 · π)) = 0, (((2 · 𝑘) + 1) / (2 · π)), ((sin‘((𝑘 + (1 / 2)) · 𝑤)) / ((2 · π) · (sin‘(𝑤 / 2))))) = if((𝑦 mod (2 · π)) = 0, (((2 · 𝑘) + 1) / (2 · π)), ((sin‘((𝑘 + (1 / 2)) · 𝑦)) / ((2 · π) · (sin‘(𝑦 / 2))))))
1110cbvmptv 5206 . . . 4 (𝑤 ∈ ℝ ↦ if((𝑤 mod (2 · π)) = 0, (((2 · 𝑘) + 1) / (2 · π)), ((sin‘((𝑘 + (1 / 2)) · 𝑤)) / ((2 · π) · (sin‘(𝑤 / 2)))))) = (𝑦 ∈ ℝ ↦ if((𝑦 mod (2 · π)) = 0, (((2 · 𝑘) + 1) / (2 · π)), ((sin‘((𝑘 + (1 / 2)) · 𝑦)) / ((2 · π) · (sin‘(𝑦 / 2))))))
12 oveq2 7377 . . . . . . . 8 (𝑘 = 𝑚 → (2 · 𝑘) = (2 · 𝑚))
1312oveq1d 7384 . . . . . . 7 (𝑘 = 𝑚 → ((2 · 𝑘) + 1) = ((2 · 𝑚) + 1))
1413oveq1d 7384 . . . . . 6 (𝑘 = 𝑚 → (((2 · 𝑘) + 1) / (2 · π)) = (((2 · 𝑚) + 1) / (2 · π)))
15 oveq1 7376 . . . . . . . . 9 (𝑘 = 𝑚 → (𝑘 + (1 / 2)) = (𝑚 + (1 / 2)))
1615oveq1d 7384 . . . . . . . 8 (𝑘 = 𝑚 → ((𝑘 + (1 / 2)) · 𝑦) = ((𝑚 + (1 / 2)) · 𝑦))
1716fveq2d 6844 . . . . . . 7 (𝑘 = 𝑚 → (sin‘((𝑘 + (1 / 2)) · 𝑦)) = (sin‘((𝑚 + (1 / 2)) · 𝑦)))
1817oveq1d 7384 . . . . . 6 (𝑘 = 𝑚 → ((sin‘((𝑘 + (1 / 2)) · 𝑦)) / ((2 · π) · (sin‘(𝑦 / 2)))) = ((sin‘((𝑚 + (1 / 2)) · 𝑦)) / ((2 · π) · (sin‘(𝑦 / 2)))))
1914, 18ifeq12d 4506 . . . . 5 (𝑘 = 𝑚 → if((𝑦 mod (2 · π)) = 0, (((2 · 𝑘) + 1) / (2 · π)), ((sin‘((𝑘 + (1 / 2)) · 𝑦)) / ((2 · π) · (sin‘(𝑦 / 2))))) = if((𝑦 mod (2 · π)) = 0, (((2 · 𝑚) + 1) / (2 · π)), ((sin‘((𝑚 + (1 / 2)) · 𝑦)) / ((2 · π) · (sin‘(𝑦 / 2))))))
2019mpteq2dv 5196 . . . 4 (𝑘 = 𝑚 → (𝑦 ∈ ℝ ↦ if((𝑦 mod (2 · π)) = 0, (((2 · 𝑘) + 1) / (2 · π)), ((sin‘((𝑘 + (1 / 2)) · 𝑦)) / ((2 · π) · (sin‘(𝑦 / 2)))))) = (𝑦 ∈ ℝ ↦ if((𝑦 mod (2 · π)) = 0, (((2 · 𝑚) + 1) / (2 · π)), ((sin‘((𝑚 + (1 / 2)) · 𝑦)) / ((2 · π) · (sin‘(𝑦 / 2)))))))
2111, 20eqtrid 2776 . . 3 (𝑘 = 𝑚 → (𝑤 ∈ ℝ ↦ if((𝑤 mod (2 · π)) = 0, (((2 · 𝑘) + 1) / (2 · π)), ((sin‘((𝑘 + (1 / 2)) · 𝑤)) / ((2 · π) · (sin‘(𝑤 / 2)))))) = (𝑦 ∈ ℝ ↦ if((𝑦 mod (2 · π)) = 0, (((2 · 𝑚) + 1) / (2 · π)), ((sin‘((𝑚 + (1 / 2)) · 𝑦)) / ((2 · π) · (sin‘(𝑦 / 2)))))))
2221cbvmptv 5206 . 2 (𝑘 ∈ ℕ ↦ (𝑤 ∈ ℝ ↦ if((𝑤 mod (2 · π)) = 0, (((2 · 𝑘) + 1) / (2 · π)), ((sin‘((𝑘 + (1 / 2)) · 𝑤)) / ((2 · π) · (sin‘(𝑤 / 2))))))) = (𝑚 ∈ ℕ ↦ (𝑦 ∈ ℝ ↦ if((𝑦 mod (2 · π)) = 0, (((2 · 𝑚) + 1) / (2 · π)), ((sin‘((𝑚 + (1 / 2)) · 𝑦)) / ((2 · π) · (sin‘(𝑦 / 2)))))))
23 fourierdlem113.p . 2 𝑃 = (𝑛 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑m (0...𝑛)) ∣ (((𝑝‘0) = -π ∧ (𝑝𝑛) = π) ∧ ∀𝑖 ∈ (0..^𝑛)(𝑝𝑖) < (𝑝‘(𝑖 + 1)))})
24 fourierdlem113.m . 2 (𝜑𝑀 ∈ ℕ)
25 fourierdlem113.q . 2 (𝜑𝑄 ∈ (𝑃𝑀))
26 oveq1 7376 . . . . . . . 8 (𝑤 = 𝑦 → (𝑤 + (𝑗 · 𝑇)) = (𝑦 + (𝑗 · 𝑇)))
2726eleq1d 2813 . . . . . . 7 (𝑤 = 𝑦 → ((𝑤 + (𝑗 · 𝑇)) ∈ ran 𝑄 ↔ (𝑦 + (𝑗 · 𝑇)) ∈ ran 𝑄))
2827rexbidv 3157 . . . . . 6 (𝑤 = 𝑦 → (∃𝑗 ∈ ℤ (𝑤 + (𝑗 · 𝑇)) ∈ ran 𝑄 ↔ ∃𝑗 ∈ ℤ (𝑦 + (𝑗 · 𝑇)) ∈ ran 𝑄))
2928cbvrabv 3413 . . . . 5 {𝑤 ∈ ((-π + 𝑋)[,](π + 𝑋)) ∣ ∃𝑗 ∈ ℤ (𝑤 + (𝑗 · 𝑇)) ∈ ran 𝑄} = {𝑦 ∈ ((-π + 𝑋)[,](π + 𝑋)) ∣ ∃𝑗 ∈ ℤ (𝑦 + (𝑗 · 𝑇)) ∈ ran 𝑄}
3029uneq2i 4124 . . . 4 ({(-π + 𝑋), (π + 𝑋)} ∪ {𝑤 ∈ ((-π + 𝑋)[,](π + 𝑋)) ∣ ∃𝑗 ∈ ℤ (𝑤 + (𝑗 · 𝑇)) ∈ ran 𝑄}) = ({(-π + 𝑋), (π + 𝑋)} ∪ {𝑦 ∈ ((-π + 𝑋)[,](π + 𝑋)) ∣ ∃𝑗 ∈ ℤ (𝑦 + (𝑗 · 𝑇)) ∈ ran 𝑄})
3130fveq2i 6843 . . 3 (♯‘({(-π + 𝑋), (π + 𝑋)} ∪ {𝑤 ∈ ((-π + 𝑋)[,](π + 𝑋)) ∣ ∃𝑗 ∈ ℤ (𝑤 + (𝑗 · 𝑇)) ∈ ran 𝑄})) = (♯‘({(-π + 𝑋), (π + 𝑋)} ∪ {𝑦 ∈ ((-π + 𝑋)[,](π + 𝑋)) ∣ ∃𝑗 ∈ ℤ (𝑦 + (𝑗 · 𝑇)) ∈ ran 𝑄}))
3231oveq1i 7379 . 2 ((♯‘({(-π + 𝑋), (π + 𝑋)} ∪ {𝑤 ∈ ((-π + 𝑋)[,](π + 𝑋)) ∣ ∃𝑗 ∈ ℤ (𝑤 + (𝑗 · 𝑇)) ∈ ran 𝑄})) − 1) = ((♯‘({(-π + 𝑋), (π + 𝑋)} ∪ {𝑦 ∈ ((-π + 𝑋)[,](π + 𝑋)) ∣ ∃𝑗 ∈ ℤ (𝑦 + (𝑗 · 𝑇)) ∈ ran 𝑄})) − 1)
33 oveq1 7376 . . . . . . . . . . . 12 (𝑘 = 𝑗 → (𝑘 · 𝑇) = (𝑗 · 𝑇))
3433oveq2d 7385 . . . . . . . . . . 11 (𝑘 = 𝑗 → (𝑦 + (𝑘 · 𝑇)) = (𝑦 + (𝑗 · 𝑇)))
3534eleq1d 2813 . . . . . . . . . 10 (𝑘 = 𝑗 → ((𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄 ↔ (𝑦 + (𝑗 · 𝑇)) ∈ ran 𝑄))
3635cbvrexvw 3214 . . . . . . . . 9 (∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄 ↔ ∃𝑗 ∈ ℤ (𝑦 + (𝑗 · 𝑇)) ∈ ran 𝑄)
3736a1i 11 . . . . . . . 8 (𝑦 ∈ ((-π + 𝑋)[,](π + 𝑋)) → (∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄 ↔ ∃𝑗 ∈ ℤ (𝑦 + (𝑗 · 𝑇)) ∈ ran 𝑄))
3837rabbiia 3406 . . . . . . 7 {𝑦 ∈ ((-π + 𝑋)[,](π + 𝑋)) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄} = {𝑦 ∈ ((-π + 𝑋)[,](π + 𝑋)) ∣ ∃𝑗 ∈ ℤ (𝑦 + (𝑗 · 𝑇)) ∈ ran 𝑄}
3938uneq2i 4124 . . . . . 6 ({(-π + 𝑋), (π + 𝑋)} ∪ {𝑦 ∈ ((-π + 𝑋)[,](π + 𝑋)) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄}) = ({(-π + 𝑋), (π + 𝑋)} ∪ {𝑦 ∈ ((-π + 𝑋)[,](π + 𝑋)) ∣ ∃𝑗 ∈ ℤ (𝑦 + (𝑗 · 𝑇)) ∈ ran 𝑄})
40 isoeq5 7278 . . . . . 6 (({(-π + 𝑋), (π + 𝑋)} ∪ {𝑦 ∈ ((-π + 𝑋)[,](π + 𝑋)) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄}) = ({(-π + 𝑋), (π + 𝑋)} ∪ {𝑦 ∈ ((-π + 𝑋)[,](π + 𝑋)) ∣ ∃𝑗 ∈ ℤ (𝑦 + (𝑗 · 𝑇)) ∈ ran 𝑄}) → (𝑔 Isom < , < ((0...((♯‘({(-π + 𝑋), (π + 𝑋)} ∪ {𝑤 ∈ ((-π + 𝑋)[,](π + 𝑋)) ∣ ∃𝑘 ∈ ℤ (𝑤 + (𝑘 · 𝑇)) ∈ ran 𝑄})) − 1)), ({(-π + 𝑋), (π + 𝑋)} ∪ {𝑦 ∈ ((-π + 𝑋)[,](π + 𝑋)) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄})) ↔ 𝑔 Isom < , < ((0...((♯‘({(-π + 𝑋), (π + 𝑋)} ∪ {𝑤 ∈ ((-π + 𝑋)[,](π + 𝑋)) ∣ ∃𝑘 ∈ ℤ (𝑤 + (𝑘 · 𝑇)) ∈ ran 𝑄})) − 1)), ({(-π + 𝑋), (π + 𝑋)} ∪ {𝑦 ∈ ((-π + 𝑋)[,](π + 𝑋)) ∣ ∃𝑗 ∈ ℤ (𝑦 + (𝑗 · 𝑇)) ∈ ran 𝑄}))))
4139, 40ax-mp 5 . . . . 5 (𝑔 Isom < , < ((0...((♯‘({(-π + 𝑋), (π + 𝑋)} ∪ {𝑤 ∈ ((-π + 𝑋)[,](π + 𝑋)) ∣ ∃𝑘 ∈ ℤ (𝑤 + (𝑘 · 𝑇)) ∈ ran 𝑄})) − 1)), ({(-π + 𝑋), (π + 𝑋)} ∪ {𝑦 ∈ ((-π + 𝑋)[,](π + 𝑋)) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄})) ↔ 𝑔 Isom < , < ((0...((♯‘({(-π + 𝑋), (π + 𝑋)} ∪ {𝑤 ∈ ((-π + 𝑋)[,](π + 𝑋)) ∣ ∃𝑘 ∈ ℤ (𝑤 + (𝑘 · 𝑇)) ∈ ran 𝑄})) − 1)), ({(-π + 𝑋), (π + 𝑋)} ∪ {𝑦 ∈ ((-π + 𝑋)[,](π + 𝑋)) ∣ ∃𝑗 ∈ ℤ (𝑦 + (𝑗 · 𝑇)) ∈ ran 𝑄})))
4241a1i 11 . . . 4 (𝑔 = 𝑓 → (𝑔 Isom < , < ((0...((♯‘({(-π + 𝑋), (π + 𝑋)} ∪ {𝑤 ∈ ((-π + 𝑋)[,](π + 𝑋)) ∣ ∃𝑘 ∈ ℤ (𝑤 + (𝑘 · 𝑇)) ∈ ran 𝑄})) − 1)), ({(-π + 𝑋), (π + 𝑋)} ∪ {𝑦 ∈ ((-π + 𝑋)[,](π + 𝑋)) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄})) ↔ 𝑔 Isom < , < ((0...((♯‘({(-π + 𝑋), (π + 𝑋)} ∪ {𝑤 ∈ ((-π + 𝑋)[,](π + 𝑋)) ∣ ∃𝑘 ∈ ℤ (𝑤 + (𝑘 · 𝑇)) ∈ ran 𝑄})) − 1)), ({(-π + 𝑋), (π + 𝑋)} ∪ {𝑦 ∈ ((-π + 𝑋)[,](π + 𝑋)) ∣ ∃𝑗 ∈ ℤ (𝑦 + (𝑗 · 𝑇)) ∈ ran 𝑄}))))
4333oveq2d 7385 . . . . . . . . . . . . . 14 (𝑘 = 𝑗 → (𝑤 + (𝑘 · 𝑇)) = (𝑤 + (𝑗 · 𝑇)))
4443eleq1d 2813 . . . . . . . . . . . . 13 (𝑘 = 𝑗 → ((𝑤 + (𝑘 · 𝑇)) ∈ ran 𝑄 ↔ (𝑤 + (𝑗 · 𝑇)) ∈ ran 𝑄))
4544cbvrexvw 3214 . . . . . . . . . . . 12 (∃𝑘 ∈ ℤ (𝑤 + (𝑘 · 𝑇)) ∈ ran 𝑄 ↔ ∃𝑗 ∈ ℤ (𝑤 + (𝑗 · 𝑇)) ∈ ran 𝑄)
4645a1i 11 . . . . . . . . . . 11 (𝑤 ∈ ((-π + 𝑋)[,](π + 𝑋)) → (∃𝑘 ∈ ℤ (𝑤 + (𝑘 · 𝑇)) ∈ ran 𝑄 ↔ ∃𝑗 ∈ ℤ (𝑤 + (𝑗 · 𝑇)) ∈ ran 𝑄))
4746rabbiia 3406 . . . . . . . . . 10 {𝑤 ∈ ((-π + 𝑋)[,](π + 𝑋)) ∣ ∃𝑘 ∈ ℤ (𝑤 + (𝑘 · 𝑇)) ∈ ran 𝑄} = {𝑤 ∈ ((-π + 𝑋)[,](π + 𝑋)) ∣ ∃𝑗 ∈ ℤ (𝑤 + (𝑗 · 𝑇)) ∈ ran 𝑄}
4847uneq2i 4124 . . . . . . . . 9 ({(-π + 𝑋), (π + 𝑋)} ∪ {𝑤 ∈ ((-π + 𝑋)[,](π + 𝑋)) ∣ ∃𝑘 ∈ ℤ (𝑤 + (𝑘 · 𝑇)) ∈ ran 𝑄}) = ({(-π + 𝑋), (π + 𝑋)} ∪ {𝑤 ∈ ((-π + 𝑋)[,](π + 𝑋)) ∣ ∃𝑗 ∈ ℤ (𝑤 + (𝑗 · 𝑇)) ∈ ran 𝑄})
4948fveq2i 6843 . . . . . . . 8 (♯‘({(-π + 𝑋), (π + 𝑋)} ∪ {𝑤 ∈ ((-π + 𝑋)[,](π + 𝑋)) ∣ ∃𝑘 ∈ ℤ (𝑤 + (𝑘 · 𝑇)) ∈ ran 𝑄})) = (♯‘({(-π + 𝑋), (π + 𝑋)} ∪ {𝑤 ∈ ((-π + 𝑋)[,](π + 𝑋)) ∣ ∃𝑗 ∈ ℤ (𝑤 + (𝑗 · 𝑇)) ∈ ran 𝑄}))
5049oveq1i 7379 . . . . . . 7 ((♯‘({(-π + 𝑋), (π + 𝑋)} ∪ {𝑤 ∈ ((-π + 𝑋)[,](π + 𝑋)) ∣ ∃𝑘 ∈ ℤ (𝑤 + (𝑘 · 𝑇)) ∈ ran 𝑄})) − 1) = ((♯‘({(-π + 𝑋), (π + 𝑋)} ∪ {𝑤 ∈ ((-π + 𝑋)[,](π + 𝑋)) ∣ ∃𝑗 ∈ ℤ (𝑤 + (𝑗 · 𝑇)) ∈ ran 𝑄})) − 1)
5150oveq2i 7380 . . . . . 6 (0...((♯‘({(-π + 𝑋), (π + 𝑋)} ∪ {𝑤 ∈ ((-π + 𝑋)[,](π + 𝑋)) ∣ ∃𝑘 ∈ ℤ (𝑤 + (𝑘 · 𝑇)) ∈ ran 𝑄})) − 1)) = (0...((♯‘({(-π + 𝑋), (π + 𝑋)} ∪ {𝑤 ∈ ((-π + 𝑋)[,](π + 𝑋)) ∣ ∃𝑗 ∈ ℤ (𝑤 + (𝑗 · 𝑇)) ∈ ran 𝑄})) − 1))
52 isoeq4 7277 . . . . . 6 ((0...((♯‘({(-π + 𝑋), (π + 𝑋)} ∪ {𝑤 ∈ ((-π + 𝑋)[,](π + 𝑋)) ∣ ∃𝑘 ∈ ℤ (𝑤 + (𝑘 · 𝑇)) ∈ ran 𝑄})) − 1)) = (0...((♯‘({(-π + 𝑋), (π + 𝑋)} ∪ {𝑤 ∈ ((-π + 𝑋)[,](π + 𝑋)) ∣ ∃𝑗 ∈ ℤ (𝑤 + (𝑗 · 𝑇)) ∈ ran 𝑄})) − 1)) → (𝑔 Isom < , < ((0...((♯‘({(-π + 𝑋), (π + 𝑋)} ∪ {𝑤 ∈ ((-π + 𝑋)[,](π + 𝑋)) ∣ ∃𝑘 ∈ ℤ (𝑤 + (𝑘 · 𝑇)) ∈ ran 𝑄})) − 1)), ({(-π + 𝑋), (π + 𝑋)} ∪ {𝑦 ∈ ((-π + 𝑋)[,](π + 𝑋)) ∣ ∃𝑗 ∈ ℤ (𝑦 + (𝑗 · 𝑇)) ∈ ran 𝑄})) ↔ 𝑔 Isom < , < ((0...((♯‘({(-π + 𝑋), (π + 𝑋)} ∪ {𝑤 ∈ ((-π + 𝑋)[,](π + 𝑋)) ∣ ∃𝑗 ∈ ℤ (𝑤 + (𝑗 · 𝑇)) ∈ ran 𝑄})) − 1)), ({(-π + 𝑋), (π + 𝑋)} ∪ {𝑦 ∈ ((-π + 𝑋)[,](π + 𝑋)) ∣ ∃𝑗 ∈ ℤ (𝑦 + (𝑗 · 𝑇)) ∈ ran 𝑄}))))
5351, 52ax-mp 5 . . . . 5 (𝑔 Isom < , < ((0...((♯‘({(-π + 𝑋), (π + 𝑋)} ∪ {𝑤 ∈ ((-π + 𝑋)[,](π + 𝑋)) ∣ ∃𝑘 ∈ ℤ (𝑤 + (𝑘 · 𝑇)) ∈ ran 𝑄})) − 1)), ({(-π + 𝑋), (π + 𝑋)} ∪ {𝑦 ∈ ((-π + 𝑋)[,](π + 𝑋)) ∣ ∃𝑗 ∈ ℤ (𝑦 + (𝑗 · 𝑇)) ∈ ran 𝑄})) ↔ 𝑔 Isom < , < ((0...((♯‘({(-π + 𝑋), (π + 𝑋)} ∪ {𝑤 ∈ ((-π + 𝑋)[,](π + 𝑋)) ∣ ∃𝑗 ∈ ℤ (𝑤 + (𝑗 · 𝑇)) ∈ ran 𝑄})) − 1)), ({(-π + 𝑋), (π + 𝑋)} ∪ {𝑦 ∈ ((-π + 𝑋)[,](π + 𝑋)) ∣ ∃𝑗 ∈ ℤ (𝑦 + (𝑗 · 𝑇)) ∈ ran 𝑄})))
5453a1i 11 . . . 4 (𝑔 = 𝑓 → (𝑔 Isom < , < ((0...((♯‘({(-π + 𝑋), (π + 𝑋)} ∪ {𝑤 ∈ ((-π + 𝑋)[,](π + 𝑋)) ∣ ∃𝑘 ∈ ℤ (𝑤 + (𝑘 · 𝑇)) ∈ ran 𝑄})) − 1)), ({(-π + 𝑋), (π + 𝑋)} ∪ {𝑦 ∈ ((-π + 𝑋)[,](π + 𝑋)) ∣ ∃𝑗 ∈ ℤ (𝑦 + (𝑗 · 𝑇)) ∈ ran 𝑄})) ↔ 𝑔 Isom < , < ((0...((♯‘({(-π + 𝑋), (π + 𝑋)} ∪ {𝑤 ∈ ((-π + 𝑋)[,](π + 𝑋)) ∣ ∃𝑗 ∈ ℤ (𝑤 + (𝑗 · 𝑇)) ∈ ran 𝑄})) − 1)), ({(-π + 𝑋), (π + 𝑋)} ∪ {𝑦 ∈ ((-π + 𝑋)[,](π + 𝑋)) ∣ ∃𝑗 ∈ ℤ (𝑦 + (𝑗 · 𝑇)) ∈ ran 𝑄}))))
55 isoeq1 7274 . . . 4 (𝑔 = 𝑓 → (𝑔 Isom < , < ((0...((♯‘({(-π + 𝑋), (π + 𝑋)} ∪ {𝑤 ∈ ((-π + 𝑋)[,](π + 𝑋)) ∣ ∃𝑗 ∈ ℤ (𝑤 + (𝑗 · 𝑇)) ∈ ran 𝑄})) − 1)), ({(-π + 𝑋), (π + 𝑋)} ∪ {𝑦 ∈ ((-π + 𝑋)[,](π + 𝑋)) ∣ ∃𝑗 ∈ ℤ (𝑦 + (𝑗 · 𝑇)) ∈ ran 𝑄})) ↔ 𝑓 Isom < , < ((0...((♯‘({(-π + 𝑋), (π + 𝑋)} ∪ {𝑤 ∈ ((-π + 𝑋)[,](π + 𝑋)) ∣ ∃𝑗 ∈ ℤ (𝑤 + (𝑗 · 𝑇)) ∈ ran 𝑄})) − 1)), ({(-π + 𝑋), (π + 𝑋)} ∪ {𝑦 ∈ ((-π + 𝑋)[,](π + 𝑋)) ∣ ∃𝑗 ∈ ℤ (𝑦 + (𝑗 · 𝑇)) ∈ ran 𝑄}))))
5642, 54, 553bitrd 305 . . 3 (𝑔 = 𝑓 → (𝑔 Isom < , < ((0...((♯‘({(-π + 𝑋), (π + 𝑋)} ∪ {𝑤 ∈ ((-π + 𝑋)[,](π + 𝑋)) ∣ ∃𝑘 ∈ ℤ (𝑤 + (𝑘 · 𝑇)) ∈ ran 𝑄})) − 1)), ({(-π + 𝑋), (π + 𝑋)} ∪ {𝑦 ∈ ((-π + 𝑋)[,](π + 𝑋)) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄})) ↔ 𝑓 Isom < , < ((0...((♯‘({(-π + 𝑋), (π + 𝑋)} ∪ {𝑤 ∈ ((-π + 𝑋)[,](π + 𝑋)) ∣ ∃𝑗 ∈ ℤ (𝑤 + (𝑗 · 𝑇)) ∈ ran 𝑄})) − 1)), ({(-π + 𝑋), (π + 𝑋)} ∪ {𝑦 ∈ ((-π + 𝑋)[,](π + 𝑋)) ∣ ∃𝑗 ∈ ℤ (𝑦 + (𝑗 · 𝑇)) ∈ ran 𝑄}))))
5756cbviotavw 6460 . 2 (℩𝑔𝑔 Isom < , < ((0...((♯‘({(-π + 𝑋), (π + 𝑋)} ∪ {𝑤 ∈ ((-π + 𝑋)[,](π + 𝑋)) ∣ ∃𝑘 ∈ ℤ (𝑤 + (𝑘 · 𝑇)) ∈ ran 𝑄})) − 1)), ({(-π + 𝑋), (π + 𝑋)} ∪ {𝑦 ∈ ((-π + 𝑋)[,](π + 𝑋)) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄}))) = (℩𝑓𝑓 Isom < , < ((0...((♯‘({(-π + 𝑋), (π + 𝑋)} ∪ {𝑤 ∈ ((-π + 𝑋)[,](π + 𝑋)) ∣ ∃𝑗 ∈ ℤ (𝑤 + (𝑗 · 𝑇)) ∈ ran 𝑄})) − 1)), ({(-π + 𝑋), (π + 𝑋)} ∪ {𝑦 ∈ ((-π + 𝑋)[,](π + 𝑋)) ∣ ∃𝑗 ∈ ℤ (𝑦 + (𝑗 · 𝑇)) ∈ ran 𝑄})))
58 fourierdlem113.x . 2 (𝜑𝑋 ∈ ℝ)
59 pire 26342 . . . . 5 π ∈ ℝ
6059renegcli 11459 . . . 4 -π ∈ ℝ
6160a1i 11 . . 3 (𝜑 → -π ∈ ℝ)
6259a1i 11 . . 3 (𝜑 → π ∈ ℝ)
63 negpilt0 45252 . . . 4 -π < 0
6463a1i 11 . . 3 (𝜑 → -π < 0)
65 pipos 26344 . . . 4 0 < π
6665a1i 11 . . 3 (𝜑 → 0 < π)
67 picn 26343 . . . . 5 π ∈ ℂ
68672timesi 12295 . . . 4 (2 · π) = (π + π)
69 fourierdlem113.t . . . 4 𝑇 = (2 · π)
7067, 67subnegi 11477 . . . 4 (π − -π) = (π + π)
7168, 69, 703eqtr4i 2762 . . 3 𝑇 = (π − -π)
7223fourierdlem2 46080 . . . . . . . 8 (𝑀 ∈ ℕ → (𝑄 ∈ (𝑃𝑀) ↔ (𝑄 ∈ (ℝ ↑m (0...𝑀)) ∧ (((𝑄‘0) = -π ∧ (𝑄𝑀) = π) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑄𝑖) < (𝑄‘(𝑖 + 1))))))
7324, 72syl 17 . . . . . . 7 (𝜑 → (𝑄 ∈ (𝑃𝑀) ↔ (𝑄 ∈ (ℝ ↑m (0...𝑀)) ∧ (((𝑄‘0) = -π ∧ (𝑄𝑀) = π) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑄𝑖) < (𝑄‘(𝑖 + 1))))))
7425, 73mpbid 232 . . . . . 6 (𝜑 → (𝑄 ∈ (ℝ ↑m (0...𝑀)) ∧ (((𝑄‘0) = -π ∧ (𝑄𝑀) = π) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑄𝑖) < (𝑄‘(𝑖 + 1)))))
7574simpld 494 . . . . 5 (𝜑𝑄 ∈ (ℝ ↑m (0...𝑀)))
76 elmapi 8799 . . . . 5 (𝑄 ∈ (ℝ ↑m (0...𝑀)) → 𝑄:(0...𝑀)⟶ℝ)
7775, 76syl 17 . . . 4 (𝜑𝑄:(0...𝑀)⟶ℝ)
78 fzfid 13914 . . . 4 (𝜑 → (0...𝑀) ∈ Fin)
79 rnffi 45142 . . . 4 ((𝑄:(0...𝑀)⟶ℝ ∧ (0...𝑀) ∈ Fin) → ran 𝑄 ∈ Fin)
8077, 78, 79syl2anc 584 . . 3 (𝜑 → ran 𝑄 ∈ Fin)
8123, 24, 25fourierdlem15 46093 . . . 4 (𝜑𝑄:(0...𝑀)⟶(-π[,]π))
82 frn 6677 . . . 4 (𝑄:(0...𝑀)⟶(-π[,]π) → ran 𝑄 ⊆ (-π[,]π))
8381, 82syl 17 . . 3 (𝜑 → ran 𝑄 ⊆ (-π[,]π))
8474simprd 495 . . . . 5 (𝜑 → (((𝑄‘0) = -π ∧ (𝑄𝑀) = π) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑄𝑖) < (𝑄‘(𝑖 + 1))))
8584simplrd 769 . . . 4 (𝜑 → (𝑄𝑀) = π)
86 ffun 6673 . . . . . 6 (𝑄:(0...𝑀)⟶(-π[,]π) → Fun 𝑄)
8781, 86syl 17 . . . . 5 (𝜑 → Fun 𝑄)
8824nnnn0d 12479 . . . . . . . 8 (𝜑𝑀 ∈ ℕ0)
89 nn0uz 12811 . . . . . . . 8 0 = (ℤ‘0)
9088, 89eleqtrdi 2838 . . . . . . 7 (𝜑𝑀 ∈ (ℤ‘0))
91 eluzfz2 13469 . . . . . . 7 (𝑀 ∈ (ℤ‘0) → 𝑀 ∈ (0...𝑀))
9290, 91syl 17 . . . . . 6 (𝜑𝑀 ∈ (0...𝑀))
93 fdm 6679 . . . . . . . 8 (𝑄:(0...𝑀)⟶(-π[,]π) → dom 𝑄 = (0...𝑀))
9481, 93syl 17 . . . . . . 7 (𝜑 → dom 𝑄 = (0...𝑀))
9594eqcomd 2735 . . . . . 6 (𝜑 → (0...𝑀) = dom 𝑄)
9692, 95eleqtrd 2830 . . . . 5 (𝜑𝑀 ∈ dom 𝑄)
97 fvelrn 7030 . . . . 5 ((Fun 𝑄𝑀 ∈ dom 𝑄) → (𝑄𝑀) ∈ ran 𝑄)
9887, 96, 97syl2anc 584 . . . 4 (𝜑 → (𝑄𝑀) ∈ ran 𝑄)
9985, 98eqeltrrd 2829 . . 3 (𝜑 → π ∈ ran 𝑄)
100 fourierdlem113.e . . 3 𝐸 = (𝑥 ∈ ℝ ↦ (𝑥 + ((⌊‘((π − 𝑥) / 𝑇)) · 𝑇)))
101 fourierdlem113.exq . . 3 (𝜑 → (𝐸𝑋) ∈ ran 𝑄)
102 eqid 2729 . . 3 ({(-π + 𝑋), (π + 𝑋)} ∪ {𝑤 ∈ ((-π + 𝑋)[,](π + 𝑋)) ∣ ∃𝑘 ∈ ℤ (𝑤 + (𝑘 · 𝑇)) ∈ ran 𝑄}) = ({(-π + 𝑋), (π + 𝑋)} ∪ {𝑤 ∈ ((-π + 𝑋)[,](π + 𝑋)) ∣ ∃𝑘 ∈ ℤ (𝑤 + (𝑘 · 𝑇)) ∈ ran 𝑄})
103 isoeq1 7274 . . . . 5 (𝑔 = 𝑓 → (𝑔 Isom < , < ((0...((♯‘({(-π + 𝑋), (π + 𝑋)} ∪ {𝑤 ∈ ((-π + 𝑋)[,](π + 𝑋)) ∣ ∃𝑘 ∈ ℤ (𝑤 + (𝑘 · 𝑇)) ∈ ran 𝑄})) − 1)), ({(-π + 𝑋), (π + 𝑋)} ∪ {𝑦 ∈ ((-π + 𝑋)[,](π + 𝑋)) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄})) ↔ 𝑓 Isom < , < ((0...((♯‘({(-π + 𝑋), (π + 𝑋)} ∪ {𝑤 ∈ ((-π + 𝑋)[,](π + 𝑋)) ∣ ∃𝑘 ∈ ℤ (𝑤 + (𝑘 · 𝑇)) ∈ ran 𝑄})) − 1)), ({(-π + 𝑋), (π + 𝑋)} ∪ {𝑦 ∈ ((-π + 𝑋)[,](π + 𝑋)) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄}))))
10430, 48, 393eqtr4ri 2763 . . . . . 6 ({(-π + 𝑋), (π + 𝑋)} ∪ {𝑦 ∈ ((-π + 𝑋)[,](π + 𝑋)) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄}) = ({(-π + 𝑋), (π + 𝑋)} ∪ {𝑤 ∈ ((-π + 𝑋)[,](π + 𝑋)) ∣ ∃𝑘 ∈ ℤ (𝑤 + (𝑘 · 𝑇)) ∈ ran 𝑄})
105 isoeq5 7278 . . . . . 6 (({(-π + 𝑋), (π + 𝑋)} ∪ {𝑦 ∈ ((-π + 𝑋)[,](π + 𝑋)) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄}) = ({(-π + 𝑋), (π + 𝑋)} ∪ {𝑤 ∈ ((-π + 𝑋)[,](π + 𝑋)) ∣ ∃𝑘 ∈ ℤ (𝑤 + (𝑘 · 𝑇)) ∈ ran 𝑄}) → (𝑓 Isom < , < ((0...((♯‘({(-π + 𝑋), (π + 𝑋)} ∪ {𝑤 ∈ ((-π + 𝑋)[,](π + 𝑋)) ∣ ∃𝑘 ∈ ℤ (𝑤 + (𝑘 · 𝑇)) ∈ ran 𝑄})) − 1)), ({(-π + 𝑋), (π + 𝑋)} ∪ {𝑦 ∈ ((-π + 𝑋)[,](π + 𝑋)) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄})) ↔ 𝑓 Isom < , < ((0...((♯‘({(-π + 𝑋), (π + 𝑋)} ∪ {𝑤 ∈ ((-π + 𝑋)[,](π + 𝑋)) ∣ ∃𝑘 ∈ ℤ (𝑤 + (𝑘 · 𝑇)) ∈ ran 𝑄})) − 1)), ({(-π + 𝑋), (π + 𝑋)} ∪ {𝑤 ∈ ((-π + 𝑋)[,](π + 𝑋)) ∣ ∃𝑘 ∈ ℤ (𝑤 + (𝑘 · 𝑇)) ∈ ran 𝑄}))))
106104, 105ax-mp 5 . . . . 5 (𝑓 Isom < , < ((0...((♯‘({(-π + 𝑋), (π + 𝑋)} ∪ {𝑤 ∈ ((-π + 𝑋)[,](π + 𝑋)) ∣ ∃𝑘 ∈ ℤ (𝑤 + (𝑘 · 𝑇)) ∈ ran 𝑄})) − 1)), ({(-π + 𝑋), (π + 𝑋)} ∪ {𝑦 ∈ ((-π + 𝑋)[,](π + 𝑋)) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄})) ↔ 𝑓 Isom < , < ((0...((♯‘({(-π + 𝑋), (π + 𝑋)} ∪ {𝑤 ∈ ((-π + 𝑋)[,](π + 𝑋)) ∣ ∃𝑘 ∈ ℤ (𝑤 + (𝑘 · 𝑇)) ∈ ran 𝑄})) − 1)), ({(-π + 𝑋), (π + 𝑋)} ∪ {𝑤 ∈ ((-π + 𝑋)[,](π + 𝑋)) ∣ ∃𝑘 ∈ ℤ (𝑤 + (𝑘 · 𝑇)) ∈ ran 𝑄})))
107103, 106bitrdi 287 . . . 4 (𝑔 = 𝑓 → (𝑔 Isom < , < ((0...((♯‘({(-π + 𝑋), (π + 𝑋)} ∪ {𝑤 ∈ ((-π + 𝑋)[,](π + 𝑋)) ∣ ∃𝑘 ∈ ℤ (𝑤 + (𝑘 · 𝑇)) ∈ ran 𝑄})) − 1)), ({(-π + 𝑋), (π + 𝑋)} ∪ {𝑦 ∈ ((-π + 𝑋)[,](π + 𝑋)) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄})) ↔ 𝑓 Isom < , < ((0...((♯‘({(-π + 𝑋), (π + 𝑋)} ∪ {𝑤 ∈ ((-π + 𝑋)[,](π + 𝑋)) ∣ ∃𝑘 ∈ ℤ (𝑤 + (𝑘 · 𝑇)) ∈ ran 𝑄})) − 1)), ({(-π + 𝑋), (π + 𝑋)} ∪ {𝑤 ∈ ((-π + 𝑋)[,](π + 𝑋)) ∣ ∃𝑘 ∈ ℤ (𝑤 + (𝑘 · 𝑇)) ∈ ran 𝑄}))))
108107cbviotavw 6460 . . 3 (℩𝑔𝑔 Isom < , < ((0...((♯‘({(-π + 𝑋), (π + 𝑋)} ∪ {𝑤 ∈ ((-π + 𝑋)[,](π + 𝑋)) ∣ ∃𝑘 ∈ ℤ (𝑤 + (𝑘 · 𝑇)) ∈ ran 𝑄})) − 1)), ({(-π + 𝑋), (π + 𝑋)} ∪ {𝑦 ∈ ((-π + 𝑋)[,](π + 𝑋)) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄}))) = (℩𝑓𝑓 Isom < , < ((0...((♯‘({(-π + 𝑋), (π + 𝑋)} ∪ {𝑤 ∈ ((-π + 𝑋)[,](π + 𝑋)) ∣ ∃𝑘 ∈ ℤ (𝑤 + (𝑘 · 𝑇)) ∈ ran 𝑄})) − 1)), ({(-π + 𝑋), (π + 𝑋)} ∪ {𝑤 ∈ ((-π + 𝑋)[,](π + 𝑋)) ∣ ∃𝑘 ∈ ℤ (𝑤 + (𝑘 · 𝑇)) ∈ ran 𝑄})))
109 eqid 2729 . . 3 {𝑤 ∈ ((-π + 𝑋)(,](π + 𝑋)) ∣ ∃𝑘 ∈ ℤ (𝑤 + (𝑘 · 𝑇)) ∈ ran 𝑄} = {𝑤 ∈ ((-π + 𝑋)(,](π + 𝑋)) ∣ ∃𝑘 ∈ ℤ (𝑤 + (𝑘 · 𝑇)) ∈ ran 𝑄}
11061, 62, 64, 66, 71, 80, 83, 99, 100, 58, 101, 102, 108, 109fourierdlem51 46128 . 2 (𝜑𝑋 ∈ ran (℩𝑔𝑔 Isom < , < ((0...((♯‘({(-π + 𝑋), (π + 𝑋)} ∪ {𝑤 ∈ ((-π + 𝑋)[,](π + 𝑋)) ∣ ∃𝑘 ∈ ℤ (𝑤 + (𝑘 · 𝑇)) ∈ ran 𝑄})) − 1)), ({(-π + 𝑋), (π + 𝑋)} ∪ {𝑦 ∈ ((-π + 𝑋)[,](π + 𝑋)) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄}))))
111 fourierdlem113.per . 2 ((𝜑𝑥 ∈ ℝ) → (𝐹‘(𝑥 + 𝑇)) = (𝐹𝑥))
112 ax-resscn 11101 . . . 4 ℝ ⊆ ℂ
113112a1i 11 . . 3 ((𝜑𝑖 ∈ (0..^𝑀)) → ℝ ⊆ ℂ)
114 ioossre 13344 . . . . . . 7 ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ⊆ ℝ
115114a1i 11 . . . . . 6 (𝜑 → ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ⊆ ℝ)
1161, 115fssresd 6709 . . . . 5 (𝜑 → (𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))):((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))⟶ℝ)
117112a1i 11 . . . . 5 (𝜑 → ℝ ⊆ ℂ)
118116, 117fssd 6687 . . . 4 (𝜑 → (𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))):((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))⟶ℂ)
119118adantr 480 . . 3 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))):((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))⟶ℂ)
120114a1i 11 . . 3 ((𝜑𝑖 ∈ (0..^𝑀)) → ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ⊆ ℝ)
1211, 117fssd 6687 . . . . . . 7 (𝜑𝐹:ℝ⟶ℂ)
122121adantr 480 . . . . . 6 ((𝜑𝑖 ∈ (0..^𝑀)) → 𝐹:ℝ⟶ℂ)
123 ssid 3966 . . . . . . 7 ℝ ⊆ ℝ
124123a1i 11 . . . . . 6 ((𝜑𝑖 ∈ (0..^𝑀)) → ℝ ⊆ ℝ)
125 eqid 2729 . . . . . . 7 (TopOpen‘ℂfld) = (TopOpen‘ℂfld)
126 tgioo4 24669 . . . . . . 7 (topGen‘ran (,)) = ((TopOpen‘ℂfld) ↾t ℝ)
127125, 126dvres 25788 . . . . . 6 (((ℝ ⊆ ℂ ∧ 𝐹:ℝ⟶ℂ) ∧ (ℝ ⊆ ℝ ∧ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ⊆ ℝ)) → (ℝ D (𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))) = ((ℝ D 𝐹) ↾ ((int‘(topGen‘ran (,)))‘((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))))
128113, 122, 124, 120, 127syl22anc 838 . . . . 5 ((𝜑𝑖 ∈ (0..^𝑀)) → (ℝ D (𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))) = ((ℝ D 𝐹) ↾ ((int‘(topGen‘ran (,)))‘((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))))
129128dmeqd 5859 . . . 4 ((𝜑𝑖 ∈ (0..^𝑀)) → dom (ℝ D (𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))) = dom ((ℝ D 𝐹) ↾ ((int‘(topGen‘ran (,)))‘((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))))
130 ioontr 45482 . . . . . . 7 ((int‘(topGen‘ran (,)))‘((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) = ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))
131130reseq2i 5936 . . . . . 6 ((ℝ D 𝐹) ↾ ((int‘(topGen‘ran (,)))‘((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))) = ((ℝ D 𝐹) ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))
132131dmeqi 5858 . . . . 5 dom ((ℝ D 𝐹) ↾ ((int‘(topGen‘ran (,)))‘((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))) = dom ((ℝ D 𝐹) ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))
133132a1i 11 . . . 4 ((𝜑𝑖 ∈ (0..^𝑀)) → dom ((ℝ D 𝐹) ↾ ((int‘(topGen‘ran (,)))‘((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))) = dom ((ℝ D 𝐹) ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))))
134 fourierdlem113.dvcn . . . . 5 ((𝜑𝑖 ∈ (0..^𝑀)) → ((ℝ D 𝐹) ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) ∈ (((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))–cn→ℂ))
135 cncff 24762 . . . . 5 (((ℝ D 𝐹) ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) ∈ (((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))–cn→ℂ) → ((ℝ D 𝐹) ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))):((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))⟶ℂ)
136 fdm 6679 . . . . 5 (((ℝ D 𝐹) ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))):((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))⟶ℂ → dom ((ℝ D 𝐹) ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) = ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))
137134, 135, 1363syl 18 . . . 4 ((𝜑𝑖 ∈ (0..^𝑀)) → dom ((ℝ D 𝐹) ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) = ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))
138129, 133, 1373eqtrd 2768 . . 3 ((𝜑𝑖 ∈ (0..^𝑀)) → dom (ℝ D (𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))) = ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))
139 dvcn 25799 . . 3 (((ℝ ⊆ ℂ ∧ (𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))):((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))⟶ℂ ∧ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ⊆ ℝ) ∧ dom (ℝ D (𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))) = ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → (𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) ∈ (((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))–cn→ℂ))
140113, 119, 120, 138, 139syl31anc 1375 . 2 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) ∈ (((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))–cn→ℂ))
141120, 113sstrd 3954 . . 3 ((𝜑𝑖 ∈ (0..^𝑀)) → ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ⊆ ℂ)
14277adantr 480 . . . . . 6 ((𝜑𝑖 ∈ (0..^𝑀)) → 𝑄:(0...𝑀)⟶ℝ)
143 fzofzp1 13701 . . . . . . 7 (𝑖 ∈ (0..^𝑀) → (𝑖 + 1) ∈ (0...𝑀))
144143adantl 481 . . . . . 6 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑖 + 1) ∈ (0...𝑀))
145142, 144ffvelcdmd 7039 . . . . 5 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑄‘(𝑖 + 1)) ∈ ℝ)
146145rexrd 11200 . . . 4 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑄‘(𝑖 + 1)) ∈ ℝ*)
147 elfzofz 13612 . . . . . 6 (𝑖 ∈ (0..^𝑀) → 𝑖 ∈ (0...𝑀))
148147adantl 481 . . . . 5 ((𝜑𝑖 ∈ (0..^𝑀)) → 𝑖 ∈ (0...𝑀))
149142, 148ffvelcdmd 7039 . . . 4 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑄𝑖) ∈ ℝ)
15074simprrd 773 . . . . 5 (𝜑 → ∀𝑖 ∈ (0..^𝑀)(𝑄𝑖) < (𝑄‘(𝑖 + 1)))
151150r19.21bi 3227 . . . 4 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑄𝑖) < (𝑄‘(𝑖 + 1)))
152125, 146, 149, 151lptioo1cn 45617 . . 3 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑄𝑖) ∈ ((limPt‘(TopOpen‘ℂfld))‘((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))))
153116adantr 480 . . . 4 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))):((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))⟶ℝ)
154123a1i 11 . . . . . . . 8 (𝜑 → ℝ ⊆ ℝ)
155117, 121, 154dvbss 25778 . . . . . . 7 (𝜑 → dom (ℝ D 𝐹) ⊆ ℝ)
156 dvfre 25831 . . . . . . . 8 ((𝐹:ℝ⟶ℝ ∧ ℝ ⊆ ℝ) → (ℝ D 𝐹):dom (ℝ D 𝐹)⟶ℝ)
1571, 154, 156syl2anc 584 . . . . . . 7 (𝜑 → (ℝ D 𝐹):dom (ℝ D 𝐹)⟶ℝ)
158 0re 11152 . . . . . . . . . 10 0 ∈ ℝ
15960, 158, 59lttri 11276 . . . . . . . . 9 ((-π < 0 ∧ 0 < π) → -π < π)
16063, 65, 159mp2an 692 . . . . . . . 8 -π < π
161160a1i 11 . . . . . . 7 (𝜑 → -π < π)
16284simplld 767 . . . . . . 7 (𝜑 → (𝑄‘0) = -π)
163134, 135syl 17 . . . . . . . 8 ((𝜑𝑖 ∈ (0..^𝑀)) → ((ℝ D 𝐹) ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))):((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))⟶ℂ)
164 fourierdlem113.dvlb . . . . . . . 8 ((𝜑𝑖 ∈ (0..^𝑀)) → (((ℝ D 𝐹) ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) lim (𝑄𝑖)) ≠ ∅)
165163, 141, 152, 164, 125ellimciota 45585 . . . . . . 7 ((𝜑𝑖 ∈ (0..^𝑀)) → (℩𝑥𝑥 ∈ (((ℝ D 𝐹) ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) lim (𝑄𝑖))) ∈ (((ℝ D 𝐹) ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) lim (𝑄𝑖)))
166149rexrd 11200 . . . . . . . . 9 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑄𝑖) ∈ ℝ*)
167125, 166, 145, 151lptioo2cn 45616 . . . . . . . 8 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑄‘(𝑖 + 1)) ∈ ((limPt‘(TopOpen‘ℂfld))‘((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))))
168 fourierdlem113.dvub . . . . . . . 8 ((𝜑𝑖 ∈ (0..^𝑀)) → (((ℝ D 𝐹) ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) lim (𝑄‘(𝑖 + 1))) ≠ ∅)
169163, 141, 167, 168, 125ellimciota 45585 . . . . . . 7 ((𝜑𝑖 ∈ (0..^𝑀)) → (℩𝑥𝑥 ∈ (((ℝ D 𝐹) ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) lim (𝑄‘(𝑖 + 1)))) ∈ (((ℝ D 𝐹) ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) lim (𝑄‘(𝑖 + 1))))
170121adantr 480 . . . . . . . . . 10 ((𝜑𝑘 ∈ ℤ) → 𝐹:ℝ⟶ℂ)
171 zre 12509 . . . . . . . . . . . 12 (𝑘 ∈ ℤ → 𝑘 ∈ ℝ)
172171adantl 481 . . . . . . . . . . 11 ((𝜑𝑘 ∈ ℤ) → 𝑘 ∈ ℝ)
173 2re 12236 . . . . . . . . . . . . . . 15 2 ∈ ℝ
174173, 59remulcli 11166 . . . . . . . . . . . . . 14 (2 · π) ∈ ℝ
175174a1i 11 . . . . . . . . . . . . 13 (𝜑 → (2 · π) ∈ ℝ)
17669, 175eqeltrid 2832 . . . . . . . . . . . 12 (𝜑𝑇 ∈ ℝ)
177176adantr 480 . . . . . . . . . . 11 ((𝜑𝑘 ∈ ℤ) → 𝑇 ∈ ℝ)
178172, 177remulcld 11180 . . . . . . . . . 10 ((𝜑𝑘 ∈ ℤ) → (𝑘 · 𝑇) ∈ ℝ)
179170adantr 480 . . . . . . . . . . 11 (((𝜑𝑘 ∈ ℤ) ∧ 𝑡 ∈ ℝ) → 𝐹:ℝ⟶ℂ)
180177adantr 480 . . . . . . . . . . 11 (((𝜑𝑘 ∈ ℤ) ∧ 𝑡 ∈ ℝ) → 𝑇 ∈ ℝ)
181 simplr 768 . . . . . . . . . . 11 (((𝜑𝑘 ∈ ℤ) ∧ 𝑡 ∈ ℝ) → 𝑘 ∈ ℤ)
182 simpr 484 . . . . . . . . . . 11 (((𝜑𝑘 ∈ ℤ) ∧ 𝑡 ∈ ℝ) → 𝑡 ∈ ℝ)
183111ad4ant14 752 . . . . . . . . . . 11 ((((𝜑𝑘 ∈ ℤ) ∧ 𝑡 ∈ ℝ) ∧ 𝑥 ∈ ℝ) → (𝐹‘(𝑥 + 𝑇)) = (𝐹𝑥))
184179, 180, 181, 182, 183fperiodmul 45275 . . . . . . . . . 10 (((𝜑𝑘 ∈ ℤ) ∧ 𝑡 ∈ ℝ) → (𝐹‘(𝑡 + (𝑘 · 𝑇))) = (𝐹𝑡))
185 eqid 2729 . . . . . . . . . 10 (ℝ D 𝐹) = (ℝ D 𝐹)
186170, 178, 184, 185fperdvper 45890 . . . . . . . . 9 (((𝜑𝑘 ∈ ℤ) ∧ 𝑡 ∈ dom (ℝ D 𝐹)) → ((𝑡 + (𝑘 · 𝑇)) ∈ dom (ℝ D 𝐹) ∧ ((ℝ D 𝐹)‘(𝑡 + (𝑘 · 𝑇))) = ((ℝ D 𝐹)‘𝑡)))
187186an32s 652 . . . . . . . 8 (((𝜑𝑡 ∈ dom (ℝ D 𝐹)) ∧ 𝑘 ∈ ℤ) → ((𝑡 + (𝑘 · 𝑇)) ∈ dom (ℝ D 𝐹) ∧ ((ℝ D 𝐹)‘(𝑡 + (𝑘 · 𝑇))) = ((ℝ D 𝐹)‘𝑡)))
188187simpld 494 . . . . . . 7 (((𝜑𝑡 ∈ dom (ℝ D 𝐹)) ∧ 𝑘 ∈ ℤ) → (𝑡 + (𝑘 · 𝑇)) ∈ dom (ℝ D 𝐹))
189187simprd 495 . . . . . . 7 (((𝜑𝑡 ∈ dom (ℝ D 𝐹)) ∧ 𝑘 ∈ ℤ) → ((ℝ D 𝐹)‘(𝑡 + (𝑘 · 𝑇))) = ((ℝ D 𝐹)‘𝑡))
190 fveq2 6840 . . . . . . . . 9 (𝑗 = 𝑖 → (𝑄𝑗) = (𝑄𝑖))
191 oveq1 7376 . . . . . . . . . 10 (𝑗 = 𝑖 → (𝑗 + 1) = (𝑖 + 1))
192191fveq2d 6844 . . . . . . . . 9 (𝑗 = 𝑖 → (𝑄‘(𝑗 + 1)) = (𝑄‘(𝑖 + 1)))
193190, 192oveq12d 7387 . . . . . . . 8 (𝑗 = 𝑖 → ((𝑄𝑗)(,)(𝑄‘(𝑗 + 1))) = ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))
194193cbvmptv 5206 . . . . . . 7 (𝑗 ∈ (0..^𝑀) ↦ ((𝑄𝑗)(,)(𝑄‘(𝑗 + 1)))) = (𝑖 ∈ (0..^𝑀) ↦ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))
195 eqid 2729 . . . . . . 7 (𝑡 ∈ ℝ ↦ (𝑡 + ((⌊‘((π − 𝑡) / 𝑇)) · 𝑇))) = (𝑡 ∈ ℝ ↦ (𝑡 + ((⌊‘((π − 𝑡) / 𝑇)) · 𝑇)))
196155, 157, 61, 62, 161, 71, 24, 77, 162, 85, 134, 165, 169, 188, 189, 194, 195fourierdlem71 46148 . . . . . 6 (𝜑 → ∃𝑧 ∈ ℝ ∀𝑡 ∈ dom (ℝ D 𝐹)(abs‘((ℝ D 𝐹)‘𝑡)) ≤ 𝑧)
197196adantr 480 . . . . 5 ((𝜑𝑖 ∈ (0..^𝑀)) → ∃𝑧 ∈ ℝ ∀𝑡 ∈ dom (ℝ D 𝐹)(abs‘((ℝ D 𝐹)‘𝑡)) ≤ 𝑧)
198 nfv 1914 . . . . . . . . 9 𝑡(𝜑𝑖 ∈ (0..^𝑀))
199 nfra1 3259 . . . . . . . . 9 𝑡𝑡 ∈ dom (ℝ D 𝐹)(abs‘((ℝ D 𝐹)‘𝑡)) ≤ 𝑧
200198, 199nfan 1899 . . . . . . . 8 𝑡((𝜑𝑖 ∈ (0..^𝑀)) ∧ ∀𝑡 ∈ dom (ℝ D 𝐹)(abs‘((ℝ D 𝐹)‘𝑡)) ≤ 𝑧)
201128, 131eqtrdi 2780 . . . . . . . . . . . . . 14 ((𝜑𝑖 ∈ (0..^𝑀)) → (ℝ D (𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))) = ((ℝ D 𝐹) ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))))
202201fveq1d 6842 . . . . . . . . . . . . 13 ((𝜑𝑖 ∈ (0..^𝑀)) → ((ℝ D (𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))))‘𝑡) = (((ℝ D 𝐹) ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))‘𝑡))
203 fvres 6859 . . . . . . . . . . . . 13 (𝑡 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) → (((ℝ D 𝐹) ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))‘𝑡) = ((ℝ D 𝐹)‘𝑡))
204202, 203sylan9eq 2784 . . . . . . . . . . . 12 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑡 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → ((ℝ D (𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))))‘𝑡) = ((ℝ D 𝐹)‘𝑡))
205204fveq2d 6844 . . . . . . . . . . 11 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑡 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → (abs‘((ℝ D (𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))))‘𝑡)) = (abs‘((ℝ D 𝐹)‘𝑡)))
206205adantlr 715 . . . . . . . . . 10 ((((𝜑𝑖 ∈ (0..^𝑀)) ∧ ∀𝑡 ∈ dom (ℝ D 𝐹)(abs‘((ℝ D 𝐹)‘𝑡)) ≤ 𝑧) ∧ 𝑡 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → (abs‘((ℝ D (𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))))‘𝑡)) = (abs‘((ℝ D 𝐹)‘𝑡)))
207 simplr 768 . . . . . . . . . . 11 ((((𝜑𝑖 ∈ (0..^𝑀)) ∧ ∀𝑡 ∈ dom (ℝ D 𝐹)(abs‘((ℝ D 𝐹)‘𝑡)) ≤ 𝑧) ∧ 𝑡 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → ∀𝑡 ∈ dom (ℝ D 𝐹)(abs‘((ℝ D 𝐹)‘𝑡)) ≤ 𝑧)
208 ssdmres 5973 . . . . . . . . . . . . . 14 (((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ⊆ dom (ℝ D 𝐹) ↔ dom ((ℝ D 𝐹) ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) = ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))
209137, 208sylibr 234 . . . . . . . . . . . . 13 ((𝜑𝑖 ∈ (0..^𝑀)) → ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ⊆ dom (ℝ D 𝐹))
210209ad2antrr 726 . . . . . . . . . . . 12 ((((𝜑𝑖 ∈ (0..^𝑀)) ∧ ∀𝑡 ∈ dom (ℝ D 𝐹)(abs‘((ℝ D 𝐹)‘𝑡)) ≤ 𝑧) ∧ 𝑡 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ⊆ dom (ℝ D 𝐹))
211 simpr 484 . . . . . . . . . . . 12 ((((𝜑𝑖 ∈ (0..^𝑀)) ∧ ∀𝑡 ∈ dom (ℝ D 𝐹)(abs‘((ℝ D 𝐹)‘𝑡)) ≤ 𝑧) ∧ 𝑡 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → 𝑡 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))
212210, 211sseldd 3944 . . . . . . . . . . 11 ((((𝜑𝑖 ∈ (0..^𝑀)) ∧ ∀𝑡 ∈ dom (ℝ D 𝐹)(abs‘((ℝ D 𝐹)‘𝑡)) ≤ 𝑧) ∧ 𝑡 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → 𝑡 ∈ dom (ℝ D 𝐹))
213 rspa 3224 . . . . . . . . . . 11 ((∀𝑡 ∈ dom (ℝ D 𝐹)(abs‘((ℝ D 𝐹)‘𝑡)) ≤ 𝑧𝑡 ∈ dom (ℝ D 𝐹)) → (abs‘((ℝ D 𝐹)‘𝑡)) ≤ 𝑧)
214207, 212, 213syl2anc 584 . . . . . . . . . 10 ((((𝜑𝑖 ∈ (0..^𝑀)) ∧ ∀𝑡 ∈ dom (ℝ D 𝐹)(abs‘((ℝ D 𝐹)‘𝑡)) ≤ 𝑧) ∧ 𝑡 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → (abs‘((ℝ D 𝐹)‘𝑡)) ≤ 𝑧)
215206, 214eqbrtrd 5124 . . . . . . . . 9 ((((𝜑𝑖 ∈ (0..^𝑀)) ∧ ∀𝑡 ∈ dom (ℝ D 𝐹)(abs‘((ℝ D 𝐹)‘𝑡)) ≤ 𝑧) ∧ 𝑡 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → (abs‘((ℝ D (𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))))‘𝑡)) ≤ 𝑧)
216215ex 412 . . . . . . . 8 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ ∀𝑡 ∈ dom (ℝ D 𝐹)(abs‘((ℝ D 𝐹)‘𝑡)) ≤ 𝑧) → (𝑡 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) → (abs‘((ℝ D (𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))))‘𝑡)) ≤ 𝑧))
217200, 216ralrimi 3233 . . . . . . 7 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ ∀𝑡 ∈ dom (ℝ D 𝐹)(abs‘((ℝ D 𝐹)‘𝑡)) ≤ 𝑧) → ∀𝑡 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))(abs‘((ℝ D (𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))))‘𝑡)) ≤ 𝑧)
218217ex 412 . . . . . 6 ((𝜑𝑖 ∈ (0..^𝑀)) → (∀𝑡 ∈ dom (ℝ D 𝐹)(abs‘((ℝ D 𝐹)‘𝑡)) ≤ 𝑧 → ∀𝑡 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))(abs‘((ℝ D (𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))))‘𝑡)) ≤ 𝑧))
219218reximdv 3148 . . . . 5 ((𝜑𝑖 ∈ (0..^𝑀)) → (∃𝑧 ∈ ℝ ∀𝑡 ∈ dom (ℝ D 𝐹)(abs‘((ℝ D 𝐹)‘𝑡)) ≤ 𝑧 → ∃𝑧 ∈ ℝ ∀𝑡 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))(abs‘((ℝ D (𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))))‘𝑡)) ≤ 𝑧))
220197, 219mpd 15 . . . 4 ((𝜑𝑖 ∈ (0..^𝑀)) → ∃𝑧 ∈ ℝ ∀𝑡 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))(abs‘((ℝ D (𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))))‘𝑡)) ≤ 𝑧)
221149, 145, 153, 138, 220ioodvbdlimc1 45904 . . 3 ((𝜑𝑖 ∈ (0..^𝑀)) → ((𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) lim (𝑄𝑖)) ≠ ∅)
222119, 141, 152, 221, 125ellimciota 45585 . 2 ((𝜑𝑖 ∈ (0..^𝑀)) → (℩𝑦𝑦 ∈ ((𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) lim (𝑄𝑖))) ∈ ((𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) lim (𝑄𝑖)))
223149, 145, 153, 138, 220ioodvbdlimc2 45906 . . 3 ((𝜑𝑖 ∈ (0..^𝑀)) → ((𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) lim (𝑄‘(𝑖 + 1))) ≠ ∅)
224119, 141, 167, 223, 125ellimciota 45585 . 2 ((𝜑𝑖 ∈ (0..^𝑀)) → (℩𝑦𝑦 ∈ ((𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) lim (𝑄‘(𝑖 + 1)))) ∈ ((𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) lim (𝑄‘(𝑖 + 1))))
225 frel 6675 . . . . . . 7 ((ℝ D 𝐹):dom (ℝ D 𝐹)⟶ℝ → Rel (ℝ D 𝐹))
226157, 225syl 17 . . . . . 6 (𝜑 → Rel (ℝ D 𝐹))
227 resindm 5990 . . . . . 6 (Rel (ℝ D 𝐹) → ((ℝ D 𝐹) ↾ ((-∞(,)𝑋) ∩ dom (ℝ D 𝐹))) = ((ℝ D 𝐹) ↾ (-∞(,)𝑋)))
228226, 227syl 17 . . . . 5 (𝜑 → ((ℝ D 𝐹) ↾ ((-∞(,)𝑋) ∩ dom (ℝ D 𝐹))) = ((ℝ D 𝐹) ↾ (-∞(,)𝑋)))
229 inss2 4197 . . . . . . 7 ((-∞(,)𝑋) ∩ dom (ℝ D 𝐹)) ⊆ dom (ℝ D 𝐹)
230229a1i 11 . . . . . 6 (𝜑 → ((-∞(,)𝑋) ∩ dom (ℝ D 𝐹)) ⊆ dom (ℝ D 𝐹))
231157, 230fssresd 6709 . . . . 5 (𝜑 → ((ℝ D 𝐹) ↾ ((-∞(,)𝑋) ∩ dom (ℝ D 𝐹))):((-∞(,)𝑋) ∩ dom (ℝ D 𝐹))⟶ℝ)
232228, 231feq1dd 6653 . . . 4 (𝜑 → ((ℝ D 𝐹) ↾ (-∞(,)𝑋)):((-∞(,)𝑋) ∩ dom (ℝ D 𝐹))⟶ℝ)
233232, 117fssd 6687 . . 3 (𝜑 → ((ℝ D 𝐹) ↾ (-∞(,)𝑋)):((-∞(,)𝑋) ∩ dom (ℝ D 𝐹))⟶ℂ)
234 ioosscn 13345 . . . . 5 (-∞(,)𝑋) ⊆ ℂ
235 ssinss1 4205 . . . . 5 ((-∞(,)𝑋) ⊆ ℂ → ((-∞(,)𝑋) ∩ dom (ℝ D 𝐹)) ⊆ ℂ)
236234, 235ax-mp 5 . . . 4 ((-∞(,)𝑋) ∩ dom (ℝ D 𝐹)) ⊆ ℂ
237236a1i 11 . . 3 (𝜑 → ((-∞(,)𝑋) ∩ dom (ℝ D 𝐹)) ⊆ ℂ)
238 3simpb 1149 . . . . . . . 8 ((𝜑𝑥 ∈ dom (ℝ D 𝐹) ∧ 𝑘 ∈ ℤ) → (𝜑𝑘 ∈ ℤ))
239 simp2 1137 . . . . . . . 8 ((𝜑𝑥 ∈ dom (ℝ D 𝐹) ∧ 𝑘 ∈ ℤ) → 𝑥 ∈ dom (ℝ D 𝐹))
240170adantr 480 . . . . . . . . . 10 (((𝜑𝑘 ∈ ℤ) ∧ 𝑥 ∈ ℝ) → 𝐹:ℝ⟶ℂ)
241177adantr 480 . . . . . . . . . 10 (((𝜑𝑘 ∈ ℤ) ∧ 𝑥 ∈ ℝ) → 𝑇 ∈ ℝ)
242 simplr 768 . . . . . . . . . 10 (((𝜑𝑘 ∈ ℤ) ∧ 𝑥 ∈ ℝ) → 𝑘 ∈ ℤ)
243 simpr 484 . . . . . . . . . 10 (((𝜑𝑘 ∈ ℤ) ∧ 𝑥 ∈ ℝ) → 𝑥 ∈ ℝ)
244 eleq1w 2811 . . . . . . . . . . . . . 14 (𝑥 = 𝑦 → (𝑥 ∈ ℝ ↔ 𝑦 ∈ ℝ))
245244anbi2d 630 . . . . . . . . . . . . 13 (𝑥 = 𝑦 → ((𝜑𝑥 ∈ ℝ) ↔ (𝜑𝑦 ∈ ℝ)))
246 oveq1 7376 . . . . . . . . . . . . . . 15 (𝑥 = 𝑦 → (𝑥 + 𝑇) = (𝑦 + 𝑇))
247246fveq2d 6844 . . . . . . . . . . . . . 14 (𝑥 = 𝑦 → (𝐹‘(𝑥 + 𝑇)) = (𝐹‘(𝑦 + 𝑇)))
248 fveq2 6840 . . . . . . . . . . . . . 14 (𝑥 = 𝑦 → (𝐹𝑥) = (𝐹𝑦))
249247, 248eqeq12d 2745 . . . . . . . . . . . . 13 (𝑥 = 𝑦 → ((𝐹‘(𝑥 + 𝑇)) = (𝐹𝑥) ↔ (𝐹‘(𝑦 + 𝑇)) = (𝐹𝑦)))
250245, 249imbi12d 344 . . . . . . . . . . . 12 (𝑥 = 𝑦 → (((𝜑𝑥 ∈ ℝ) → (𝐹‘(𝑥 + 𝑇)) = (𝐹𝑥)) ↔ ((𝜑𝑦 ∈ ℝ) → (𝐹‘(𝑦 + 𝑇)) = (𝐹𝑦))))
251250, 111chvarvv 1989 . . . . . . . . . . 11 ((𝜑𝑦 ∈ ℝ) → (𝐹‘(𝑦 + 𝑇)) = (𝐹𝑦))
252251ad4ant14 752 . . . . . . . . . 10 ((((𝜑𝑘 ∈ ℤ) ∧ 𝑥 ∈ ℝ) ∧ 𝑦 ∈ ℝ) → (𝐹‘(𝑦 + 𝑇)) = (𝐹𝑦))
253240, 241, 242, 243, 252fperiodmul 45275 . . . . . . . . 9 (((𝜑𝑘 ∈ ℤ) ∧ 𝑥 ∈ ℝ) → (𝐹‘(𝑥 + (𝑘 · 𝑇))) = (𝐹𝑥))
254170, 178, 253, 185fperdvper 45890 . . . . . . . 8 (((𝜑𝑘 ∈ ℤ) ∧ 𝑥 ∈ dom (ℝ D 𝐹)) → ((𝑥 + (𝑘 · 𝑇)) ∈ dom (ℝ D 𝐹) ∧ ((ℝ D 𝐹)‘(𝑥 + (𝑘 · 𝑇))) = ((ℝ D 𝐹)‘𝑥)))
255238, 239, 254syl2anc 584 . . . . . . 7 ((𝜑𝑥 ∈ dom (ℝ D 𝐹) ∧ 𝑘 ∈ ℤ) → ((𝑥 + (𝑘 · 𝑇)) ∈ dom (ℝ D 𝐹) ∧ ((ℝ D 𝐹)‘(𝑥 + (𝑘 · 𝑇))) = ((ℝ D 𝐹)‘𝑥)))
256255simpld 494 . . . . . 6 ((𝜑𝑥 ∈ dom (ℝ D 𝐹) ∧ 𝑘 ∈ ℤ) → (𝑥 + (𝑘 · 𝑇)) ∈ dom (ℝ D 𝐹))
257 oveq2 7377 . . . . . . . . . 10 (𝑤 = 𝑥 → (π − 𝑤) = (π − 𝑥))
258257oveq1d 7384 . . . . . . . . 9 (𝑤 = 𝑥 → ((π − 𝑤) / 𝑇) = ((π − 𝑥) / 𝑇))
259258fveq2d 6844 . . . . . . . 8 (𝑤 = 𝑥 → (⌊‘((π − 𝑤) / 𝑇)) = (⌊‘((π − 𝑥) / 𝑇)))
260259oveq1d 7384 . . . . . . 7 (𝑤 = 𝑥 → ((⌊‘((π − 𝑤) / 𝑇)) · 𝑇) = ((⌊‘((π − 𝑥) / 𝑇)) · 𝑇))
261260cbvmptv 5206 . . . . . 6 (𝑤 ∈ ℝ ↦ ((⌊‘((π − 𝑤) / 𝑇)) · 𝑇)) = (𝑥 ∈ ℝ ↦ ((⌊‘((π − 𝑥) / 𝑇)) · 𝑇))
262 eqid 2729 . . . . . 6 (𝑥 ∈ ℝ ↦ (𝑥 + ((𝑤 ∈ ℝ ↦ ((⌊‘((π − 𝑤) / 𝑇)) · 𝑇))‘𝑥))) = (𝑥 ∈ ℝ ↦ (𝑥 + ((𝑤 ∈ ℝ ↦ ((⌊‘((π − 𝑤) / 𝑇)) · 𝑇))‘𝑥)))
26361, 62, 161, 71, 256, 58, 261, 262, 23, 24, 25, 209fourierdlem41 46119 . . . . 5 (𝜑 → (∃𝑦 ∈ ℝ (𝑦 < 𝑋 ∧ (𝑦(,)𝑋) ⊆ dom (ℝ D 𝐹)) ∧ ∃𝑦 ∈ ℝ (𝑋 < 𝑦 ∧ (𝑋(,)𝑦) ⊆ dom (ℝ D 𝐹))))
264263simpld 494 . . . 4 (𝜑 → ∃𝑦 ∈ ℝ (𝑦 < 𝑋 ∧ (𝑦(,)𝑋) ⊆ dom (ℝ D 𝐹)))
265125cnfldtop 24647 . . . . . . . . 9 (TopOpen‘ℂfld) ∈ Top
266265a1i 11 . . . . . . . 8 ((𝜑𝑦 ∈ ℝ ∧ (𝑦(,)𝑋) ⊆ dom (ℝ D 𝐹)) → (TopOpen‘ℂfld) ∈ Top)
267236a1i 11 . . . . . . . 8 ((𝜑𝑦 ∈ ℝ ∧ (𝑦(,)𝑋) ⊆ dom (ℝ D 𝐹)) → ((-∞(,)𝑋) ∩ dom (ℝ D 𝐹)) ⊆ ℂ)
268 mnfxr 11207 . . . . . . . . . . . 12 -∞ ∈ ℝ*
269268a1i 11 . . . . . . . . . . 11 (𝑦 ∈ ℝ → -∞ ∈ ℝ*)
270 rexr 11196 . . . . . . . . . . . 12 (𝑦 ∈ ℝ → 𝑦 ∈ ℝ*)
271 mnflt 13059 . . . . . . . . . . . 12 (𝑦 ∈ ℝ → -∞ < 𝑦)
272269, 270, 271xrltled 13086 . . . . . . . . . . 11 (𝑦 ∈ ℝ → -∞ ≤ 𝑦)
273 iooss1 13317 . . . . . . . . . . 11 ((-∞ ∈ ℝ* ∧ -∞ ≤ 𝑦) → (𝑦(,)𝑋) ⊆ (-∞(,)𝑋))
274269, 272, 273syl2anc 584 . . . . . . . . . 10 (𝑦 ∈ ℝ → (𝑦(,)𝑋) ⊆ (-∞(,)𝑋))
2752743ad2ant2 1134 . . . . . . . . 9 ((𝜑𝑦 ∈ ℝ ∧ (𝑦(,)𝑋) ⊆ dom (ℝ D 𝐹)) → (𝑦(,)𝑋) ⊆ (-∞(,)𝑋))
276 simp3 1138 . . . . . . . . 9 ((𝜑𝑦 ∈ ℝ ∧ (𝑦(,)𝑋) ⊆ dom (ℝ D 𝐹)) → (𝑦(,)𝑋) ⊆ dom (ℝ D 𝐹))
277275, 276ssind 4200 . . . . . . . 8 ((𝜑𝑦 ∈ ℝ ∧ (𝑦(,)𝑋) ⊆ dom (ℝ D 𝐹)) → (𝑦(,)𝑋) ⊆ ((-∞(,)𝑋) ∩ dom (ℝ D 𝐹)))
278 unicntop 24649 . . . . . . . . 9 ℂ = (TopOpen‘ℂfld)
279278lpss3 23007 . . . . . . . 8 (((TopOpen‘ℂfld) ∈ Top ∧ ((-∞(,)𝑋) ∩ dom (ℝ D 𝐹)) ⊆ ℂ ∧ (𝑦(,)𝑋) ⊆ ((-∞(,)𝑋) ∩ dom (ℝ D 𝐹))) → ((limPt‘(TopOpen‘ℂfld))‘(𝑦(,)𝑋)) ⊆ ((limPt‘(TopOpen‘ℂfld))‘((-∞(,)𝑋) ∩ dom (ℝ D 𝐹))))
280266, 267, 277, 279syl3anc 1373 . . . . . . 7 ((𝜑𝑦 ∈ ℝ ∧ (𝑦(,)𝑋) ⊆ dom (ℝ D 𝐹)) → ((limPt‘(TopOpen‘ℂfld))‘(𝑦(,)𝑋)) ⊆ ((limPt‘(TopOpen‘ℂfld))‘((-∞(,)𝑋) ∩ dom (ℝ D 𝐹))))
2812803adant3l 1181 . . . . . 6 ((𝜑𝑦 ∈ ℝ ∧ (𝑦 < 𝑋 ∧ (𝑦(,)𝑋) ⊆ dom (ℝ D 𝐹))) → ((limPt‘(TopOpen‘ℂfld))‘(𝑦(,)𝑋)) ⊆ ((limPt‘(TopOpen‘ℂfld))‘((-∞(,)𝑋) ∩ dom (ℝ D 𝐹))))
2822703ad2ant2 1134 . . . . . . 7 ((𝜑𝑦 ∈ ℝ ∧ (𝑦 < 𝑋 ∧ (𝑦(,)𝑋) ⊆ dom (ℝ D 𝐹))) → 𝑦 ∈ ℝ*)
283583ad2ant1 1133 . . . . . . 7 ((𝜑𝑦 ∈ ℝ ∧ (𝑦 < 𝑋 ∧ (𝑦(,)𝑋) ⊆ dom (ℝ D 𝐹))) → 𝑋 ∈ ℝ)
284 simp3l 1202 . . . . . . 7 ((𝜑𝑦 ∈ ℝ ∧ (𝑦 < 𝑋 ∧ (𝑦(,)𝑋) ⊆ dom (ℝ D 𝐹))) → 𝑦 < 𝑋)
285125, 282, 283, 284lptioo2cn 45616 . . . . . 6 ((𝜑𝑦 ∈ ℝ ∧ (𝑦 < 𝑋 ∧ (𝑦(,)𝑋) ⊆ dom (ℝ D 𝐹))) → 𝑋 ∈ ((limPt‘(TopOpen‘ℂfld))‘(𝑦(,)𝑋)))
286281, 285sseldd 3944 . . . . 5 ((𝜑𝑦 ∈ ℝ ∧ (𝑦 < 𝑋 ∧ (𝑦(,)𝑋) ⊆ dom (ℝ D 𝐹))) → 𝑋 ∈ ((limPt‘(TopOpen‘ℂfld))‘((-∞(,)𝑋) ∩ dom (ℝ D 𝐹))))
287286rexlimdv3a 3138 . . . 4 (𝜑 → (∃𝑦 ∈ ℝ (𝑦 < 𝑋 ∧ (𝑦(,)𝑋) ⊆ dom (ℝ D 𝐹)) → 𝑋 ∈ ((limPt‘(TopOpen‘ℂfld))‘((-∞(,)𝑋) ∩ dom (ℝ D 𝐹)))))
288264, 287mpd 15 . . 3 (𝜑𝑋 ∈ ((limPt‘(TopOpen‘ℂfld))‘((-∞(,)𝑋) ∩ dom (ℝ D 𝐹))))
289255simprd 495 . . . 4 ((𝜑𝑥 ∈ dom (ℝ D 𝐹) ∧ 𝑘 ∈ ℤ) → ((ℝ D 𝐹)‘(𝑥 + (𝑘 · 𝑇))) = ((ℝ D 𝐹)‘𝑥))
290 oveq2 7377 . . . . . . . 8 (𝑦 = 𝑥 → (π − 𝑦) = (π − 𝑥))
291290oveq1d 7384 . . . . . . 7 (𝑦 = 𝑥 → ((π − 𝑦) / 𝑇) = ((π − 𝑥) / 𝑇))
292291fveq2d 6844 . . . . . 6 (𝑦 = 𝑥 → (⌊‘((π − 𝑦) / 𝑇)) = (⌊‘((π − 𝑥) / 𝑇)))
293292oveq1d 7384 . . . . 5 (𝑦 = 𝑥 → ((⌊‘((π − 𝑦) / 𝑇)) · 𝑇) = ((⌊‘((π − 𝑥) / 𝑇)) · 𝑇))
294293cbvmptv 5206 . . . 4 (𝑦 ∈ ℝ ↦ ((⌊‘((π − 𝑦) / 𝑇)) · 𝑇)) = (𝑥 ∈ ℝ ↦ ((⌊‘((π − 𝑥) / 𝑇)) · 𝑇))
295 id 22 . . . . . 6 (𝑧 = 𝑥𝑧 = 𝑥)
296 fveq2 6840 . . . . . 6 (𝑧 = 𝑥 → ((𝑦 ∈ ℝ ↦ ((⌊‘((π − 𝑦) / 𝑇)) · 𝑇))‘𝑧) = ((𝑦 ∈ ℝ ↦ ((⌊‘((π − 𝑦) / 𝑇)) · 𝑇))‘𝑥))
297295, 296oveq12d 7387 . . . . 5 (𝑧 = 𝑥 → (𝑧 + ((𝑦 ∈ ℝ ↦ ((⌊‘((π − 𝑦) / 𝑇)) · 𝑇))‘𝑧)) = (𝑥 + ((𝑦 ∈ ℝ ↦ ((⌊‘((π − 𝑦) / 𝑇)) · 𝑇))‘𝑥)))
298297cbvmptv 5206 . . . 4 (𝑧 ∈ ℝ ↦ (𝑧 + ((𝑦 ∈ ℝ ↦ ((⌊‘((π − 𝑦) / 𝑇)) · 𝑇))‘𝑧))) = (𝑥 ∈ ℝ ↦ (𝑥 + ((𝑦 ∈ ℝ ↦ ((⌊‘((π − 𝑦) / 𝑇)) · 𝑇))‘𝑥)))
29961, 62, 161, 23, 71, 24, 25, 155, 157, 256, 289, 134, 169, 58, 294, 298fourierdlem49 46126 . . 3 (𝜑 → (((ℝ D 𝐹) ↾ (-∞(,)𝑋)) lim 𝑋) ≠ ∅)
300233, 237, 288, 299, 125ellimciota 45585 . 2 (𝜑 → (℩𝑥𝑥 ∈ (((ℝ D 𝐹) ↾ (-∞(,)𝑋)) lim 𝑋)) ∈ (((ℝ D 𝐹) ↾ (-∞(,)𝑋)) lim 𝑋))
301 resindm 5990 . . . . . 6 (Rel (ℝ D 𝐹) → ((ℝ D 𝐹) ↾ ((𝑋(,)+∞) ∩ dom (ℝ D 𝐹))) = ((ℝ D 𝐹) ↾ (𝑋(,)+∞)))
302226, 301syl 17 . . . . 5 (𝜑 → ((ℝ D 𝐹) ↾ ((𝑋(,)+∞) ∩ dom (ℝ D 𝐹))) = ((ℝ D 𝐹) ↾ (𝑋(,)+∞)))
303 inss2 4197 . . . . . . 7 ((𝑋(,)+∞) ∩ dom (ℝ D 𝐹)) ⊆ dom (ℝ D 𝐹)
304303a1i 11 . . . . . 6 (𝜑 → ((𝑋(,)+∞) ∩ dom (ℝ D 𝐹)) ⊆ dom (ℝ D 𝐹))
305157, 304fssresd 6709 . . . . 5 (𝜑 → ((ℝ D 𝐹) ↾ ((𝑋(,)+∞) ∩ dom (ℝ D 𝐹))):((𝑋(,)+∞) ∩ dom (ℝ D 𝐹))⟶ℝ)
306302, 305feq1dd 6653 . . . 4 (𝜑 → ((ℝ D 𝐹) ↾ (𝑋(,)+∞)):((𝑋(,)+∞) ∩ dom (ℝ D 𝐹))⟶ℝ)
307306, 117fssd 6687 . . 3 (𝜑 → ((ℝ D 𝐹) ↾ (𝑋(,)+∞)):((𝑋(,)+∞) ∩ dom (ℝ D 𝐹))⟶ℂ)
308 ioosscn 13345 . . . . 5 (𝑋(,)+∞) ⊆ ℂ
309 ssinss1 4205 . . . . 5 ((𝑋(,)+∞) ⊆ ℂ → ((𝑋(,)+∞) ∩ dom (ℝ D 𝐹)) ⊆ ℂ)
310308, 309ax-mp 5 . . . 4 ((𝑋(,)+∞) ∩ dom (ℝ D 𝐹)) ⊆ ℂ
311310a1i 11 . . 3 (𝜑 → ((𝑋(,)+∞) ∩ dom (ℝ D 𝐹)) ⊆ ℂ)
312263simprd 495 . . . 4 (𝜑 → ∃𝑦 ∈ ℝ (𝑋 < 𝑦 ∧ (𝑋(,)𝑦) ⊆ dom (ℝ D 𝐹)))
313265a1i 11 . . . . . . . 8 ((𝜑𝑦 ∈ ℝ ∧ (𝑋(,)𝑦) ⊆ dom (ℝ D 𝐹)) → (TopOpen‘ℂfld) ∈ Top)
314310a1i 11 . . . . . . . 8 ((𝜑𝑦 ∈ ℝ ∧ (𝑋(,)𝑦) ⊆ dom (ℝ D 𝐹)) → ((𝑋(,)+∞) ∩ dom (ℝ D 𝐹)) ⊆ ℂ)
315 pnfxr 11204 . . . . . . . . . . . 12 +∞ ∈ ℝ*
316315a1i 11 . . . . . . . . . . 11 (𝑦 ∈ ℝ → +∞ ∈ ℝ*)
317 ltpnf 13056 . . . . . . . . . . . 12 (𝑦 ∈ ℝ → 𝑦 < +∞)
318270, 316, 317xrltled 13086 . . . . . . . . . . 11 (𝑦 ∈ ℝ → 𝑦 ≤ +∞)
319 iooss2 13318 . . . . . . . . . . 11 ((+∞ ∈ ℝ*𝑦 ≤ +∞) → (𝑋(,)𝑦) ⊆ (𝑋(,)+∞))
320316, 318, 319syl2anc 584 . . . . . . . . . 10 (𝑦 ∈ ℝ → (𝑋(,)𝑦) ⊆ (𝑋(,)+∞))
3213203ad2ant2 1134 . . . . . . . . 9 ((𝜑𝑦 ∈ ℝ ∧ (𝑋(,)𝑦) ⊆ dom (ℝ D 𝐹)) → (𝑋(,)𝑦) ⊆ (𝑋(,)+∞))
322 simp3 1138 . . . . . . . . 9 ((𝜑𝑦 ∈ ℝ ∧ (𝑋(,)𝑦) ⊆ dom (ℝ D 𝐹)) → (𝑋(,)𝑦) ⊆ dom (ℝ D 𝐹))
323321, 322ssind 4200 . . . . . . . 8 ((𝜑𝑦 ∈ ℝ ∧ (𝑋(,)𝑦) ⊆ dom (ℝ D 𝐹)) → (𝑋(,)𝑦) ⊆ ((𝑋(,)+∞) ∩ dom (ℝ D 𝐹)))
324278lpss3 23007 . . . . . . . 8 (((TopOpen‘ℂfld) ∈ Top ∧ ((𝑋(,)+∞) ∩ dom (ℝ D 𝐹)) ⊆ ℂ ∧ (𝑋(,)𝑦) ⊆ ((𝑋(,)+∞) ∩ dom (ℝ D 𝐹))) → ((limPt‘(TopOpen‘ℂfld))‘(𝑋(,)𝑦)) ⊆ ((limPt‘(TopOpen‘ℂfld))‘((𝑋(,)+∞) ∩ dom (ℝ D 𝐹))))
325313, 314, 323, 324syl3anc 1373 . . . . . . 7 ((𝜑𝑦 ∈ ℝ ∧ (𝑋(,)𝑦) ⊆ dom (ℝ D 𝐹)) → ((limPt‘(TopOpen‘ℂfld))‘(𝑋(,)𝑦)) ⊆ ((limPt‘(TopOpen‘ℂfld))‘((𝑋(,)+∞) ∩ dom (ℝ D 𝐹))))
3263253adant3l 1181 . . . . . 6 ((𝜑𝑦 ∈ ℝ ∧ (𝑋 < 𝑦 ∧ (𝑋(,)𝑦) ⊆ dom (ℝ D 𝐹))) → ((limPt‘(TopOpen‘ℂfld))‘(𝑋(,)𝑦)) ⊆ ((limPt‘(TopOpen‘ℂfld))‘((𝑋(,)+∞) ∩ dom (ℝ D 𝐹))))
3272703ad2ant2 1134 . . . . . . 7 ((𝜑𝑦 ∈ ℝ ∧ (𝑋 < 𝑦 ∧ (𝑋(,)𝑦) ⊆ dom (ℝ D 𝐹))) → 𝑦 ∈ ℝ*)
328583ad2ant1 1133 . . . . . . 7 ((𝜑𝑦 ∈ ℝ ∧ (𝑋 < 𝑦 ∧ (𝑋(,)𝑦) ⊆ dom (ℝ D 𝐹))) → 𝑋 ∈ ℝ)
329 simp3l 1202 . . . . . . 7 ((𝜑𝑦 ∈ ℝ ∧ (𝑋 < 𝑦 ∧ (𝑋(,)𝑦) ⊆ dom (ℝ D 𝐹))) → 𝑋 < 𝑦)
330125, 327, 328, 329lptioo1cn 45617 . . . . . 6 ((𝜑𝑦 ∈ ℝ ∧ (𝑋 < 𝑦 ∧ (𝑋(,)𝑦) ⊆ dom (ℝ D 𝐹))) → 𝑋 ∈ ((limPt‘(TopOpen‘ℂfld))‘(𝑋(,)𝑦)))
331326, 330sseldd 3944 . . . . 5 ((𝜑𝑦 ∈ ℝ ∧ (𝑋 < 𝑦 ∧ (𝑋(,)𝑦) ⊆ dom (ℝ D 𝐹))) → 𝑋 ∈ ((limPt‘(TopOpen‘ℂfld))‘((𝑋(,)+∞) ∩ dom (ℝ D 𝐹))))
332331rexlimdv3a 3138 . . . 4 (𝜑 → (∃𝑦 ∈ ℝ (𝑋 < 𝑦 ∧ (𝑋(,)𝑦) ⊆ dom (ℝ D 𝐹)) → 𝑋 ∈ ((limPt‘(TopOpen‘ℂfld))‘((𝑋(,)+∞) ∩ dom (ℝ D 𝐹)))))
333312, 332mpd 15 . . 3 (𝜑𝑋 ∈ ((limPt‘(TopOpen‘ℂfld))‘((𝑋(,)+∞) ∩ dom (ℝ D 𝐹))))
334 biid 261 . . . 4 (((((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑤 ∈ ((𝑄𝑖)[,)(𝑄‘(𝑖 + 1)))) ∧ 𝑘 ∈ ℤ) ∧ 𝑤 = (𝑋 + (𝑘 · 𝑇))) ↔ ((((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑤 ∈ ((𝑄𝑖)[,)(𝑄‘(𝑖 + 1)))) ∧ 𝑘 ∈ ℤ) ∧ 𝑤 = (𝑋 + (𝑘 · 𝑇))))
33561, 62, 161, 23, 71, 24, 25, 157, 256, 289, 134, 165, 58, 294, 298, 334fourierdlem48 46125 . . 3 (𝜑 → (((ℝ D 𝐹) ↾ (𝑋(,)+∞)) lim 𝑋) ≠ ∅)
336307, 311, 333, 335, 125ellimciota 45585 . 2 (𝜑 → (℩𝑥𝑥 ∈ (((ℝ D 𝐹) ↾ (𝑋(,)+∞)) lim 𝑋)) ∈ (((ℝ D 𝐹) ↾ (𝑋(,)+∞)) lim 𝑋))
337 fourierdlem113.l . 2 (𝜑𝐿 ∈ ((𝐹 ↾ (-∞(,)𝑋)) lim 𝑋))
338 fourierdlem113.r . 2 (𝜑𝑅 ∈ ((𝐹 ↾ (𝑋(,)+∞)) lim 𝑋))
339 fourierdlem113.a . 2 𝐴 = (𝑛 ∈ ℕ0 ↦ (∫(-π(,)π)((𝐹𝑥) · (cos‘(𝑛 · 𝑥))) d𝑥 / π))
340 fourierdlem113.b . 2 𝐵 = (𝑛 ∈ ℕ ↦ (∫(-π(,)π)((𝐹𝑥) · (sin‘(𝑛 · 𝑥))) d𝑥 / π))
341 fveq2 6840 . . . . . . . 8 (𝑛 = 𝑘 → (𝐴𝑛) = (𝐴𝑘))
342 oveq1 7376 . . . . . . . . 9 (𝑛 = 𝑘 → (𝑛 · 𝑋) = (𝑘 · 𝑋))
343342fveq2d 6844 . . . . . . . 8 (𝑛 = 𝑘 → (cos‘(𝑛 · 𝑋)) = (cos‘(𝑘 · 𝑋)))
344341, 343oveq12d 7387 . . . . . . 7 (𝑛 = 𝑘 → ((𝐴𝑛) · (cos‘(𝑛 · 𝑋))) = ((𝐴𝑘) · (cos‘(𝑘 · 𝑋))))
345 fveq2 6840 . . . . . . . 8 (𝑛 = 𝑘 → (𝐵𝑛) = (𝐵𝑘))
346342fveq2d 6844 . . . . . . . 8 (𝑛 = 𝑘 → (sin‘(𝑛 · 𝑋)) = (sin‘(𝑘 · 𝑋)))
347345, 346oveq12d 7387 . . . . . . 7 (𝑛 = 𝑘 → ((𝐵𝑛) · (sin‘(𝑛 · 𝑋))) = ((𝐵𝑘) · (sin‘(𝑘 · 𝑋))))
348344, 347oveq12d 7387 . . . . . 6 (𝑛 = 𝑘 → (((𝐴𝑛) · (cos‘(𝑛 · 𝑋))) + ((𝐵𝑛) · (sin‘(𝑛 · 𝑋)))) = (((𝐴𝑘) · (cos‘(𝑘 · 𝑋))) + ((𝐵𝑘) · (sin‘(𝑘 · 𝑋)))))
349348cbvsumv 15638 . . . . 5 Σ𝑛 ∈ (1...𝑚)(((𝐴𝑛) · (cos‘(𝑛 · 𝑋))) + ((𝐵𝑛) · (sin‘(𝑛 · 𝑋)))) = Σ𝑘 ∈ (1...𝑚)(((𝐴𝑘) · (cos‘(𝑘 · 𝑋))) + ((𝐵𝑘) · (sin‘(𝑘 · 𝑋))))
350 oveq2 7377 . . . . . . 7 (𝑗 = 𝑚 → (1...𝑗) = (1...𝑚))
351350eqcomd 2735 . . . . . 6 (𝑗 = 𝑚 → (1...𝑚) = (1...𝑗))
352351sumeq1d 15642 . . . . 5 (𝑗 = 𝑚 → Σ𝑘 ∈ (1...𝑚)(((𝐴𝑘) · (cos‘(𝑘 · 𝑋))) + ((𝐵𝑘) · (sin‘(𝑘 · 𝑋)))) = Σ𝑘 ∈ (1...𝑗)(((𝐴𝑘) · (cos‘(𝑘 · 𝑋))) + ((𝐵𝑘) · (sin‘(𝑘 · 𝑋)))))
353349, 352eqtr2id 2777 . . . 4 (𝑗 = 𝑚 → Σ𝑘 ∈ (1...𝑗)(((𝐴𝑘) · (cos‘(𝑘 · 𝑋))) + ((𝐵𝑘) · (sin‘(𝑘 · 𝑋)))) = Σ𝑛 ∈ (1...𝑚)(((𝐴𝑛) · (cos‘(𝑛 · 𝑋))) + ((𝐵𝑛) · (sin‘(𝑛 · 𝑋)))))
354353oveq2d 7385 . . 3 (𝑗 = 𝑚 → (((𝐴‘0) / 2) + Σ𝑘 ∈ (1...𝑗)(((𝐴𝑘) · (cos‘(𝑘 · 𝑋))) + ((𝐵𝑘) · (sin‘(𝑘 · 𝑋))))) = (((𝐴‘0) / 2) + Σ𝑛 ∈ (1...𝑚)(((𝐴𝑛) · (cos‘(𝑛 · 𝑋))) + ((𝐵𝑛) · (sin‘(𝑛 · 𝑋))))))
355354cbvmptv 5206 . 2 (𝑗 ∈ ℕ ↦ (((𝐴‘0) / 2) + Σ𝑘 ∈ (1...𝑗)(((𝐴𝑘) · (cos‘(𝑘 · 𝑋))) + ((𝐵𝑘) · (sin‘(𝑘 · 𝑋)))))) = (𝑚 ∈ ℕ ↦ (((𝐴‘0) / 2) + Σ𝑛 ∈ (1...𝑚)(((𝐴𝑛) · (cos‘(𝑛 · 𝑋))) + ((𝐵𝑛) · (sin‘(𝑛 · 𝑋))))))
356 fourierdlem113.15 . 2 𝑆 = (𝑛 ∈ ℕ ↦ (((𝐴𝑛) · (cos‘(𝑛 · 𝑋))) + ((𝐵𝑛) · (sin‘(𝑛 · 𝑋)))))
357 fdm 6679 . . . . . 6 (𝐹:ℝ⟶ℝ → dom 𝐹 = ℝ)
3581, 357syl 17 . . . . 5 (𝜑 → dom 𝐹 = ℝ)
359358, 154eqsstrd 3978 . . . 4 (𝜑 → dom 𝐹 ⊆ ℝ)
360358feq2d 6654 . . . . 5 (𝜑 → (𝐹:dom 𝐹⟶ℝ ↔ 𝐹:ℝ⟶ℝ))
3611, 360mpbird 257 . . . 4 (𝜑𝐹:dom 𝐹⟶ℝ)
362359sselda 3943 . . . . . . 7 ((𝜑𝑡 ∈ dom 𝐹) → 𝑡 ∈ ℝ)
363362adantr 480 . . . . . 6 (((𝜑𝑡 ∈ dom 𝐹) ∧ 𝑘 ∈ ℤ) → 𝑡 ∈ ℝ)
364171adantl 481 . . . . . . 7 (((𝜑𝑡 ∈ dom 𝐹) ∧ 𝑘 ∈ ℤ) → 𝑘 ∈ ℝ)
365177adantlr 715 . . . . . . 7 (((𝜑𝑡 ∈ dom 𝐹) ∧ 𝑘 ∈ ℤ) → 𝑇 ∈ ℝ)
366364, 365remulcld 11180 . . . . . 6 (((𝜑𝑡 ∈ dom 𝐹) ∧ 𝑘 ∈ ℤ) → (𝑘 · 𝑇) ∈ ℝ)
367363, 366readdcld 11179 . . . . 5 (((𝜑𝑡 ∈ dom 𝐹) ∧ 𝑘 ∈ ℤ) → (𝑡 + (𝑘 · 𝑇)) ∈ ℝ)
368358eqcomd 2735 . . . . . 6 (𝜑 → ℝ = dom 𝐹)
369368ad2antrr 726 . . . . 5 (((𝜑𝑡 ∈ dom 𝐹) ∧ 𝑘 ∈ ℤ) → ℝ = dom 𝐹)
370367, 369eleqtrd 2830 . . . 4 (((𝜑𝑡 ∈ dom 𝐹) ∧ 𝑘 ∈ ℤ) → (𝑡 + (𝑘 · 𝑇)) ∈ dom 𝐹)
371 id 22 . . . . . 6 ((𝜑𝑘 ∈ ℤ) → (𝜑𝑘 ∈ ℤ))
372371adantlr 715 . . . . 5 (((𝜑𝑡 ∈ dom 𝐹) ∧ 𝑘 ∈ ℤ) → (𝜑𝑘 ∈ ℤ))
373372, 363, 184syl2anc 584 . . . 4 (((𝜑𝑡 ∈ dom 𝐹) ∧ 𝑘 ∈ ℤ) → (𝐹‘(𝑡 + (𝑘 · 𝑇))) = (𝐹𝑡))
374359, 361, 61, 62, 161, 71, 24, 77, 162, 85, 140, 222, 224, 370, 373, 194, 195fourierdlem71 46148 . . 3 (𝜑 → ∃𝑢 ∈ ℝ ∀𝑡 ∈ dom 𝐹(abs‘(𝐹𝑡)) ≤ 𝑢)
375358raleqdv 3296 . . . 4 (𝜑 → (∀𝑡 ∈ dom 𝐹(abs‘(𝐹𝑡)) ≤ 𝑢 ↔ ∀𝑡 ∈ ℝ (abs‘(𝐹𝑡)) ≤ 𝑢))
376375rexbidv 3157 . . 3 (𝜑 → (∃𝑢 ∈ ℝ ∀𝑡 ∈ dom 𝐹(abs‘(𝐹𝑡)) ≤ 𝑢 ↔ ∃𝑢 ∈ ℝ ∀𝑡 ∈ ℝ (abs‘(𝐹𝑡)) ≤ 𝑢))
377374, 376mpbid 232 . 2 (𝜑 → ∃𝑢 ∈ ℝ ∀𝑡 ∈ ℝ (abs‘(𝐹𝑡)) ≤ 𝑢)
3781, 22, 23, 24, 25, 32, 57, 58, 110, 69, 111, 140, 222, 224, 134, 300, 336, 337, 338, 339, 340, 355, 356, 377, 196, 58fourierdlem112 46189 1 (𝜑 → (seq1( + , 𝑆) ⇝ (((𝐿 + 𝑅) / 2) − ((𝐴‘0) / 2)) ∧ (((𝐴‘0) / 2) + Σ𝑛 ∈ ℕ (((𝐴𝑛) · (cos‘(𝑛 · 𝑋))) + ((𝐵𝑛) · (sin‘(𝑛 · 𝑋))))) = ((𝐿 + 𝑅) / 2)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2925  wral 3044  wrex 3053  {crab 3402  cun 3909  cin 3910  wss 3911  c0 4292  ifcif 4484  {cpr 4587   class class class wbr 5102  cmpt 5183  dom cdm 5631  ran crn 5632  cres 5633  Rel wrel 5636  cio 6450  Fun wfun 6493  wf 6495  cfv 6499   Isom wiso 6500  (class class class)co 7369  m cmap 8776  Fincfn 8895  cc 11042  cr 11043  0cc0 11044  1c1 11045   + caddc 11047   · cmul 11049  +∞cpnf 11181  -∞cmnf 11182  *cxr 11183   < clt 11184  cle 11185  cmin 11381  -cneg 11382   / cdiv 11811  cn 12162  2c2 12217  0cn0 12418  cz 12505  cuz 12769  (,)cioo 13282  (,]cioc 13283  [,)cico 13284  [,]cicc 13285  ...cfz 13444  ..^cfzo 13591  cfl 13728   mod cmo 13807  seqcseq 13942  chash 14271  abscabs 15176  cli 15426  Σcsu 15628  sincsin 16005  cosccos 16006  πcpi 16008  TopOpenctopn 17360  topGenctg 17376  fldccnfld 21240  Topctop 22756  intcnt 22880  limPtclp 22997  cnccncf 24745  citg 25495   lim climc 25739   D cdv 25740
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-inf2 9570  ax-cc 10364  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121  ax-pre-sup 11122  ax-addf 11123
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-symdif 4212  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-tp 4590  df-op 4592  df-uni 4868  df-int 4907  df-iun 4953  df-iin 4954  df-disj 5070  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-se 5585  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-isom 6508  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-of 7633  df-ofr 7634  df-om 7823  df-1st 7947  df-2nd 7948  df-supp 8117  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-1o 8411  df-2o 8412  df-oadd 8415  df-omul 8416  df-er 8648  df-map 8778  df-pm 8779  df-ixp 8848  df-en 8896  df-dom 8897  df-sdom 8898  df-fin 8899  df-fsupp 9289  df-fi 9338  df-sup 9369  df-inf 9370  df-oi 9439  df-dju 9830  df-card 9868  df-acn 9871  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-div 11812  df-nn 12163  df-2 12225  df-3 12226  df-4 12227  df-5 12228  df-6 12229  df-7 12230  df-8 12231  df-9 12232  df-n0 12419  df-xnn0 12492  df-z 12506  df-dec 12626  df-uz 12770  df-q 12884  df-rp 12928  df-xneg 13048  df-xadd 13049  df-xmul 13050  df-ioo 13286  df-ioc 13287  df-ico 13288  df-icc 13289  df-fz 13445  df-fzo 13592  df-fl 13730  df-mod 13808  df-seq 13943  df-exp 14003  df-fac 14215  df-bc 14244  df-hash 14272  df-shft 15009  df-cj 15041  df-re 15042  df-im 15043  df-sqrt 15177  df-abs 15178  df-limsup 15413  df-clim 15430  df-rlim 15431  df-sum 15629  df-ef 16009  df-sin 16011  df-cos 16012  df-pi 16014  df-struct 17093  df-sets 17110  df-slot 17128  df-ndx 17140  df-base 17156  df-ress 17177  df-plusg 17209  df-mulr 17210  df-starv 17211  df-sca 17212  df-vsca 17213  df-ip 17214  df-tset 17215  df-ple 17216  df-ds 17218  df-unif 17219  df-hom 17220  df-cco 17221  df-rest 17361  df-topn 17362  df-0g 17380  df-gsum 17381  df-topgen 17382  df-pt 17383  df-prds 17386  df-xrs 17441  df-qtop 17446  df-imas 17447  df-xps 17449  df-mre 17523  df-mrc 17524  df-acs 17526  df-mgm 18543  df-sgrp 18622  df-mnd 18638  df-submnd 18687  df-mulg 18976  df-cntz 19225  df-cmn 19688  df-psmet 21232  df-xmet 21233  df-met 21234  df-bl 21235  df-mopn 21236  df-fbas 21237  df-fg 21238  df-cnfld 21241  df-top 22757  df-topon 22774  df-topsp 22796  df-bases 22809  df-cld 22882  df-ntr 22883  df-cls 22884  df-nei 22961  df-lp 22999  df-perf 23000  df-cn 23090  df-cnp 23091  df-t1 23177  df-haus 23178  df-cmp 23250  df-tx 23425  df-hmeo 23618  df-fil 23709  df-fm 23801  df-flim 23802  df-flf 23803  df-xms 24184  df-ms 24185  df-tms 24186  df-cncf 24747  df-ovol 25341  df-vol 25342  df-mbf 25496  df-itg1 25497  df-itg2 25498  df-ibl 25499  df-itg 25500  df-0p 25547  df-ditg 25724  df-limc 25743  df-dv 25744
This theorem is referenced by:  fourierdlem114  46191
  Copyright terms: Public domain W3C validator