Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fourierdlem113 Structured version   Visualization version   GIF version

Theorem fourierdlem113 45394
Description: Fourier series convergence for periodic, piecewise smooth functions. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
fourierdlem113.f (𝜑𝐹:ℝ⟶ℝ)
fourierdlem113.t 𝑇 = (2 · π)
fourierdlem113.per ((𝜑𝑥 ∈ ℝ) → (𝐹‘(𝑥 + 𝑇)) = (𝐹𝑥))
fourierdlem113.x (𝜑𝑋 ∈ ℝ)
fourierdlem113.l (𝜑𝐿 ∈ ((𝐹 ↾ (-∞(,)𝑋)) lim 𝑋))
fourierdlem113.r (𝜑𝑅 ∈ ((𝐹 ↾ (𝑋(,)+∞)) lim 𝑋))
fourierdlem113.p 𝑃 = (𝑛 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑m (0...𝑛)) ∣ (((𝑝‘0) = -π ∧ (𝑝𝑛) = π) ∧ ∀𝑖 ∈ (0..^𝑛)(𝑝𝑖) < (𝑝‘(𝑖 + 1)))})
fourierdlem113.m (𝜑𝑀 ∈ ℕ)
fourierdlem113.q (𝜑𝑄 ∈ (𝑃𝑀))
fourierdlem113.dvcn ((𝜑𝑖 ∈ (0..^𝑀)) → ((ℝ D 𝐹) ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) ∈ (((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))–cn→ℂ))
fourierdlem113.dvlb ((𝜑𝑖 ∈ (0..^𝑀)) → (((ℝ D 𝐹) ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) lim (𝑄𝑖)) ≠ ∅)
fourierdlem113.dvub ((𝜑𝑖 ∈ (0..^𝑀)) → (((ℝ D 𝐹) ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) lim (𝑄‘(𝑖 + 1))) ≠ ∅)
fourierdlem113.a 𝐴 = (𝑛 ∈ ℕ0 ↦ (∫(-π(,)π)((𝐹𝑥) · (cos‘(𝑛 · 𝑥))) d𝑥 / π))
fourierdlem113.b 𝐵 = (𝑛 ∈ ℕ ↦ (∫(-π(,)π)((𝐹𝑥) · (sin‘(𝑛 · 𝑥))) d𝑥 / π))
fourierdlem113.15 𝑆 = (𝑛 ∈ ℕ ↦ (((𝐴𝑛) · (cos‘(𝑛 · 𝑋))) + ((𝐵𝑛) · (sin‘(𝑛 · 𝑋)))))
fourierdlem113.e 𝐸 = (𝑥 ∈ ℝ ↦ (𝑥 + ((⌊‘((π − 𝑥) / 𝑇)) · 𝑇)))
fourierdlem113.exq (𝜑 → (𝐸𝑋) ∈ ran 𝑄)
Assertion
Ref Expression
fourierdlem113 (𝜑 → (seq1( + , 𝑆) ⇝ (((𝐿 + 𝑅) / 2) − ((𝐴‘0) / 2)) ∧ (((𝐴‘0) / 2) + Σ𝑛 ∈ ℕ (((𝐴𝑛) · (cos‘(𝑛 · 𝑋))) + ((𝐵𝑛) · (sin‘(𝑛 · 𝑋))))) = ((𝐿 + 𝑅) / 2)))
Distinct variable groups:   𝐴,𝑛   𝐵,𝑛   𝑥,𝐸   𝑖,𝐹,𝑛,𝑥   𝑖,𝐿,𝑛   𝑖,𝑀,𝑥,𝑛   𝑀,𝑝,𝑖,𝑛   𝑄,𝑖,𝑥,𝑛   𝑄,𝑝   𝑅,𝑖,𝑛   𝑇,𝑖,𝑥,𝑛   𝑇,𝑝   𝑖,𝑋,𝑥,𝑛   𝑋,𝑝   𝜑,𝑖,𝑥,𝑛
Allowed substitution hints:   𝜑(𝑝)   𝐴(𝑥,𝑖,𝑝)   𝐵(𝑥,𝑖,𝑝)   𝑃(𝑥,𝑖,𝑛,𝑝)   𝑅(𝑥,𝑝)   𝑆(𝑥,𝑖,𝑛,𝑝)   𝐸(𝑖,𝑛,𝑝)   𝐹(𝑝)   𝐿(𝑥,𝑝)

Proof of Theorem fourierdlem113
Dummy variables 𝑗 𝑘 𝑚 𝑤 𝑦 𝑡 𝑢 𝑧 𝑓 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fourierdlem113.f . 2 (𝜑𝐹:ℝ⟶ℝ)
2 oveq1 7419 . . . . . . 7 (𝑤 = 𝑦 → (𝑤 mod (2 · π)) = (𝑦 mod (2 · π)))
32eqeq1d 2733 . . . . . 6 (𝑤 = 𝑦 → ((𝑤 mod (2 · π)) = 0 ↔ (𝑦 mod (2 · π)) = 0))
4 oveq2 7420 . . . . . . . 8 (𝑤 = 𝑦 → ((𝑘 + (1 / 2)) · 𝑤) = ((𝑘 + (1 / 2)) · 𝑦))
54fveq2d 6895 . . . . . . 7 (𝑤 = 𝑦 → (sin‘((𝑘 + (1 / 2)) · 𝑤)) = (sin‘((𝑘 + (1 / 2)) · 𝑦)))
6 oveq1 7419 . . . . . . . . 9 (𝑤 = 𝑦 → (𝑤 / 2) = (𝑦 / 2))
76fveq2d 6895 . . . . . . . 8 (𝑤 = 𝑦 → (sin‘(𝑤 / 2)) = (sin‘(𝑦 / 2)))
87oveq2d 7428 . . . . . . 7 (𝑤 = 𝑦 → ((2 · π) · (sin‘(𝑤 / 2))) = ((2 · π) · (sin‘(𝑦 / 2))))
95, 8oveq12d 7430 . . . . . 6 (𝑤 = 𝑦 → ((sin‘((𝑘 + (1 / 2)) · 𝑤)) / ((2 · π) · (sin‘(𝑤 / 2)))) = ((sin‘((𝑘 + (1 / 2)) · 𝑦)) / ((2 · π) · (sin‘(𝑦 / 2)))))
103, 9ifbieq2d 4554 . . . . 5 (𝑤 = 𝑦 → if((𝑤 mod (2 · π)) = 0, (((2 · 𝑘) + 1) / (2 · π)), ((sin‘((𝑘 + (1 / 2)) · 𝑤)) / ((2 · π) · (sin‘(𝑤 / 2))))) = if((𝑦 mod (2 · π)) = 0, (((2 · 𝑘) + 1) / (2 · π)), ((sin‘((𝑘 + (1 / 2)) · 𝑦)) / ((2 · π) · (sin‘(𝑦 / 2))))))
1110cbvmptv 5261 . . . 4 (𝑤 ∈ ℝ ↦ if((𝑤 mod (2 · π)) = 0, (((2 · 𝑘) + 1) / (2 · π)), ((sin‘((𝑘 + (1 / 2)) · 𝑤)) / ((2 · π) · (sin‘(𝑤 / 2)))))) = (𝑦 ∈ ℝ ↦ if((𝑦 mod (2 · π)) = 0, (((2 · 𝑘) + 1) / (2 · π)), ((sin‘((𝑘 + (1 / 2)) · 𝑦)) / ((2 · π) · (sin‘(𝑦 / 2))))))
12 oveq2 7420 . . . . . . . 8 (𝑘 = 𝑚 → (2 · 𝑘) = (2 · 𝑚))
1312oveq1d 7427 . . . . . . 7 (𝑘 = 𝑚 → ((2 · 𝑘) + 1) = ((2 · 𝑚) + 1))
1413oveq1d 7427 . . . . . 6 (𝑘 = 𝑚 → (((2 · 𝑘) + 1) / (2 · π)) = (((2 · 𝑚) + 1) / (2 · π)))
15 oveq1 7419 . . . . . . . . 9 (𝑘 = 𝑚 → (𝑘 + (1 / 2)) = (𝑚 + (1 / 2)))
1615oveq1d 7427 . . . . . . . 8 (𝑘 = 𝑚 → ((𝑘 + (1 / 2)) · 𝑦) = ((𝑚 + (1 / 2)) · 𝑦))
1716fveq2d 6895 . . . . . . 7 (𝑘 = 𝑚 → (sin‘((𝑘 + (1 / 2)) · 𝑦)) = (sin‘((𝑚 + (1 / 2)) · 𝑦)))
1817oveq1d 7427 . . . . . 6 (𝑘 = 𝑚 → ((sin‘((𝑘 + (1 / 2)) · 𝑦)) / ((2 · π) · (sin‘(𝑦 / 2)))) = ((sin‘((𝑚 + (1 / 2)) · 𝑦)) / ((2 · π) · (sin‘(𝑦 / 2)))))
1914, 18ifeq12d 4549 . . . . 5 (𝑘 = 𝑚 → if((𝑦 mod (2 · π)) = 0, (((2 · 𝑘) + 1) / (2 · π)), ((sin‘((𝑘 + (1 / 2)) · 𝑦)) / ((2 · π) · (sin‘(𝑦 / 2))))) = if((𝑦 mod (2 · π)) = 0, (((2 · 𝑚) + 1) / (2 · π)), ((sin‘((𝑚 + (1 / 2)) · 𝑦)) / ((2 · π) · (sin‘(𝑦 / 2))))))
2019mpteq2dv 5250 . . . 4 (𝑘 = 𝑚 → (𝑦 ∈ ℝ ↦ if((𝑦 mod (2 · π)) = 0, (((2 · 𝑘) + 1) / (2 · π)), ((sin‘((𝑘 + (1 / 2)) · 𝑦)) / ((2 · π) · (sin‘(𝑦 / 2)))))) = (𝑦 ∈ ℝ ↦ if((𝑦 mod (2 · π)) = 0, (((2 · 𝑚) + 1) / (2 · π)), ((sin‘((𝑚 + (1 / 2)) · 𝑦)) / ((2 · π) · (sin‘(𝑦 / 2)))))))
2111, 20eqtrid 2783 . . 3 (𝑘 = 𝑚 → (𝑤 ∈ ℝ ↦ if((𝑤 mod (2 · π)) = 0, (((2 · 𝑘) + 1) / (2 · π)), ((sin‘((𝑘 + (1 / 2)) · 𝑤)) / ((2 · π) · (sin‘(𝑤 / 2)))))) = (𝑦 ∈ ℝ ↦ if((𝑦 mod (2 · π)) = 0, (((2 · 𝑚) + 1) / (2 · π)), ((sin‘((𝑚 + (1 / 2)) · 𝑦)) / ((2 · π) · (sin‘(𝑦 / 2)))))))
2221cbvmptv 5261 . 2 (𝑘 ∈ ℕ ↦ (𝑤 ∈ ℝ ↦ if((𝑤 mod (2 · π)) = 0, (((2 · 𝑘) + 1) / (2 · π)), ((sin‘((𝑘 + (1 / 2)) · 𝑤)) / ((2 · π) · (sin‘(𝑤 / 2))))))) = (𝑚 ∈ ℕ ↦ (𝑦 ∈ ℝ ↦ if((𝑦 mod (2 · π)) = 0, (((2 · 𝑚) + 1) / (2 · π)), ((sin‘((𝑚 + (1 / 2)) · 𝑦)) / ((2 · π) · (sin‘(𝑦 / 2)))))))
23 fourierdlem113.p . 2 𝑃 = (𝑛 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑m (0...𝑛)) ∣ (((𝑝‘0) = -π ∧ (𝑝𝑛) = π) ∧ ∀𝑖 ∈ (0..^𝑛)(𝑝𝑖) < (𝑝‘(𝑖 + 1)))})
24 fourierdlem113.m . 2 (𝜑𝑀 ∈ ℕ)
25 fourierdlem113.q . 2 (𝜑𝑄 ∈ (𝑃𝑀))
26 oveq1 7419 . . . . . . . 8 (𝑤 = 𝑦 → (𝑤 + (𝑗 · 𝑇)) = (𝑦 + (𝑗 · 𝑇)))
2726eleq1d 2817 . . . . . . 7 (𝑤 = 𝑦 → ((𝑤 + (𝑗 · 𝑇)) ∈ ran 𝑄 ↔ (𝑦 + (𝑗 · 𝑇)) ∈ ran 𝑄))
2827rexbidv 3177 . . . . . 6 (𝑤 = 𝑦 → (∃𝑗 ∈ ℤ (𝑤 + (𝑗 · 𝑇)) ∈ ran 𝑄 ↔ ∃𝑗 ∈ ℤ (𝑦 + (𝑗 · 𝑇)) ∈ ran 𝑄))
2928cbvrabv 3441 . . . . 5 {𝑤 ∈ ((-π + 𝑋)[,](π + 𝑋)) ∣ ∃𝑗 ∈ ℤ (𝑤 + (𝑗 · 𝑇)) ∈ ran 𝑄} = {𝑦 ∈ ((-π + 𝑋)[,](π + 𝑋)) ∣ ∃𝑗 ∈ ℤ (𝑦 + (𝑗 · 𝑇)) ∈ ran 𝑄}
3029uneq2i 4160 . . . 4 ({(-π + 𝑋), (π + 𝑋)} ∪ {𝑤 ∈ ((-π + 𝑋)[,](π + 𝑋)) ∣ ∃𝑗 ∈ ℤ (𝑤 + (𝑗 · 𝑇)) ∈ ran 𝑄}) = ({(-π + 𝑋), (π + 𝑋)} ∪ {𝑦 ∈ ((-π + 𝑋)[,](π + 𝑋)) ∣ ∃𝑗 ∈ ℤ (𝑦 + (𝑗 · 𝑇)) ∈ ran 𝑄})
3130fveq2i 6894 . . 3 (♯‘({(-π + 𝑋), (π + 𝑋)} ∪ {𝑤 ∈ ((-π + 𝑋)[,](π + 𝑋)) ∣ ∃𝑗 ∈ ℤ (𝑤 + (𝑗 · 𝑇)) ∈ ran 𝑄})) = (♯‘({(-π + 𝑋), (π + 𝑋)} ∪ {𝑦 ∈ ((-π + 𝑋)[,](π + 𝑋)) ∣ ∃𝑗 ∈ ℤ (𝑦 + (𝑗 · 𝑇)) ∈ ran 𝑄}))
3231oveq1i 7422 . 2 ((♯‘({(-π + 𝑋), (π + 𝑋)} ∪ {𝑤 ∈ ((-π + 𝑋)[,](π + 𝑋)) ∣ ∃𝑗 ∈ ℤ (𝑤 + (𝑗 · 𝑇)) ∈ ran 𝑄})) − 1) = ((♯‘({(-π + 𝑋), (π + 𝑋)} ∪ {𝑦 ∈ ((-π + 𝑋)[,](π + 𝑋)) ∣ ∃𝑗 ∈ ℤ (𝑦 + (𝑗 · 𝑇)) ∈ ran 𝑄})) − 1)
33 oveq1 7419 . . . . . . . . . . . 12 (𝑘 = 𝑗 → (𝑘 · 𝑇) = (𝑗 · 𝑇))
3433oveq2d 7428 . . . . . . . . . . 11 (𝑘 = 𝑗 → (𝑦 + (𝑘 · 𝑇)) = (𝑦 + (𝑗 · 𝑇)))
3534eleq1d 2817 . . . . . . . . . 10 (𝑘 = 𝑗 → ((𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄 ↔ (𝑦 + (𝑗 · 𝑇)) ∈ ran 𝑄))
3635cbvrexvw 3234 . . . . . . . . 9 (∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄 ↔ ∃𝑗 ∈ ℤ (𝑦 + (𝑗 · 𝑇)) ∈ ran 𝑄)
3736a1i 11 . . . . . . . 8 (𝑦 ∈ ((-π + 𝑋)[,](π + 𝑋)) → (∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄 ↔ ∃𝑗 ∈ ℤ (𝑦 + (𝑗 · 𝑇)) ∈ ran 𝑄))
3837rabbiia 3435 . . . . . . 7 {𝑦 ∈ ((-π + 𝑋)[,](π + 𝑋)) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄} = {𝑦 ∈ ((-π + 𝑋)[,](π + 𝑋)) ∣ ∃𝑗 ∈ ℤ (𝑦 + (𝑗 · 𝑇)) ∈ ran 𝑄}
3938uneq2i 4160 . . . . . 6 ({(-π + 𝑋), (π + 𝑋)} ∪ {𝑦 ∈ ((-π + 𝑋)[,](π + 𝑋)) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄}) = ({(-π + 𝑋), (π + 𝑋)} ∪ {𝑦 ∈ ((-π + 𝑋)[,](π + 𝑋)) ∣ ∃𝑗 ∈ ℤ (𝑦 + (𝑗 · 𝑇)) ∈ ran 𝑄})
40 isoeq5 7321 . . . . . 6 (({(-π + 𝑋), (π + 𝑋)} ∪ {𝑦 ∈ ((-π + 𝑋)[,](π + 𝑋)) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄}) = ({(-π + 𝑋), (π + 𝑋)} ∪ {𝑦 ∈ ((-π + 𝑋)[,](π + 𝑋)) ∣ ∃𝑗 ∈ ℤ (𝑦 + (𝑗 · 𝑇)) ∈ ran 𝑄}) → (𝑔 Isom < , < ((0...((♯‘({(-π + 𝑋), (π + 𝑋)} ∪ {𝑤 ∈ ((-π + 𝑋)[,](π + 𝑋)) ∣ ∃𝑘 ∈ ℤ (𝑤 + (𝑘 · 𝑇)) ∈ ran 𝑄})) − 1)), ({(-π + 𝑋), (π + 𝑋)} ∪ {𝑦 ∈ ((-π + 𝑋)[,](π + 𝑋)) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄})) ↔ 𝑔 Isom < , < ((0...((♯‘({(-π + 𝑋), (π + 𝑋)} ∪ {𝑤 ∈ ((-π + 𝑋)[,](π + 𝑋)) ∣ ∃𝑘 ∈ ℤ (𝑤 + (𝑘 · 𝑇)) ∈ ran 𝑄})) − 1)), ({(-π + 𝑋), (π + 𝑋)} ∪ {𝑦 ∈ ((-π + 𝑋)[,](π + 𝑋)) ∣ ∃𝑗 ∈ ℤ (𝑦 + (𝑗 · 𝑇)) ∈ ran 𝑄}))))
4139, 40ax-mp 5 . . . . 5 (𝑔 Isom < , < ((0...((♯‘({(-π + 𝑋), (π + 𝑋)} ∪ {𝑤 ∈ ((-π + 𝑋)[,](π + 𝑋)) ∣ ∃𝑘 ∈ ℤ (𝑤 + (𝑘 · 𝑇)) ∈ ran 𝑄})) − 1)), ({(-π + 𝑋), (π + 𝑋)} ∪ {𝑦 ∈ ((-π + 𝑋)[,](π + 𝑋)) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄})) ↔ 𝑔 Isom < , < ((0...((♯‘({(-π + 𝑋), (π + 𝑋)} ∪ {𝑤 ∈ ((-π + 𝑋)[,](π + 𝑋)) ∣ ∃𝑘 ∈ ℤ (𝑤 + (𝑘 · 𝑇)) ∈ ran 𝑄})) − 1)), ({(-π + 𝑋), (π + 𝑋)} ∪ {𝑦 ∈ ((-π + 𝑋)[,](π + 𝑋)) ∣ ∃𝑗 ∈ ℤ (𝑦 + (𝑗 · 𝑇)) ∈ ran 𝑄})))
4241a1i 11 . . . 4 (𝑔 = 𝑓 → (𝑔 Isom < , < ((0...((♯‘({(-π + 𝑋), (π + 𝑋)} ∪ {𝑤 ∈ ((-π + 𝑋)[,](π + 𝑋)) ∣ ∃𝑘 ∈ ℤ (𝑤 + (𝑘 · 𝑇)) ∈ ran 𝑄})) − 1)), ({(-π + 𝑋), (π + 𝑋)} ∪ {𝑦 ∈ ((-π + 𝑋)[,](π + 𝑋)) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄})) ↔ 𝑔 Isom < , < ((0...((♯‘({(-π + 𝑋), (π + 𝑋)} ∪ {𝑤 ∈ ((-π + 𝑋)[,](π + 𝑋)) ∣ ∃𝑘 ∈ ℤ (𝑤 + (𝑘 · 𝑇)) ∈ ran 𝑄})) − 1)), ({(-π + 𝑋), (π + 𝑋)} ∪ {𝑦 ∈ ((-π + 𝑋)[,](π + 𝑋)) ∣ ∃𝑗 ∈ ℤ (𝑦 + (𝑗 · 𝑇)) ∈ ran 𝑄}))))
4333oveq2d 7428 . . . . . . . . . . . . . 14 (𝑘 = 𝑗 → (𝑤 + (𝑘 · 𝑇)) = (𝑤 + (𝑗 · 𝑇)))
4443eleq1d 2817 . . . . . . . . . . . . 13 (𝑘 = 𝑗 → ((𝑤 + (𝑘 · 𝑇)) ∈ ran 𝑄 ↔ (𝑤 + (𝑗 · 𝑇)) ∈ ran 𝑄))
4544cbvrexvw 3234 . . . . . . . . . . . 12 (∃𝑘 ∈ ℤ (𝑤 + (𝑘 · 𝑇)) ∈ ran 𝑄 ↔ ∃𝑗 ∈ ℤ (𝑤 + (𝑗 · 𝑇)) ∈ ran 𝑄)
4645a1i 11 . . . . . . . . . . 11 (𝑤 ∈ ((-π + 𝑋)[,](π + 𝑋)) → (∃𝑘 ∈ ℤ (𝑤 + (𝑘 · 𝑇)) ∈ ran 𝑄 ↔ ∃𝑗 ∈ ℤ (𝑤 + (𝑗 · 𝑇)) ∈ ran 𝑄))
4746rabbiia 3435 . . . . . . . . . 10 {𝑤 ∈ ((-π + 𝑋)[,](π + 𝑋)) ∣ ∃𝑘 ∈ ℤ (𝑤 + (𝑘 · 𝑇)) ∈ ran 𝑄} = {𝑤 ∈ ((-π + 𝑋)[,](π + 𝑋)) ∣ ∃𝑗 ∈ ℤ (𝑤 + (𝑗 · 𝑇)) ∈ ran 𝑄}
4847uneq2i 4160 . . . . . . . . 9 ({(-π + 𝑋), (π + 𝑋)} ∪ {𝑤 ∈ ((-π + 𝑋)[,](π + 𝑋)) ∣ ∃𝑘 ∈ ℤ (𝑤 + (𝑘 · 𝑇)) ∈ ran 𝑄}) = ({(-π + 𝑋), (π + 𝑋)} ∪ {𝑤 ∈ ((-π + 𝑋)[,](π + 𝑋)) ∣ ∃𝑗 ∈ ℤ (𝑤 + (𝑗 · 𝑇)) ∈ ran 𝑄})
4948fveq2i 6894 . . . . . . . 8 (♯‘({(-π + 𝑋), (π + 𝑋)} ∪ {𝑤 ∈ ((-π + 𝑋)[,](π + 𝑋)) ∣ ∃𝑘 ∈ ℤ (𝑤 + (𝑘 · 𝑇)) ∈ ran 𝑄})) = (♯‘({(-π + 𝑋), (π + 𝑋)} ∪ {𝑤 ∈ ((-π + 𝑋)[,](π + 𝑋)) ∣ ∃𝑗 ∈ ℤ (𝑤 + (𝑗 · 𝑇)) ∈ ran 𝑄}))
5049oveq1i 7422 . . . . . . 7 ((♯‘({(-π + 𝑋), (π + 𝑋)} ∪ {𝑤 ∈ ((-π + 𝑋)[,](π + 𝑋)) ∣ ∃𝑘 ∈ ℤ (𝑤 + (𝑘 · 𝑇)) ∈ ran 𝑄})) − 1) = ((♯‘({(-π + 𝑋), (π + 𝑋)} ∪ {𝑤 ∈ ((-π + 𝑋)[,](π + 𝑋)) ∣ ∃𝑗 ∈ ℤ (𝑤 + (𝑗 · 𝑇)) ∈ ran 𝑄})) − 1)
5150oveq2i 7423 . . . . . 6 (0...((♯‘({(-π + 𝑋), (π + 𝑋)} ∪ {𝑤 ∈ ((-π + 𝑋)[,](π + 𝑋)) ∣ ∃𝑘 ∈ ℤ (𝑤 + (𝑘 · 𝑇)) ∈ ran 𝑄})) − 1)) = (0...((♯‘({(-π + 𝑋), (π + 𝑋)} ∪ {𝑤 ∈ ((-π + 𝑋)[,](π + 𝑋)) ∣ ∃𝑗 ∈ ℤ (𝑤 + (𝑗 · 𝑇)) ∈ ran 𝑄})) − 1))
52 isoeq4 7320 . . . . . 6 ((0...((♯‘({(-π + 𝑋), (π + 𝑋)} ∪ {𝑤 ∈ ((-π + 𝑋)[,](π + 𝑋)) ∣ ∃𝑘 ∈ ℤ (𝑤 + (𝑘 · 𝑇)) ∈ ran 𝑄})) − 1)) = (0...((♯‘({(-π + 𝑋), (π + 𝑋)} ∪ {𝑤 ∈ ((-π + 𝑋)[,](π + 𝑋)) ∣ ∃𝑗 ∈ ℤ (𝑤 + (𝑗 · 𝑇)) ∈ ran 𝑄})) − 1)) → (𝑔 Isom < , < ((0...((♯‘({(-π + 𝑋), (π + 𝑋)} ∪ {𝑤 ∈ ((-π + 𝑋)[,](π + 𝑋)) ∣ ∃𝑘 ∈ ℤ (𝑤 + (𝑘 · 𝑇)) ∈ ran 𝑄})) − 1)), ({(-π + 𝑋), (π + 𝑋)} ∪ {𝑦 ∈ ((-π + 𝑋)[,](π + 𝑋)) ∣ ∃𝑗 ∈ ℤ (𝑦 + (𝑗 · 𝑇)) ∈ ran 𝑄})) ↔ 𝑔 Isom < , < ((0...((♯‘({(-π + 𝑋), (π + 𝑋)} ∪ {𝑤 ∈ ((-π + 𝑋)[,](π + 𝑋)) ∣ ∃𝑗 ∈ ℤ (𝑤 + (𝑗 · 𝑇)) ∈ ran 𝑄})) − 1)), ({(-π + 𝑋), (π + 𝑋)} ∪ {𝑦 ∈ ((-π + 𝑋)[,](π + 𝑋)) ∣ ∃𝑗 ∈ ℤ (𝑦 + (𝑗 · 𝑇)) ∈ ran 𝑄}))))
5351, 52ax-mp 5 . . . . 5 (𝑔 Isom < , < ((0...((♯‘({(-π + 𝑋), (π + 𝑋)} ∪ {𝑤 ∈ ((-π + 𝑋)[,](π + 𝑋)) ∣ ∃𝑘 ∈ ℤ (𝑤 + (𝑘 · 𝑇)) ∈ ran 𝑄})) − 1)), ({(-π + 𝑋), (π + 𝑋)} ∪ {𝑦 ∈ ((-π + 𝑋)[,](π + 𝑋)) ∣ ∃𝑗 ∈ ℤ (𝑦 + (𝑗 · 𝑇)) ∈ ran 𝑄})) ↔ 𝑔 Isom < , < ((0...((♯‘({(-π + 𝑋), (π + 𝑋)} ∪ {𝑤 ∈ ((-π + 𝑋)[,](π + 𝑋)) ∣ ∃𝑗 ∈ ℤ (𝑤 + (𝑗 · 𝑇)) ∈ ran 𝑄})) − 1)), ({(-π + 𝑋), (π + 𝑋)} ∪ {𝑦 ∈ ((-π + 𝑋)[,](π + 𝑋)) ∣ ∃𝑗 ∈ ℤ (𝑦 + (𝑗 · 𝑇)) ∈ ran 𝑄})))
5453a1i 11 . . . 4 (𝑔 = 𝑓 → (𝑔 Isom < , < ((0...((♯‘({(-π + 𝑋), (π + 𝑋)} ∪ {𝑤 ∈ ((-π + 𝑋)[,](π + 𝑋)) ∣ ∃𝑘 ∈ ℤ (𝑤 + (𝑘 · 𝑇)) ∈ ran 𝑄})) − 1)), ({(-π + 𝑋), (π + 𝑋)} ∪ {𝑦 ∈ ((-π + 𝑋)[,](π + 𝑋)) ∣ ∃𝑗 ∈ ℤ (𝑦 + (𝑗 · 𝑇)) ∈ ran 𝑄})) ↔ 𝑔 Isom < , < ((0...((♯‘({(-π + 𝑋), (π + 𝑋)} ∪ {𝑤 ∈ ((-π + 𝑋)[,](π + 𝑋)) ∣ ∃𝑗 ∈ ℤ (𝑤 + (𝑗 · 𝑇)) ∈ ran 𝑄})) − 1)), ({(-π + 𝑋), (π + 𝑋)} ∪ {𝑦 ∈ ((-π + 𝑋)[,](π + 𝑋)) ∣ ∃𝑗 ∈ ℤ (𝑦 + (𝑗 · 𝑇)) ∈ ran 𝑄}))))
55 isoeq1 7317 . . . 4 (𝑔 = 𝑓 → (𝑔 Isom < , < ((0...((♯‘({(-π + 𝑋), (π + 𝑋)} ∪ {𝑤 ∈ ((-π + 𝑋)[,](π + 𝑋)) ∣ ∃𝑗 ∈ ℤ (𝑤 + (𝑗 · 𝑇)) ∈ ran 𝑄})) − 1)), ({(-π + 𝑋), (π + 𝑋)} ∪ {𝑦 ∈ ((-π + 𝑋)[,](π + 𝑋)) ∣ ∃𝑗 ∈ ℤ (𝑦 + (𝑗 · 𝑇)) ∈ ran 𝑄})) ↔ 𝑓 Isom < , < ((0...((♯‘({(-π + 𝑋), (π + 𝑋)} ∪ {𝑤 ∈ ((-π + 𝑋)[,](π + 𝑋)) ∣ ∃𝑗 ∈ ℤ (𝑤 + (𝑗 · 𝑇)) ∈ ran 𝑄})) − 1)), ({(-π + 𝑋), (π + 𝑋)} ∪ {𝑦 ∈ ((-π + 𝑋)[,](π + 𝑋)) ∣ ∃𝑗 ∈ ℤ (𝑦 + (𝑗 · 𝑇)) ∈ ran 𝑄}))))
5642, 54, 553bitrd 305 . . 3 (𝑔 = 𝑓 → (𝑔 Isom < , < ((0...((♯‘({(-π + 𝑋), (π + 𝑋)} ∪ {𝑤 ∈ ((-π + 𝑋)[,](π + 𝑋)) ∣ ∃𝑘 ∈ ℤ (𝑤 + (𝑘 · 𝑇)) ∈ ran 𝑄})) − 1)), ({(-π + 𝑋), (π + 𝑋)} ∪ {𝑦 ∈ ((-π + 𝑋)[,](π + 𝑋)) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄})) ↔ 𝑓 Isom < , < ((0...((♯‘({(-π + 𝑋), (π + 𝑋)} ∪ {𝑤 ∈ ((-π + 𝑋)[,](π + 𝑋)) ∣ ∃𝑗 ∈ ℤ (𝑤 + (𝑗 · 𝑇)) ∈ ran 𝑄})) − 1)), ({(-π + 𝑋), (π + 𝑋)} ∪ {𝑦 ∈ ((-π + 𝑋)[,](π + 𝑋)) ∣ ∃𝑗 ∈ ℤ (𝑦 + (𝑗 · 𝑇)) ∈ ran 𝑄}))))
5756cbviotavw 6503 . 2 (℩𝑔𝑔 Isom < , < ((0...((♯‘({(-π + 𝑋), (π + 𝑋)} ∪ {𝑤 ∈ ((-π + 𝑋)[,](π + 𝑋)) ∣ ∃𝑘 ∈ ℤ (𝑤 + (𝑘 · 𝑇)) ∈ ran 𝑄})) − 1)), ({(-π + 𝑋), (π + 𝑋)} ∪ {𝑦 ∈ ((-π + 𝑋)[,](π + 𝑋)) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄}))) = (℩𝑓𝑓 Isom < , < ((0...((♯‘({(-π + 𝑋), (π + 𝑋)} ∪ {𝑤 ∈ ((-π + 𝑋)[,](π + 𝑋)) ∣ ∃𝑗 ∈ ℤ (𝑤 + (𝑗 · 𝑇)) ∈ ran 𝑄})) − 1)), ({(-π + 𝑋), (π + 𝑋)} ∪ {𝑦 ∈ ((-π + 𝑋)[,](π + 𝑋)) ∣ ∃𝑗 ∈ ℤ (𝑦 + (𝑗 · 𝑇)) ∈ ran 𝑄})))
58 fourierdlem113.x . 2 (𝜑𝑋 ∈ ℝ)
59 pire 26308 . . . . 5 π ∈ ℝ
6059renegcli 11528 . . . 4 -π ∈ ℝ
6160a1i 11 . . 3 (𝜑 → -π ∈ ℝ)
6259a1i 11 . . 3 (𝜑 → π ∈ ℝ)
63 negpilt0 44449 . . . 4 -π < 0
6463a1i 11 . . 3 (𝜑 → -π < 0)
65 pipos 26310 . . . 4 0 < π
6665a1i 11 . . 3 (𝜑 → 0 < π)
67 picn 26309 . . . . 5 π ∈ ℂ
68672timesi 12357 . . . 4 (2 · π) = (π + π)
69 fourierdlem113.t . . . 4 𝑇 = (2 · π)
7067, 67subnegi 11546 . . . 4 (π − -π) = (π + π)
7168, 69, 703eqtr4i 2769 . . 3 𝑇 = (π − -π)
7223fourierdlem2 45284 . . . . . . . 8 (𝑀 ∈ ℕ → (𝑄 ∈ (𝑃𝑀) ↔ (𝑄 ∈ (ℝ ↑m (0...𝑀)) ∧ (((𝑄‘0) = -π ∧ (𝑄𝑀) = π) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑄𝑖) < (𝑄‘(𝑖 + 1))))))
7324, 72syl 17 . . . . . . 7 (𝜑 → (𝑄 ∈ (𝑃𝑀) ↔ (𝑄 ∈ (ℝ ↑m (0...𝑀)) ∧ (((𝑄‘0) = -π ∧ (𝑄𝑀) = π) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑄𝑖) < (𝑄‘(𝑖 + 1))))))
7425, 73mpbid 231 . . . . . 6 (𝜑 → (𝑄 ∈ (ℝ ↑m (0...𝑀)) ∧ (((𝑄‘0) = -π ∧ (𝑄𝑀) = π) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑄𝑖) < (𝑄‘(𝑖 + 1)))))
7574simpld 494 . . . . 5 (𝜑𝑄 ∈ (ℝ ↑m (0...𝑀)))
76 elmapi 8849 . . . . 5 (𝑄 ∈ (ℝ ↑m (0...𝑀)) → 𝑄:(0...𝑀)⟶ℝ)
7775, 76syl 17 . . . 4 (𝜑𝑄:(0...𝑀)⟶ℝ)
78 fzfid 13945 . . . 4 (𝜑 → (0...𝑀) ∈ Fin)
79 rnffi 44333 . . . 4 ((𝑄:(0...𝑀)⟶ℝ ∧ (0...𝑀) ∈ Fin) → ran 𝑄 ∈ Fin)
8077, 78, 79syl2anc 583 . . 3 (𝜑 → ran 𝑄 ∈ Fin)
8123, 24, 25fourierdlem15 45297 . . . 4 (𝜑𝑄:(0...𝑀)⟶(-π[,]π))
82 frn 6724 . . . 4 (𝑄:(0...𝑀)⟶(-π[,]π) → ran 𝑄 ⊆ (-π[,]π))
8381, 82syl 17 . . 3 (𝜑 → ran 𝑄 ⊆ (-π[,]π))
8474simprd 495 . . . . 5 (𝜑 → (((𝑄‘0) = -π ∧ (𝑄𝑀) = π) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑄𝑖) < (𝑄‘(𝑖 + 1))))
8584simplrd 767 . . . 4 (𝜑 → (𝑄𝑀) = π)
86 ffun 6720 . . . . . 6 (𝑄:(0...𝑀)⟶(-π[,]π) → Fun 𝑄)
8781, 86syl 17 . . . . 5 (𝜑 → Fun 𝑄)
8824nnnn0d 12539 . . . . . . . 8 (𝜑𝑀 ∈ ℕ0)
89 nn0uz 12871 . . . . . . . 8 0 = (ℤ‘0)
9088, 89eleqtrdi 2842 . . . . . . 7 (𝜑𝑀 ∈ (ℤ‘0))
91 eluzfz2 13516 . . . . . . 7 (𝑀 ∈ (ℤ‘0) → 𝑀 ∈ (0...𝑀))
9290, 91syl 17 . . . . . 6 (𝜑𝑀 ∈ (0...𝑀))
93 fdm 6726 . . . . . . . 8 (𝑄:(0...𝑀)⟶(-π[,]π) → dom 𝑄 = (0...𝑀))
9481, 93syl 17 . . . . . . 7 (𝜑 → dom 𝑄 = (0...𝑀))
9594eqcomd 2737 . . . . . 6 (𝜑 → (0...𝑀) = dom 𝑄)
9692, 95eleqtrd 2834 . . . . 5 (𝜑𝑀 ∈ dom 𝑄)
97 fvelrn 7078 . . . . 5 ((Fun 𝑄𝑀 ∈ dom 𝑄) → (𝑄𝑀) ∈ ran 𝑄)
9887, 96, 97syl2anc 583 . . . 4 (𝜑 → (𝑄𝑀) ∈ ran 𝑄)
9985, 98eqeltrrd 2833 . . 3 (𝜑 → π ∈ ran 𝑄)
100 fourierdlem113.e . . 3 𝐸 = (𝑥 ∈ ℝ ↦ (𝑥 + ((⌊‘((π − 𝑥) / 𝑇)) · 𝑇)))
101 fourierdlem113.exq . . 3 (𝜑 → (𝐸𝑋) ∈ ran 𝑄)
102 eqid 2731 . . 3 ({(-π + 𝑋), (π + 𝑋)} ∪ {𝑤 ∈ ((-π + 𝑋)[,](π + 𝑋)) ∣ ∃𝑘 ∈ ℤ (𝑤 + (𝑘 · 𝑇)) ∈ ran 𝑄}) = ({(-π + 𝑋), (π + 𝑋)} ∪ {𝑤 ∈ ((-π + 𝑋)[,](π + 𝑋)) ∣ ∃𝑘 ∈ ℤ (𝑤 + (𝑘 · 𝑇)) ∈ ran 𝑄})
103 isoeq1 7317 . . . . 5 (𝑔 = 𝑓 → (𝑔 Isom < , < ((0...((♯‘({(-π + 𝑋), (π + 𝑋)} ∪ {𝑤 ∈ ((-π + 𝑋)[,](π + 𝑋)) ∣ ∃𝑘 ∈ ℤ (𝑤 + (𝑘 · 𝑇)) ∈ ran 𝑄})) − 1)), ({(-π + 𝑋), (π + 𝑋)} ∪ {𝑦 ∈ ((-π + 𝑋)[,](π + 𝑋)) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄})) ↔ 𝑓 Isom < , < ((0...((♯‘({(-π + 𝑋), (π + 𝑋)} ∪ {𝑤 ∈ ((-π + 𝑋)[,](π + 𝑋)) ∣ ∃𝑘 ∈ ℤ (𝑤 + (𝑘 · 𝑇)) ∈ ran 𝑄})) − 1)), ({(-π + 𝑋), (π + 𝑋)} ∪ {𝑦 ∈ ((-π + 𝑋)[,](π + 𝑋)) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄}))))
10430, 48, 393eqtr4ri 2770 . . . . . 6 ({(-π + 𝑋), (π + 𝑋)} ∪ {𝑦 ∈ ((-π + 𝑋)[,](π + 𝑋)) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄}) = ({(-π + 𝑋), (π + 𝑋)} ∪ {𝑤 ∈ ((-π + 𝑋)[,](π + 𝑋)) ∣ ∃𝑘 ∈ ℤ (𝑤 + (𝑘 · 𝑇)) ∈ ran 𝑄})
105 isoeq5 7321 . . . . . 6 (({(-π + 𝑋), (π + 𝑋)} ∪ {𝑦 ∈ ((-π + 𝑋)[,](π + 𝑋)) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄}) = ({(-π + 𝑋), (π + 𝑋)} ∪ {𝑤 ∈ ((-π + 𝑋)[,](π + 𝑋)) ∣ ∃𝑘 ∈ ℤ (𝑤 + (𝑘 · 𝑇)) ∈ ran 𝑄}) → (𝑓 Isom < , < ((0...((♯‘({(-π + 𝑋), (π + 𝑋)} ∪ {𝑤 ∈ ((-π + 𝑋)[,](π + 𝑋)) ∣ ∃𝑘 ∈ ℤ (𝑤 + (𝑘 · 𝑇)) ∈ ran 𝑄})) − 1)), ({(-π + 𝑋), (π + 𝑋)} ∪ {𝑦 ∈ ((-π + 𝑋)[,](π + 𝑋)) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄})) ↔ 𝑓 Isom < , < ((0...((♯‘({(-π + 𝑋), (π + 𝑋)} ∪ {𝑤 ∈ ((-π + 𝑋)[,](π + 𝑋)) ∣ ∃𝑘 ∈ ℤ (𝑤 + (𝑘 · 𝑇)) ∈ ran 𝑄})) − 1)), ({(-π + 𝑋), (π + 𝑋)} ∪ {𝑤 ∈ ((-π + 𝑋)[,](π + 𝑋)) ∣ ∃𝑘 ∈ ℤ (𝑤 + (𝑘 · 𝑇)) ∈ ran 𝑄}))))
106104, 105ax-mp 5 . . . . 5 (𝑓 Isom < , < ((0...((♯‘({(-π + 𝑋), (π + 𝑋)} ∪ {𝑤 ∈ ((-π + 𝑋)[,](π + 𝑋)) ∣ ∃𝑘 ∈ ℤ (𝑤 + (𝑘 · 𝑇)) ∈ ran 𝑄})) − 1)), ({(-π + 𝑋), (π + 𝑋)} ∪ {𝑦 ∈ ((-π + 𝑋)[,](π + 𝑋)) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄})) ↔ 𝑓 Isom < , < ((0...((♯‘({(-π + 𝑋), (π + 𝑋)} ∪ {𝑤 ∈ ((-π + 𝑋)[,](π + 𝑋)) ∣ ∃𝑘 ∈ ℤ (𝑤 + (𝑘 · 𝑇)) ∈ ran 𝑄})) − 1)), ({(-π + 𝑋), (π + 𝑋)} ∪ {𝑤 ∈ ((-π + 𝑋)[,](π + 𝑋)) ∣ ∃𝑘 ∈ ℤ (𝑤 + (𝑘 · 𝑇)) ∈ ran 𝑄})))
107103, 106bitrdi 287 . . . 4 (𝑔 = 𝑓 → (𝑔 Isom < , < ((0...((♯‘({(-π + 𝑋), (π + 𝑋)} ∪ {𝑤 ∈ ((-π + 𝑋)[,](π + 𝑋)) ∣ ∃𝑘 ∈ ℤ (𝑤 + (𝑘 · 𝑇)) ∈ ran 𝑄})) − 1)), ({(-π + 𝑋), (π + 𝑋)} ∪ {𝑦 ∈ ((-π + 𝑋)[,](π + 𝑋)) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄})) ↔ 𝑓 Isom < , < ((0...((♯‘({(-π + 𝑋), (π + 𝑋)} ∪ {𝑤 ∈ ((-π + 𝑋)[,](π + 𝑋)) ∣ ∃𝑘 ∈ ℤ (𝑤 + (𝑘 · 𝑇)) ∈ ran 𝑄})) − 1)), ({(-π + 𝑋), (π + 𝑋)} ∪ {𝑤 ∈ ((-π + 𝑋)[,](π + 𝑋)) ∣ ∃𝑘 ∈ ℤ (𝑤 + (𝑘 · 𝑇)) ∈ ran 𝑄}))))
108107cbviotavw 6503 . . 3 (℩𝑔𝑔 Isom < , < ((0...((♯‘({(-π + 𝑋), (π + 𝑋)} ∪ {𝑤 ∈ ((-π + 𝑋)[,](π + 𝑋)) ∣ ∃𝑘 ∈ ℤ (𝑤 + (𝑘 · 𝑇)) ∈ ran 𝑄})) − 1)), ({(-π + 𝑋), (π + 𝑋)} ∪ {𝑦 ∈ ((-π + 𝑋)[,](π + 𝑋)) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄}))) = (℩𝑓𝑓 Isom < , < ((0...((♯‘({(-π + 𝑋), (π + 𝑋)} ∪ {𝑤 ∈ ((-π + 𝑋)[,](π + 𝑋)) ∣ ∃𝑘 ∈ ℤ (𝑤 + (𝑘 · 𝑇)) ∈ ran 𝑄})) − 1)), ({(-π + 𝑋), (π + 𝑋)} ∪ {𝑤 ∈ ((-π + 𝑋)[,](π + 𝑋)) ∣ ∃𝑘 ∈ ℤ (𝑤 + (𝑘 · 𝑇)) ∈ ran 𝑄})))
109 eqid 2731 . . 3 {𝑤 ∈ ((-π + 𝑋)(,](π + 𝑋)) ∣ ∃𝑘 ∈ ℤ (𝑤 + (𝑘 · 𝑇)) ∈ ran 𝑄} = {𝑤 ∈ ((-π + 𝑋)(,](π + 𝑋)) ∣ ∃𝑘 ∈ ℤ (𝑤 + (𝑘 · 𝑇)) ∈ ran 𝑄}
11061, 62, 64, 66, 71, 80, 83, 99, 100, 58, 101, 102, 108, 109fourierdlem51 45332 . 2 (𝜑𝑋 ∈ ran (℩𝑔𝑔 Isom < , < ((0...((♯‘({(-π + 𝑋), (π + 𝑋)} ∪ {𝑤 ∈ ((-π + 𝑋)[,](π + 𝑋)) ∣ ∃𝑘 ∈ ℤ (𝑤 + (𝑘 · 𝑇)) ∈ ran 𝑄})) − 1)), ({(-π + 𝑋), (π + 𝑋)} ∪ {𝑦 ∈ ((-π + 𝑋)[,](π + 𝑋)) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄}))))
111 fourierdlem113.per . 2 ((𝜑𝑥 ∈ ℝ) → (𝐹‘(𝑥 + 𝑇)) = (𝐹𝑥))
112 ax-resscn 11173 . . . 4 ℝ ⊆ ℂ
113112a1i 11 . . 3 ((𝜑𝑖 ∈ (0..^𝑀)) → ℝ ⊆ ℂ)
114 ioossre 13392 . . . . . . 7 ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ⊆ ℝ
115114a1i 11 . . . . . 6 (𝜑 → ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ⊆ ℝ)
1161, 115fssresd 6758 . . . . 5 (𝜑 → (𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))):((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))⟶ℝ)
117112a1i 11 . . . . 5 (𝜑 → ℝ ⊆ ℂ)
118116, 117fssd 6735 . . . 4 (𝜑 → (𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))):((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))⟶ℂ)
119118adantr 480 . . 3 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))):((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))⟶ℂ)
120114a1i 11 . . 3 ((𝜑𝑖 ∈ (0..^𝑀)) → ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ⊆ ℝ)
1211, 117fssd 6735 . . . . . . 7 (𝜑𝐹:ℝ⟶ℂ)
122121adantr 480 . . . . . 6 ((𝜑𝑖 ∈ (0..^𝑀)) → 𝐹:ℝ⟶ℂ)
123 ssid 4004 . . . . . . 7 ℝ ⊆ ℝ
124123a1i 11 . . . . . 6 ((𝜑𝑖 ∈ (0..^𝑀)) → ℝ ⊆ ℝ)
125 eqid 2731 . . . . . . 7 (TopOpen‘ℂfld) = (TopOpen‘ℂfld)
126125tgioo2 24639 . . . . . . 7 (topGen‘ran (,)) = ((TopOpen‘ℂfld) ↾t ℝ)
127125, 126dvres 25760 . . . . . 6 (((ℝ ⊆ ℂ ∧ 𝐹:ℝ⟶ℂ) ∧ (ℝ ⊆ ℝ ∧ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ⊆ ℝ)) → (ℝ D (𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))) = ((ℝ D 𝐹) ↾ ((int‘(topGen‘ran (,)))‘((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))))
128113, 122, 124, 120, 127syl22anc 836 . . . . 5 ((𝜑𝑖 ∈ (0..^𝑀)) → (ℝ D (𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))) = ((ℝ D 𝐹) ↾ ((int‘(topGen‘ran (,)))‘((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))))
129128dmeqd 5905 . . . 4 ((𝜑𝑖 ∈ (0..^𝑀)) → dom (ℝ D (𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))) = dom ((ℝ D 𝐹) ↾ ((int‘(topGen‘ran (,)))‘((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))))
130 ioontr 44683 . . . . . . 7 ((int‘(topGen‘ran (,)))‘((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) = ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))
131130reseq2i 5978 . . . . . 6 ((ℝ D 𝐹) ↾ ((int‘(topGen‘ran (,)))‘((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))) = ((ℝ D 𝐹) ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))
132131dmeqi 5904 . . . . 5 dom ((ℝ D 𝐹) ↾ ((int‘(topGen‘ran (,)))‘((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))) = dom ((ℝ D 𝐹) ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))
133132a1i 11 . . . 4 ((𝜑𝑖 ∈ (0..^𝑀)) → dom ((ℝ D 𝐹) ↾ ((int‘(topGen‘ran (,)))‘((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))) = dom ((ℝ D 𝐹) ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))))
134 fourierdlem113.dvcn . . . . 5 ((𝜑𝑖 ∈ (0..^𝑀)) → ((ℝ D 𝐹) ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) ∈ (((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))–cn→ℂ))
135 cncff 24733 . . . . 5 (((ℝ D 𝐹) ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) ∈ (((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))–cn→ℂ) → ((ℝ D 𝐹) ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))):((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))⟶ℂ)
136 fdm 6726 . . . . 5 (((ℝ D 𝐹) ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))):((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))⟶ℂ → dom ((ℝ D 𝐹) ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) = ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))
137134, 135, 1363syl 18 . . . 4 ((𝜑𝑖 ∈ (0..^𝑀)) → dom ((ℝ D 𝐹) ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) = ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))
138129, 133, 1373eqtrd 2775 . . 3 ((𝜑𝑖 ∈ (0..^𝑀)) → dom (ℝ D (𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))) = ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))
139 dvcn 25771 . . 3 (((ℝ ⊆ ℂ ∧ (𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))):((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))⟶ℂ ∧ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ⊆ ℝ) ∧ dom (ℝ D (𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))) = ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → (𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) ∈ (((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))–cn→ℂ))
140113, 119, 120, 138, 139syl31anc 1372 . 2 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) ∈ (((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))–cn→ℂ))
141120, 113sstrd 3992 . . 3 ((𝜑𝑖 ∈ (0..^𝑀)) → ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ⊆ ℂ)
14277adantr 480 . . . . . 6 ((𝜑𝑖 ∈ (0..^𝑀)) → 𝑄:(0...𝑀)⟶ℝ)
143 fzofzp1 13736 . . . . . . 7 (𝑖 ∈ (0..^𝑀) → (𝑖 + 1) ∈ (0...𝑀))
144143adantl 481 . . . . . 6 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑖 + 1) ∈ (0...𝑀))
145142, 144ffvelcdmd 7087 . . . . 5 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑄‘(𝑖 + 1)) ∈ ℝ)
146145rexrd 11271 . . . 4 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑄‘(𝑖 + 1)) ∈ ℝ*)
147 elfzofz 13655 . . . . . 6 (𝑖 ∈ (0..^𝑀) → 𝑖 ∈ (0...𝑀))
148147adantl 481 . . . . 5 ((𝜑𝑖 ∈ (0..^𝑀)) → 𝑖 ∈ (0...𝑀))
149142, 148ffvelcdmd 7087 . . . 4 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑄𝑖) ∈ ℝ)
15074simprrd 771 . . . . 5 (𝜑 → ∀𝑖 ∈ (0..^𝑀)(𝑄𝑖) < (𝑄‘(𝑖 + 1)))
151150r19.21bi 3247 . . . 4 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑄𝑖) < (𝑄‘(𝑖 + 1)))
152125, 146, 149, 151lptioo1cn 44821 . . 3 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑄𝑖) ∈ ((limPt‘(TopOpen‘ℂfld))‘((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))))
153116adantr 480 . . . 4 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))):((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))⟶ℝ)
154123a1i 11 . . . . . . . 8 (𝜑 → ℝ ⊆ ℝ)
155117, 121, 154dvbss 25750 . . . . . . 7 (𝜑 → dom (ℝ D 𝐹) ⊆ ℝ)
156 dvfre 25803 . . . . . . . 8 ((𝐹:ℝ⟶ℝ ∧ ℝ ⊆ ℝ) → (ℝ D 𝐹):dom (ℝ D 𝐹)⟶ℝ)
1571, 154, 156syl2anc 583 . . . . . . 7 (𝜑 → (ℝ D 𝐹):dom (ℝ D 𝐹)⟶ℝ)
158 0re 11223 . . . . . . . . . 10 0 ∈ ℝ
15960, 158, 59lttri 11347 . . . . . . . . 9 ((-π < 0 ∧ 0 < π) → -π < π)
16063, 65, 159mp2an 689 . . . . . . . 8 -π < π
161160a1i 11 . . . . . . 7 (𝜑 → -π < π)
16284simplld 765 . . . . . . 7 (𝜑 → (𝑄‘0) = -π)
163134, 135syl 17 . . . . . . . 8 ((𝜑𝑖 ∈ (0..^𝑀)) → ((ℝ D 𝐹) ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))):((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))⟶ℂ)
164 fourierdlem113.dvlb . . . . . . . 8 ((𝜑𝑖 ∈ (0..^𝑀)) → (((ℝ D 𝐹) ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) lim (𝑄𝑖)) ≠ ∅)
165163, 141, 152, 164, 125ellimciota 44789 . . . . . . 7 ((𝜑𝑖 ∈ (0..^𝑀)) → (℩𝑥𝑥 ∈ (((ℝ D 𝐹) ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) lim (𝑄𝑖))) ∈ (((ℝ D 𝐹) ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) lim (𝑄𝑖)))
166149rexrd 11271 . . . . . . . . 9 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑄𝑖) ∈ ℝ*)
167125, 166, 145, 151lptioo2cn 44820 . . . . . . . 8 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑄‘(𝑖 + 1)) ∈ ((limPt‘(TopOpen‘ℂfld))‘((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))))
168 fourierdlem113.dvub . . . . . . . 8 ((𝜑𝑖 ∈ (0..^𝑀)) → (((ℝ D 𝐹) ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) lim (𝑄‘(𝑖 + 1))) ≠ ∅)
169163, 141, 167, 168, 125ellimciota 44789 . . . . . . 7 ((𝜑𝑖 ∈ (0..^𝑀)) → (℩𝑥𝑥 ∈ (((ℝ D 𝐹) ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) lim (𝑄‘(𝑖 + 1)))) ∈ (((ℝ D 𝐹) ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) lim (𝑄‘(𝑖 + 1))))
170121adantr 480 . . . . . . . . . 10 ((𝜑𝑘 ∈ ℤ) → 𝐹:ℝ⟶ℂ)
171 zre 12569 . . . . . . . . . . . 12 (𝑘 ∈ ℤ → 𝑘 ∈ ℝ)
172171adantl 481 . . . . . . . . . . 11 ((𝜑𝑘 ∈ ℤ) → 𝑘 ∈ ℝ)
173 2re 12293 . . . . . . . . . . . . . . 15 2 ∈ ℝ
174173, 59remulcli 11237 . . . . . . . . . . . . . 14 (2 · π) ∈ ℝ
175174a1i 11 . . . . . . . . . . . . 13 (𝜑 → (2 · π) ∈ ℝ)
17669, 175eqeltrid 2836 . . . . . . . . . . . 12 (𝜑𝑇 ∈ ℝ)
177176adantr 480 . . . . . . . . . . 11 ((𝜑𝑘 ∈ ℤ) → 𝑇 ∈ ℝ)
178172, 177remulcld 11251 . . . . . . . . . 10 ((𝜑𝑘 ∈ ℤ) → (𝑘 · 𝑇) ∈ ℝ)
179170adantr 480 . . . . . . . . . . 11 (((𝜑𝑘 ∈ ℤ) ∧ 𝑡 ∈ ℝ) → 𝐹:ℝ⟶ℂ)
180177adantr 480 . . . . . . . . . . 11 (((𝜑𝑘 ∈ ℤ) ∧ 𝑡 ∈ ℝ) → 𝑇 ∈ ℝ)
181 simplr 766 . . . . . . . . . . 11 (((𝜑𝑘 ∈ ℤ) ∧ 𝑡 ∈ ℝ) → 𝑘 ∈ ℤ)
182 simpr 484 . . . . . . . . . . 11 (((𝜑𝑘 ∈ ℤ) ∧ 𝑡 ∈ ℝ) → 𝑡 ∈ ℝ)
183111ad4ant14 749 . . . . . . . . . . 11 ((((𝜑𝑘 ∈ ℤ) ∧ 𝑡 ∈ ℝ) ∧ 𝑥 ∈ ℝ) → (𝐹‘(𝑥 + 𝑇)) = (𝐹𝑥))
184179, 180, 181, 182, 183fperiodmul 44473 . . . . . . . . . 10 (((𝜑𝑘 ∈ ℤ) ∧ 𝑡 ∈ ℝ) → (𝐹‘(𝑡 + (𝑘 · 𝑇))) = (𝐹𝑡))
185 eqid 2731 . . . . . . . . . 10 (ℝ D 𝐹) = (ℝ D 𝐹)
186170, 178, 184, 185fperdvper 45094 . . . . . . . . 9 (((𝜑𝑘 ∈ ℤ) ∧ 𝑡 ∈ dom (ℝ D 𝐹)) → ((𝑡 + (𝑘 · 𝑇)) ∈ dom (ℝ D 𝐹) ∧ ((ℝ D 𝐹)‘(𝑡 + (𝑘 · 𝑇))) = ((ℝ D 𝐹)‘𝑡)))
187186an32s 649 . . . . . . . 8 (((𝜑𝑡 ∈ dom (ℝ D 𝐹)) ∧ 𝑘 ∈ ℤ) → ((𝑡 + (𝑘 · 𝑇)) ∈ dom (ℝ D 𝐹) ∧ ((ℝ D 𝐹)‘(𝑡 + (𝑘 · 𝑇))) = ((ℝ D 𝐹)‘𝑡)))
188187simpld 494 . . . . . . 7 (((𝜑𝑡 ∈ dom (ℝ D 𝐹)) ∧ 𝑘 ∈ ℤ) → (𝑡 + (𝑘 · 𝑇)) ∈ dom (ℝ D 𝐹))
189187simprd 495 . . . . . . 7 (((𝜑𝑡 ∈ dom (ℝ D 𝐹)) ∧ 𝑘 ∈ ℤ) → ((ℝ D 𝐹)‘(𝑡 + (𝑘 · 𝑇))) = ((ℝ D 𝐹)‘𝑡))
190 fveq2 6891 . . . . . . . . 9 (𝑗 = 𝑖 → (𝑄𝑗) = (𝑄𝑖))
191 oveq1 7419 . . . . . . . . . 10 (𝑗 = 𝑖 → (𝑗 + 1) = (𝑖 + 1))
192191fveq2d 6895 . . . . . . . . 9 (𝑗 = 𝑖 → (𝑄‘(𝑗 + 1)) = (𝑄‘(𝑖 + 1)))
193190, 192oveq12d 7430 . . . . . . . 8 (𝑗 = 𝑖 → ((𝑄𝑗)(,)(𝑄‘(𝑗 + 1))) = ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))
194193cbvmptv 5261 . . . . . . 7 (𝑗 ∈ (0..^𝑀) ↦ ((𝑄𝑗)(,)(𝑄‘(𝑗 + 1)))) = (𝑖 ∈ (0..^𝑀) ↦ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))
195 eqid 2731 . . . . . . 7 (𝑡 ∈ ℝ ↦ (𝑡 + ((⌊‘((π − 𝑡) / 𝑇)) · 𝑇))) = (𝑡 ∈ ℝ ↦ (𝑡 + ((⌊‘((π − 𝑡) / 𝑇)) · 𝑇)))
196155, 157, 61, 62, 161, 71, 24, 77, 162, 85, 134, 165, 169, 188, 189, 194, 195fourierdlem71 45352 . . . . . 6 (𝜑 → ∃𝑧 ∈ ℝ ∀𝑡 ∈ dom (ℝ D 𝐹)(abs‘((ℝ D 𝐹)‘𝑡)) ≤ 𝑧)
197196adantr 480 . . . . 5 ((𝜑𝑖 ∈ (0..^𝑀)) → ∃𝑧 ∈ ℝ ∀𝑡 ∈ dom (ℝ D 𝐹)(abs‘((ℝ D 𝐹)‘𝑡)) ≤ 𝑧)
198 nfv 1916 . . . . . . . . 9 𝑡(𝜑𝑖 ∈ (0..^𝑀))
199 nfra1 3280 . . . . . . . . 9 𝑡𝑡 ∈ dom (ℝ D 𝐹)(abs‘((ℝ D 𝐹)‘𝑡)) ≤ 𝑧
200198, 199nfan 1901 . . . . . . . 8 𝑡((𝜑𝑖 ∈ (0..^𝑀)) ∧ ∀𝑡 ∈ dom (ℝ D 𝐹)(abs‘((ℝ D 𝐹)‘𝑡)) ≤ 𝑧)
201128, 131eqtrdi 2787 . . . . . . . . . . . . . 14 ((𝜑𝑖 ∈ (0..^𝑀)) → (ℝ D (𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))) = ((ℝ D 𝐹) ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))))
202201fveq1d 6893 . . . . . . . . . . . . 13 ((𝜑𝑖 ∈ (0..^𝑀)) → ((ℝ D (𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))))‘𝑡) = (((ℝ D 𝐹) ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))‘𝑡))
203 fvres 6910 . . . . . . . . . . . . 13 (𝑡 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) → (((ℝ D 𝐹) ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))‘𝑡) = ((ℝ D 𝐹)‘𝑡))
204202, 203sylan9eq 2791 . . . . . . . . . . . 12 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑡 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → ((ℝ D (𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))))‘𝑡) = ((ℝ D 𝐹)‘𝑡))
205204fveq2d 6895 . . . . . . . . . . 11 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑡 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → (abs‘((ℝ D (𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))))‘𝑡)) = (abs‘((ℝ D 𝐹)‘𝑡)))
206205adantlr 712 . . . . . . . . . 10 ((((𝜑𝑖 ∈ (0..^𝑀)) ∧ ∀𝑡 ∈ dom (ℝ D 𝐹)(abs‘((ℝ D 𝐹)‘𝑡)) ≤ 𝑧) ∧ 𝑡 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → (abs‘((ℝ D (𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))))‘𝑡)) = (abs‘((ℝ D 𝐹)‘𝑡)))
207 simplr 766 . . . . . . . . . . 11 ((((𝜑𝑖 ∈ (0..^𝑀)) ∧ ∀𝑡 ∈ dom (ℝ D 𝐹)(abs‘((ℝ D 𝐹)‘𝑡)) ≤ 𝑧) ∧ 𝑡 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → ∀𝑡 ∈ dom (ℝ D 𝐹)(abs‘((ℝ D 𝐹)‘𝑡)) ≤ 𝑧)
208 ssdmres 6004 . . . . . . . . . . . . . 14 (((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ⊆ dom (ℝ D 𝐹) ↔ dom ((ℝ D 𝐹) ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) = ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))
209137, 208sylibr 233 . . . . . . . . . . . . 13 ((𝜑𝑖 ∈ (0..^𝑀)) → ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ⊆ dom (ℝ D 𝐹))
210209ad2antrr 723 . . . . . . . . . . . 12 ((((𝜑𝑖 ∈ (0..^𝑀)) ∧ ∀𝑡 ∈ dom (ℝ D 𝐹)(abs‘((ℝ D 𝐹)‘𝑡)) ≤ 𝑧) ∧ 𝑡 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ⊆ dom (ℝ D 𝐹))
211 simpr 484 . . . . . . . . . . . 12 ((((𝜑𝑖 ∈ (0..^𝑀)) ∧ ∀𝑡 ∈ dom (ℝ D 𝐹)(abs‘((ℝ D 𝐹)‘𝑡)) ≤ 𝑧) ∧ 𝑡 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → 𝑡 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))
212210, 211sseldd 3983 . . . . . . . . . . 11 ((((𝜑𝑖 ∈ (0..^𝑀)) ∧ ∀𝑡 ∈ dom (ℝ D 𝐹)(abs‘((ℝ D 𝐹)‘𝑡)) ≤ 𝑧) ∧ 𝑡 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → 𝑡 ∈ dom (ℝ D 𝐹))
213 rspa 3244 . . . . . . . . . . 11 ((∀𝑡 ∈ dom (ℝ D 𝐹)(abs‘((ℝ D 𝐹)‘𝑡)) ≤ 𝑧𝑡 ∈ dom (ℝ D 𝐹)) → (abs‘((ℝ D 𝐹)‘𝑡)) ≤ 𝑧)
214207, 212, 213syl2anc 583 . . . . . . . . . 10 ((((𝜑𝑖 ∈ (0..^𝑀)) ∧ ∀𝑡 ∈ dom (ℝ D 𝐹)(abs‘((ℝ D 𝐹)‘𝑡)) ≤ 𝑧) ∧ 𝑡 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → (abs‘((ℝ D 𝐹)‘𝑡)) ≤ 𝑧)
215206, 214eqbrtrd 5170 . . . . . . . . 9 ((((𝜑𝑖 ∈ (0..^𝑀)) ∧ ∀𝑡 ∈ dom (ℝ D 𝐹)(abs‘((ℝ D 𝐹)‘𝑡)) ≤ 𝑧) ∧ 𝑡 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → (abs‘((ℝ D (𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))))‘𝑡)) ≤ 𝑧)
216215ex 412 . . . . . . . 8 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ ∀𝑡 ∈ dom (ℝ D 𝐹)(abs‘((ℝ D 𝐹)‘𝑡)) ≤ 𝑧) → (𝑡 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) → (abs‘((ℝ D (𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))))‘𝑡)) ≤ 𝑧))
217200, 216ralrimi 3253 . . . . . . 7 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ ∀𝑡 ∈ dom (ℝ D 𝐹)(abs‘((ℝ D 𝐹)‘𝑡)) ≤ 𝑧) → ∀𝑡 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))(abs‘((ℝ D (𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))))‘𝑡)) ≤ 𝑧)
218217ex 412 . . . . . 6 ((𝜑𝑖 ∈ (0..^𝑀)) → (∀𝑡 ∈ dom (ℝ D 𝐹)(abs‘((ℝ D 𝐹)‘𝑡)) ≤ 𝑧 → ∀𝑡 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))(abs‘((ℝ D (𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))))‘𝑡)) ≤ 𝑧))
219218reximdv 3169 . . . . 5 ((𝜑𝑖 ∈ (0..^𝑀)) → (∃𝑧 ∈ ℝ ∀𝑡 ∈ dom (ℝ D 𝐹)(abs‘((ℝ D 𝐹)‘𝑡)) ≤ 𝑧 → ∃𝑧 ∈ ℝ ∀𝑡 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))(abs‘((ℝ D (𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))))‘𝑡)) ≤ 𝑧))
220197, 219mpd 15 . . . 4 ((𝜑𝑖 ∈ (0..^𝑀)) → ∃𝑧 ∈ ℝ ∀𝑡 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))(abs‘((ℝ D (𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))))‘𝑡)) ≤ 𝑧)
221149, 145, 153, 138, 220ioodvbdlimc1 45108 . . 3 ((𝜑𝑖 ∈ (0..^𝑀)) → ((𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) lim (𝑄𝑖)) ≠ ∅)
222119, 141, 152, 221, 125ellimciota 44789 . 2 ((𝜑𝑖 ∈ (0..^𝑀)) → (℩𝑦𝑦 ∈ ((𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) lim (𝑄𝑖))) ∈ ((𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) lim (𝑄𝑖)))
223149, 145, 153, 138, 220ioodvbdlimc2 45110 . . 3 ((𝜑𝑖 ∈ (0..^𝑀)) → ((𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) lim (𝑄‘(𝑖 + 1))) ≠ ∅)
224119, 141, 167, 223, 125ellimciota 44789 . 2 ((𝜑𝑖 ∈ (0..^𝑀)) → (℩𝑦𝑦 ∈ ((𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) lim (𝑄‘(𝑖 + 1)))) ∈ ((𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) lim (𝑄‘(𝑖 + 1))))
225 frel 6722 . . . . . . 7 ((ℝ D 𝐹):dom (ℝ D 𝐹)⟶ℝ → Rel (ℝ D 𝐹))
226157, 225syl 17 . . . . . 6 (𝜑 → Rel (ℝ D 𝐹))
227 resindm 6030 . . . . . 6 (Rel (ℝ D 𝐹) → ((ℝ D 𝐹) ↾ ((-∞(,)𝑋) ∩ dom (ℝ D 𝐹))) = ((ℝ D 𝐹) ↾ (-∞(,)𝑋)))
228226, 227syl 17 . . . . 5 (𝜑 → ((ℝ D 𝐹) ↾ ((-∞(,)𝑋) ∩ dom (ℝ D 𝐹))) = ((ℝ D 𝐹) ↾ (-∞(,)𝑋)))
229 inss2 4229 . . . . . . 7 ((-∞(,)𝑋) ∩ dom (ℝ D 𝐹)) ⊆ dom (ℝ D 𝐹)
230229a1i 11 . . . . . 6 (𝜑 → ((-∞(,)𝑋) ∩ dom (ℝ D 𝐹)) ⊆ dom (ℝ D 𝐹))
231157, 230fssresd 6758 . . . . 5 (𝜑 → ((ℝ D 𝐹) ↾ ((-∞(,)𝑋) ∩ dom (ℝ D 𝐹))):((-∞(,)𝑋) ∩ dom (ℝ D 𝐹))⟶ℝ)
232228, 231feq1dd 44325 . . . 4 (𝜑 → ((ℝ D 𝐹) ↾ (-∞(,)𝑋)):((-∞(,)𝑋) ∩ dom (ℝ D 𝐹))⟶ℝ)
233232, 117fssd 6735 . . 3 (𝜑 → ((ℝ D 𝐹) ↾ (-∞(,)𝑋)):((-∞(,)𝑋) ∩ dom (ℝ D 𝐹))⟶ℂ)
234 ioosscn 13393 . . . . 5 (-∞(,)𝑋) ⊆ ℂ
235 ssinss1 4237 . . . . 5 ((-∞(,)𝑋) ⊆ ℂ → ((-∞(,)𝑋) ∩ dom (ℝ D 𝐹)) ⊆ ℂ)
236234, 235ax-mp 5 . . . 4 ((-∞(,)𝑋) ∩ dom (ℝ D 𝐹)) ⊆ ℂ
237236a1i 11 . . 3 (𝜑 → ((-∞(,)𝑋) ∩ dom (ℝ D 𝐹)) ⊆ ℂ)
238 3simpb 1148 . . . . . . . 8 ((𝜑𝑥 ∈ dom (ℝ D 𝐹) ∧ 𝑘 ∈ ℤ) → (𝜑𝑘 ∈ ℤ))
239 simp2 1136 . . . . . . . 8 ((𝜑𝑥 ∈ dom (ℝ D 𝐹) ∧ 𝑘 ∈ ℤ) → 𝑥 ∈ dom (ℝ D 𝐹))
240170adantr 480 . . . . . . . . . 10 (((𝜑𝑘 ∈ ℤ) ∧ 𝑥 ∈ ℝ) → 𝐹:ℝ⟶ℂ)
241177adantr 480 . . . . . . . . . 10 (((𝜑𝑘 ∈ ℤ) ∧ 𝑥 ∈ ℝ) → 𝑇 ∈ ℝ)
242 simplr 766 . . . . . . . . . 10 (((𝜑𝑘 ∈ ℤ) ∧ 𝑥 ∈ ℝ) → 𝑘 ∈ ℤ)
243 simpr 484 . . . . . . . . . 10 (((𝜑𝑘 ∈ ℤ) ∧ 𝑥 ∈ ℝ) → 𝑥 ∈ ℝ)
244 eleq1w 2815 . . . . . . . . . . . . . 14 (𝑥 = 𝑦 → (𝑥 ∈ ℝ ↔ 𝑦 ∈ ℝ))
245244anbi2d 628 . . . . . . . . . . . . 13 (𝑥 = 𝑦 → ((𝜑𝑥 ∈ ℝ) ↔ (𝜑𝑦 ∈ ℝ)))
246 oveq1 7419 . . . . . . . . . . . . . . 15 (𝑥 = 𝑦 → (𝑥 + 𝑇) = (𝑦 + 𝑇))
247246fveq2d 6895 . . . . . . . . . . . . . 14 (𝑥 = 𝑦 → (𝐹‘(𝑥 + 𝑇)) = (𝐹‘(𝑦 + 𝑇)))
248 fveq2 6891 . . . . . . . . . . . . . 14 (𝑥 = 𝑦 → (𝐹𝑥) = (𝐹𝑦))
249247, 248eqeq12d 2747 . . . . . . . . . . . . 13 (𝑥 = 𝑦 → ((𝐹‘(𝑥 + 𝑇)) = (𝐹𝑥) ↔ (𝐹‘(𝑦 + 𝑇)) = (𝐹𝑦)))
250245, 249imbi12d 344 . . . . . . . . . . . 12 (𝑥 = 𝑦 → (((𝜑𝑥 ∈ ℝ) → (𝐹‘(𝑥 + 𝑇)) = (𝐹𝑥)) ↔ ((𝜑𝑦 ∈ ℝ) → (𝐹‘(𝑦 + 𝑇)) = (𝐹𝑦))))
251250, 111chvarvv 2001 . . . . . . . . . . 11 ((𝜑𝑦 ∈ ℝ) → (𝐹‘(𝑦 + 𝑇)) = (𝐹𝑦))
252251ad4ant14 749 . . . . . . . . . 10 ((((𝜑𝑘 ∈ ℤ) ∧ 𝑥 ∈ ℝ) ∧ 𝑦 ∈ ℝ) → (𝐹‘(𝑦 + 𝑇)) = (𝐹𝑦))
253240, 241, 242, 243, 252fperiodmul 44473 . . . . . . . . 9 (((𝜑𝑘 ∈ ℤ) ∧ 𝑥 ∈ ℝ) → (𝐹‘(𝑥 + (𝑘 · 𝑇))) = (𝐹𝑥))
254170, 178, 253, 185fperdvper 45094 . . . . . . . 8 (((𝜑𝑘 ∈ ℤ) ∧ 𝑥 ∈ dom (ℝ D 𝐹)) → ((𝑥 + (𝑘 · 𝑇)) ∈ dom (ℝ D 𝐹) ∧ ((ℝ D 𝐹)‘(𝑥 + (𝑘 · 𝑇))) = ((ℝ D 𝐹)‘𝑥)))
255238, 239, 254syl2anc 583 . . . . . . 7 ((𝜑𝑥 ∈ dom (ℝ D 𝐹) ∧ 𝑘 ∈ ℤ) → ((𝑥 + (𝑘 · 𝑇)) ∈ dom (ℝ D 𝐹) ∧ ((ℝ D 𝐹)‘(𝑥 + (𝑘 · 𝑇))) = ((ℝ D 𝐹)‘𝑥)))
256255simpld 494 . . . . . 6 ((𝜑𝑥 ∈ dom (ℝ D 𝐹) ∧ 𝑘 ∈ ℤ) → (𝑥 + (𝑘 · 𝑇)) ∈ dom (ℝ D 𝐹))
257 oveq2 7420 . . . . . . . . . 10 (𝑤 = 𝑥 → (π − 𝑤) = (π − 𝑥))
258257oveq1d 7427 . . . . . . . . 9 (𝑤 = 𝑥 → ((π − 𝑤) / 𝑇) = ((π − 𝑥) / 𝑇))
259258fveq2d 6895 . . . . . . . 8 (𝑤 = 𝑥 → (⌊‘((π − 𝑤) / 𝑇)) = (⌊‘((π − 𝑥) / 𝑇)))
260259oveq1d 7427 . . . . . . 7 (𝑤 = 𝑥 → ((⌊‘((π − 𝑤) / 𝑇)) · 𝑇) = ((⌊‘((π − 𝑥) / 𝑇)) · 𝑇))
261260cbvmptv 5261 . . . . . 6 (𝑤 ∈ ℝ ↦ ((⌊‘((π − 𝑤) / 𝑇)) · 𝑇)) = (𝑥 ∈ ℝ ↦ ((⌊‘((π − 𝑥) / 𝑇)) · 𝑇))
262 eqid 2731 . . . . . 6 (𝑥 ∈ ℝ ↦ (𝑥 + ((𝑤 ∈ ℝ ↦ ((⌊‘((π − 𝑤) / 𝑇)) · 𝑇))‘𝑥))) = (𝑥 ∈ ℝ ↦ (𝑥 + ((𝑤 ∈ ℝ ↦ ((⌊‘((π − 𝑤) / 𝑇)) · 𝑇))‘𝑥)))
26361, 62, 161, 71, 256, 58, 261, 262, 23, 24, 25, 209fourierdlem41 45323 . . . . 5 (𝜑 → (∃𝑦 ∈ ℝ (𝑦 < 𝑋 ∧ (𝑦(,)𝑋) ⊆ dom (ℝ D 𝐹)) ∧ ∃𝑦 ∈ ℝ (𝑋 < 𝑦 ∧ (𝑋(,)𝑦) ⊆ dom (ℝ D 𝐹))))
264263simpld 494 . . . 4 (𝜑 → ∃𝑦 ∈ ℝ (𝑦 < 𝑋 ∧ (𝑦(,)𝑋) ⊆ dom (ℝ D 𝐹)))
265125cnfldtop 24620 . . . . . . . . 9 (TopOpen‘ℂfld) ∈ Top
266265a1i 11 . . . . . . . 8 ((𝜑𝑦 ∈ ℝ ∧ (𝑦(,)𝑋) ⊆ dom (ℝ D 𝐹)) → (TopOpen‘ℂfld) ∈ Top)
267236a1i 11 . . . . . . . 8 ((𝜑𝑦 ∈ ℝ ∧ (𝑦(,)𝑋) ⊆ dom (ℝ D 𝐹)) → ((-∞(,)𝑋) ∩ dom (ℝ D 𝐹)) ⊆ ℂ)
268 mnfxr 11278 . . . . . . . . . . . 12 -∞ ∈ ℝ*
269268a1i 11 . . . . . . . . . . 11 (𝑦 ∈ ℝ → -∞ ∈ ℝ*)
270 rexr 11267 . . . . . . . . . . . 12 (𝑦 ∈ ℝ → 𝑦 ∈ ℝ*)
271 mnflt 13110 . . . . . . . . . . . 12 (𝑦 ∈ ℝ → -∞ < 𝑦)
272269, 270, 271xrltled 13136 . . . . . . . . . . 11 (𝑦 ∈ ℝ → -∞ ≤ 𝑦)
273 iooss1 13366 . . . . . . . . . . 11 ((-∞ ∈ ℝ* ∧ -∞ ≤ 𝑦) → (𝑦(,)𝑋) ⊆ (-∞(,)𝑋))
274269, 272, 273syl2anc 583 . . . . . . . . . 10 (𝑦 ∈ ℝ → (𝑦(,)𝑋) ⊆ (-∞(,)𝑋))
2752743ad2ant2 1133 . . . . . . . . 9 ((𝜑𝑦 ∈ ℝ ∧ (𝑦(,)𝑋) ⊆ dom (ℝ D 𝐹)) → (𝑦(,)𝑋) ⊆ (-∞(,)𝑋))
276 simp3 1137 . . . . . . . . 9 ((𝜑𝑦 ∈ ℝ ∧ (𝑦(,)𝑋) ⊆ dom (ℝ D 𝐹)) → (𝑦(,)𝑋) ⊆ dom (ℝ D 𝐹))
277275, 276ssind 4232 . . . . . . . 8 ((𝜑𝑦 ∈ ℝ ∧ (𝑦(,)𝑋) ⊆ dom (ℝ D 𝐹)) → (𝑦(,)𝑋) ⊆ ((-∞(,)𝑋) ∩ dom (ℝ D 𝐹)))
278 unicntop 24622 . . . . . . . . 9 ℂ = (TopOpen‘ℂfld)
279278lpss3 22968 . . . . . . . 8 (((TopOpen‘ℂfld) ∈ Top ∧ ((-∞(,)𝑋) ∩ dom (ℝ D 𝐹)) ⊆ ℂ ∧ (𝑦(,)𝑋) ⊆ ((-∞(,)𝑋) ∩ dom (ℝ D 𝐹))) → ((limPt‘(TopOpen‘ℂfld))‘(𝑦(,)𝑋)) ⊆ ((limPt‘(TopOpen‘ℂfld))‘((-∞(,)𝑋) ∩ dom (ℝ D 𝐹))))
280266, 267, 277, 279syl3anc 1370 . . . . . . 7 ((𝜑𝑦 ∈ ℝ ∧ (𝑦(,)𝑋) ⊆ dom (ℝ D 𝐹)) → ((limPt‘(TopOpen‘ℂfld))‘(𝑦(,)𝑋)) ⊆ ((limPt‘(TopOpen‘ℂfld))‘((-∞(,)𝑋) ∩ dom (ℝ D 𝐹))))
2812803adant3l 1179 . . . . . 6 ((𝜑𝑦 ∈ ℝ ∧ (𝑦 < 𝑋 ∧ (𝑦(,)𝑋) ⊆ dom (ℝ D 𝐹))) → ((limPt‘(TopOpen‘ℂfld))‘(𝑦(,)𝑋)) ⊆ ((limPt‘(TopOpen‘ℂfld))‘((-∞(,)𝑋) ∩ dom (ℝ D 𝐹))))
2822703ad2ant2 1133 . . . . . . 7 ((𝜑𝑦 ∈ ℝ ∧ (𝑦 < 𝑋 ∧ (𝑦(,)𝑋) ⊆ dom (ℝ D 𝐹))) → 𝑦 ∈ ℝ*)
283583ad2ant1 1132 . . . . . . 7 ((𝜑𝑦 ∈ ℝ ∧ (𝑦 < 𝑋 ∧ (𝑦(,)𝑋) ⊆ dom (ℝ D 𝐹))) → 𝑋 ∈ ℝ)
284 simp3l 1200 . . . . . . 7 ((𝜑𝑦 ∈ ℝ ∧ (𝑦 < 𝑋 ∧ (𝑦(,)𝑋) ⊆ dom (ℝ D 𝐹))) → 𝑦 < 𝑋)
285125, 282, 283, 284lptioo2cn 44820 . . . . . 6 ((𝜑𝑦 ∈ ℝ ∧ (𝑦 < 𝑋 ∧ (𝑦(,)𝑋) ⊆ dom (ℝ D 𝐹))) → 𝑋 ∈ ((limPt‘(TopOpen‘ℂfld))‘(𝑦(,)𝑋)))
286281, 285sseldd 3983 . . . . 5 ((𝜑𝑦 ∈ ℝ ∧ (𝑦 < 𝑋 ∧ (𝑦(,)𝑋) ⊆ dom (ℝ D 𝐹))) → 𝑋 ∈ ((limPt‘(TopOpen‘ℂfld))‘((-∞(,)𝑋) ∩ dom (ℝ D 𝐹))))
287286rexlimdv3a 3158 . . . 4 (𝜑 → (∃𝑦 ∈ ℝ (𝑦 < 𝑋 ∧ (𝑦(,)𝑋) ⊆ dom (ℝ D 𝐹)) → 𝑋 ∈ ((limPt‘(TopOpen‘ℂfld))‘((-∞(,)𝑋) ∩ dom (ℝ D 𝐹)))))
288264, 287mpd 15 . . 3 (𝜑𝑋 ∈ ((limPt‘(TopOpen‘ℂfld))‘((-∞(,)𝑋) ∩ dom (ℝ D 𝐹))))
289255simprd 495 . . . 4 ((𝜑𝑥 ∈ dom (ℝ D 𝐹) ∧ 𝑘 ∈ ℤ) → ((ℝ D 𝐹)‘(𝑥 + (𝑘 · 𝑇))) = ((ℝ D 𝐹)‘𝑥))
290 oveq2 7420 . . . . . . . 8 (𝑦 = 𝑥 → (π − 𝑦) = (π − 𝑥))
291290oveq1d 7427 . . . . . . 7 (𝑦 = 𝑥 → ((π − 𝑦) / 𝑇) = ((π − 𝑥) / 𝑇))
292291fveq2d 6895 . . . . . 6 (𝑦 = 𝑥 → (⌊‘((π − 𝑦) / 𝑇)) = (⌊‘((π − 𝑥) / 𝑇)))
293292oveq1d 7427 . . . . 5 (𝑦 = 𝑥 → ((⌊‘((π − 𝑦) / 𝑇)) · 𝑇) = ((⌊‘((π − 𝑥) / 𝑇)) · 𝑇))
294293cbvmptv 5261 . . . 4 (𝑦 ∈ ℝ ↦ ((⌊‘((π − 𝑦) / 𝑇)) · 𝑇)) = (𝑥 ∈ ℝ ↦ ((⌊‘((π − 𝑥) / 𝑇)) · 𝑇))
295 id 22 . . . . . 6 (𝑧 = 𝑥𝑧 = 𝑥)
296 fveq2 6891 . . . . . 6 (𝑧 = 𝑥 → ((𝑦 ∈ ℝ ↦ ((⌊‘((π − 𝑦) / 𝑇)) · 𝑇))‘𝑧) = ((𝑦 ∈ ℝ ↦ ((⌊‘((π − 𝑦) / 𝑇)) · 𝑇))‘𝑥))
297295, 296oveq12d 7430 . . . . 5 (𝑧 = 𝑥 → (𝑧 + ((𝑦 ∈ ℝ ↦ ((⌊‘((π − 𝑦) / 𝑇)) · 𝑇))‘𝑧)) = (𝑥 + ((𝑦 ∈ ℝ ↦ ((⌊‘((π − 𝑦) / 𝑇)) · 𝑇))‘𝑥)))
298297cbvmptv 5261 . . . 4 (𝑧 ∈ ℝ ↦ (𝑧 + ((𝑦 ∈ ℝ ↦ ((⌊‘((π − 𝑦) / 𝑇)) · 𝑇))‘𝑧))) = (𝑥 ∈ ℝ ↦ (𝑥 + ((𝑦 ∈ ℝ ↦ ((⌊‘((π − 𝑦) / 𝑇)) · 𝑇))‘𝑥)))
29961, 62, 161, 23, 71, 24, 25, 155, 157, 256, 289, 134, 169, 58, 294, 298fourierdlem49 45330 . . 3 (𝜑 → (((ℝ D 𝐹) ↾ (-∞(,)𝑋)) lim 𝑋) ≠ ∅)
300233, 237, 288, 299, 125ellimciota 44789 . 2 (𝜑 → (℩𝑥𝑥 ∈ (((ℝ D 𝐹) ↾ (-∞(,)𝑋)) lim 𝑋)) ∈ (((ℝ D 𝐹) ↾ (-∞(,)𝑋)) lim 𝑋))
301 resindm 6030 . . . . . 6 (Rel (ℝ D 𝐹) → ((ℝ D 𝐹) ↾ ((𝑋(,)+∞) ∩ dom (ℝ D 𝐹))) = ((ℝ D 𝐹) ↾ (𝑋(,)+∞)))
302226, 301syl 17 . . . . 5 (𝜑 → ((ℝ D 𝐹) ↾ ((𝑋(,)+∞) ∩ dom (ℝ D 𝐹))) = ((ℝ D 𝐹) ↾ (𝑋(,)+∞)))
303 inss2 4229 . . . . . . 7 ((𝑋(,)+∞) ∩ dom (ℝ D 𝐹)) ⊆ dom (ℝ D 𝐹)
304303a1i 11 . . . . . 6 (𝜑 → ((𝑋(,)+∞) ∩ dom (ℝ D 𝐹)) ⊆ dom (ℝ D 𝐹))
305157, 304fssresd 6758 . . . . 5 (𝜑 → ((ℝ D 𝐹) ↾ ((𝑋(,)+∞) ∩ dom (ℝ D 𝐹))):((𝑋(,)+∞) ∩ dom (ℝ D 𝐹))⟶ℝ)
306302, 305feq1dd 44325 . . . 4 (𝜑 → ((ℝ D 𝐹) ↾ (𝑋(,)+∞)):((𝑋(,)+∞) ∩ dom (ℝ D 𝐹))⟶ℝ)
307306, 117fssd 6735 . . 3 (𝜑 → ((ℝ D 𝐹) ↾ (𝑋(,)+∞)):((𝑋(,)+∞) ∩ dom (ℝ D 𝐹))⟶ℂ)
308 ioosscn 13393 . . . . 5 (𝑋(,)+∞) ⊆ ℂ
309 ssinss1 4237 . . . . 5 ((𝑋(,)+∞) ⊆ ℂ → ((𝑋(,)+∞) ∩ dom (ℝ D 𝐹)) ⊆ ℂ)
310308, 309ax-mp 5 . . . 4 ((𝑋(,)+∞) ∩ dom (ℝ D 𝐹)) ⊆ ℂ
311310a1i 11 . . 3 (𝜑 → ((𝑋(,)+∞) ∩ dom (ℝ D 𝐹)) ⊆ ℂ)
312263simprd 495 . . . 4 (𝜑 → ∃𝑦 ∈ ℝ (𝑋 < 𝑦 ∧ (𝑋(,)𝑦) ⊆ dom (ℝ D 𝐹)))
313265a1i 11 . . . . . . . 8 ((𝜑𝑦 ∈ ℝ ∧ (𝑋(,)𝑦) ⊆ dom (ℝ D 𝐹)) → (TopOpen‘ℂfld) ∈ Top)
314310a1i 11 . . . . . . . 8 ((𝜑𝑦 ∈ ℝ ∧ (𝑋(,)𝑦) ⊆ dom (ℝ D 𝐹)) → ((𝑋(,)+∞) ∩ dom (ℝ D 𝐹)) ⊆ ℂ)
315 pnfxr 11275 . . . . . . . . . . . 12 +∞ ∈ ℝ*
316315a1i 11 . . . . . . . . . . 11 (𝑦 ∈ ℝ → +∞ ∈ ℝ*)
317 ltpnf 13107 . . . . . . . . . . . 12 (𝑦 ∈ ℝ → 𝑦 < +∞)
318270, 316, 317xrltled 13136 . . . . . . . . . . 11 (𝑦 ∈ ℝ → 𝑦 ≤ +∞)
319 iooss2 13367 . . . . . . . . . . 11 ((+∞ ∈ ℝ*𝑦 ≤ +∞) → (𝑋(,)𝑦) ⊆ (𝑋(,)+∞))
320316, 318, 319syl2anc 583 . . . . . . . . . 10 (𝑦 ∈ ℝ → (𝑋(,)𝑦) ⊆ (𝑋(,)+∞))
3213203ad2ant2 1133 . . . . . . . . 9 ((𝜑𝑦 ∈ ℝ ∧ (𝑋(,)𝑦) ⊆ dom (ℝ D 𝐹)) → (𝑋(,)𝑦) ⊆ (𝑋(,)+∞))
322 simp3 1137 . . . . . . . . 9 ((𝜑𝑦 ∈ ℝ ∧ (𝑋(,)𝑦) ⊆ dom (ℝ D 𝐹)) → (𝑋(,)𝑦) ⊆ dom (ℝ D 𝐹))
323321, 322ssind 4232 . . . . . . . 8 ((𝜑𝑦 ∈ ℝ ∧ (𝑋(,)𝑦) ⊆ dom (ℝ D 𝐹)) → (𝑋(,)𝑦) ⊆ ((𝑋(,)+∞) ∩ dom (ℝ D 𝐹)))
324278lpss3 22968 . . . . . . . 8 (((TopOpen‘ℂfld) ∈ Top ∧ ((𝑋(,)+∞) ∩ dom (ℝ D 𝐹)) ⊆ ℂ ∧ (𝑋(,)𝑦) ⊆ ((𝑋(,)+∞) ∩ dom (ℝ D 𝐹))) → ((limPt‘(TopOpen‘ℂfld))‘(𝑋(,)𝑦)) ⊆ ((limPt‘(TopOpen‘ℂfld))‘((𝑋(,)+∞) ∩ dom (ℝ D 𝐹))))
325313, 314, 323, 324syl3anc 1370 . . . . . . 7 ((𝜑𝑦 ∈ ℝ ∧ (𝑋(,)𝑦) ⊆ dom (ℝ D 𝐹)) → ((limPt‘(TopOpen‘ℂfld))‘(𝑋(,)𝑦)) ⊆ ((limPt‘(TopOpen‘ℂfld))‘((𝑋(,)+∞) ∩ dom (ℝ D 𝐹))))
3263253adant3l 1179 . . . . . 6 ((𝜑𝑦 ∈ ℝ ∧ (𝑋 < 𝑦 ∧ (𝑋(,)𝑦) ⊆ dom (ℝ D 𝐹))) → ((limPt‘(TopOpen‘ℂfld))‘(𝑋(,)𝑦)) ⊆ ((limPt‘(TopOpen‘ℂfld))‘((𝑋(,)+∞) ∩ dom (ℝ D 𝐹))))
3272703ad2ant2 1133 . . . . . . 7 ((𝜑𝑦 ∈ ℝ ∧ (𝑋 < 𝑦 ∧ (𝑋(,)𝑦) ⊆ dom (ℝ D 𝐹))) → 𝑦 ∈ ℝ*)
328583ad2ant1 1132 . . . . . . 7 ((𝜑𝑦 ∈ ℝ ∧ (𝑋 < 𝑦 ∧ (𝑋(,)𝑦) ⊆ dom (ℝ D 𝐹))) → 𝑋 ∈ ℝ)
329 simp3l 1200 . . . . . . 7 ((𝜑𝑦 ∈ ℝ ∧ (𝑋 < 𝑦 ∧ (𝑋(,)𝑦) ⊆ dom (ℝ D 𝐹))) → 𝑋 < 𝑦)
330125, 327, 328, 329lptioo1cn 44821 . . . . . 6 ((𝜑𝑦 ∈ ℝ ∧ (𝑋 < 𝑦 ∧ (𝑋(,)𝑦) ⊆ dom (ℝ D 𝐹))) → 𝑋 ∈ ((limPt‘(TopOpen‘ℂfld))‘(𝑋(,)𝑦)))
331326, 330sseldd 3983 . . . . 5 ((𝜑𝑦 ∈ ℝ ∧ (𝑋 < 𝑦 ∧ (𝑋(,)𝑦) ⊆ dom (ℝ D 𝐹))) → 𝑋 ∈ ((limPt‘(TopOpen‘ℂfld))‘((𝑋(,)+∞) ∩ dom (ℝ D 𝐹))))
332331rexlimdv3a 3158 . . . 4 (𝜑 → (∃𝑦 ∈ ℝ (𝑋 < 𝑦 ∧ (𝑋(,)𝑦) ⊆ dom (ℝ D 𝐹)) → 𝑋 ∈ ((limPt‘(TopOpen‘ℂfld))‘((𝑋(,)+∞) ∩ dom (ℝ D 𝐹)))))
333312, 332mpd 15 . . 3 (𝜑𝑋 ∈ ((limPt‘(TopOpen‘ℂfld))‘((𝑋(,)+∞) ∩ dom (ℝ D 𝐹))))
334 biid 261 . . . 4 (((((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑤 ∈ ((𝑄𝑖)[,)(𝑄‘(𝑖 + 1)))) ∧ 𝑘 ∈ ℤ) ∧ 𝑤 = (𝑋 + (𝑘 · 𝑇))) ↔ ((((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑤 ∈ ((𝑄𝑖)[,)(𝑄‘(𝑖 + 1)))) ∧ 𝑘 ∈ ℤ) ∧ 𝑤 = (𝑋 + (𝑘 · 𝑇))))
33561, 62, 161, 23, 71, 24, 25, 157, 256, 289, 134, 165, 58, 294, 298, 334fourierdlem48 45329 . . 3 (𝜑 → (((ℝ D 𝐹) ↾ (𝑋(,)+∞)) lim 𝑋) ≠ ∅)
336307, 311, 333, 335, 125ellimciota 44789 . 2 (𝜑 → (℩𝑥𝑥 ∈ (((ℝ D 𝐹) ↾ (𝑋(,)+∞)) lim 𝑋)) ∈ (((ℝ D 𝐹) ↾ (𝑋(,)+∞)) lim 𝑋))
337 fourierdlem113.l . 2 (𝜑𝐿 ∈ ((𝐹 ↾ (-∞(,)𝑋)) lim 𝑋))
338 fourierdlem113.r . 2 (𝜑𝑅 ∈ ((𝐹 ↾ (𝑋(,)+∞)) lim 𝑋))
339 fourierdlem113.a . 2 𝐴 = (𝑛 ∈ ℕ0 ↦ (∫(-π(,)π)((𝐹𝑥) · (cos‘(𝑛 · 𝑥))) d𝑥 / π))
340 fourierdlem113.b . 2 𝐵 = (𝑛 ∈ ℕ ↦ (∫(-π(,)π)((𝐹𝑥) · (sin‘(𝑛 · 𝑥))) d𝑥 / π))
341 fveq2 6891 . . . . . . . 8 (𝑛 = 𝑘 → (𝐴𝑛) = (𝐴𝑘))
342 oveq1 7419 . . . . . . . . 9 (𝑛 = 𝑘 → (𝑛 · 𝑋) = (𝑘 · 𝑋))
343342fveq2d 6895 . . . . . . . 8 (𝑛 = 𝑘 → (cos‘(𝑛 · 𝑋)) = (cos‘(𝑘 · 𝑋)))
344341, 343oveq12d 7430 . . . . . . 7 (𝑛 = 𝑘 → ((𝐴𝑛) · (cos‘(𝑛 · 𝑋))) = ((𝐴𝑘) · (cos‘(𝑘 · 𝑋))))
345 fveq2 6891 . . . . . . . 8 (𝑛 = 𝑘 → (𝐵𝑛) = (𝐵𝑘))
346342fveq2d 6895 . . . . . . . 8 (𝑛 = 𝑘 → (sin‘(𝑛 · 𝑋)) = (sin‘(𝑘 · 𝑋)))
347345, 346oveq12d 7430 . . . . . . 7 (𝑛 = 𝑘 → ((𝐵𝑛) · (sin‘(𝑛 · 𝑋))) = ((𝐵𝑘) · (sin‘(𝑘 · 𝑋))))
348344, 347oveq12d 7430 . . . . . 6 (𝑛 = 𝑘 → (((𝐴𝑛) · (cos‘(𝑛 · 𝑋))) + ((𝐵𝑛) · (sin‘(𝑛 · 𝑋)))) = (((𝐴𝑘) · (cos‘(𝑘 · 𝑋))) + ((𝐵𝑘) · (sin‘(𝑘 · 𝑋)))))
349348cbvsumv 15649 . . . . 5 Σ𝑛 ∈ (1...𝑚)(((𝐴𝑛) · (cos‘(𝑛 · 𝑋))) + ((𝐵𝑛) · (sin‘(𝑛 · 𝑋)))) = Σ𝑘 ∈ (1...𝑚)(((𝐴𝑘) · (cos‘(𝑘 · 𝑋))) + ((𝐵𝑘) · (sin‘(𝑘 · 𝑋))))
350 oveq2 7420 . . . . . . 7 (𝑗 = 𝑚 → (1...𝑗) = (1...𝑚))
351350eqcomd 2737 . . . . . 6 (𝑗 = 𝑚 → (1...𝑚) = (1...𝑗))
352351sumeq1d 15654 . . . . 5 (𝑗 = 𝑚 → Σ𝑘 ∈ (1...𝑚)(((𝐴𝑘) · (cos‘(𝑘 · 𝑋))) + ((𝐵𝑘) · (sin‘(𝑘 · 𝑋)))) = Σ𝑘 ∈ (1...𝑗)(((𝐴𝑘) · (cos‘(𝑘 · 𝑋))) + ((𝐵𝑘) · (sin‘(𝑘 · 𝑋)))))
353349, 352eqtr2id 2784 . . . 4 (𝑗 = 𝑚 → Σ𝑘 ∈ (1...𝑗)(((𝐴𝑘) · (cos‘(𝑘 · 𝑋))) + ((𝐵𝑘) · (sin‘(𝑘 · 𝑋)))) = Σ𝑛 ∈ (1...𝑚)(((𝐴𝑛) · (cos‘(𝑛 · 𝑋))) + ((𝐵𝑛) · (sin‘(𝑛 · 𝑋)))))
354353oveq2d 7428 . . 3 (𝑗 = 𝑚 → (((𝐴‘0) / 2) + Σ𝑘 ∈ (1...𝑗)(((𝐴𝑘) · (cos‘(𝑘 · 𝑋))) + ((𝐵𝑘) · (sin‘(𝑘 · 𝑋))))) = (((𝐴‘0) / 2) + Σ𝑛 ∈ (1...𝑚)(((𝐴𝑛) · (cos‘(𝑛 · 𝑋))) + ((𝐵𝑛) · (sin‘(𝑛 · 𝑋))))))
355354cbvmptv 5261 . 2 (𝑗 ∈ ℕ ↦ (((𝐴‘0) / 2) + Σ𝑘 ∈ (1...𝑗)(((𝐴𝑘) · (cos‘(𝑘 · 𝑋))) + ((𝐵𝑘) · (sin‘(𝑘 · 𝑋)))))) = (𝑚 ∈ ℕ ↦ (((𝐴‘0) / 2) + Σ𝑛 ∈ (1...𝑚)(((𝐴𝑛) · (cos‘(𝑛 · 𝑋))) + ((𝐵𝑛) · (sin‘(𝑛 · 𝑋))))))
356 fourierdlem113.15 . 2 𝑆 = (𝑛 ∈ ℕ ↦ (((𝐴𝑛) · (cos‘(𝑛 · 𝑋))) + ((𝐵𝑛) · (sin‘(𝑛 · 𝑋)))))
357 fdm 6726 . . . . . 6 (𝐹:ℝ⟶ℝ → dom 𝐹 = ℝ)
3581, 357syl 17 . . . . 5 (𝜑 → dom 𝐹 = ℝ)
359358, 154eqsstrd 4020 . . . 4 (𝜑 → dom 𝐹 ⊆ ℝ)
360358feq2d 6703 . . . . 5 (𝜑 → (𝐹:dom 𝐹⟶ℝ ↔ 𝐹:ℝ⟶ℝ))
3611, 360mpbird 257 . . . 4 (𝜑𝐹:dom 𝐹⟶ℝ)
362359sselda 3982 . . . . . . 7 ((𝜑𝑡 ∈ dom 𝐹) → 𝑡 ∈ ℝ)
363362adantr 480 . . . . . 6 (((𝜑𝑡 ∈ dom 𝐹) ∧ 𝑘 ∈ ℤ) → 𝑡 ∈ ℝ)
364171adantl 481 . . . . . . 7 (((𝜑𝑡 ∈ dom 𝐹) ∧ 𝑘 ∈ ℤ) → 𝑘 ∈ ℝ)
365177adantlr 712 . . . . . . 7 (((𝜑𝑡 ∈ dom 𝐹) ∧ 𝑘 ∈ ℤ) → 𝑇 ∈ ℝ)
366364, 365remulcld 11251 . . . . . 6 (((𝜑𝑡 ∈ dom 𝐹) ∧ 𝑘 ∈ ℤ) → (𝑘 · 𝑇) ∈ ℝ)
367363, 366readdcld 11250 . . . . 5 (((𝜑𝑡 ∈ dom 𝐹) ∧ 𝑘 ∈ ℤ) → (𝑡 + (𝑘 · 𝑇)) ∈ ℝ)
368358eqcomd 2737 . . . . . 6 (𝜑 → ℝ = dom 𝐹)
369368ad2antrr 723 . . . . 5 (((𝜑𝑡 ∈ dom 𝐹) ∧ 𝑘 ∈ ℤ) → ℝ = dom 𝐹)
370367, 369eleqtrd 2834 . . . 4 (((𝜑𝑡 ∈ dom 𝐹) ∧ 𝑘 ∈ ℤ) → (𝑡 + (𝑘 · 𝑇)) ∈ dom 𝐹)
371 id 22 . . . . . 6 ((𝜑𝑘 ∈ ℤ) → (𝜑𝑘 ∈ ℤ))
372371adantlr 712 . . . . 5 (((𝜑𝑡 ∈ dom 𝐹) ∧ 𝑘 ∈ ℤ) → (𝜑𝑘 ∈ ℤ))
373372, 363, 184syl2anc 583 . . . 4 (((𝜑𝑡 ∈ dom 𝐹) ∧ 𝑘 ∈ ℤ) → (𝐹‘(𝑡 + (𝑘 · 𝑇))) = (𝐹𝑡))
374359, 361, 61, 62, 161, 71, 24, 77, 162, 85, 140, 222, 224, 370, 373, 194, 195fourierdlem71 45352 . . 3 (𝜑 → ∃𝑢 ∈ ℝ ∀𝑡 ∈ dom 𝐹(abs‘(𝐹𝑡)) ≤ 𝑢)
375358raleqdv 3324 . . . 4 (𝜑 → (∀𝑡 ∈ dom 𝐹(abs‘(𝐹𝑡)) ≤ 𝑢 ↔ ∀𝑡 ∈ ℝ (abs‘(𝐹𝑡)) ≤ 𝑢))
376375rexbidv 3177 . . 3 (𝜑 → (∃𝑢 ∈ ℝ ∀𝑡 ∈ dom 𝐹(abs‘(𝐹𝑡)) ≤ 𝑢 ↔ ∃𝑢 ∈ ℝ ∀𝑡 ∈ ℝ (abs‘(𝐹𝑡)) ≤ 𝑢))
377374, 376mpbid 231 . 2 (𝜑 → ∃𝑢 ∈ ℝ ∀𝑡 ∈ ℝ (abs‘(𝐹𝑡)) ≤ 𝑢)
3781, 22, 23, 24, 25, 32, 57, 58, 110, 69, 111, 140, 222, 224, 134, 300, 336, 337, 338, 339, 340, 355, 356, 377, 196, 58fourierdlem112 45393 1 (𝜑 → (seq1( + , 𝑆) ⇝ (((𝐿 + 𝑅) / 2) − ((𝐴‘0) / 2)) ∧ (((𝐴‘0) / 2) + Σ𝑛 ∈ ℕ (((𝐴𝑛) · (cos‘(𝑛 · 𝑋))) + ((𝐵𝑛) · (sin‘(𝑛 · 𝑋))))) = ((𝐿 + 𝑅) / 2)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  w3a 1086   = wceq 1540  wcel 2105  wne 2939  wral 3060  wrex 3069  {crab 3431  cun 3946  cin 3947  wss 3948  c0 4322  ifcif 4528  {cpr 4630   class class class wbr 5148  cmpt 5231  dom cdm 5676  ran crn 5677  cres 5678  Rel wrel 5681  cio 6493  Fun wfun 6537  wf 6539  cfv 6543   Isom wiso 6544  (class class class)co 7412  m cmap 8826  Fincfn 8945  cc 11114  cr 11115  0cc0 11116  1c1 11117   + caddc 11119   · cmul 11121  +∞cpnf 11252  -∞cmnf 11253  *cxr 11254   < clt 11255  cle 11256  cmin 11451  -cneg 11452   / cdiv 11878  cn 12219  2c2 12274  0cn0 12479  cz 12565  cuz 12829  (,)cioo 13331  (,]cioc 13332  [,)cico 13333  [,]cicc 13334  ...cfz 13491  ..^cfzo 13634  cfl 13762   mod cmo 13841  seqcseq 13973  chash 14297  abscabs 15188  cli 15435  Σcsu 15639  sincsin 16014  cosccos 16015  πcpi 16017  TopOpenctopn 17374  topGenctg 17390  fldccnfld 21233  Topctop 22715  intcnt 22841  limPtclp 22958  cnccncf 24716  citg 25467   lim climc 25711   D cdv 25712
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2702  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7729  ax-inf2 9642  ax-cc 10436  ax-cnex 11172  ax-resscn 11173  ax-1cn 11174  ax-icn 11175  ax-addcl 11176  ax-addrcl 11177  ax-mulcl 11178  ax-mulrcl 11179  ax-mulcom 11180  ax-addass 11181  ax-mulass 11182  ax-distr 11183  ax-i2m1 11184  ax-1ne0 11185  ax-1rid 11186  ax-rnegex 11187  ax-rrecex 11188  ax-cnre 11189  ax-pre-lttri 11190  ax-pre-lttrn 11191  ax-pre-ltadd 11192  ax-pre-mulgt0 11193  ax-pre-sup 11194  ax-addf 11195
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-rmo 3375  df-reu 3376  df-rab 3432  df-v 3475  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-pss 3967  df-symdif 4242  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-tp 4633  df-op 4635  df-uni 4909  df-int 4951  df-iun 4999  df-iin 5000  df-disj 5114  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5574  df-eprel 5580  df-po 5588  df-so 5589  df-fr 5631  df-se 5632  df-we 5633  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-pred 6300  df-ord 6367  df-on 6368  df-lim 6369  df-suc 6370  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-isom 6552  df-riota 7368  df-ov 7415  df-oprab 7416  df-mpo 7417  df-of 7674  df-ofr 7675  df-om 7860  df-1st 7979  df-2nd 7980  df-supp 8152  df-frecs 8272  df-wrecs 8303  df-recs 8377  df-rdg 8416  df-1o 8472  df-2o 8473  df-oadd 8476  df-omul 8477  df-er 8709  df-map 8828  df-pm 8829  df-ixp 8898  df-en 8946  df-dom 8947  df-sdom 8948  df-fin 8949  df-fsupp 9368  df-fi 9412  df-sup 9443  df-inf 9444  df-oi 9511  df-dju 9902  df-card 9940  df-acn 9943  df-pnf 11257  df-mnf 11258  df-xr 11259  df-ltxr 11260  df-le 11261  df-sub 11453  df-neg 11454  df-div 11879  df-nn 12220  df-2 12282  df-3 12283  df-4 12284  df-5 12285  df-6 12286  df-7 12287  df-8 12288  df-9 12289  df-n0 12480  df-xnn0 12552  df-z 12566  df-dec 12685  df-uz 12830  df-q 12940  df-rp 12982  df-xneg 13099  df-xadd 13100  df-xmul 13101  df-ioo 13335  df-ioc 13336  df-ico 13337  df-icc 13338  df-fz 13492  df-fzo 13635  df-fl 13764  df-mod 13842  df-seq 13974  df-exp 14035  df-fac 14241  df-bc 14270  df-hash 14298  df-shft 15021  df-cj 15053  df-re 15054  df-im 15055  df-sqrt 15189  df-abs 15190  df-limsup 15422  df-clim 15439  df-rlim 15440  df-sum 15640  df-ef 16018  df-sin 16020  df-cos 16021  df-pi 16023  df-struct 17087  df-sets 17104  df-slot 17122  df-ndx 17134  df-base 17152  df-ress 17181  df-plusg 17217  df-mulr 17218  df-starv 17219  df-sca 17220  df-vsca 17221  df-ip 17222  df-tset 17223  df-ple 17224  df-ds 17226  df-unif 17227  df-hom 17228  df-cco 17229  df-rest 17375  df-topn 17376  df-0g 17394  df-gsum 17395  df-topgen 17396  df-pt 17397  df-prds 17400  df-xrs 17455  df-qtop 17460  df-imas 17461  df-xps 17463  df-mre 17537  df-mrc 17538  df-acs 17540  df-mgm 18571  df-sgrp 18650  df-mnd 18666  df-submnd 18712  df-mulg 18994  df-cntz 19229  df-cmn 19698  df-psmet 21225  df-xmet 21226  df-met 21227  df-bl 21228  df-mopn 21229  df-fbas 21230  df-fg 21231  df-cnfld 21234  df-top 22716  df-topon 22733  df-topsp 22755  df-bases 22769  df-cld 22843  df-ntr 22844  df-cls 22845  df-nei 22922  df-lp 22960  df-perf 22961  df-cn 23051  df-cnp 23052  df-t1 23138  df-haus 23139  df-cmp 23211  df-tx 23386  df-hmeo 23579  df-fil 23670  df-fm 23762  df-flim 23763  df-flf 23764  df-xms 24146  df-ms 24147  df-tms 24148  df-cncf 24718  df-ovol 25313  df-vol 25314  df-mbf 25468  df-itg1 25469  df-itg2 25470  df-ibl 25471  df-itg 25472  df-0p 25519  df-ditg 25696  df-limc 25715  df-dv 25716
This theorem is referenced by:  fourierdlem114  45395
  Copyright terms: Public domain W3C validator