Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fourierdlem113 Structured version   Visualization version   GIF version

Theorem fourierdlem113 46224
Description: Fourier series convergence for periodic, piecewise smooth functions. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
fourierdlem113.f (𝜑𝐹:ℝ⟶ℝ)
fourierdlem113.t 𝑇 = (2 · π)
fourierdlem113.per ((𝜑𝑥 ∈ ℝ) → (𝐹‘(𝑥 + 𝑇)) = (𝐹𝑥))
fourierdlem113.x (𝜑𝑋 ∈ ℝ)
fourierdlem113.l (𝜑𝐿 ∈ ((𝐹 ↾ (-∞(,)𝑋)) lim 𝑋))
fourierdlem113.r (𝜑𝑅 ∈ ((𝐹 ↾ (𝑋(,)+∞)) lim 𝑋))
fourierdlem113.p 𝑃 = (𝑛 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑m (0...𝑛)) ∣ (((𝑝‘0) = -π ∧ (𝑝𝑛) = π) ∧ ∀𝑖 ∈ (0..^𝑛)(𝑝𝑖) < (𝑝‘(𝑖 + 1)))})
fourierdlem113.m (𝜑𝑀 ∈ ℕ)
fourierdlem113.q (𝜑𝑄 ∈ (𝑃𝑀))
fourierdlem113.dvcn ((𝜑𝑖 ∈ (0..^𝑀)) → ((ℝ D 𝐹) ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) ∈ (((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))–cn→ℂ))
fourierdlem113.dvlb ((𝜑𝑖 ∈ (0..^𝑀)) → (((ℝ D 𝐹) ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) lim (𝑄𝑖)) ≠ ∅)
fourierdlem113.dvub ((𝜑𝑖 ∈ (0..^𝑀)) → (((ℝ D 𝐹) ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) lim (𝑄‘(𝑖 + 1))) ≠ ∅)
fourierdlem113.a 𝐴 = (𝑛 ∈ ℕ0 ↦ (∫(-π(,)π)((𝐹𝑥) · (cos‘(𝑛 · 𝑥))) d𝑥 / π))
fourierdlem113.b 𝐵 = (𝑛 ∈ ℕ ↦ (∫(-π(,)π)((𝐹𝑥) · (sin‘(𝑛 · 𝑥))) d𝑥 / π))
fourierdlem113.15 𝑆 = (𝑛 ∈ ℕ ↦ (((𝐴𝑛) · (cos‘(𝑛 · 𝑋))) + ((𝐵𝑛) · (sin‘(𝑛 · 𝑋)))))
fourierdlem113.e 𝐸 = (𝑥 ∈ ℝ ↦ (𝑥 + ((⌊‘((π − 𝑥) / 𝑇)) · 𝑇)))
fourierdlem113.exq (𝜑 → (𝐸𝑋) ∈ ran 𝑄)
Assertion
Ref Expression
fourierdlem113 (𝜑 → (seq1( + , 𝑆) ⇝ (((𝐿 + 𝑅) / 2) − ((𝐴‘0) / 2)) ∧ (((𝐴‘0) / 2) + Σ𝑛 ∈ ℕ (((𝐴𝑛) · (cos‘(𝑛 · 𝑋))) + ((𝐵𝑛) · (sin‘(𝑛 · 𝑋))))) = ((𝐿 + 𝑅) / 2)))
Distinct variable groups:   𝐴,𝑛   𝐵,𝑛   𝑥,𝐸   𝑖,𝐹,𝑛,𝑥   𝑖,𝐿,𝑛   𝑖,𝑀,𝑥,𝑛   𝑀,𝑝,𝑖,𝑛   𝑄,𝑖,𝑥,𝑛   𝑄,𝑝   𝑅,𝑖,𝑛   𝑇,𝑖,𝑥,𝑛   𝑇,𝑝   𝑖,𝑋,𝑥,𝑛   𝑋,𝑝   𝜑,𝑖,𝑥,𝑛
Allowed substitution hints:   𝜑(𝑝)   𝐴(𝑥,𝑖,𝑝)   𝐵(𝑥,𝑖,𝑝)   𝑃(𝑥,𝑖,𝑛,𝑝)   𝑅(𝑥,𝑝)   𝑆(𝑥,𝑖,𝑛,𝑝)   𝐸(𝑖,𝑛,𝑝)   𝐹(𝑝)   𝐿(𝑥,𝑝)

Proof of Theorem fourierdlem113
Dummy variables 𝑗 𝑘 𝑚 𝑤 𝑦 𝑡 𝑢 𝑧 𝑓 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fourierdlem113.f . 2 (𝜑𝐹:ℝ⟶ℝ)
2 oveq1 7397 . . . . . . 7 (𝑤 = 𝑦 → (𝑤 mod (2 · π)) = (𝑦 mod (2 · π)))
32eqeq1d 2732 . . . . . 6 (𝑤 = 𝑦 → ((𝑤 mod (2 · π)) = 0 ↔ (𝑦 mod (2 · π)) = 0))
4 oveq2 7398 . . . . . . . 8 (𝑤 = 𝑦 → ((𝑘 + (1 / 2)) · 𝑤) = ((𝑘 + (1 / 2)) · 𝑦))
54fveq2d 6865 . . . . . . 7 (𝑤 = 𝑦 → (sin‘((𝑘 + (1 / 2)) · 𝑤)) = (sin‘((𝑘 + (1 / 2)) · 𝑦)))
6 oveq1 7397 . . . . . . . . 9 (𝑤 = 𝑦 → (𝑤 / 2) = (𝑦 / 2))
76fveq2d 6865 . . . . . . . 8 (𝑤 = 𝑦 → (sin‘(𝑤 / 2)) = (sin‘(𝑦 / 2)))
87oveq2d 7406 . . . . . . 7 (𝑤 = 𝑦 → ((2 · π) · (sin‘(𝑤 / 2))) = ((2 · π) · (sin‘(𝑦 / 2))))
95, 8oveq12d 7408 . . . . . 6 (𝑤 = 𝑦 → ((sin‘((𝑘 + (1 / 2)) · 𝑤)) / ((2 · π) · (sin‘(𝑤 / 2)))) = ((sin‘((𝑘 + (1 / 2)) · 𝑦)) / ((2 · π) · (sin‘(𝑦 / 2)))))
103, 9ifbieq2d 4518 . . . . 5 (𝑤 = 𝑦 → if((𝑤 mod (2 · π)) = 0, (((2 · 𝑘) + 1) / (2 · π)), ((sin‘((𝑘 + (1 / 2)) · 𝑤)) / ((2 · π) · (sin‘(𝑤 / 2))))) = if((𝑦 mod (2 · π)) = 0, (((2 · 𝑘) + 1) / (2 · π)), ((sin‘((𝑘 + (1 / 2)) · 𝑦)) / ((2 · π) · (sin‘(𝑦 / 2))))))
1110cbvmptv 5214 . . . 4 (𝑤 ∈ ℝ ↦ if((𝑤 mod (2 · π)) = 0, (((2 · 𝑘) + 1) / (2 · π)), ((sin‘((𝑘 + (1 / 2)) · 𝑤)) / ((2 · π) · (sin‘(𝑤 / 2)))))) = (𝑦 ∈ ℝ ↦ if((𝑦 mod (2 · π)) = 0, (((2 · 𝑘) + 1) / (2 · π)), ((sin‘((𝑘 + (1 / 2)) · 𝑦)) / ((2 · π) · (sin‘(𝑦 / 2))))))
12 oveq2 7398 . . . . . . . 8 (𝑘 = 𝑚 → (2 · 𝑘) = (2 · 𝑚))
1312oveq1d 7405 . . . . . . 7 (𝑘 = 𝑚 → ((2 · 𝑘) + 1) = ((2 · 𝑚) + 1))
1413oveq1d 7405 . . . . . 6 (𝑘 = 𝑚 → (((2 · 𝑘) + 1) / (2 · π)) = (((2 · 𝑚) + 1) / (2 · π)))
15 oveq1 7397 . . . . . . . . 9 (𝑘 = 𝑚 → (𝑘 + (1 / 2)) = (𝑚 + (1 / 2)))
1615oveq1d 7405 . . . . . . . 8 (𝑘 = 𝑚 → ((𝑘 + (1 / 2)) · 𝑦) = ((𝑚 + (1 / 2)) · 𝑦))
1716fveq2d 6865 . . . . . . 7 (𝑘 = 𝑚 → (sin‘((𝑘 + (1 / 2)) · 𝑦)) = (sin‘((𝑚 + (1 / 2)) · 𝑦)))
1817oveq1d 7405 . . . . . 6 (𝑘 = 𝑚 → ((sin‘((𝑘 + (1 / 2)) · 𝑦)) / ((2 · π) · (sin‘(𝑦 / 2)))) = ((sin‘((𝑚 + (1 / 2)) · 𝑦)) / ((2 · π) · (sin‘(𝑦 / 2)))))
1914, 18ifeq12d 4513 . . . . 5 (𝑘 = 𝑚 → if((𝑦 mod (2 · π)) = 0, (((2 · 𝑘) + 1) / (2 · π)), ((sin‘((𝑘 + (1 / 2)) · 𝑦)) / ((2 · π) · (sin‘(𝑦 / 2))))) = if((𝑦 mod (2 · π)) = 0, (((2 · 𝑚) + 1) / (2 · π)), ((sin‘((𝑚 + (1 / 2)) · 𝑦)) / ((2 · π) · (sin‘(𝑦 / 2))))))
2019mpteq2dv 5204 . . . 4 (𝑘 = 𝑚 → (𝑦 ∈ ℝ ↦ if((𝑦 mod (2 · π)) = 0, (((2 · 𝑘) + 1) / (2 · π)), ((sin‘((𝑘 + (1 / 2)) · 𝑦)) / ((2 · π) · (sin‘(𝑦 / 2)))))) = (𝑦 ∈ ℝ ↦ if((𝑦 mod (2 · π)) = 0, (((2 · 𝑚) + 1) / (2 · π)), ((sin‘((𝑚 + (1 / 2)) · 𝑦)) / ((2 · π) · (sin‘(𝑦 / 2)))))))
2111, 20eqtrid 2777 . . 3 (𝑘 = 𝑚 → (𝑤 ∈ ℝ ↦ if((𝑤 mod (2 · π)) = 0, (((2 · 𝑘) + 1) / (2 · π)), ((sin‘((𝑘 + (1 / 2)) · 𝑤)) / ((2 · π) · (sin‘(𝑤 / 2)))))) = (𝑦 ∈ ℝ ↦ if((𝑦 mod (2 · π)) = 0, (((2 · 𝑚) + 1) / (2 · π)), ((sin‘((𝑚 + (1 / 2)) · 𝑦)) / ((2 · π) · (sin‘(𝑦 / 2)))))))
2221cbvmptv 5214 . 2 (𝑘 ∈ ℕ ↦ (𝑤 ∈ ℝ ↦ if((𝑤 mod (2 · π)) = 0, (((2 · 𝑘) + 1) / (2 · π)), ((sin‘((𝑘 + (1 / 2)) · 𝑤)) / ((2 · π) · (sin‘(𝑤 / 2))))))) = (𝑚 ∈ ℕ ↦ (𝑦 ∈ ℝ ↦ if((𝑦 mod (2 · π)) = 0, (((2 · 𝑚) + 1) / (2 · π)), ((sin‘((𝑚 + (1 / 2)) · 𝑦)) / ((2 · π) · (sin‘(𝑦 / 2)))))))
23 fourierdlem113.p . 2 𝑃 = (𝑛 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑m (0...𝑛)) ∣ (((𝑝‘0) = -π ∧ (𝑝𝑛) = π) ∧ ∀𝑖 ∈ (0..^𝑛)(𝑝𝑖) < (𝑝‘(𝑖 + 1)))})
24 fourierdlem113.m . 2 (𝜑𝑀 ∈ ℕ)
25 fourierdlem113.q . 2 (𝜑𝑄 ∈ (𝑃𝑀))
26 oveq1 7397 . . . . . . . 8 (𝑤 = 𝑦 → (𝑤 + (𝑗 · 𝑇)) = (𝑦 + (𝑗 · 𝑇)))
2726eleq1d 2814 . . . . . . 7 (𝑤 = 𝑦 → ((𝑤 + (𝑗 · 𝑇)) ∈ ran 𝑄 ↔ (𝑦 + (𝑗 · 𝑇)) ∈ ran 𝑄))
2827rexbidv 3158 . . . . . 6 (𝑤 = 𝑦 → (∃𝑗 ∈ ℤ (𝑤 + (𝑗 · 𝑇)) ∈ ran 𝑄 ↔ ∃𝑗 ∈ ℤ (𝑦 + (𝑗 · 𝑇)) ∈ ran 𝑄))
2928cbvrabv 3419 . . . . 5 {𝑤 ∈ ((-π + 𝑋)[,](π + 𝑋)) ∣ ∃𝑗 ∈ ℤ (𝑤 + (𝑗 · 𝑇)) ∈ ran 𝑄} = {𝑦 ∈ ((-π + 𝑋)[,](π + 𝑋)) ∣ ∃𝑗 ∈ ℤ (𝑦 + (𝑗 · 𝑇)) ∈ ran 𝑄}
3029uneq2i 4131 . . . 4 ({(-π + 𝑋), (π + 𝑋)} ∪ {𝑤 ∈ ((-π + 𝑋)[,](π + 𝑋)) ∣ ∃𝑗 ∈ ℤ (𝑤 + (𝑗 · 𝑇)) ∈ ran 𝑄}) = ({(-π + 𝑋), (π + 𝑋)} ∪ {𝑦 ∈ ((-π + 𝑋)[,](π + 𝑋)) ∣ ∃𝑗 ∈ ℤ (𝑦 + (𝑗 · 𝑇)) ∈ ran 𝑄})
3130fveq2i 6864 . . 3 (♯‘({(-π + 𝑋), (π + 𝑋)} ∪ {𝑤 ∈ ((-π + 𝑋)[,](π + 𝑋)) ∣ ∃𝑗 ∈ ℤ (𝑤 + (𝑗 · 𝑇)) ∈ ran 𝑄})) = (♯‘({(-π + 𝑋), (π + 𝑋)} ∪ {𝑦 ∈ ((-π + 𝑋)[,](π + 𝑋)) ∣ ∃𝑗 ∈ ℤ (𝑦 + (𝑗 · 𝑇)) ∈ ran 𝑄}))
3231oveq1i 7400 . 2 ((♯‘({(-π + 𝑋), (π + 𝑋)} ∪ {𝑤 ∈ ((-π + 𝑋)[,](π + 𝑋)) ∣ ∃𝑗 ∈ ℤ (𝑤 + (𝑗 · 𝑇)) ∈ ran 𝑄})) − 1) = ((♯‘({(-π + 𝑋), (π + 𝑋)} ∪ {𝑦 ∈ ((-π + 𝑋)[,](π + 𝑋)) ∣ ∃𝑗 ∈ ℤ (𝑦 + (𝑗 · 𝑇)) ∈ ran 𝑄})) − 1)
33 oveq1 7397 . . . . . . . . . . . 12 (𝑘 = 𝑗 → (𝑘 · 𝑇) = (𝑗 · 𝑇))
3433oveq2d 7406 . . . . . . . . . . 11 (𝑘 = 𝑗 → (𝑦 + (𝑘 · 𝑇)) = (𝑦 + (𝑗 · 𝑇)))
3534eleq1d 2814 . . . . . . . . . 10 (𝑘 = 𝑗 → ((𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄 ↔ (𝑦 + (𝑗 · 𝑇)) ∈ ran 𝑄))
3635cbvrexvw 3217 . . . . . . . . 9 (∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄 ↔ ∃𝑗 ∈ ℤ (𝑦 + (𝑗 · 𝑇)) ∈ ran 𝑄)
3736a1i 11 . . . . . . . 8 (𝑦 ∈ ((-π + 𝑋)[,](π + 𝑋)) → (∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄 ↔ ∃𝑗 ∈ ℤ (𝑦 + (𝑗 · 𝑇)) ∈ ran 𝑄))
3837rabbiia 3412 . . . . . . 7 {𝑦 ∈ ((-π + 𝑋)[,](π + 𝑋)) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄} = {𝑦 ∈ ((-π + 𝑋)[,](π + 𝑋)) ∣ ∃𝑗 ∈ ℤ (𝑦 + (𝑗 · 𝑇)) ∈ ran 𝑄}
3938uneq2i 4131 . . . . . 6 ({(-π + 𝑋), (π + 𝑋)} ∪ {𝑦 ∈ ((-π + 𝑋)[,](π + 𝑋)) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄}) = ({(-π + 𝑋), (π + 𝑋)} ∪ {𝑦 ∈ ((-π + 𝑋)[,](π + 𝑋)) ∣ ∃𝑗 ∈ ℤ (𝑦 + (𝑗 · 𝑇)) ∈ ran 𝑄})
40 isoeq5 7299 . . . . . 6 (({(-π + 𝑋), (π + 𝑋)} ∪ {𝑦 ∈ ((-π + 𝑋)[,](π + 𝑋)) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄}) = ({(-π + 𝑋), (π + 𝑋)} ∪ {𝑦 ∈ ((-π + 𝑋)[,](π + 𝑋)) ∣ ∃𝑗 ∈ ℤ (𝑦 + (𝑗 · 𝑇)) ∈ ran 𝑄}) → (𝑔 Isom < , < ((0...((♯‘({(-π + 𝑋), (π + 𝑋)} ∪ {𝑤 ∈ ((-π + 𝑋)[,](π + 𝑋)) ∣ ∃𝑘 ∈ ℤ (𝑤 + (𝑘 · 𝑇)) ∈ ran 𝑄})) − 1)), ({(-π + 𝑋), (π + 𝑋)} ∪ {𝑦 ∈ ((-π + 𝑋)[,](π + 𝑋)) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄})) ↔ 𝑔 Isom < , < ((0...((♯‘({(-π + 𝑋), (π + 𝑋)} ∪ {𝑤 ∈ ((-π + 𝑋)[,](π + 𝑋)) ∣ ∃𝑘 ∈ ℤ (𝑤 + (𝑘 · 𝑇)) ∈ ran 𝑄})) − 1)), ({(-π + 𝑋), (π + 𝑋)} ∪ {𝑦 ∈ ((-π + 𝑋)[,](π + 𝑋)) ∣ ∃𝑗 ∈ ℤ (𝑦 + (𝑗 · 𝑇)) ∈ ran 𝑄}))))
4139, 40ax-mp 5 . . . . 5 (𝑔 Isom < , < ((0...((♯‘({(-π + 𝑋), (π + 𝑋)} ∪ {𝑤 ∈ ((-π + 𝑋)[,](π + 𝑋)) ∣ ∃𝑘 ∈ ℤ (𝑤 + (𝑘 · 𝑇)) ∈ ran 𝑄})) − 1)), ({(-π + 𝑋), (π + 𝑋)} ∪ {𝑦 ∈ ((-π + 𝑋)[,](π + 𝑋)) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄})) ↔ 𝑔 Isom < , < ((0...((♯‘({(-π + 𝑋), (π + 𝑋)} ∪ {𝑤 ∈ ((-π + 𝑋)[,](π + 𝑋)) ∣ ∃𝑘 ∈ ℤ (𝑤 + (𝑘 · 𝑇)) ∈ ran 𝑄})) − 1)), ({(-π + 𝑋), (π + 𝑋)} ∪ {𝑦 ∈ ((-π + 𝑋)[,](π + 𝑋)) ∣ ∃𝑗 ∈ ℤ (𝑦 + (𝑗 · 𝑇)) ∈ ran 𝑄})))
4241a1i 11 . . . 4 (𝑔 = 𝑓 → (𝑔 Isom < , < ((0...((♯‘({(-π + 𝑋), (π + 𝑋)} ∪ {𝑤 ∈ ((-π + 𝑋)[,](π + 𝑋)) ∣ ∃𝑘 ∈ ℤ (𝑤 + (𝑘 · 𝑇)) ∈ ran 𝑄})) − 1)), ({(-π + 𝑋), (π + 𝑋)} ∪ {𝑦 ∈ ((-π + 𝑋)[,](π + 𝑋)) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄})) ↔ 𝑔 Isom < , < ((0...((♯‘({(-π + 𝑋), (π + 𝑋)} ∪ {𝑤 ∈ ((-π + 𝑋)[,](π + 𝑋)) ∣ ∃𝑘 ∈ ℤ (𝑤 + (𝑘 · 𝑇)) ∈ ran 𝑄})) − 1)), ({(-π + 𝑋), (π + 𝑋)} ∪ {𝑦 ∈ ((-π + 𝑋)[,](π + 𝑋)) ∣ ∃𝑗 ∈ ℤ (𝑦 + (𝑗 · 𝑇)) ∈ ran 𝑄}))))
4333oveq2d 7406 . . . . . . . . . . . . . 14 (𝑘 = 𝑗 → (𝑤 + (𝑘 · 𝑇)) = (𝑤 + (𝑗 · 𝑇)))
4443eleq1d 2814 . . . . . . . . . . . . 13 (𝑘 = 𝑗 → ((𝑤 + (𝑘 · 𝑇)) ∈ ran 𝑄 ↔ (𝑤 + (𝑗 · 𝑇)) ∈ ran 𝑄))
4544cbvrexvw 3217 . . . . . . . . . . . 12 (∃𝑘 ∈ ℤ (𝑤 + (𝑘 · 𝑇)) ∈ ran 𝑄 ↔ ∃𝑗 ∈ ℤ (𝑤 + (𝑗 · 𝑇)) ∈ ran 𝑄)
4645a1i 11 . . . . . . . . . . 11 (𝑤 ∈ ((-π + 𝑋)[,](π + 𝑋)) → (∃𝑘 ∈ ℤ (𝑤 + (𝑘 · 𝑇)) ∈ ran 𝑄 ↔ ∃𝑗 ∈ ℤ (𝑤 + (𝑗 · 𝑇)) ∈ ran 𝑄))
4746rabbiia 3412 . . . . . . . . . 10 {𝑤 ∈ ((-π + 𝑋)[,](π + 𝑋)) ∣ ∃𝑘 ∈ ℤ (𝑤 + (𝑘 · 𝑇)) ∈ ran 𝑄} = {𝑤 ∈ ((-π + 𝑋)[,](π + 𝑋)) ∣ ∃𝑗 ∈ ℤ (𝑤 + (𝑗 · 𝑇)) ∈ ran 𝑄}
4847uneq2i 4131 . . . . . . . . 9 ({(-π + 𝑋), (π + 𝑋)} ∪ {𝑤 ∈ ((-π + 𝑋)[,](π + 𝑋)) ∣ ∃𝑘 ∈ ℤ (𝑤 + (𝑘 · 𝑇)) ∈ ran 𝑄}) = ({(-π + 𝑋), (π + 𝑋)} ∪ {𝑤 ∈ ((-π + 𝑋)[,](π + 𝑋)) ∣ ∃𝑗 ∈ ℤ (𝑤 + (𝑗 · 𝑇)) ∈ ran 𝑄})
4948fveq2i 6864 . . . . . . . 8 (♯‘({(-π + 𝑋), (π + 𝑋)} ∪ {𝑤 ∈ ((-π + 𝑋)[,](π + 𝑋)) ∣ ∃𝑘 ∈ ℤ (𝑤 + (𝑘 · 𝑇)) ∈ ran 𝑄})) = (♯‘({(-π + 𝑋), (π + 𝑋)} ∪ {𝑤 ∈ ((-π + 𝑋)[,](π + 𝑋)) ∣ ∃𝑗 ∈ ℤ (𝑤 + (𝑗 · 𝑇)) ∈ ran 𝑄}))
5049oveq1i 7400 . . . . . . 7 ((♯‘({(-π + 𝑋), (π + 𝑋)} ∪ {𝑤 ∈ ((-π + 𝑋)[,](π + 𝑋)) ∣ ∃𝑘 ∈ ℤ (𝑤 + (𝑘 · 𝑇)) ∈ ran 𝑄})) − 1) = ((♯‘({(-π + 𝑋), (π + 𝑋)} ∪ {𝑤 ∈ ((-π + 𝑋)[,](π + 𝑋)) ∣ ∃𝑗 ∈ ℤ (𝑤 + (𝑗 · 𝑇)) ∈ ran 𝑄})) − 1)
5150oveq2i 7401 . . . . . 6 (0...((♯‘({(-π + 𝑋), (π + 𝑋)} ∪ {𝑤 ∈ ((-π + 𝑋)[,](π + 𝑋)) ∣ ∃𝑘 ∈ ℤ (𝑤 + (𝑘 · 𝑇)) ∈ ran 𝑄})) − 1)) = (0...((♯‘({(-π + 𝑋), (π + 𝑋)} ∪ {𝑤 ∈ ((-π + 𝑋)[,](π + 𝑋)) ∣ ∃𝑗 ∈ ℤ (𝑤 + (𝑗 · 𝑇)) ∈ ran 𝑄})) − 1))
52 isoeq4 7298 . . . . . 6 ((0...((♯‘({(-π + 𝑋), (π + 𝑋)} ∪ {𝑤 ∈ ((-π + 𝑋)[,](π + 𝑋)) ∣ ∃𝑘 ∈ ℤ (𝑤 + (𝑘 · 𝑇)) ∈ ran 𝑄})) − 1)) = (0...((♯‘({(-π + 𝑋), (π + 𝑋)} ∪ {𝑤 ∈ ((-π + 𝑋)[,](π + 𝑋)) ∣ ∃𝑗 ∈ ℤ (𝑤 + (𝑗 · 𝑇)) ∈ ran 𝑄})) − 1)) → (𝑔 Isom < , < ((0...((♯‘({(-π + 𝑋), (π + 𝑋)} ∪ {𝑤 ∈ ((-π + 𝑋)[,](π + 𝑋)) ∣ ∃𝑘 ∈ ℤ (𝑤 + (𝑘 · 𝑇)) ∈ ran 𝑄})) − 1)), ({(-π + 𝑋), (π + 𝑋)} ∪ {𝑦 ∈ ((-π + 𝑋)[,](π + 𝑋)) ∣ ∃𝑗 ∈ ℤ (𝑦 + (𝑗 · 𝑇)) ∈ ran 𝑄})) ↔ 𝑔 Isom < , < ((0...((♯‘({(-π + 𝑋), (π + 𝑋)} ∪ {𝑤 ∈ ((-π + 𝑋)[,](π + 𝑋)) ∣ ∃𝑗 ∈ ℤ (𝑤 + (𝑗 · 𝑇)) ∈ ran 𝑄})) − 1)), ({(-π + 𝑋), (π + 𝑋)} ∪ {𝑦 ∈ ((-π + 𝑋)[,](π + 𝑋)) ∣ ∃𝑗 ∈ ℤ (𝑦 + (𝑗 · 𝑇)) ∈ ran 𝑄}))))
5351, 52ax-mp 5 . . . . 5 (𝑔 Isom < , < ((0...((♯‘({(-π + 𝑋), (π + 𝑋)} ∪ {𝑤 ∈ ((-π + 𝑋)[,](π + 𝑋)) ∣ ∃𝑘 ∈ ℤ (𝑤 + (𝑘 · 𝑇)) ∈ ran 𝑄})) − 1)), ({(-π + 𝑋), (π + 𝑋)} ∪ {𝑦 ∈ ((-π + 𝑋)[,](π + 𝑋)) ∣ ∃𝑗 ∈ ℤ (𝑦 + (𝑗 · 𝑇)) ∈ ran 𝑄})) ↔ 𝑔 Isom < , < ((0...((♯‘({(-π + 𝑋), (π + 𝑋)} ∪ {𝑤 ∈ ((-π + 𝑋)[,](π + 𝑋)) ∣ ∃𝑗 ∈ ℤ (𝑤 + (𝑗 · 𝑇)) ∈ ran 𝑄})) − 1)), ({(-π + 𝑋), (π + 𝑋)} ∪ {𝑦 ∈ ((-π + 𝑋)[,](π + 𝑋)) ∣ ∃𝑗 ∈ ℤ (𝑦 + (𝑗 · 𝑇)) ∈ ran 𝑄})))
5453a1i 11 . . . 4 (𝑔 = 𝑓 → (𝑔 Isom < , < ((0...((♯‘({(-π + 𝑋), (π + 𝑋)} ∪ {𝑤 ∈ ((-π + 𝑋)[,](π + 𝑋)) ∣ ∃𝑘 ∈ ℤ (𝑤 + (𝑘 · 𝑇)) ∈ ran 𝑄})) − 1)), ({(-π + 𝑋), (π + 𝑋)} ∪ {𝑦 ∈ ((-π + 𝑋)[,](π + 𝑋)) ∣ ∃𝑗 ∈ ℤ (𝑦 + (𝑗 · 𝑇)) ∈ ran 𝑄})) ↔ 𝑔 Isom < , < ((0...((♯‘({(-π + 𝑋), (π + 𝑋)} ∪ {𝑤 ∈ ((-π + 𝑋)[,](π + 𝑋)) ∣ ∃𝑗 ∈ ℤ (𝑤 + (𝑗 · 𝑇)) ∈ ran 𝑄})) − 1)), ({(-π + 𝑋), (π + 𝑋)} ∪ {𝑦 ∈ ((-π + 𝑋)[,](π + 𝑋)) ∣ ∃𝑗 ∈ ℤ (𝑦 + (𝑗 · 𝑇)) ∈ ran 𝑄}))))
55 isoeq1 7295 . . . 4 (𝑔 = 𝑓 → (𝑔 Isom < , < ((0...((♯‘({(-π + 𝑋), (π + 𝑋)} ∪ {𝑤 ∈ ((-π + 𝑋)[,](π + 𝑋)) ∣ ∃𝑗 ∈ ℤ (𝑤 + (𝑗 · 𝑇)) ∈ ran 𝑄})) − 1)), ({(-π + 𝑋), (π + 𝑋)} ∪ {𝑦 ∈ ((-π + 𝑋)[,](π + 𝑋)) ∣ ∃𝑗 ∈ ℤ (𝑦 + (𝑗 · 𝑇)) ∈ ran 𝑄})) ↔ 𝑓 Isom < , < ((0...((♯‘({(-π + 𝑋), (π + 𝑋)} ∪ {𝑤 ∈ ((-π + 𝑋)[,](π + 𝑋)) ∣ ∃𝑗 ∈ ℤ (𝑤 + (𝑗 · 𝑇)) ∈ ran 𝑄})) − 1)), ({(-π + 𝑋), (π + 𝑋)} ∪ {𝑦 ∈ ((-π + 𝑋)[,](π + 𝑋)) ∣ ∃𝑗 ∈ ℤ (𝑦 + (𝑗 · 𝑇)) ∈ ran 𝑄}))))
5642, 54, 553bitrd 305 . . 3 (𝑔 = 𝑓 → (𝑔 Isom < , < ((0...((♯‘({(-π + 𝑋), (π + 𝑋)} ∪ {𝑤 ∈ ((-π + 𝑋)[,](π + 𝑋)) ∣ ∃𝑘 ∈ ℤ (𝑤 + (𝑘 · 𝑇)) ∈ ran 𝑄})) − 1)), ({(-π + 𝑋), (π + 𝑋)} ∪ {𝑦 ∈ ((-π + 𝑋)[,](π + 𝑋)) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄})) ↔ 𝑓 Isom < , < ((0...((♯‘({(-π + 𝑋), (π + 𝑋)} ∪ {𝑤 ∈ ((-π + 𝑋)[,](π + 𝑋)) ∣ ∃𝑗 ∈ ℤ (𝑤 + (𝑗 · 𝑇)) ∈ ran 𝑄})) − 1)), ({(-π + 𝑋), (π + 𝑋)} ∪ {𝑦 ∈ ((-π + 𝑋)[,](π + 𝑋)) ∣ ∃𝑗 ∈ ℤ (𝑦 + (𝑗 · 𝑇)) ∈ ran 𝑄}))))
5756cbviotavw 6475 . 2 (℩𝑔𝑔 Isom < , < ((0...((♯‘({(-π + 𝑋), (π + 𝑋)} ∪ {𝑤 ∈ ((-π + 𝑋)[,](π + 𝑋)) ∣ ∃𝑘 ∈ ℤ (𝑤 + (𝑘 · 𝑇)) ∈ ran 𝑄})) − 1)), ({(-π + 𝑋), (π + 𝑋)} ∪ {𝑦 ∈ ((-π + 𝑋)[,](π + 𝑋)) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄}))) = (℩𝑓𝑓 Isom < , < ((0...((♯‘({(-π + 𝑋), (π + 𝑋)} ∪ {𝑤 ∈ ((-π + 𝑋)[,](π + 𝑋)) ∣ ∃𝑗 ∈ ℤ (𝑤 + (𝑗 · 𝑇)) ∈ ran 𝑄})) − 1)), ({(-π + 𝑋), (π + 𝑋)} ∪ {𝑦 ∈ ((-π + 𝑋)[,](π + 𝑋)) ∣ ∃𝑗 ∈ ℤ (𝑦 + (𝑗 · 𝑇)) ∈ ran 𝑄})))
58 fourierdlem113.x . 2 (𝜑𝑋 ∈ ℝ)
59 pire 26373 . . . . 5 π ∈ ℝ
6059renegcli 11490 . . . 4 -π ∈ ℝ
6160a1i 11 . . 3 (𝜑 → -π ∈ ℝ)
6259a1i 11 . . 3 (𝜑 → π ∈ ℝ)
63 negpilt0 45286 . . . 4 -π < 0
6463a1i 11 . . 3 (𝜑 → -π < 0)
65 pipos 26375 . . . 4 0 < π
6665a1i 11 . . 3 (𝜑 → 0 < π)
67 picn 26374 . . . . 5 π ∈ ℂ
68672timesi 12326 . . . 4 (2 · π) = (π + π)
69 fourierdlem113.t . . . 4 𝑇 = (2 · π)
7067, 67subnegi 11508 . . . 4 (π − -π) = (π + π)
7168, 69, 703eqtr4i 2763 . . 3 𝑇 = (π − -π)
7223fourierdlem2 46114 . . . . . . . 8 (𝑀 ∈ ℕ → (𝑄 ∈ (𝑃𝑀) ↔ (𝑄 ∈ (ℝ ↑m (0...𝑀)) ∧ (((𝑄‘0) = -π ∧ (𝑄𝑀) = π) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑄𝑖) < (𝑄‘(𝑖 + 1))))))
7324, 72syl 17 . . . . . . 7 (𝜑 → (𝑄 ∈ (𝑃𝑀) ↔ (𝑄 ∈ (ℝ ↑m (0...𝑀)) ∧ (((𝑄‘0) = -π ∧ (𝑄𝑀) = π) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑄𝑖) < (𝑄‘(𝑖 + 1))))))
7425, 73mpbid 232 . . . . . 6 (𝜑 → (𝑄 ∈ (ℝ ↑m (0...𝑀)) ∧ (((𝑄‘0) = -π ∧ (𝑄𝑀) = π) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑄𝑖) < (𝑄‘(𝑖 + 1)))))
7574simpld 494 . . . . 5 (𝜑𝑄 ∈ (ℝ ↑m (0...𝑀)))
76 elmapi 8825 . . . . 5 (𝑄 ∈ (ℝ ↑m (0...𝑀)) → 𝑄:(0...𝑀)⟶ℝ)
7775, 76syl 17 . . . 4 (𝜑𝑄:(0...𝑀)⟶ℝ)
78 fzfid 13945 . . . 4 (𝜑 → (0...𝑀) ∈ Fin)
79 rnffi 45176 . . . 4 ((𝑄:(0...𝑀)⟶ℝ ∧ (0...𝑀) ∈ Fin) → ran 𝑄 ∈ Fin)
8077, 78, 79syl2anc 584 . . 3 (𝜑 → ran 𝑄 ∈ Fin)
8123, 24, 25fourierdlem15 46127 . . . 4 (𝜑𝑄:(0...𝑀)⟶(-π[,]π))
82 frn 6698 . . . 4 (𝑄:(0...𝑀)⟶(-π[,]π) → ran 𝑄 ⊆ (-π[,]π))
8381, 82syl 17 . . 3 (𝜑 → ran 𝑄 ⊆ (-π[,]π))
8474simprd 495 . . . . 5 (𝜑 → (((𝑄‘0) = -π ∧ (𝑄𝑀) = π) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑄𝑖) < (𝑄‘(𝑖 + 1))))
8584simplrd 769 . . . 4 (𝜑 → (𝑄𝑀) = π)
86 ffun 6694 . . . . . 6 (𝑄:(0...𝑀)⟶(-π[,]π) → Fun 𝑄)
8781, 86syl 17 . . . . 5 (𝜑 → Fun 𝑄)
8824nnnn0d 12510 . . . . . . . 8 (𝜑𝑀 ∈ ℕ0)
89 nn0uz 12842 . . . . . . . 8 0 = (ℤ‘0)
9088, 89eleqtrdi 2839 . . . . . . 7 (𝜑𝑀 ∈ (ℤ‘0))
91 eluzfz2 13500 . . . . . . 7 (𝑀 ∈ (ℤ‘0) → 𝑀 ∈ (0...𝑀))
9290, 91syl 17 . . . . . 6 (𝜑𝑀 ∈ (0...𝑀))
93 fdm 6700 . . . . . . . 8 (𝑄:(0...𝑀)⟶(-π[,]π) → dom 𝑄 = (0...𝑀))
9481, 93syl 17 . . . . . . 7 (𝜑 → dom 𝑄 = (0...𝑀))
9594eqcomd 2736 . . . . . 6 (𝜑 → (0...𝑀) = dom 𝑄)
9692, 95eleqtrd 2831 . . . . 5 (𝜑𝑀 ∈ dom 𝑄)
97 fvelrn 7051 . . . . 5 ((Fun 𝑄𝑀 ∈ dom 𝑄) → (𝑄𝑀) ∈ ran 𝑄)
9887, 96, 97syl2anc 584 . . . 4 (𝜑 → (𝑄𝑀) ∈ ran 𝑄)
9985, 98eqeltrrd 2830 . . 3 (𝜑 → π ∈ ran 𝑄)
100 fourierdlem113.e . . 3 𝐸 = (𝑥 ∈ ℝ ↦ (𝑥 + ((⌊‘((π − 𝑥) / 𝑇)) · 𝑇)))
101 fourierdlem113.exq . . 3 (𝜑 → (𝐸𝑋) ∈ ran 𝑄)
102 eqid 2730 . . 3 ({(-π + 𝑋), (π + 𝑋)} ∪ {𝑤 ∈ ((-π + 𝑋)[,](π + 𝑋)) ∣ ∃𝑘 ∈ ℤ (𝑤 + (𝑘 · 𝑇)) ∈ ran 𝑄}) = ({(-π + 𝑋), (π + 𝑋)} ∪ {𝑤 ∈ ((-π + 𝑋)[,](π + 𝑋)) ∣ ∃𝑘 ∈ ℤ (𝑤 + (𝑘 · 𝑇)) ∈ ran 𝑄})
103 isoeq1 7295 . . . . 5 (𝑔 = 𝑓 → (𝑔 Isom < , < ((0...((♯‘({(-π + 𝑋), (π + 𝑋)} ∪ {𝑤 ∈ ((-π + 𝑋)[,](π + 𝑋)) ∣ ∃𝑘 ∈ ℤ (𝑤 + (𝑘 · 𝑇)) ∈ ran 𝑄})) − 1)), ({(-π + 𝑋), (π + 𝑋)} ∪ {𝑦 ∈ ((-π + 𝑋)[,](π + 𝑋)) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄})) ↔ 𝑓 Isom < , < ((0...((♯‘({(-π + 𝑋), (π + 𝑋)} ∪ {𝑤 ∈ ((-π + 𝑋)[,](π + 𝑋)) ∣ ∃𝑘 ∈ ℤ (𝑤 + (𝑘 · 𝑇)) ∈ ran 𝑄})) − 1)), ({(-π + 𝑋), (π + 𝑋)} ∪ {𝑦 ∈ ((-π + 𝑋)[,](π + 𝑋)) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄}))))
10430, 48, 393eqtr4ri 2764 . . . . . 6 ({(-π + 𝑋), (π + 𝑋)} ∪ {𝑦 ∈ ((-π + 𝑋)[,](π + 𝑋)) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄}) = ({(-π + 𝑋), (π + 𝑋)} ∪ {𝑤 ∈ ((-π + 𝑋)[,](π + 𝑋)) ∣ ∃𝑘 ∈ ℤ (𝑤 + (𝑘 · 𝑇)) ∈ ran 𝑄})
105 isoeq5 7299 . . . . . 6 (({(-π + 𝑋), (π + 𝑋)} ∪ {𝑦 ∈ ((-π + 𝑋)[,](π + 𝑋)) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄}) = ({(-π + 𝑋), (π + 𝑋)} ∪ {𝑤 ∈ ((-π + 𝑋)[,](π + 𝑋)) ∣ ∃𝑘 ∈ ℤ (𝑤 + (𝑘 · 𝑇)) ∈ ran 𝑄}) → (𝑓 Isom < , < ((0...((♯‘({(-π + 𝑋), (π + 𝑋)} ∪ {𝑤 ∈ ((-π + 𝑋)[,](π + 𝑋)) ∣ ∃𝑘 ∈ ℤ (𝑤 + (𝑘 · 𝑇)) ∈ ran 𝑄})) − 1)), ({(-π + 𝑋), (π + 𝑋)} ∪ {𝑦 ∈ ((-π + 𝑋)[,](π + 𝑋)) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄})) ↔ 𝑓 Isom < , < ((0...((♯‘({(-π + 𝑋), (π + 𝑋)} ∪ {𝑤 ∈ ((-π + 𝑋)[,](π + 𝑋)) ∣ ∃𝑘 ∈ ℤ (𝑤 + (𝑘 · 𝑇)) ∈ ran 𝑄})) − 1)), ({(-π + 𝑋), (π + 𝑋)} ∪ {𝑤 ∈ ((-π + 𝑋)[,](π + 𝑋)) ∣ ∃𝑘 ∈ ℤ (𝑤 + (𝑘 · 𝑇)) ∈ ran 𝑄}))))
106104, 105ax-mp 5 . . . . 5 (𝑓 Isom < , < ((0...((♯‘({(-π + 𝑋), (π + 𝑋)} ∪ {𝑤 ∈ ((-π + 𝑋)[,](π + 𝑋)) ∣ ∃𝑘 ∈ ℤ (𝑤 + (𝑘 · 𝑇)) ∈ ran 𝑄})) − 1)), ({(-π + 𝑋), (π + 𝑋)} ∪ {𝑦 ∈ ((-π + 𝑋)[,](π + 𝑋)) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄})) ↔ 𝑓 Isom < , < ((0...((♯‘({(-π + 𝑋), (π + 𝑋)} ∪ {𝑤 ∈ ((-π + 𝑋)[,](π + 𝑋)) ∣ ∃𝑘 ∈ ℤ (𝑤 + (𝑘 · 𝑇)) ∈ ran 𝑄})) − 1)), ({(-π + 𝑋), (π + 𝑋)} ∪ {𝑤 ∈ ((-π + 𝑋)[,](π + 𝑋)) ∣ ∃𝑘 ∈ ℤ (𝑤 + (𝑘 · 𝑇)) ∈ ran 𝑄})))
107103, 106bitrdi 287 . . . 4 (𝑔 = 𝑓 → (𝑔 Isom < , < ((0...((♯‘({(-π + 𝑋), (π + 𝑋)} ∪ {𝑤 ∈ ((-π + 𝑋)[,](π + 𝑋)) ∣ ∃𝑘 ∈ ℤ (𝑤 + (𝑘 · 𝑇)) ∈ ran 𝑄})) − 1)), ({(-π + 𝑋), (π + 𝑋)} ∪ {𝑦 ∈ ((-π + 𝑋)[,](π + 𝑋)) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄})) ↔ 𝑓 Isom < , < ((0...((♯‘({(-π + 𝑋), (π + 𝑋)} ∪ {𝑤 ∈ ((-π + 𝑋)[,](π + 𝑋)) ∣ ∃𝑘 ∈ ℤ (𝑤 + (𝑘 · 𝑇)) ∈ ran 𝑄})) − 1)), ({(-π + 𝑋), (π + 𝑋)} ∪ {𝑤 ∈ ((-π + 𝑋)[,](π + 𝑋)) ∣ ∃𝑘 ∈ ℤ (𝑤 + (𝑘 · 𝑇)) ∈ ran 𝑄}))))
108107cbviotavw 6475 . . 3 (℩𝑔𝑔 Isom < , < ((0...((♯‘({(-π + 𝑋), (π + 𝑋)} ∪ {𝑤 ∈ ((-π + 𝑋)[,](π + 𝑋)) ∣ ∃𝑘 ∈ ℤ (𝑤 + (𝑘 · 𝑇)) ∈ ran 𝑄})) − 1)), ({(-π + 𝑋), (π + 𝑋)} ∪ {𝑦 ∈ ((-π + 𝑋)[,](π + 𝑋)) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄}))) = (℩𝑓𝑓 Isom < , < ((0...((♯‘({(-π + 𝑋), (π + 𝑋)} ∪ {𝑤 ∈ ((-π + 𝑋)[,](π + 𝑋)) ∣ ∃𝑘 ∈ ℤ (𝑤 + (𝑘 · 𝑇)) ∈ ran 𝑄})) − 1)), ({(-π + 𝑋), (π + 𝑋)} ∪ {𝑤 ∈ ((-π + 𝑋)[,](π + 𝑋)) ∣ ∃𝑘 ∈ ℤ (𝑤 + (𝑘 · 𝑇)) ∈ ran 𝑄})))
109 eqid 2730 . . 3 {𝑤 ∈ ((-π + 𝑋)(,](π + 𝑋)) ∣ ∃𝑘 ∈ ℤ (𝑤 + (𝑘 · 𝑇)) ∈ ran 𝑄} = {𝑤 ∈ ((-π + 𝑋)(,](π + 𝑋)) ∣ ∃𝑘 ∈ ℤ (𝑤 + (𝑘 · 𝑇)) ∈ ran 𝑄}
11061, 62, 64, 66, 71, 80, 83, 99, 100, 58, 101, 102, 108, 109fourierdlem51 46162 . 2 (𝜑𝑋 ∈ ran (℩𝑔𝑔 Isom < , < ((0...((♯‘({(-π + 𝑋), (π + 𝑋)} ∪ {𝑤 ∈ ((-π + 𝑋)[,](π + 𝑋)) ∣ ∃𝑘 ∈ ℤ (𝑤 + (𝑘 · 𝑇)) ∈ ran 𝑄})) − 1)), ({(-π + 𝑋), (π + 𝑋)} ∪ {𝑦 ∈ ((-π + 𝑋)[,](π + 𝑋)) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄}))))
111 fourierdlem113.per . 2 ((𝜑𝑥 ∈ ℝ) → (𝐹‘(𝑥 + 𝑇)) = (𝐹𝑥))
112 ax-resscn 11132 . . . 4 ℝ ⊆ ℂ
113112a1i 11 . . 3 ((𝜑𝑖 ∈ (0..^𝑀)) → ℝ ⊆ ℂ)
114 ioossre 13375 . . . . . . 7 ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ⊆ ℝ
115114a1i 11 . . . . . 6 (𝜑 → ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ⊆ ℝ)
1161, 115fssresd 6730 . . . . 5 (𝜑 → (𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))):((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))⟶ℝ)
117112a1i 11 . . . . 5 (𝜑 → ℝ ⊆ ℂ)
118116, 117fssd 6708 . . . 4 (𝜑 → (𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))):((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))⟶ℂ)
119118adantr 480 . . 3 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))):((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))⟶ℂ)
120114a1i 11 . . 3 ((𝜑𝑖 ∈ (0..^𝑀)) → ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ⊆ ℝ)
1211, 117fssd 6708 . . . . . . 7 (𝜑𝐹:ℝ⟶ℂ)
122121adantr 480 . . . . . 6 ((𝜑𝑖 ∈ (0..^𝑀)) → 𝐹:ℝ⟶ℂ)
123 ssid 3972 . . . . . . 7 ℝ ⊆ ℝ
124123a1i 11 . . . . . 6 ((𝜑𝑖 ∈ (0..^𝑀)) → ℝ ⊆ ℝ)
125 eqid 2730 . . . . . . 7 (TopOpen‘ℂfld) = (TopOpen‘ℂfld)
126 tgioo4 24700 . . . . . . 7 (topGen‘ran (,)) = ((TopOpen‘ℂfld) ↾t ℝ)
127125, 126dvres 25819 . . . . . 6 (((ℝ ⊆ ℂ ∧ 𝐹:ℝ⟶ℂ) ∧ (ℝ ⊆ ℝ ∧ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ⊆ ℝ)) → (ℝ D (𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))) = ((ℝ D 𝐹) ↾ ((int‘(topGen‘ran (,)))‘((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))))
128113, 122, 124, 120, 127syl22anc 838 . . . . 5 ((𝜑𝑖 ∈ (0..^𝑀)) → (ℝ D (𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))) = ((ℝ D 𝐹) ↾ ((int‘(topGen‘ran (,)))‘((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))))
129128dmeqd 5872 . . . 4 ((𝜑𝑖 ∈ (0..^𝑀)) → dom (ℝ D (𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))) = dom ((ℝ D 𝐹) ↾ ((int‘(topGen‘ran (,)))‘((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))))
130 ioontr 45516 . . . . . . 7 ((int‘(topGen‘ran (,)))‘((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) = ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))
131130reseq2i 5950 . . . . . 6 ((ℝ D 𝐹) ↾ ((int‘(topGen‘ran (,)))‘((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))) = ((ℝ D 𝐹) ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))
132131dmeqi 5871 . . . . 5 dom ((ℝ D 𝐹) ↾ ((int‘(topGen‘ran (,)))‘((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))) = dom ((ℝ D 𝐹) ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))
133132a1i 11 . . . 4 ((𝜑𝑖 ∈ (0..^𝑀)) → dom ((ℝ D 𝐹) ↾ ((int‘(topGen‘ran (,)))‘((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))) = dom ((ℝ D 𝐹) ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))))
134 fourierdlem113.dvcn . . . . 5 ((𝜑𝑖 ∈ (0..^𝑀)) → ((ℝ D 𝐹) ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) ∈ (((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))–cn→ℂ))
135 cncff 24793 . . . . 5 (((ℝ D 𝐹) ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) ∈ (((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))–cn→ℂ) → ((ℝ D 𝐹) ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))):((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))⟶ℂ)
136 fdm 6700 . . . . 5 (((ℝ D 𝐹) ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))):((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))⟶ℂ → dom ((ℝ D 𝐹) ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) = ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))
137134, 135, 1363syl 18 . . . 4 ((𝜑𝑖 ∈ (0..^𝑀)) → dom ((ℝ D 𝐹) ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) = ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))
138129, 133, 1373eqtrd 2769 . . 3 ((𝜑𝑖 ∈ (0..^𝑀)) → dom (ℝ D (𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))) = ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))
139 dvcn 25830 . . 3 (((ℝ ⊆ ℂ ∧ (𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))):((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))⟶ℂ ∧ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ⊆ ℝ) ∧ dom (ℝ D (𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))) = ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → (𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) ∈ (((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))–cn→ℂ))
140113, 119, 120, 138, 139syl31anc 1375 . 2 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) ∈ (((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))–cn→ℂ))
141120, 113sstrd 3960 . . 3 ((𝜑𝑖 ∈ (0..^𝑀)) → ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ⊆ ℂ)
14277adantr 480 . . . . . 6 ((𝜑𝑖 ∈ (0..^𝑀)) → 𝑄:(0...𝑀)⟶ℝ)
143 fzofzp1 13732 . . . . . . 7 (𝑖 ∈ (0..^𝑀) → (𝑖 + 1) ∈ (0...𝑀))
144143adantl 481 . . . . . 6 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑖 + 1) ∈ (0...𝑀))
145142, 144ffvelcdmd 7060 . . . . 5 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑄‘(𝑖 + 1)) ∈ ℝ)
146145rexrd 11231 . . . 4 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑄‘(𝑖 + 1)) ∈ ℝ*)
147 elfzofz 13643 . . . . . 6 (𝑖 ∈ (0..^𝑀) → 𝑖 ∈ (0...𝑀))
148147adantl 481 . . . . 5 ((𝜑𝑖 ∈ (0..^𝑀)) → 𝑖 ∈ (0...𝑀))
149142, 148ffvelcdmd 7060 . . . 4 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑄𝑖) ∈ ℝ)
15074simprrd 773 . . . . 5 (𝜑 → ∀𝑖 ∈ (0..^𝑀)(𝑄𝑖) < (𝑄‘(𝑖 + 1)))
151150r19.21bi 3230 . . . 4 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑄𝑖) < (𝑄‘(𝑖 + 1)))
152125, 146, 149, 151lptioo1cn 45651 . . 3 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑄𝑖) ∈ ((limPt‘(TopOpen‘ℂfld))‘((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))))
153116adantr 480 . . . 4 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))):((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))⟶ℝ)
154123a1i 11 . . . . . . . 8 (𝜑 → ℝ ⊆ ℝ)
155117, 121, 154dvbss 25809 . . . . . . 7 (𝜑 → dom (ℝ D 𝐹) ⊆ ℝ)
156 dvfre 25862 . . . . . . . 8 ((𝐹:ℝ⟶ℝ ∧ ℝ ⊆ ℝ) → (ℝ D 𝐹):dom (ℝ D 𝐹)⟶ℝ)
1571, 154, 156syl2anc 584 . . . . . . 7 (𝜑 → (ℝ D 𝐹):dom (ℝ D 𝐹)⟶ℝ)
158 0re 11183 . . . . . . . . . 10 0 ∈ ℝ
15960, 158, 59lttri 11307 . . . . . . . . 9 ((-π < 0 ∧ 0 < π) → -π < π)
16063, 65, 159mp2an 692 . . . . . . . 8 -π < π
161160a1i 11 . . . . . . 7 (𝜑 → -π < π)
16284simplld 767 . . . . . . 7 (𝜑 → (𝑄‘0) = -π)
163134, 135syl 17 . . . . . . . 8 ((𝜑𝑖 ∈ (0..^𝑀)) → ((ℝ D 𝐹) ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))):((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))⟶ℂ)
164 fourierdlem113.dvlb . . . . . . . 8 ((𝜑𝑖 ∈ (0..^𝑀)) → (((ℝ D 𝐹) ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) lim (𝑄𝑖)) ≠ ∅)
165163, 141, 152, 164, 125ellimciota 45619 . . . . . . 7 ((𝜑𝑖 ∈ (0..^𝑀)) → (℩𝑥𝑥 ∈ (((ℝ D 𝐹) ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) lim (𝑄𝑖))) ∈ (((ℝ D 𝐹) ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) lim (𝑄𝑖)))
166149rexrd 11231 . . . . . . . . 9 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑄𝑖) ∈ ℝ*)
167125, 166, 145, 151lptioo2cn 45650 . . . . . . . 8 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑄‘(𝑖 + 1)) ∈ ((limPt‘(TopOpen‘ℂfld))‘((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))))
168 fourierdlem113.dvub . . . . . . . 8 ((𝜑𝑖 ∈ (0..^𝑀)) → (((ℝ D 𝐹) ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) lim (𝑄‘(𝑖 + 1))) ≠ ∅)
169163, 141, 167, 168, 125ellimciota 45619 . . . . . . 7 ((𝜑𝑖 ∈ (0..^𝑀)) → (℩𝑥𝑥 ∈ (((ℝ D 𝐹) ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) lim (𝑄‘(𝑖 + 1)))) ∈ (((ℝ D 𝐹) ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) lim (𝑄‘(𝑖 + 1))))
170121adantr 480 . . . . . . . . . 10 ((𝜑𝑘 ∈ ℤ) → 𝐹:ℝ⟶ℂ)
171 zre 12540 . . . . . . . . . . . 12 (𝑘 ∈ ℤ → 𝑘 ∈ ℝ)
172171adantl 481 . . . . . . . . . . 11 ((𝜑𝑘 ∈ ℤ) → 𝑘 ∈ ℝ)
173 2re 12267 . . . . . . . . . . . . . . 15 2 ∈ ℝ
174173, 59remulcli 11197 . . . . . . . . . . . . . 14 (2 · π) ∈ ℝ
175174a1i 11 . . . . . . . . . . . . 13 (𝜑 → (2 · π) ∈ ℝ)
17669, 175eqeltrid 2833 . . . . . . . . . . . 12 (𝜑𝑇 ∈ ℝ)
177176adantr 480 . . . . . . . . . . 11 ((𝜑𝑘 ∈ ℤ) → 𝑇 ∈ ℝ)
178172, 177remulcld 11211 . . . . . . . . . 10 ((𝜑𝑘 ∈ ℤ) → (𝑘 · 𝑇) ∈ ℝ)
179170adantr 480 . . . . . . . . . . 11 (((𝜑𝑘 ∈ ℤ) ∧ 𝑡 ∈ ℝ) → 𝐹:ℝ⟶ℂ)
180177adantr 480 . . . . . . . . . . 11 (((𝜑𝑘 ∈ ℤ) ∧ 𝑡 ∈ ℝ) → 𝑇 ∈ ℝ)
181 simplr 768 . . . . . . . . . . 11 (((𝜑𝑘 ∈ ℤ) ∧ 𝑡 ∈ ℝ) → 𝑘 ∈ ℤ)
182 simpr 484 . . . . . . . . . . 11 (((𝜑𝑘 ∈ ℤ) ∧ 𝑡 ∈ ℝ) → 𝑡 ∈ ℝ)
183111ad4ant14 752 . . . . . . . . . . 11 ((((𝜑𝑘 ∈ ℤ) ∧ 𝑡 ∈ ℝ) ∧ 𝑥 ∈ ℝ) → (𝐹‘(𝑥 + 𝑇)) = (𝐹𝑥))
184179, 180, 181, 182, 183fperiodmul 45309 . . . . . . . . . 10 (((𝜑𝑘 ∈ ℤ) ∧ 𝑡 ∈ ℝ) → (𝐹‘(𝑡 + (𝑘 · 𝑇))) = (𝐹𝑡))
185 eqid 2730 . . . . . . . . . 10 (ℝ D 𝐹) = (ℝ D 𝐹)
186170, 178, 184, 185fperdvper 45924 . . . . . . . . 9 (((𝜑𝑘 ∈ ℤ) ∧ 𝑡 ∈ dom (ℝ D 𝐹)) → ((𝑡 + (𝑘 · 𝑇)) ∈ dom (ℝ D 𝐹) ∧ ((ℝ D 𝐹)‘(𝑡 + (𝑘 · 𝑇))) = ((ℝ D 𝐹)‘𝑡)))
187186an32s 652 . . . . . . . 8 (((𝜑𝑡 ∈ dom (ℝ D 𝐹)) ∧ 𝑘 ∈ ℤ) → ((𝑡 + (𝑘 · 𝑇)) ∈ dom (ℝ D 𝐹) ∧ ((ℝ D 𝐹)‘(𝑡 + (𝑘 · 𝑇))) = ((ℝ D 𝐹)‘𝑡)))
188187simpld 494 . . . . . . 7 (((𝜑𝑡 ∈ dom (ℝ D 𝐹)) ∧ 𝑘 ∈ ℤ) → (𝑡 + (𝑘 · 𝑇)) ∈ dom (ℝ D 𝐹))
189187simprd 495 . . . . . . 7 (((𝜑𝑡 ∈ dom (ℝ D 𝐹)) ∧ 𝑘 ∈ ℤ) → ((ℝ D 𝐹)‘(𝑡 + (𝑘 · 𝑇))) = ((ℝ D 𝐹)‘𝑡))
190 fveq2 6861 . . . . . . . . 9 (𝑗 = 𝑖 → (𝑄𝑗) = (𝑄𝑖))
191 oveq1 7397 . . . . . . . . . 10 (𝑗 = 𝑖 → (𝑗 + 1) = (𝑖 + 1))
192191fveq2d 6865 . . . . . . . . 9 (𝑗 = 𝑖 → (𝑄‘(𝑗 + 1)) = (𝑄‘(𝑖 + 1)))
193190, 192oveq12d 7408 . . . . . . . 8 (𝑗 = 𝑖 → ((𝑄𝑗)(,)(𝑄‘(𝑗 + 1))) = ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))
194193cbvmptv 5214 . . . . . . 7 (𝑗 ∈ (0..^𝑀) ↦ ((𝑄𝑗)(,)(𝑄‘(𝑗 + 1)))) = (𝑖 ∈ (0..^𝑀) ↦ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))
195 eqid 2730 . . . . . . 7 (𝑡 ∈ ℝ ↦ (𝑡 + ((⌊‘((π − 𝑡) / 𝑇)) · 𝑇))) = (𝑡 ∈ ℝ ↦ (𝑡 + ((⌊‘((π − 𝑡) / 𝑇)) · 𝑇)))
196155, 157, 61, 62, 161, 71, 24, 77, 162, 85, 134, 165, 169, 188, 189, 194, 195fourierdlem71 46182 . . . . . 6 (𝜑 → ∃𝑧 ∈ ℝ ∀𝑡 ∈ dom (ℝ D 𝐹)(abs‘((ℝ D 𝐹)‘𝑡)) ≤ 𝑧)
197196adantr 480 . . . . 5 ((𝜑𝑖 ∈ (0..^𝑀)) → ∃𝑧 ∈ ℝ ∀𝑡 ∈ dom (ℝ D 𝐹)(abs‘((ℝ D 𝐹)‘𝑡)) ≤ 𝑧)
198 nfv 1914 . . . . . . . . 9 𝑡(𝜑𝑖 ∈ (0..^𝑀))
199 nfra1 3262 . . . . . . . . 9 𝑡𝑡 ∈ dom (ℝ D 𝐹)(abs‘((ℝ D 𝐹)‘𝑡)) ≤ 𝑧
200198, 199nfan 1899 . . . . . . . 8 𝑡((𝜑𝑖 ∈ (0..^𝑀)) ∧ ∀𝑡 ∈ dom (ℝ D 𝐹)(abs‘((ℝ D 𝐹)‘𝑡)) ≤ 𝑧)
201128, 131eqtrdi 2781 . . . . . . . . . . . . . 14 ((𝜑𝑖 ∈ (0..^𝑀)) → (ℝ D (𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))) = ((ℝ D 𝐹) ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))))
202201fveq1d 6863 . . . . . . . . . . . . 13 ((𝜑𝑖 ∈ (0..^𝑀)) → ((ℝ D (𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))))‘𝑡) = (((ℝ D 𝐹) ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))‘𝑡))
203 fvres 6880 . . . . . . . . . . . . 13 (𝑡 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) → (((ℝ D 𝐹) ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))‘𝑡) = ((ℝ D 𝐹)‘𝑡))
204202, 203sylan9eq 2785 . . . . . . . . . . . 12 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑡 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → ((ℝ D (𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))))‘𝑡) = ((ℝ D 𝐹)‘𝑡))
205204fveq2d 6865 . . . . . . . . . . 11 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑡 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → (abs‘((ℝ D (𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))))‘𝑡)) = (abs‘((ℝ D 𝐹)‘𝑡)))
206205adantlr 715 . . . . . . . . . 10 ((((𝜑𝑖 ∈ (0..^𝑀)) ∧ ∀𝑡 ∈ dom (ℝ D 𝐹)(abs‘((ℝ D 𝐹)‘𝑡)) ≤ 𝑧) ∧ 𝑡 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → (abs‘((ℝ D (𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))))‘𝑡)) = (abs‘((ℝ D 𝐹)‘𝑡)))
207 simplr 768 . . . . . . . . . . 11 ((((𝜑𝑖 ∈ (0..^𝑀)) ∧ ∀𝑡 ∈ dom (ℝ D 𝐹)(abs‘((ℝ D 𝐹)‘𝑡)) ≤ 𝑧) ∧ 𝑡 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → ∀𝑡 ∈ dom (ℝ D 𝐹)(abs‘((ℝ D 𝐹)‘𝑡)) ≤ 𝑧)
208 ssdmres 5987 . . . . . . . . . . . . . 14 (((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ⊆ dom (ℝ D 𝐹) ↔ dom ((ℝ D 𝐹) ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) = ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))
209137, 208sylibr 234 . . . . . . . . . . . . 13 ((𝜑𝑖 ∈ (0..^𝑀)) → ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ⊆ dom (ℝ D 𝐹))
210209ad2antrr 726 . . . . . . . . . . . 12 ((((𝜑𝑖 ∈ (0..^𝑀)) ∧ ∀𝑡 ∈ dom (ℝ D 𝐹)(abs‘((ℝ D 𝐹)‘𝑡)) ≤ 𝑧) ∧ 𝑡 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ⊆ dom (ℝ D 𝐹))
211 simpr 484 . . . . . . . . . . . 12 ((((𝜑𝑖 ∈ (0..^𝑀)) ∧ ∀𝑡 ∈ dom (ℝ D 𝐹)(abs‘((ℝ D 𝐹)‘𝑡)) ≤ 𝑧) ∧ 𝑡 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → 𝑡 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))
212210, 211sseldd 3950 . . . . . . . . . . 11 ((((𝜑𝑖 ∈ (0..^𝑀)) ∧ ∀𝑡 ∈ dom (ℝ D 𝐹)(abs‘((ℝ D 𝐹)‘𝑡)) ≤ 𝑧) ∧ 𝑡 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → 𝑡 ∈ dom (ℝ D 𝐹))
213 rspa 3227 . . . . . . . . . . 11 ((∀𝑡 ∈ dom (ℝ D 𝐹)(abs‘((ℝ D 𝐹)‘𝑡)) ≤ 𝑧𝑡 ∈ dom (ℝ D 𝐹)) → (abs‘((ℝ D 𝐹)‘𝑡)) ≤ 𝑧)
214207, 212, 213syl2anc 584 . . . . . . . . . 10 ((((𝜑𝑖 ∈ (0..^𝑀)) ∧ ∀𝑡 ∈ dom (ℝ D 𝐹)(abs‘((ℝ D 𝐹)‘𝑡)) ≤ 𝑧) ∧ 𝑡 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → (abs‘((ℝ D 𝐹)‘𝑡)) ≤ 𝑧)
215206, 214eqbrtrd 5132 . . . . . . . . 9 ((((𝜑𝑖 ∈ (0..^𝑀)) ∧ ∀𝑡 ∈ dom (ℝ D 𝐹)(abs‘((ℝ D 𝐹)‘𝑡)) ≤ 𝑧) ∧ 𝑡 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → (abs‘((ℝ D (𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))))‘𝑡)) ≤ 𝑧)
216215ex 412 . . . . . . . 8 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ ∀𝑡 ∈ dom (ℝ D 𝐹)(abs‘((ℝ D 𝐹)‘𝑡)) ≤ 𝑧) → (𝑡 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) → (abs‘((ℝ D (𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))))‘𝑡)) ≤ 𝑧))
217200, 216ralrimi 3236 . . . . . . 7 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ ∀𝑡 ∈ dom (ℝ D 𝐹)(abs‘((ℝ D 𝐹)‘𝑡)) ≤ 𝑧) → ∀𝑡 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))(abs‘((ℝ D (𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))))‘𝑡)) ≤ 𝑧)
218217ex 412 . . . . . 6 ((𝜑𝑖 ∈ (0..^𝑀)) → (∀𝑡 ∈ dom (ℝ D 𝐹)(abs‘((ℝ D 𝐹)‘𝑡)) ≤ 𝑧 → ∀𝑡 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))(abs‘((ℝ D (𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))))‘𝑡)) ≤ 𝑧))
219218reximdv 3149 . . . . 5 ((𝜑𝑖 ∈ (0..^𝑀)) → (∃𝑧 ∈ ℝ ∀𝑡 ∈ dom (ℝ D 𝐹)(abs‘((ℝ D 𝐹)‘𝑡)) ≤ 𝑧 → ∃𝑧 ∈ ℝ ∀𝑡 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))(abs‘((ℝ D (𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))))‘𝑡)) ≤ 𝑧))
220197, 219mpd 15 . . . 4 ((𝜑𝑖 ∈ (0..^𝑀)) → ∃𝑧 ∈ ℝ ∀𝑡 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))(abs‘((ℝ D (𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))))‘𝑡)) ≤ 𝑧)
221149, 145, 153, 138, 220ioodvbdlimc1 45938 . . 3 ((𝜑𝑖 ∈ (0..^𝑀)) → ((𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) lim (𝑄𝑖)) ≠ ∅)
222119, 141, 152, 221, 125ellimciota 45619 . 2 ((𝜑𝑖 ∈ (0..^𝑀)) → (℩𝑦𝑦 ∈ ((𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) lim (𝑄𝑖))) ∈ ((𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) lim (𝑄𝑖)))
223149, 145, 153, 138, 220ioodvbdlimc2 45940 . . 3 ((𝜑𝑖 ∈ (0..^𝑀)) → ((𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) lim (𝑄‘(𝑖 + 1))) ≠ ∅)
224119, 141, 167, 223, 125ellimciota 45619 . 2 ((𝜑𝑖 ∈ (0..^𝑀)) → (℩𝑦𝑦 ∈ ((𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) lim (𝑄‘(𝑖 + 1)))) ∈ ((𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) lim (𝑄‘(𝑖 + 1))))
225 frel 6696 . . . . . . 7 ((ℝ D 𝐹):dom (ℝ D 𝐹)⟶ℝ → Rel (ℝ D 𝐹))
226157, 225syl 17 . . . . . 6 (𝜑 → Rel (ℝ D 𝐹))
227 resindm 6004 . . . . . 6 (Rel (ℝ D 𝐹) → ((ℝ D 𝐹) ↾ ((-∞(,)𝑋) ∩ dom (ℝ D 𝐹))) = ((ℝ D 𝐹) ↾ (-∞(,)𝑋)))
228226, 227syl 17 . . . . 5 (𝜑 → ((ℝ D 𝐹) ↾ ((-∞(,)𝑋) ∩ dom (ℝ D 𝐹))) = ((ℝ D 𝐹) ↾ (-∞(,)𝑋)))
229 inss2 4204 . . . . . . 7 ((-∞(,)𝑋) ∩ dom (ℝ D 𝐹)) ⊆ dom (ℝ D 𝐹)
230229a1i 11 . . . . . 6 (𝜑 → ((-∞(,)𝑋) ∩ dom (ℝ D 𝐹)) ⊆ dom (ℝ D 𝐹))
231157, 230fssresd 6730 . . . . 5 (𝜑 → ((ℝ D 𝐹) ↾ ((-∞(,)𝑋) ∩ dom (ℝ D 𝐹))):((-∞(,)𝑋) ∩ dom (ℝ D 𝐹))⟶ℝ)
232228, 231feq1dd 6674 . . . 4 (𝜑 → ((ℝ D 𝐹) ↾ (-∞(,)𝑋)):((-∞(,)𝑋) ∩ dom (ℝ D 𝐹))⟶ℝ)
233232, 117fssd 6708 . . 3 (𝜑 → ((ℝ D 𝐹) ↾ (-∞(,)𝑋)):((-∞(,)𝑋) ∩ dom (ℝ D 𝐹))⟶ℂ)
234 ioosscn 13376 . . . . 5 (-∞(,)𝑋) ⊆ ℂ
235 ssinss1 4212 . . . . 5 ((-∞(,)𝑋) ⊆ ℂ → ((-∞(,)𝑋) ∩ dom (ℝ D 𝐹)) ⊆ ℂ)
236234, 235ax-mp 5 . . . 4 ((-∞(,)𝑋) ∩ dom (ℝ D 𝐹)) ⊆ ℂ
237236a1i 11 . . 3 (𝜑 → ((-∞(,)𝑋) ∩ dom (ℝ D 𝐹)) ⊆ ℂ)
238 3simpb 1149 . . . . . . . 8 ((𝜑𝑥 ∈ dom (ℝ D 𝐹) ∧ 𝑘 ∈ ℤ) → (𝜑𝑘 ∈ ℤ))
239 simp2 1137 . . . . . . . 8 ((𝜑𝑥 ∈ dom (ℝ D 𝐹) ∧ 𝑘 ∈ ℤ) → 𝑥 ∈ dom (ℝ D 𝐹))
240170adantr 480 . . . . . . . . . 10 (((𝜑𝑘 ∈ ℤ) ∧ 𝑥 ∈ ℝ) → 𝐹:ℝ⟶ℂ)
241177adantr 480 . . . . . . . . . 10 (((𝜑𝑘 ∈ ℤ) ∧ 𝑥 ∈ ℝ) → 𝑇 ∈ ℝ)
242 simplr 768 . . . . . . . . . 10 (((𝜑𝑘 ∈ ℤ) ∧ 𝑥 ∈ ℝ) → 𝑘 ∈ ℤ)
243 simpr 484 . . . . . . . . . 10 (((𝜑𝑘 ∈ ℤ) ∧ 𝑥 ∈ ℝ) → 𝑥 ∈ ℝ)
244 eleq1w 2812 . . . . . . . . . . . . . 14 (𝑥 = 𝑦 → (𝑥 ∈ ℝ ↔ 𝑦 ∈ ℝ))
245244anbi2d 630 . . . . . . . . . . . . 13 (𝑥 = 𝑦 → ((𝜑𝑥 ∈ ℝ) ↔ (𝜑𝑦 ∈ ℝ)))
246 oveq1 7397 . . . . . . . . . . . . . . 15 (𝑥 = 𝑦 → (𝑥 + 𝑇) = (𝑦 + 𝑇))
247246fveq2d 6865 . . . . . . . . . . . . . 14 (𝑥 = 𝑦 → (𝐹‘(𝑥 + 𝑇)) = (𝐹‘(𝑦 + 𝑇)))
248 fveq2 6861 . . . . . . . . . . . . . 14 (𝑥 = 𝑦 → (𝐹𝑥) = (𝐹𝑦))
249247, 248eqeq12d 2746 . . . . . . . . . . . . 13 (𝑥 = 𝑦 → ((𝐹‘(𝑥 + 𝑇)) = (𝐹𝑥) ↔ (𝐹‘(𝑦 + 𝑇)) = (𝐹𝑦)))
250245, 249imbi12d 344 . . . . . . . . . . . 12 (𝑥 = 𝑦 → (((𝜑𝑥 ∈ ℝ) → (𝐹‘(𝑥 + 𝑇)) = (𝐹𝑥)) ↔ ((𝜑𝑦 ∈ ℝ) → (𝐹‘(𝑦 + 𝑇)) = (𝐹𝑦))))
251250, 111chvarvv 1989 . . . . . . . . . . 11 ((𝜑𝑦 ∈ ℝ) → (𝐹‘(𝑦 + 𝑇)) = (𝐹𝑦))
252251ad4ant14 752 . . . . . . . . . 10 ((((𝜑𝑘 ∈ ℤ) ∧ 𝑥 ∈ ℝ) ∧ 𝑦 ∈ ℝ) → (𝐹‘(𝑦 + 𝑇)) = (𝐹𝑦))
253240, 241, 242, 243, 252fperiodmul 45309 . . . . . . . . 9 (((𝜑𝑘 ∈ ℤ) ∧ 𝑥 ∈ ℝ) → (𝐹‘(𝑥 + (𝑘 · 𝑇))) = (𝐹𝑥))
254170, 178, 253, 185fperdvper 45924 . . . . . . . 8 (((𝜑𝑘 ∈ ℤ) ∧ 𝑥 ∈ dom (ℝ D 𝐹)) → ((𝑥 + (𝑘 · 𝑇)) ∈ dom (ℝ D 𝐹) ∧ ((ℝ D 𝐹)‘(𝑥 + (𝑘 · 𝑇))) = ((ℝ D 𝐹)‘𝑥)))
255238, 239, 254syl2anc 584 . . . . . . 7 ((𝜑𝑥 ∈ dom (ℝ D 𝐹) ∧ 𝑘 ∈ ℤ) → ((𝑥 + (𝑘 · 𝑇)) ∈ dom (ℝ D 𝐹) ∧ ((ℝ D 𝐹)‘(𝑥 + (𝑘 · 𝑇))) = ((ℝ D 𝐹)‘𝑥)))
256255simpld 494 . . . . . 6 ((𝜑𝑥 ∈ dom (ℝ D 𝐹) ∧ 𝑘 ∈ ℤ) → (𝑥 + (𝑘 · 𝑇)) ∈ dom (ℝ D 𝐹))
257 oveq2 7398 . . . . . . . . . 10 (𝑤 = 𝑥 → (π − 𝑤) = (π − 𝑥))
258257oveq1d 7405 . . . . . . . . 9 (𝑤 = 𝑥 → ((π − 𝑤) / 𝑇) = ((π − 𝑥) / 𝑇))
259258fveq2d 6865 . . . . . . . 8 (𝑤 = 𝑥 → (⌊‘((π − 𝑤) / 𝑇)) = (⌊‘((π − 𝑥) / 𝑇)))
260259oveq1d 7405 . . . . . . 7 (𝑤 = 𝑥 → ((⌊‘((π − 𝑤) / 𝑇)) · 𝑇) = ((⌊‘((π − 𝑥) / 𝑇)) · 𝑇))
261260cbvmptv 5214 . . . . . 6 (𝑤 ∈ ℝ ↦ ((⌊‘((π − 𝑤) / 𝑇)) · 𝑇)) = (𝑥 ∈ ℝ ↦ ((⌊‘((π − 𝑥) / 𝑇)) · 𝑇))
262 eqid 2730 . . . . . 6 (𝑥 ∈ ℝ ↦ (𝑥 + ((𝑤 ∈ ℝ ↦ ((⌊‘((π − 𝑤) / 𝑇)) · 𝑇))‘𝑥))) = (𝑥 ∈ ℝ ↦ (𝑥 + ((𝑤 ∈ ℝ ↦ ((⌊‘((π − 𝑤) / 𝑇)) · 𝑇))‘𝑥)))
26361, 62, 161, 71, 256, 58, 261, 262, 23, 24, 25, 209fourierdlem41 46153 . . . . 5 (𝜑 → (∃𝑦 ∈ ℝ (𝑦 < 𝑋 ∧ (𝑦(,)𝑋) ⊆ dom (ℝ D 𝐹)) ∧ ∃𝑦 ∈ ℝ (𝑋 < 𝑦 ∧ (𝑋(,)𝑦) ⊆ dom (ℝ D 𝐹))))
264263simpld 494 . . . 4 (𝜑 → ∃𝑦 ∈ ℝ (𝑦 < 𝑋 ∧ (𝑦(,)𝑋) ⊆ dom (ℝ D 𝐹)))
265125cnfldtop 24678 . . . . . . . . 9 (TopOpen‘ℂfld) ∈ Top
266265a1i 11 . . . . . . . 8 ((𝜑𝑦 ∈ ℝ ∧ (𝑦(,)𝑋) ⊆ dom (ℝ D 𝐹)) → (TopOpen‘ℂfld) ∈ Top)
267236a1i 11 . . . . . . . 8 ((𝜑𝑦 ∈ ℝ ∧ (𝑦(,)𝑋) ⊆ dom (ℝ D 𝐹)) → ((-∞(,)𝑋) ∩ dom (ℝ D 𝐹)) ⊆ ℂ)
268 mnfxr 11238 . . . . . . . . . . . 12 -∞ ∈ ℝ*
269268a1i 11 . . . . . . . . . . 11 (𝑦 ∈ ℝ → -∞ ∈ ℝ*)
270 rexr 11227 . . . . . . . . . . . 12 (𝑦 ∈ ℝ → 𝑦 ∈ ℝ*)
271 mnflt 13090 . . . . . . . . . . . 12 (𝑦 ∈ ℝ → -∞ < 𝑦)
272269, 270, 271xrltled 13117 . . . . . . . . . . 11 (𝑦 ∈ ℝ → -∞ ≤ 𝑦)
273 iooss1 13348 . . . . . . . . . . 11 ((-∞ ∈ ℝ* ∧ -∞ ≤ 𝑦) → (𝑦(,)𝑋) ⊆ (-∞(,)𝑋))
274269, 272, 273syl2anc 584 . . . . . . . . . 10 (𝑦 ∈ ℝ → (𝑦(,)𝑋) ⊆ (-∞(,)𝑋))
2752743ad2ant2 1134 . . . . . . . . 9 ((𝜑𝑦 ∈ ℝ ∧ (𝑦(,)𝑋) ⊆ dom (ℝ D 𝐹)) → (𝑦(,)𝑋) ⊆ (-∞(,)𝑋))
276 simp3 1138 . . . . . . . . 9 ((𝜑𝑦 ∈ ℝ ∧ (𝑦(,)𝑋) ⊆ dom (ℝ D 𝐹)) → (𝑦(,)𝑋) ⊆ dom (ℝ D 𝐹))
277275, 276ssind 4207 . . . . . . . 8 ((𝜑𝑦 ∈ ℝ ∧ (𝑦(,)𝑋) ⊆ dom (ℝ D 𝐹)) → (𝑦(,)𝑋) ⊆ ((-∞(,)𝑋) ∩ dom (ℝ D 𝐹)))
278 unicntop 24680 . . . . . . . . 9 ℂ = (TopOpen‘ℂfld)
279278lpss3 23038 . . . . . . . 8 (((TopOpen‘ℂfld) ∈ Top ∧ ((-∞(,)𝑋) ∩ dom (ℝ D 𝐹)) ⊆ ℂ ∧ (𝑦(,)𝑋) ⊆ ((-∞(,)𝑋) ∩ dom (ℝ D 𝐹))) → ((limPt‘(TopOpen‘ℂfld))‘(𝑦(,)𝑋)) ⊆ ((limPt‘(TopOpen‘ℂfld))‘((-∞(,)𝑋) ∩ dom (ℝ D 𝐹))))
280266, 267, 277, 279syl3anc 1373 . . . . . . 7 ((𝜑𝑦 ∈ ℝ ∧ (𝑦(,)𝑋) ⊆ dom (ℝ D 𝐹)) → ((limPt‘(TopOpen‘ℂfld))‘(𝑦(,)𝑋)) ⊆ ((limPt‘(TopOpen‘ℂfld))‘((-∞(,)𝑋) ∩ dom (ℝ D 𝐹))))
2812803adant3l 1181 . . . . . 6 ((𝜑𝑦 ∈ ℝ ∧ (𝑦 < 𝑋 ∧ (𝑦(,)𝑋) ⊆ dom (ℝ D 𝐹))) → ((limPt‘(TopOpen‘ℂfld))‘(𝑦(,)𝑋)) ⊆ ((limPt‘(TopOpen‘ℂfld))‘((-∞(,)𝑋) ∩ dom (ℝ D 𝐹))))
2822703ad2ant2 1134 . . . . . . 7 ((𝜑𝑦 ∈ ℝ ∧ (𝑦 < 𝑋 ∧ (𝑦(,)𝑋) ⊆ dom (ℝ D 𝐹))) → 𝑦 ∈ ℝ*)
283583ad2ant1 1133 . . . . . . 7 ((𝜑𝑦 ∈ ℝ ∧ (𝑦 < 𝑋 ∧ (𝑦(,)𝑋) ⊆ dom (ℝ D 𝐹))) → 𝑋 ∈ ℝ)
284 simp3l 1202 . . . . . . 7 ((𝜑𝑦 ∈ ℝ ∧ (𝑦 < 𝑋 ∧ (𝑦(,)𝑋) ⊆ dom (ℝ D 𝐹))) → 𝑦 < 𝑋)
285125, 282, 283, 284lptioo2cn 45650 . . . . . 6 ((𝜑𝑦 ∈ ℝ ∧ (𝑦 < 𝑋 ∧ (𝑦(,)𝑋) ⊆ dom (ℝ D 𝐹))) → 𝑋 ∈ ((limPt‘(TopOpen‘ℂfld))‘(𝑦(,)𝑋)))
286281, 285sseldd 3950 . . . . 5 ((𝜑𝑦 ∈ ℝ ∧ (𝑦 < 𝑋 ∧ (𝑦(,)𝑋) ⊆ dom (ℝ D 𝐹))) → 𝑋 ∈ ((limPt‘(TopOpen‘ℂfld))‘((-∞(,)𝑋) ∩ dom (ℝ D 𝐹))))
287286rexlimdv3a 3139 . . . 4 (𝜑 → (∃𝑦 ∈ ℝ (𝑦 < 𝑋 ∧ (𝑦(,)𝑋) ⊆ dom (ℝ D 𝐹)) → 𝑋 ∈ ((limPt‘(TopOpen‘ℂfld))‘((-∞(,)𝑋) ∩ dom (ℝ D 𝐹)))))
288264, 287mpd 15 . . 3 (𝜑𝑋 ∈ ((limPt‘(TopOpen‘ℂfld))‘((-∞(,)𝑋) ∩ dom (ℝ D 𝐹))))
289255simprd 495 . . . 4 ((𝜑𝑥 ∈ dom (ℝ D 𝐹) ∧ 𝑘 ∈ ℤ) → ((ℝ D 𝐹)‘(𝑥 + (𝑘 · 𝑇))) = ((ℝ D 𝐹)‘𝑥))
290 oveq2 7398 . . . . . . . 8 (𝑦 = 𝑥 → (π − 𝑦) = (π − 𝑥))
291290oveq1d 7405 . . . . . . 7 (𝑦 = 𝑥 → ((π − 𝑦) / 𝑇) = ((π − 𝑥) / 𝑇))
292291fveq2d 6865 . . . . . 6 (𝑦 = 𝑥 → (⌊‘((π − 𝑦) / 𝑇)) = (⌊‘((π − 𝑥) / 𝑇)))
293292oveq1d 7405 . . . . 5 (𝑦 = 𝑥 → ((⌊‘((π − 𝑦) / 𝑇)) · 𝑇) = ((⌊‘((π − 𝑥) / 𝑇)) · 𝑇))
294293cbvmptv 5214 . . . 4 (𝑦 ∈ ℝ ↦ ((⌊‘((π − 𝑦) / 𝑇)) · 𝑇)) = (𝑥 ∈ ℝ ↦ ((⌊‘((π − 𝑥) / 𝑇)) · 𝑇))
295 id 22 . . . . . 6 (𝑧 = 𝑥𝑧 = 𝑥)
296 fveq2 6861 . . . . . 6 (𝑧 = 𝑥 → ((𝑦 ∈ ℝ ↦ ((⌊‘((π − 𝑦) / 𝑇)) · 𝑇))‘𝑧) = ((𝑦 ∈ ℝ ↦ ((⌊‘((π − 𝑦) / 𝑇)) · 𝑇))‘𝑥))
297295, 296oveq12d 7408 . . . . 5 (𝑧 = 𝑥 → (𝑧 + ((𝑦 ∈ ℝ ↦ ((⌊‘((π − 𝑦) / 𝑇)) · 𝑇))‘𝑧)) = (𝑥 + ((𝑦 ∈ ℝ ↦ ((⌊‘((π − 𝑦) / 𝑇)) · 𝑇))‘𝑥)))
298297cbvmptv 5214 . . . 4 (𝑧 ∈ ℝ ↦ (𝑧 + ((𝑦 ∈ ℝ ↦ ((⌊‘((π − 𝑦) / 𝑇)) · 𝑇))‘𝑧))) = (𝑥 ∈ ℝ ↦ (𝑥 + ((𝑦 ∈ ℝ ↦ ((⌊‘((π − 𝑦) / 𝑇)) · 𝑇))‘𝑥)))
29961, 62, 161, 23, 71, 24, 25, 155, 157, 256, 289, 134, 169, 58, 294, 298fourierdlem49 46160 . . 3 (𝜑 → (((ℝ D 𝐹) ↾ (-∞(,)𝑋)) lim 𝑋) ≠ ∅)
300233, 237, 288, 299, 125ellimciota 45619 . 2 (𝜑 → (℩𝑥𝑥 ∈ (((ℝ D 𝐹) ↾ (-∞(,)𝑋)) lim 𝑋)) ∈ (((ℝ D 𝐹) ↾ (-∞(,)𝑋)) lim 𝑋))
301 resindm 6004 . . . . . 6 (Rel (ℝ D 𝐹) → ((ℝ D 𝐹) ↾ ((𝑋(,)+∞) ∩ dom (ℝ D 𝐹))) = ((ℝ D 𝐹) ↾ (𝑋(,)+∞)))
302226, 301syl 17 . . . . 5 (𝜑 → ((ℝ D 𝐹) ↾ ((𝑋(,)+∞) ∩ dom (ℝ D 𝐹))) = ((ℝ D 𝐹) ↾ (𝑋(,)+∞)))
303 inss2 4204 . . . . . . 7 ((𝑋(,)+∞) ∩ dom (ℝ D 𝐹)) ⊆ dom (ℝ D 𝐹)
304303a1i 11 . . . . . 6 (𝜑 → ((𝑋(,)+∞) ∩ dom (ℝ D 𝐹)) ⊆ dom (ℝ D 𝐹))
305157, 304fssresd 6730 . . . . 5 (𝜑 → ((ℝ D 𝐹) ↾ ((𝑋(,)+∞) ∩ dom (ℝ D 𝐹))):((𝑋(,)+∞) ∩ dom (ℝ D 𝐹))⟶ℝ)
306302, 305feq1dd 6674 . . . 4 (𝜑 → ((ℝ D 𝐹) ↾ (𝑋(,)+∞)):((𝑋(,)+∞) ∩ dom (ℝ D 𝐹))⟶ℝ)
307306, 117fssd 6708 . . 3 (𝜑 → ((ℝ D 𝐹) ↾ (𝑋(,)+∞)):((𝑋(,)+∞) ∩ dom (ℝ D 𝐹))⟶ℂ)
308 ioosscn 13376 . . . . 5 (𝑋(,)+∞) ⊆ ℂ
309 ssinss1 4212 . . . . 5 ((𝑋(,)+∞) ⊆ ℂ → ((𝑋(,)+∞) ∩ dom (ℝ D 𝐹)) ⊆ ℂ)
310308, 309ax-mp 5 . . . 4 ((𝑋(,)+∞) ∩ dom (ℝ D 𝐹)) ⊆ ℂ
311310a1i 11 . . 3 (𝜑 → ((𝑋(,)+∞) ∩ dom (ℝ D 𝐹)) ⊆ ℂ)
312263simprd 495 . . . 4 (𝜑 → ∃𝑦 ∈ ℝ (𝑋 < 𝑦 ∧ (𝑋(,)𝑦) ⊆ dom (ℝ D 𝐹)))
313265a1i 11 . . . . . . . 8 ((𝜑𝑦 ∈ ℝ ∧ (𝑋(,)𝑦) ⊆ dom (ℝ D 𝐹)) → (TopOpen‘ℂfld) ∈ Top)
314310a1i 11 . . . . . . . 8 ((𝜑𝑦 ∈ ℝ ∧ (𝑋(,)𝑦) ⊆ dom (ℝ D 𝐹)) → ((𝑋(,)+∞) ∩ dom (ℝ D 𝐹)) ⊆ ℂ)
315 pnfxr 11235 . . . . . . . . . . . 12 +∞ ∈ ℝ*
316315a1i 11 . . . . . . . . . . 11 (𝑦 ∈ ℝ → +∞ ∈ ℝ*)
317 ltpnf 13087 . . . . . . . . . . . 12 (𝑦 ∈ ℝ → 𝑦 < +∞)
318270, 316, 317xrltled 13117 . . . . . . . . . . 11 (𝑦 ∈ ℝ → 𝑦 ≤ +∞)
319 iooss2 13349 . . . . . . . . . . 11 ((+∞ ∈ ℝ*𝑦 ≤ +∞) → (𝑋(,)𝑦) ⊆ (𝑋(,)+∞))
320316, 318, 319syl2anc 584 . . . . . . . . . 10 (𝑦 ∈ ℝ → (𝑋(,)𝑦) ⊆ (𝑋(,)+∞))
3213203ad2ant2 1134 . . . . . . . . 9 ((𝜑𝑦 ∈ ℝ ∧ (𝑋(,)𝑦) ⊆ dom (ℝ D 𝐹)) → (𝑋(,)𝑦) ⊆ (𝑋(,)+∞))
322 simp3 1138 . . . . . . . . 9 ((𝜑𝑦 ∈ ℝ ∧ (𝑋(,)𝑦) ⊆ dom (ℝ D 𝐹)) → (𝑋(,)𝑦) ⊆ dom (ℝ D 𝐹))
323321, 322ssind 4207 . . . . . . . 8 ((𝜑𝑦 ∈ ℝ ∧ (𝑋(,)𝑦) ⊆ dom (ℝ D 𝐹)) → (𝑋(,)𝑦) ⊆ ((𝑋(,)+∞) ∩ dom (ℝ D 𝐹)))
324278lpss3 23038 . . . . . . . 8 (((TopOpen‘ℂfld) ∈ Top ∧ ((𝑋(,)+∞) ∩ dom (ℝ D 𝐹)) ⊆ ℂ ∧ (𝑋(,)𝑦) ⊆ ((𝑋(,)+∞) ∩ dom (ℝ D 𝐹))) → ((limPt‘(TopOpen‘ℂfld))‘(𝑋(,)𝑦)) ⊆ ((limPt‘(TopOpen‘ℂfld))‘((𝑋(,)+∞) ∩ dom (ℝ D 𝐹))))
325313, 314, 323, 324syl3anc 1373 . . . . . . 7 ((𝜑𝑦 ∈ ℝ ∧ (𝑋(,)𝑦) ⊆ dom (ℝ D 𝐹)) → ((limPt‘(TopOpen‘ℂfld))‘(𝑋(,)𝑦)) ⊆ ((limPt‘(TopOpen‘ℂfld))‘((𝑋(,)+∞) ∩ dom (ℝ D 𝐹))))
3263253adant3l 1181 . . . . . 6 ((𝜑𝑦 ∈ ℝ ∧ (𝑋 < 𝑦 ∧ (𝑋(,)𝑦) ⊆ dom (ℝ D 𝐹))) → ((limPt‘(TopOpen‘ℂfld))‘(𝑋(,)𝑦)) ⊆ ((limPt‘(TopOpen‘ℂfld))‘((𝑋(,)+∞) ∩ dom (ℝ D 𝐹))))
3272703ad2ant2 1134 . . . . . . 7 ((𝜑𝑦 ∈ ℝ ∧ (𝑋 < 𝑦 ∧ (𝑋(,)𝑦) ⊆ dom (ℝ D 𝐹))) → 𝑦 ∈ ℝ*)
328583ad2ant1 1133 . . . . . . 7 ((𝜑𝑦 ∈ ℝ ∧ (𝑋 < 𝑦 ∧ (𝑋(,)𝑦) ⊆ dom (ℝ D 𝐹))) → 𝑋 ∈ ℝ)
329 simp3l 1202 . . . . . . 7 ((𝜑𝑦 ∈ ℝ ∧ (𝑋 < 𝑦 ∧ (𝑋(,)𝑦) ⊆ dom (ℝ D 𝐹))) → 𝑋 < 𝑦)
330125, 327, 328, 329lptioo1cn 45651 . . . . . 6 ((𝜑𝑦 ∈ ℝ ∧ (𝑋 < 𝑦 ∧ (𝑋(,)𝑦) ⊆ dom (ℝ D 𝐹))) → 𝑋 ∈ ((limPt‘(TopOpen‘ℂfld))‘(𝑋(,)𝑦)))
331326, 330sseldd 3950 . . . . 5 ((𝜑𝑦 ∈ ℝ ∧ (𝑋 < 𝑦 ∧ (𝑋(,)𝑦) ⊆ dom (ℝ D 𝐹))) → 𝑋 ∈ ((limPt‘(TopOpen‘ℂfld))‘((𝑋(,)+∞) ∩ dom (ℝ D 𝐹))))
332331rexlimdv3a 3139 . . . 4 (𝜑 → (∃𝑦 ∈ ℝ (𝑋 < 𝑦 ∧ (𝑋(,)𝑦) ⊆ dom (ℝ D 𝐹)) → 𝑋 ∈ ((limPt‘(TopOpen‘ℂfld))‘((𝑋(,)+∞) ∩ dom (ℝ D 𝐹)))))
333312, 332mpd 15 . . 3 (𝜑𝑋 ∈ ((limPt‘(TopOpen‘ℂfld))‘((𝑋(,)+∞) ∩ dom (ℝ D 𝐹))))
334 biid 261 . . . 4 (((((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑤 ∈ ((𝑄𝑖)[,)(𝑄‘(𝑖 + 1)))) ∧ 𝑘 ∈ ℤ) ∧ 𝑤 = (𝑋 + (𝑘 · 𝑇))) ↔ ((((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑤 ∈ ((𝑄𝑖)[,)(𝑄‘(𝑖 + 1)))) ∧ 𝑘 ∈ ℤ) ∧ 𝑤 = (𝑋 + (𝑘 · 𝑇))))
33561, 62, 161, 23, 71, 24, 25, 157, 256, 289, 134, 165, 58, 294, 298, 334fourierdlem48 46159 . . 3 (𝜑 → (((ℝ D 𝐹) ↾ (𝑋(,)+∞)) lim 𝑋) ≠ ∅)
336307, 311, 333, 335, 125ellimciota 45619 . 2 (𝜑 → (℩𝑥𝑥 ∈ (((ℝ D 𝐹) ↾ (𝑋(,)+∞)) lim 𝑋)) ∈ (((ℝ D 𝐹) ↾ (𝑋(,)+∞)) lim 𝑋))
337 fourierdlem113.l . 2 (𝜑𝐿 ∈ ((𝐹 ↾ (-∞(,)𝑋)) lim 𝑋))
338 fourierdlem113.r . 2 (𝜑𝑅 ∈ ((𝐹 ↾ (𝑋(,)+∞)) lim 𝑋))
339 fourierdlem113.a . 2 𝐴 = (𝑛 ∈ ℕ0 ↦ (∫(-π(,)π)((𝐹𝑥) · (cos‘(𝑛 · 𝑥))) d𝑥 / π))
340 fourierdlem113.b . 2 𝐵 = (𝑛 ∈ ℕ ↦ (∫(-π(,)π)((𝐹𝑥) · (sin‘(𝑛 · 𝑥))) d𝑥 / π))
341 fveq2 6861 . . . . . . . 8 (𝑛 = 𝑘 → (𝐴𝑛) = (𝐴𝑘))
342 oveq1 7397 . . . . . . . . 9 (𝑛 = 𝑘 → (𝑛 · 𝑋) = (𝑘 · 𝑋))
343342fveq2d 6865 . . . . . . . 8 (𝑛 = 𝑘 → (cos‘(𝑛 · 𝑋)) = (cos‘(𝑘 · 𝑋)))
344341, 343oveq12d 7408 . . . . . . 7 (𝑛 = 𝑘 → ((𝐴𝑛) · (cos‘(𝑛 · 𝑋))) = ((𝐴𝑘) · (cos‘(𝑘 · 𝑋))))
345 fveq2 6861 . . . . . . . 8 (𝑛 = 𝑘 → (𝐵𝑛) = (𝐵𝑘))
346342fveq2d 6865 . . . . . . . 8 (𝑛 = 𝑘 → (sin‘(𝑛 · 𝑋)) = (sin‘(𝑘 · 𝑋)))
347345, 346oveq12d 7408 . . . . . . 7 (𝑛 = 𝑘 → ((𝐵𝑛) · (sin‘(𝑛 · 𝑋))) = ((𝐵𝑘) · (sin‘(𝑘 · 𝑋))))
348344, 347oveq12d 7408 . . . . . 6 (𝑛 = 𝑘 → (((𝐴𝑛) · (cos‘(𝑛 · 𝑋))) + ((𝐵𝑛) · (sin‘(𝑛 · 𝑋)))) = (((𝐴𝑘) · (cos‘(𝑘 · 𝑋))) + ((𝐵𝑘) · (sin‘(𝑘 · 𝑋)))))
349348cbvsumv 15669 . . . . 5 Σ𝑛 ∈ (1...𝑚)(((𝐴𝑛) · (cos‘(𝑛 · 𝑋))) + ((𝐵𝑛) · (sin‘(𝑛 · 𝑋)))) = Σ𝑘 ∈ (1...𝑚)(((𝐴𝑘) · (cos‘(𝑘 · 𝑋))) + ((𝐵𝑘) · (sin‘(𝑘 · 𝑋))))
350 oveq2 7398 . . . . . . 7 (𝑗 = 𝑚 → (1...𝑗) = (1...𝑚))
351350eqcomd 2736 . . . . . 6 (𝑗 = 𝑚 → (1...𝑚) = (1...𝑗))
352351sumeq1d 15673 . . . . 5 (𝑗 = 𝑚 → Σ𝑘 ∈ (1...𝑚)(((𝐴𝑘) · (cos‘(𝑘 · 𝑋))) + ((𝐵𝑘) · (sin‘(𝑘 · 𝑋)))) = Σ𝑘 ∈ (1...𝑗)(((𝐴𝑘) · (cos‘(𝑘 · 𝑋))) + ((𝐵𝑘) · (sin‘(𝑘 · 𝑋)))))
353349, 352eqtr2id 2778 . . . 4 (𝑗 = 𝑚 → Σ𝑘 ∈ (1...𝑗)(((𝐴𝑘) · (cos‘(𝑘 · 𝑋))) + ((𝐵𝑘) · (sin‘(𝑘 · 𝑋)))) = Σ𝑛 ∈ (1...𝑚)(((𝐴𝑛) · (cos‘(𝑛 · 𝑋))) + ((𝐵𝑛) · (sin‘(𝑛 · 𝑋)))))
354353oveq2d 7406 . . 3 (𝑗 = 𝑚 → (((𝐴‘0) / 2) + Σ𝑘 ∈ (1...𝑗)(((𝐴𝑘) · (cos‘(𝑘 · 𝑋))) + ((𝐵𝑘) · (sin‘(𝑘 · 𝑋))))) = (((𝐴‘0) / 2) + Σ𝑛 ∈ (1...𝑚)(((𝐴𝑛) · (cos‘(𝑛 · 𝑋))) + ((𝐵𝑛) · (sin‘(𝑛 · 𝑋))))))
355354cbvmptv 5214 . 2 (𝑗 ∈ ℕ ↦ (((𝐴‘0) / 2) + Σ𝑘 ∈ (1...𝑗)(((𝐴𝑘) · (cos‘(𝑘 · 𝑋))) + ((𝐵𝑘) · (sin‘(𝑘 · 𝑋)))))) = (𝑚 ∈ ℕ ↦ (((𝐴‘0) / 2) + Σ𝑛 ∈ (1...𝑚)(((𝐴𝑛) · (cos‘(𝑛 · 𝑋))) + ((𝐵𝑛) · (sin‘(𝑛 · 𝑋))))))
356 fourierdlem113.15 . 2 𝑆 = (𝑛 ∈ ℕ ↦ (((𝐴𝑛) · (cos‘(𝑛 · 𝑋))) + ((𝐵𝑛) · (sin‘(𝑛 · 𝑋)))))
357 fdm 6700 . . . . . 6 (𝐹:ℝ⟶ℝ → dom 𝐹 = ℝ)
3581, 357syl 17 . . . . 5 (𝜑 → dom 𝐹 = ℝ)
359358, 154eqsstrd 3984 . . . 4 (𝜑 → dom 𝐹 ⊆ ℝ)
360358feq2d 6675 . . . . 5 (𝜑 → (𝐹:dom 𝐹⟶ℝ ↔ 𝐹:ℝ⟶ℝ))
3611, 360mpbird 257 . . . 4 (𝜑𝐹:dom 𝐹⟶ℝ)
362359sselda 3949 . . . . . . 7 ((𝜑𝑡 ∈ dom 𝐹) → 𝑡 ∈ ℝ)
363362adantr 480 . . . . . 6 (((𝜑𝑡 ∈ dom 𝐹) ∧ 𝑘 ∈ ℤ) → 𝑡 ∈ ℝ)
364171adantl 481 . . . . . . 7 (((𝜑𝑡 ∈ dom 𝐹) ∧ 𝑘 ∈ ℤ) → 𝑘 ∈ ℝ)
365177adantlr 715 . . . . . . 7 (((𝜑𝑡 ∈ dom 𝐹) ∧ 𝑘 ∈ ℤ) → 𝑇 ∈ ℝ)
366364, 365remulcld 11211 . . . . . 6 (((𝜑𝑡 ∈ dom 𝐹) ∧ 𝑘 ∈ ℤ) → (𝑘 · 𝑇) ∈ ℝ)
367363, 366readdcld 11210 . . . . 5 (((𝜑𝑡 ∈ dom 𝐹) ∧ 𝑘 ∈ ℤ) → (𝑡 + (𝑘 · 𝑇)) ∈ ℝ)
368358eqcomd 2736 . . . . . 6 (𝜑 → ℝ = dom 𝐹)
369368ad2antrr 726 . . . . 5 (((𝜑𝑡 ∈ dom 𝐹) ∧ 𝑘 ∈ ℤ) → ℝ = dom 𝐹)
370367, 369eleqtrd 2831 . . . 4 (((𝜑𝑡 ∈ dom 𝐹) ∧ 𝑘 ∈ ℤ) → (𝑡 + (𝑘 · 𝑇)) ∈ dom 𝐹)
371 id 22 . . . . . 6 ((𝜑𝑘 ∈ ℤ) → (𝜑𝑘 ∈ ℤ))
372371adantlr 715 . . . . 5 (((𝜑𝑡 ∈ dom 𝐹) ∧ 𝑘 ∈ ℤ) → (𝜑𝑘 ∈ ℤ))
373372, 363, 184syl2anc 584 . . . 4 (((𝜑𝑡 ∈ dom 𝐹) ∧ 𝑘 ∈ ℤ) → (𝐹‘(𝑡 + (𝑘 · 𝑇))) = (𝐹𝑡))
374359, 361, 61, 62, 161, 71, 24, 77, 162, 85, 140, 222, 224, 370, 373, 194, 195fourierdlem71 46182 . . 3 (𝜑 → ∃𝑢 ∈ ℝ ∀𝑡 ∈ dom 𝐹(abs‘(𝐹𝑡)) ≤ 𝑢)
375358raleqdv 3301 . . . 4 (𝜑 → (∀𝑡 ∈ dom 𝐹(abs‘(𝐹𝑡)) ≤ 𝑢 ↔ ∀𝑡 ∈ ℝ (abs‘(𝐹𝑡)) ≤ 𝑢))
376375rexbidv 3158 . . 3 (𝜑 → (∃𝑢 ∈ ℝ ∀𝑡 ∈ dom 𝐹(abs‘(𝐹𝑡)) ≤ 𝑢 ↔ ∃𝑢 ∈ ℝ ∀𝑡 ∈ ℝ (abs‘(𝐹𝑡)) ≤ 𝑢))
377374, 376mpbid 232 . 2 (𝜑 → ∃𝑢 ∈ ℝ ∀𝑡 ∈ ℝ (abs‘(𝐹𝑡)) ≤ 𝑢)
3781, 22, 23, 24, 25, 32, 57, 58, 110, 69, 111, 140, 222, 224, 134, 300, 336, 337, 338, 339, 340, 355, 356, 377, 196, 58fourierdlem112 46223 1 (𝜑 → (seq1( + , 𝑆) ⇝ (((𝐿 + 𝑅) / 2) − ((𝐴‘0) / 2)) ∧ (((𝐴‘0) / 2) + Σ𝑛 ∈ ℕ (((𝐴𝑛) · (cos‘(𝑛 · 𝑋))) + ((𝐵𝑛) · (sin‘(𝑛 · 𝑋))))) = ((𝐿 + 𝑅) / 2)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2926  wral 3045  wrex 3054  {crab 3408  cun 3915  cin 3916  wss 3917  c0 4299  ifcif 4491  {cpr 4594   class class class wbr 5110  cmpt 5191  dom cdm 5641  ran crn 5642  cres 5643  Rel wrel 5646  cio 6465  Fun wfun 6508  wf 6510  cfv 6514   Isom wiso 6515  (class class class)co 7390  m cmap 8802  Fincfn 8921  cc 11073  cr 11074  0cc0 11075  1c1 11076   + caddc 11078   · cmul 11080  +∞cpnf 11212  -∞cmnf 11213  *cxr 11214   < clt 11215  cle 11216  cmin 11412  -cneg 11413   / cdiv 11842  cn 12193  2c2 12248  0cn0 12449  cz 12536  cuz 12800  (,)cioo 13313  (,]cioc 13314  [,)cico 13315  [,]cicc 13316  ...cfz 13475  ..^cfzo 13622  cfl 13759   mod cmo 13838  seqcseq 13973  chash 14302  abscabs 15207  cli 15457  Σcsu 15659  sincsin 16036  cosccos 16037  πcpi 16039  TopOpenctopn 17391  topGenctg 17407  fldccnfld 21271  Topctop 22787  intcnt 22911  limPtclp 23028  cnccncf 24776  citg 25526   lim climc 25770   D cdv 25771
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-inf2 9601  ax-cc 10395  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152  ax-pre-sup 11153  ax-addf 11154
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-symdif 4219  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-tp 4597  df-op 4599  df-uni 4875  df-int 4914  df-iun 4960  df-iin 4961  df-disj 5078  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-se 5595  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-isom 6523  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-of 7656  df-ofr 7657  df-om 7846  df-1st 7971  df-2nd 7972  df-supp 8143  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-2o 8438  df-oadd 8441  df-omul 8442  df-er 8674  df-map 8804  df-pm 8805  df-ixp 8874  df-en 8922  df-dom 8923  df-sdom 8924  df-fin 8925  df-fsupp 9320  df-fi 9369  df-sup 9400  df-inf 9401  df-oi 9470  df-dju 9861  df-card 9899  df-acn 9902  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-div 11843  df-nn 12194  df-2 12256  df-3 12257  df-4 12258  df-5 12259  df-6 12260  df-7 12261  df-8 12262  df-9 12263  df-n0 12450  df-xnn0 12523  df-z 12537  df-dec 12657  df-uz 12801  df-q 12915  df-rp 12959  df-xneg 13079  df-xadd 13080  df-xmul 13081  df-ioo 13317  df-ioc 13318  df-ico 13319  df-icc 13320  df-fz 13476  df-fzo 13623  df-fl 13761  df-mod 13839  df-seq 13974  df-exp 14034  df-fac 14246  df-bc 14275  df-hash 14303  df-shft 15040  df-cj 15072  df-re 15073  df-im 15074  df-sqrt 15208  df-abs 15209  df-limsup 15444  df-clim 15461  df-rlim 15462  df-sum 15660  df-ef 16040  df-sin 16042  df-cos 16043  df-pi 16045  df-struct 17124  df-sets 17141  df-slot 17159  df-ndx 17171  df-base 17187  df-ress 17208  df-plusg 17240  df-mulr 17241  df-starv 17242  df-sca 17243  df-vsca 17244  df-ip 17245  df-tset 17246  df-ple 17247  df-ds 17249  df-unif 17250  df-hom 17251  df-cco 17252  df-rest 17392  df-topn 17393  df-0g 17411  df-gsum 17412  df-topgen 17413  df-pt 17414  df-prds 17417  df-xrs 17472  df-qtop 17477  df-imas 17478  df-xps 17480  df-mre 17554  df-mrc 17555  df-acs 17557  df-mgm 18574  df-sgrp 18653  df-mnd 18669  df-submnd 18718  df-mulg 19007  df-cntz 19256  df-cmn 19719  df-psmet 21263  df-xmet 21264  df-met 21265  df-bl 21266  df-mopn 21267  df-fbas 21268  df-fg 21269  df-cnfld 21272  df-top 22788  df-topon 22805  df-topsp 22827  df-bases 22840  df-cld 22913  df-ntr 22914  df-cls 22915  df-nei 22992  df-lp 23030  df-perf 23031  df-cn 23121  df-cnp 23122  df-t1 23208  df-haus 23209  df-cmp 23281  df-tx 23456  df-hmeo 23649  df-fil 23740  df-fm 23832  df-flim 23833  df-flf 23834  df-xms 24215  df-ms 24216  df-tms 24217  df-cncf 24778  df-ovol 25372  df-vol 25373  df-mbf 25527  df-itg1 25528  df-itg2 25529  df-ibl 25530  df-itg 25531  df-0p 25578  df-ditg 25755  df-limc 25774  df-dv 25775
This theorem is referenced by:  fourierdlem114  46225
  Copyright terms: Public domain W3C validator