Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fourierdlem113 Structured version   Visualization version   GIF version

Theorem fourierdlem113 46257
Description: Fourier series convergence for periodic, piecewise smooth functions. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
fourierdlem113.f (𝜑𝐹:ℝ⟶ℝ)
fourierdlem113.t 𝑇 = (2 · π)
fourierdlem113.per ((𝜑𝑥 ∈ ℝ) → (𝐹‘(𝑥 + 𝑇)) = (𝐹𝑥))
fourierdlem113.x (𝜑𝑋 ∈ ℝ)
fourierdlem113.l (𝜑𝐿 ∈ ((𝐹 ↾ (-∞(,)𝑋)) lim 𝑋))
fourierdlem113.r (𝜑𝑅 ∈ ((𝐹 ↾ (𝑋(,)+∞)) lim 𝑋))
fourierdlem113.p 𝑃 = (𝑛 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑m (0...𝑛)) ∣ (((𝑝‘0) = -π ∧ (𝑝𝑛) = π) ∧ ∀𝑖 ∈ (0..^𝑛)(𝑝𝑖) < (𝑝‘(𝑖 + 1)))})
fourierdlem113.m (𝜑𝑀 ∈ ℕ)
fourierdlem113.q (𝜑𝑄 ∈ (𝑃𝑀))
fourierdlem113.dvcn ((𝜑𝑖 ∈ (0..^𝑀)) → ((ℝ D 𝐹) ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) ∈ (((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))–cn→ℂ))
fourierdlem113.dvlb ((𝜑𝑖 ∈ (0..^𝑀)) → (((ℝ D 𝐹) ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) lim (𝑄𝑖)) ≠ ∅)
fourierdlem113.dvub ((𝜑𝑖 ∈ (0..^𝑀)) → (((ℝ D 𝐹) ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) lim (𝑄‘(𝑖 + 1))) ≠ ∅)
fourierdlem113.a 𝐴 = (𝑛 ∈ ℕ0 ↦ (∫(-π(,)π)((𝐹𝑥) · (cos‘(𝑛 · 𝑥))) d𝑥 / π))
fourierdlem113.b 𝐵 = (𝑛 ∈ ℕ ↦ (∫(-π(,)π)((𝐹𝑥) · (sin‘(𝑛 · 𝑥))) d𝑥 / π))
fourierdlem113.15 𝑆 = (𝑛 ∈ ℕ ↦ (((𝐴𝑛) · (cos‘(𝑛 · 𝑋))) + ((𝐵𝑛) · (sin‘(𝑛 · 𝑋)))))
fourierdlem113.e 𝐸 = (𝑥 ∈ ℝ ↦ (𝑥 + ((⌊‘((π − 𝑥) / 𝑇)) · 𝑇)))
fourierdlem113.exq (𝜑 → (𝐸𝑋) ∈ ran 𝑄)
Assertion
Ref Expression
fourierdlem113 (𝜑 → (seq1( + , 𝑆) ⇝ (((𝐿 + 𝑅) / 2) − ((𝐴‘0) / 2)) ∧ (((𝐴‘0) / 2) + Σ𝑛 ∈ ℕ (((𝐴𝑛) · (cos‘(𝑛 · 𝑋))) + ((𝐵𝑛) · (sin‘(𝑛 · 𝑋))))) = ((𝐿 + 𝑅) / 2)))
Distinct variable groups:   𝐴,𝑛   𝐵,𝑛   𝑥,𝐸   𝑖,𝐹,𝑛,𝑥   𝑖,𝐿,𝑛   𝑖,𝑀,𝑥,𝑛   𝑀,𝑝,𝑖,𝑛   𝑄,𝑖,𝑥,𝑛   𝑄,𝑝   𝑅,𝑖,𝑛   𝑇,𝑖,𝑥,𝑛   𝑇,𝑝   𝑖,𝑋,𝑥,𝑛   𝑋,𝑝   𝜑,𝑖,𝑥,𝑛
Allowed substitution hints:   𝜑(𝑝)   𝐴(𝑥,𝑖,𝑝)   𝐵(𝑥,𝑖,𝑝)   𝑃(𝑥,𝑖,𝑛,𝑝)   𝑅(𝑥,𝑝)   𝑆(𝑥,𝑖,𝑛,𝑝)   𝐸(𝑖,𝑛,𝑝)   𝐹(𝑝)   𝐿(𝑥,𝑝)

Proof of Theorem fourierdlem113
Dummy variables 𝑗 𝑘 𝑚 𝑤 𝑦 𝑡 𝑢 𝑧 𝑓 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fourierdlem113.f . 2 (𝜑𝐹:ℝ⟶ℝ)
2 oveq1 7348 . . . . . . 7 (𝑤 = 𝑦 → (𝑤 mod (2 · π)) = (𝑦 mod (2 · π)))
32eqeq1d 2733 . . . . . 6 (𝑤 = 𝑦 → ((𝑤 mod (2 · π)) = 0 ↔ (𝑦 mod (2 · π)) = 0))
4 oveq2 7349 . . . . . . . 8 (𝑤 = 𝑦 → ((𝑘 + (1 / 2)) · 𝑤) = ((𝑘 + (1 / 2)) · 𝑦))
54fveq2d 6821 . . . . . . 7 (𝑤 = 𝑦 → (sin‘((𝑘 + (1 / 2)) · 𝑤)) = (sin‘((𝑘 + (1 / 2)) · 𝑦)))
6 oveq1 7348 . . . . . . . . 9 (𝑤 = 𝑦 → (𝑤 / 2) = (𝑦 / 2))
76fveq2d 6821 . . . . . . . 8 (𝑤 = 𝑦 → (sin‘(𝑤 / 2)) = (sin‘(𝑦 / 2)))
87oveq2d 7357 . . . . . . 7 (𝑤 = 𝑦 → ((2 · π) · (sin‘(𝑤 / 2))) = ((2 · π) · (sin‘(𝑦 / 2))))
95, 8oveq12d 7359 . . . . . 6 (𝑤 = 𝑦 → ((sin‘((𝑘 + (1 / 2)) · 𝑤)) / ((2 · π) · (sin‘(𝑤 / 2)))) = ((sin‘((𝑘 + (1 / 2)) · 𝑦)) / ((2 · π) · (sin‘(𝑦 / 2)))))
103, 9ifbieq2d 4497 . . . . 5 (𝑤 = 𝑦 → if((𝑤 mod (2 · π)) = 0, (((2 · 𝑘) + 1) / (2 · π)), ((sin‘((𝑘 + (1 / 2)) · 𝑤)) / ((2 · π) · (sin‘(𝑤 / 2))))) = if((𝑦 mod (2 · π)) = 0, (((2 · 𝑘) + 1) / (2 · π)), ((sin‘((𝑘 + (1 / 2)) · 𝑦)) / ((2 · π) · (sin‘(𝑦 / 2))))))
1110cbvmptv 5190 . . . 4 (𝑤 ∈ ℝ ↦ if((𝑤 mod (2 · π)) = 0, (((2 · 𝑘) + 1) / (2 · π)), ((sin‘((𝑘 + (1 / 2)) · 𝑤)) / ((2 · π) · (sin‘(𝑤 / 2)))))) = (𝑦 ∈ ℝ ↦ if((𝑦 mod (2 · π)) = 0, (((2 · 𝑘) + 1) / (2 · π)), ((sin‘((𝑘 + (1 / 2)) · 𝑦)) / ((2 · π) · (sin‘(𝑦 / 2))))))
12 oveq2 7349 . . . . . . . 8 (𝑘 = 𝑚 → (2 · 𝑘) = (2 · 𝑚))
1312oveq1d 7356 . . . . . . 7 (𝑘 = 𝑚 → ((2 · 𝑘) + 1) = ((2 · 𝑚) + 1))
1413oveq1d 7356 . . . . . 6 (𝑘 = 𝑚 → (((2 · 𝑘) + 1) / (2 · π)) = (((2 · 𝑚) + 1) / (2 · π)))
15 oveq1 7348 . . . . . . . . 9 (𝑘 = 𝑚 → (𝑘 + (1 / 2)) = (𝑚 + (1 / 2)))
1615oveq1d 7356 . . . . . . . 8 (𝑘 = 𝑚 → ((𝑘 + (1 / 2)) · 𝑦) = ((𝑚 + (1 / 2)) · 𝑦))
1716fveq2d 6821 . . . . . . 7 (𝑘 = 𝑚 → (sin‘((𝑘 + (1 / 2)) · 𝑦)) = (sin‘((𝑚 + (1 / 2)) · 𝑦)))
1817oveq1d 7356 . . . . . 6 (𝑘 = 𝑚 → ((sin‘((𝑘 + (1 / 2)) · 𝑦)) / ((2 · π) · (sin‘(𝑦 / 2)))) = ((sin‘((𝑚 + (1 / 2)) · 𝑦)) / ((2 · π) · (sin‘(𝑦 / 2)))))
1914, 18ifeq12d 4492 . . . . 5 (𝑘 = 𝑚 → if((𝑦 mod (2 · π)) = 0, (((2 · 𝑘) + 1) / (2 · π)), ((sin‘((𝑘 + (1 / 2)) · 𝑦)) / ((2 · π) · (sin‘(𝑦 / 2))))) = if((𝑦 mod (2 · π)) = 0, (((2 · 𝑚) + 1) / (2 · π)), ((sin‘((𝑚 + (1 / 2)) · 𝑦)) / ((2 · π) · (sin‘(𝑦 / 2))))))
2019mpteq2dv 5180 . . . 4 (𝑘 = 𝑚 → (𝑦 ∈ ℝ ↦ if((𝑦 mod (2 · π)) = 0, (((2 · 𝑘) + 1) / (2 · π)), ((sin‘((𝑘 + (1 / 2)) · 𝑦)) / ((2 · π) · (sin‘(𝑦 / 2)))))) = (𝑦 ∈ ℝ ↦ if((𝑦 mod (2 · π)) = 0, (((2 · 𝑚) + 1) / (2 · π)), ((sin‘((𝑚 + (1 / 2)) · 𝑦)) / ((2 · π) · (sin‘(𝑦 / 2)))))))
2111, 20eqtrid 2778 . . 3 (𝑘 = 𝑚 → (𝑤 ∈ ℝ ↦ if((𝑤 mod (2 · π)) = 0, (((2 · 𝑘) + 1) / (2 · π)), ((sin‘((𝑘 + (1 / 2)) · 𝑤)) / ((2 · π) · (sin‘(𝑤 / 2)))))) = (𝑦 ∈ ℝ ↦ if((𝑦 mod (2 · π)) = 0, (((2 · 𝑚) + 1) / (2 · π)), ((sin‘((𝑚 + (1 / 2)) · 𝑦)) / ((2 · π) · (sin‘(𝑦 / 2)))))))
2221cbvmptv 5190 . 2 (𝑘 ∈ ℕ ↦ (𝑤 ∈ ℝ ↦ if((𝑤 mod (2 · π)) = 0, (((2 · 𝑘) + 1) / (2 · π)), ((sin‘((𝑘 + (1 / 2)) · 𝑤)) / ((2 · π) · (sin‘(𝑤 / 2))))))) = (𝑚 ∈ ℕ ↦ (𝑦 ∈ ℝ ↦ if((𝑦 mod (2 · π)) = 0, (((2 · 𝑚) + 1) / (2 · π)), ((sin‘((𝑚 + (1 / 2)) · 𝑦)) / ((2 · π) · (sin‘(𝑦 / 2)))))))
23 fourierdlem113.p . 2 𝑃 = (𝑛 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑m (0...𝑛)) ∣ (((𝑝‘0) = -π ∧ (𝑝𝑛) = π) ∧ ∀𝑖 ∈ (0..^𝑛)(𝑝𝑖) < (𝑝‘(𝑖 + 1)))})
24 fourierdlem113.m . 2 (𝜑𝑀 ∈ ℕ)
25 fourierdlem113.q . 2 (𝜑𝑄 ∈ (𝑃𝑀))
26 oveq1 7348 . . . . . . . 8 (𝑤 = 𝑦 → (𝑤 + (𝑗 · 𝑇)) = (𝑦 + (𝑗 · 𝑇)))
2726eleq1d 2816 . . . . . . 7 (𝑤 = 𝑦 → ((𝑤 + (𝑗 · 𝑇)) ∈ ran 𝑄 ↔ (𝑦 + (𝑗 · 𝑇)) ∈ ran 𝑄))
2827rexbidv 3156 . . . . . 6 (𝑤 = 𝑦 → (∃𝑗 ∈ ℤ (𝑤 + (𝑗 · 𝑇)) ∈ ran 𝑄 ↔ ∃𝑗 ∈ ℤ (𝑦 + (𝑗 · 𝑇)) ∈ ran 𝑄))
2928cbvrabv 3405 . . . . 5 {𝑤 ∈ ((-π + 𝑋)[,](π + 𝑋)) ∣ ∃𝑗 ∈ ℤ (𝑤 + (𝑗 · 𝑇)) ∈ ran 𝑄} = {𝑦 ∈ ((-π + 𝑋)[,](π + 𝑋)) ∣ ∃𝑗 ∈ ℤ (𝑦 + (𝑗 · 𝑇)) ∈ ran 𝑄}
3029uneq2i 4110 . . . 4 ({(-π + 𝑋), (π + 𝑋)} ∪ {𝑤 ∈ ((-π + 𝑋)[,](π + 𝑋)) ∣ ∃𝑗 ∈ ℤ (𝑤 + (𝑗 · 𝑇)) ∈ ran 𝑄}) = ({(-π + 𝑋), (π + 𝑋)} ∪ {𝑦 ∈ ((-π + 𝑋)[,](π + 𝑋)) ∣ ∃𝑗 ∈ ℤ (𝑦 + (𝑗 · 𝑇)) ∈ ran 𝑄})
3130fveq2i 6820 . . 3 (♯‘({(-π + 𝑋), (π + 𝑋)} ∪ {𝑤 ∈ ((-π + 𝑋)[,](π + 𝑋)) ∣ ∃𝑗 ∈ ℤ (𝑤 + (𝑗 · 𝑇)) ∈ ran 𝑄})) = (♯‘({(-π + 𝑋), (π + 𝑋)} ∪ {𝑦 ∈ ((-π + 𝑋)[,](π + 𝑋)) ∣ ∃𝑗 ∈ ℤ (𝑦 + (𝑗 · 𝑇)) ∈ ran 𝑄}))
3231oveq1i 7351 . 2 ((♯‘({(-π + 𝑋), (π + 𝑋)} ∪ {𝑤 ∈ ((-π + 𝑋)[,](π + 𝑋)) ∣ ∃𝑗 ∈ ℤ (𝑤 + (𝑗 · 𝑇)) ∈ ran 𝑄})) − 1) = ((♯‘({(-π + 𝑋), (π + 𝑋)} ∪ {𝑦 ∈ ((-π + 𝑋)[,](π + 𝑋)) ∣ ∃𝑗 ∈ ℤ (𝑦 + (𝑗 · 𝑇)) ∈ ran 𝑄})) − 1)
33 oveq1 7348 . . . . . . . . . . . 12 (𝑘 = 𝑗 → (𝑘 · 𝑇) = (𝑗 · 𝑇))
3433oveq2d 7357 . . . . . . . . . . 11 (𝑘 = 𝑗 → (𝑦 + (𝑘 · 𝑇)) = (𝑦 + (𝑗 · 𝑇)))
3534eleq1d 2816 . . . . . . . . . 10 (𝑘 = 𝑗 → ((𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄 ↔ (𝑦 + (𝑗 · 𝑇)) ∈ ran 𝑄))
3635cbvrexvw 3211 . . . . . . . . 9 (∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄 ↔ ∃𝑗 ∈ ℤ (𝑦 + (𝑗 · 𝑇)) ∈ ran 𝑄)
3736a1i 11 . . . . . . . 8 (𝑦 ∈ ((-π + 𝑋)[,](π + 𝑋)) → (∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄 ↔ ∃𝑗 ∈ ℤ (𝑦 + (𝑗 · 𝑇)) ∈ ran 𝑄))
3837rabbiia 3399 . . . . . . 7 {𝑦 ∈ ((-π + 𝑋)[,](π + 𝑋)) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄} = {𝑦 ∈ ((-π + 𝑋)[,](π + 𝑋)) ∣ ∃𝑗 ∈ ℤ (𝑦 + (𝑗 · 𝑇)) ∈ ran 𝑄}
3938uneq2i 4110 . . . . . 6 ({(-π + 𝑋), (π + 𝑋)} ∪ {𝑦 ∈ ((-π + 𝑋)[,](π + 𝑋)) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄}) = ({(-π + 𝑋), (π + 𝑋)} ∪ {𝑦 ∈ ((-π + 𝑋)[,](π + 𝑋)) ∣ ∃𝑗 ∈ ℤ (𝑦 + (𝑗 · 𝑇)) ∈ ran 𝑄})
40 isoeq5 7250 . . . . . 6 (({(-π + 𝑋), (π + 𝑋)} ∪ {𝑦 ∈ ((-π + 𝑋)[,](π + 𝑋)) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄}) = ({(-π + 𝑋), (π + 𝑋)} ∪ {𝑦 ∈ ((-π + 𝑋)[,](π + 𝑋)) ∣ ∃𝑗 ∈ ℤ (𝑦 + (𝑗 · 𝑇)) ∈ ran 𝑄}) → (𝑔 Isom < , < ((0...((♯‘({(-π + 𝑋), (π + 𝑋)} ∪ {𝑤 ∈ ((-π + 𝑋)[,](π + 𝑋)) ∣ ∃𝑘 ∈ ℤ (𝑤 + (𝑘 · 𝑇)) ∈ ran 𝑄})) − 1)), ({(-π + 𝑋), (π + 𝑋)} ∪ {𝑦 ∈ ((-π + 𝑋)[,](π + 𝑋)) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄})) ↔ 𝑔 Isom < , < ((0...((♯‘({(-π + 𝑋), (π + 𝑋)} ∪ {𝑤 ∈ ((-π + 𝑋)[,](π + 𝑋)) ∣ ∃𝑘 ∈ ℤ (𝑤 + (𝑘 · 𝑇)) ∈ ran 𝑄})) − 1)), ({(-π + 𝑋), (π + 𝑋)} ∪ {𝑦 ∈ ((-π + 𝑋)[,](π + 𝑋)) ∣ ∃𝑗 ∈ ℤ (𝑦 + (𝑗 · 𝑇)) ∈ ran 𝑄}))))
4139, 40ax-mp 5 . . . . 5 (𝑔 Isom < , < ((0...((♯‘({(-π + 𝑋), (π + 𝑋)} ∪ {𝑤 ∈ ((-π + 𝑋)[,](π + 𝑋)) ∣ ∃𝑘 ∈ ℤ (𝑤 + (𝑘 · 𝑇)) ∈ ran 𝑄})) − 1)), ({(-π + 𝑋), (π + 𝑋)} ∪ {𝑦 ∈ ((-π + 𝑋)[,](π + 𝑋)) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄})) ↔ 𝑔 Isom < , < ((0...((♯‘({(-π + 𝑋), (π + 𝑋)} ∪ {𝑤 ∈ ((-π + 𝑋)[,](π + 𝑋)) ∣ ∃𝑘 ∈ ℤ (𝑤 + (𝑘 · 𝑇)) ∈ ran 𝑄})) − 1)), ({(-π + 𝑋), (π + 𝑋)} ∪ {𝑦 ∈ ((-π + 𝑋)[,](π + 𝑋)) ∣ ∃𝑗 ∈ ℤ (𝑦 + (𝑗 · 𝑇)) ∈ ran 𝑄})))
4241a1i 11 . . . 4 (𝑔 = 𝑓 → (𝑔 Isom < , < ((0...((♯‘({(-π + 𝑋), (π + 𝑋)} ∪ {𝑤 ∈ ((-π + 𝑋)[,](π + 𝑋)) ∣ ∃𝑘 ∈ ℤ (𝑤 + (𝑘 · 𝑇)) ∈ ran 𝑄})) − 1)), ({(-π + 𝑋), (π + 𝑋)} ∪ {𝑦 ∈ ((-π + 𝑋)[,](π + 𝑋)) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄})) ↔ 𝑔 Isom < , < ((0...((♯‘({(-π + 𝑋), (π + 𝑋)} ∪ {𝑤 ∈ ((-π + 𝑋)[,](π + 𝑋)) ∣ ∃𝑘 ∈ ℤ (𝑤 + (𝑘 · 𝑇)) ∈ ran 𝑄})) − 1)), ({(-π + 𝑋), (π + 𝑋)} ∪ {𝑦 ∈ ((-π + 𝑋)[,](π + 𝑋)) ∣ ∃𝑗 ∈ ℤ (𝑦 + (𝑗 · 𝑇)) ∈ ran 𝑄}))))
4333oveq2d 7357 . . . . . . . . . . . . . 14 (𝑘 = 𝑗 → (𝑤 + (𝑘 · 𝑇)) = (𝑤 + (𝑗 · 𝑇)))
4443eleq1d 2816 . . . . . . . . . . . . 13 (𝑘 = 𝑗 → ((𝑤 + (𝑘 · 𝑇)) ∈ ran 𝑄 ↔ (𝑤 + (𝑗 · 𝑇)) ∈ ran 𝑄))
4544cbvrexvw 3211 . . . . . . . . . . . 12 (∃𝑘 ∈ ℤ (𝑤 + (𝑘 · 𝑇)) ∈ ran 𝑄 ↔ ∃𝑗 ∈ ℤ (𝑤 + (𝑗 · 𝑇)) ∈ ran 𝑄)
4645a1i 11 . . . . . . . . . . 11 (𝑤 ∈ ((-π + 𝑋)[,](π + 𝑋)) → (∃𝑘 ∈ ℤ (𝑤 + (𝑘 · 𝑇)) ∈ ran 𝑄 ↔ ∃𝑗 ∈ ℤ (𝑤 + (𝑗 · 𝑇)) ∈ ran 𝑄))
4746rabbiia 3399 . . . . . . . . . 10 {𝑤 ∈ ((-π + 𝑋)[,](π + 𝑋)) ∣ ∃𝑘 ∈ ℤ (𝑤 + (𝑘 · 𝑇)) ∈ ran 𝑄} = {𝑤 ∈ ((-π + 𝑋)[,](π + 𝑋)) ∣ ∃𝑗 ∈ ℤ (𝑤 + (𝑗 · 𝑇)) ∈ ran 𝑄}
4847uneq2i 4110 . . . . . . . . 9 ({(-π + 𝑋), (π + 𝑋)} ∪ {𝑤 ∈ ((-π + 𝑋)[,](π + 𝑋)) ∣ ∃𝑘 ∈ ℤ (𝑤 + (𝑘 · 𝑇)) ∈ ran 𝑄}) = ({(-π + 𝑋), (π + 𝑋)} ∪ {𝑤 ∈ ((-π + 𝑋)[,](π + 𝑋)) ∣ ∃𝑗 ∈ ℤ (𝑤 + (𝑗 · 𝑇)) ∈ ran 𝑄})
4948fveq2i 6820 . . . . . . . 8 (♯‘({(-π + 𝑋), (π + 𝑋)} ∪ {𝑤 ∈ ((-π + 𝑋)[,](π + 𝑋)) ∣ ∃𝑘 ∈ ℤ (𝑤 + (𝑘 · 𝑇)) ∈ ran 𝑄})) = (♯‘({(-π + 𝑋), (π + 𝑋)} ∪ {𝑤 ∈ ((-π + 𝑋)[,](π + 𝑋)) ∣ ∃𝑗 ∈ ℤ (𝑤 + (𝑗 · 𝑇)) ∈ ran 𝑄}))
5049oveq1i 7351 . . . . . . 7 ((♯‘({(-π + 𝑋), (π + 𝑋)} ∪ {𝑤 ∈ ((-π + 𝑋)[,](π + 𝑋)) ∣ ∃𝑘 ∈ ℤ (𝑤 + (𝑘 · 𝑇)) ∈ ran 𝑄})) − 1) = ((♯‘({(-π + 𝑋), (π + 𝑋)} ∪ {𝑤 ∈ ((-π + 𝑋)[,](π + 𝑋)) ∣ ∃𝑗 ∈ ℤ (𝑤 + (𝑗 · 𝑇)) ∈ ran 𝑄})) − 1)
5150oveq2i 7352 . . . . . 6 (0...((♯‘({(-π + 𝑋), (π + 𝑋)} ∪ {𝑤 ∈ ((-π + 𝑋)[,](π + 𝑋)) ∣ ∃𝑘 ∈ ℤ (𝑤 + (𝑘 · 𝑇)) ∈ ran 𝑄})) − 1)) = (0...((♯‘({(-π + 𝑋), (π + 𝑋)} ∪ {𝑤 ∈ ((-π + 𝑋)[,](π + 𝑋)) ∣ ∃𝑗 ∈ ℤ (𝑤 + (𝑗 · 𝑇)) ∈ ran 𝑄})) − 1))
52 isoeq4 7249 . . . . . 6 ((0...((♯‘({(-π + 𝑋), (π + 𝑋)} ∪ {𝑤 ∈ ((-π + 𝑋)[,](π + 𝑋)) ∣ ∃𝑘 ∈ ℤ (𝑤 + (𝑘 · 𝑇)) ∈ ran 𝑄})) − 1)) = (0...((♯‘({(-π + 𝑋), (π + 𝑋)} ∪ {𝑤 ∈ ((-π + 𝑋)[,](π + 𝑋)) ∣ ∃𝑗 ∈ ℤ (𝑤 + (𝑗 · 𝑇)) ∈ ran 𝑄})) − 1)) → (𝑔 Isom < , < ((0...((♯‘({(-π + 𝑋), (π + 𝑋)} ∪ {𝑤 ∈ ((-π + 𝑋)[,](π + 𝑋)) ∣ ∃𝑘 ∈ ℤ (𝑤 + (𝑘 · 𝑇)) ∈ ran 𝑄})) − 1)), ({(-π + 𝑋), (π + 𝑋)} ∪ {𝑦 ∈ ((-π + 𝑋)[,](π + 𝑋)) ∣ ∃𝑗 ∈ ℤ (𝑦 + (𝑗 · 𝑇)) ∈ ran 𝑄})) ↔ 𝑔 Isom < , < ((0...((♯‘({(-π + 𝑋), (π + 𝑋)} ∪ {𝑤 ∈ ((-π + 𝑋)[,](π + 𝑋)) ∣ ∃𝑗 ∈ ℤ (𝑤 + (𝑗 · 𝑇)) ∈ ran 𝑄})) − 1)), ({(-π + 𝑋), (π + 𝑋)} ∪ {𝑦 ∈ ((-π + 𝑋)[,](π + 𝑋)) ∣ ∃𝑗 ∈ ℤ (𝑦 + (𝑗 · 𝑇)) ∈ ran 𝑄}))))
5351, 52ax-mp 5 . . . . 5 (𝑔 Isom < , < ((0...((♯‘({(-π + 𝑋), (π + 𝑋)} ∪ {𝑤 ∈ ((-π + 𝑋)[,](π + 𝑋)) ∣ ∃𝑘 ∈ ℤ (𝑤 + (𝑘 · 𝑇)) ∈ ran 𝑄})) − 1)), ({(-π + 𝑋), (π + 𝑋)} ∪ {𝑦 ∈ ((-π + 𝑋)[,](π + 𝑋)) ∣ ∃𝑗 ∈ ℤ (𝑦 + (𝑗 · 𝑇)) ∈ ran 𝑄})) ↔ 𝑔 Isom < , < ((0...((♯‘({(-π + 𝑋), (π + 𝑋)} ∪ {𝑤 ∈ ((-π + 𝑋)[,](π + 𝑋)) ∣ ∃𝑗 ∈ ℤ (𝑤 + (𝑗 · 𝑇)) ∈ ran 𝑄})) − 1)), ({(-π + 𝑋), (π + 𝑋)} ∪ {𝑦 ∈ ((-π + 𝑋)[,](π + 𝑋)) ∣ ∃𝑗 ∈ ℤ (𝑦 + (𝑗 · 𝑇)) ∈ ran 𝑄})))
5453a1i 11 . . . 4 (𝑔 = 𝑓 → (𝑔 Isom < , < ((0...((♯‘({(-π + 𝑋), (π + 𝑋)} ∪ {𝑤 ∈ ((-π + 𝑋)[,](π + 𝑋)) ∣ ∃𝑘 ∈ ℤ (𝑤 + (𝑘 · 𝑇)) ∈ ran 𝑄})) − 1)), ({(-π + 𝑋), (π + 𝑋)} ∪ {𝑦 ∈ ((-π + 𝑋)[,](π + 𝑋)) ∣ ∃𝑗 ∈ ℤ (𝑦 + (𝑗 · 𝑇)) ∈ ran 𝑄})) ↔ 𝑔 Isom < , < ((0...((♯‘({(-π + 𝑋), (π + 𝑋)} ∪ {𝑤 ∈ ((-π + 𝑋)[,](π + 𝑋)) ∣ ∃𝑗 ∈ ℤ (𝑤 + (𝑗 · 𝑇)) ∈ ran 𝑄})) − 1)), ({(-π + 𝑋), (π + 𝑋)} ∪ {𝑦 ∈ ((-π + 𝑋)[,](π + 𝑋)) ∣ ∃𝑗 ∈ ℤ (𝑦 + (𝑗 · 𝑇)) ∈ ran 𝑄}))))
55 isoeq1 7246 . . . 4 (𝑔 = 𝑓 → (𝑔 Isom < , < ((0...((♯‘({(-π + 𝑋), (π + 𝑋)} ∪ {𝑤 ∈ ((-π + 𝑋)[,](π + 𝑋)) ∣ ∃𝑗 ∈ ℤ (𝑤 + (𝑗 · 𝑇)) ∈ ran 𝑄})) − 1)), ({(-π + 𝑋), (π + 𝑋)} ∪ {𝑦 ∈ ((-π + 𝑋)[,](π + 𝑋)) ∣ ∃𝑗 ∈ ℤ (𝑦 + (𝑗 · 𝑇)) ∈ ran 𝑄})) ↔ 𝑓 Isom < , < ((0...((♯‘({(-π + 𝑋), (π + 𝑋)} ∪ {𝑤 ∈ ((-π + 𝑋)[,](π + 𝑋)) ∣ ∃𝑗 ∈ ℤ (𝑤 + (𝑗 · 𝑇)) ∈ ran 𝑄})) − 1)), ({(-π + 𝑋), (π + 𝑋)} ∪ {𝑦 ∈ ((-π + 𝑋)[,](π + 𝑋)) ∣ ∃𝑗 ∈ ℤ (𝑦 + (𝑗 · 𝑇)) ∈ ran 𝑄}))))
5642, 54, 553bitrd 305 . . 3 (𝑔 = 𝑓 → (𝑔 Isom < , < ((0...((♯‘({(-π + 𝑋), (π + 𝑋)} ∪ {𝑤 ∈ ((-π + 𝑋)[,](π + 𝑋)) ∣ ∃𝑘 ∈ ℤ (𝑤 + (𝑘 · 𝑇)) ∈ ran 𝑄})) − 1)), ({(-π + 𝑋), (π + 𝑋)} ∪ {𝑦 ∈ ((-π + 𝑋)[,](π + 𝑋)) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄})) ↔ 𝑓 Isom < , < ((0...((♯‘({(-π + 𝑋), (π + 𝑋)} ∪ {𝑤 ∈ ((-π + 𝑋)[,](π + 𝑋)) ∣ ∃𝑗 ∈ ℤ (𝑤 + (𝑗 · 𝑇)) ∈ ran 𝑄})) − 1)), ({(-π + 𝑋), (π + 𝑋)} ∪ {𝑦 ∈ ((-π + 𝑋)[,](π + 𝑋)) ∣ ∃𝑗 ∈ ℤ (𝑦 + (𝑗 · 𝑇)) ∈ ran 𝑄}))))
5756cbviotavw 6440 . 2 (℩𝑔𝑔 Isom < , < ((0...((♯‘({(-π + 𝑋), (π + 𝑋)} ∪ {𝑤 ∈ ((-π + 𝑋)[,](π + 𝑋)) ∣ ∃𝑘 ∈ ℤ (𝑤 + (𝑘 · 𝑇)) ∈ ran 𝑄})) − 1)), ({(-π + 𝑋), (π + 𝑋)} ∪ {𝑦 ∈ ((-π + 𝑋)[,](π + 𝑋)) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄}))) = (℩𝑓𝑓 Isom < , < ((0...((♯‘({(-π + 𝑋), (π + 𝑋)} ∪ {𝑤 ∈ ((-π + 𝑋)[,](π + 𝑋)) ∣ ∃𝑗 ∈ ℤ (𝑤 + (𝑗 · 𝑇)) ∈ ran 𝑄})) − 1)), ({(-π + 𝑋), (π + 𝑋)} ∪ {𝑦 ∈ ((-π + 𝑋)[,](π + 𝑋)) ∣ ∃𝑗 ∈ ℤ (𝑦 + (𝑗 · 𝑇)) ∈ ran 𝑄})))
58 fourierdlem113.x . 2 (𝜑𝑋 ∈ ℝ)
59 pire 26388 . . . . 5 π ∈ ℝ
6059renegcli 11417 . . . 4 -π ∈ ℝ
6160a1i 11 . . 3 (𝜑 → -π ∈ ℝ)
6259a1i 11 . . 3 (𝜑 → π ∈ ℝ)
63 negpilt0 45322 . . . 4 -π < 0
6463a1i 11 . . 3 (𝜑 → -π < 0)
65 pipos 26390 . . . 4 0 < π
6665a1i 11 . . 3 (𝜑 → 0 < π)
67 picn 26389 . . . . 5 π ∈ ℂ
68672timesi 12253 . . . 4 (2 · π) = (π + π)
69 fourierdlem113.t . . . 4 𝑇 = (2 · π)
7067, 67subnegi 11435 . . . 4 (π − -π) = (π + π)
7168, 69, 703eqtr4i 2764 . . 3 𝑇 = (π − -π)
7223fourierdlem2 46147 . . . . . . . 8 (𝑀 ∈ ℕ → (𝑄 ∈ (𝑃𝑀) ↔ (𝑄 ∈ (ℝ ↑m (0...𝑀)) ∧ (((𝑄‘0) = -π ∧ (𝑄𝑀) = π) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑄𝑖) < (𝑄‘(𝑖 + 1))))))
7324, 72syl 17 . . . . . . 7 (𝜑 → (𝑄 ∈ (𝑃𝑀) ↔ (𝑄 ∈ (ℝ ↑m (0...𝑀)) ∧ (((𝑄‘0) = -π ∧ (𝑄𝑀) = π) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑄𝑖) < (𝑄‘(𝑖 + 1))))))
7425, 73mpbid 232 . . . . . 6 (𝜑 → (𝑄 ∈ (ℝ ↑m (0...𝑀)) ∧ (((𝑄‘0) = -π ∧ (𝑄𝑀) = π) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑄𝑖) < (𝑄‘(𝑖 + 1)))))
7574simpld 494 . . . . 5 (𝜑𝑄 ∈ (ℝ ↑m (0...𝑀)))
76 elmapi 8768 . . . . 5 (𝑄 ∈ (ℝ ↑m (0...𝑀)) → 𝑄:(0...𝑀)⟶ℝ)
7775, 76syl 17 . . . 4 (𝜑𝑄:(0...𝑀)⟶ℝ)
78 fzfid 13875 . . . 4 (𝜑 → (0...𝑀) ∈ Fin)
79 rnffi 45212 . . . 4 ((𝑄:(0...𝑀)⟶ℝ ∧ (0...𝑀) ∈ Fin) → ran 𝑄 ∈ Fin)
8077, 78, 79syl2anc 584 . . 3 (𝜑 → ran 𝑄 ∈ Fin)
8123, 24, 25fourierdlem15 46160 . . . 4 (𝜑𝑄:(0...𝑀)⟶(-π[,]π))
82 frn 6653 . . . 4 (𝑄:(0...𝑀)⟶(-π[,]π) → ran 𝑄 ⊆ (-π[,]π))
8381, 82syl 17 . . 3 (𝜑 → ran 𝑄 ⊆ (-π[,]π))
8474simprd 495 . . . . 5 (𝜑 → (((𝑄‘0) = -π ∧ (𝑄𝑀) = π) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑄𝑖) < (𝑄‘(𝑖 + 1))))
8584simplrd 769 . . . 4 (𝜑 → (𝑄𝑀) = π)
86 ffun 6649 . . . . . 6 (𝑄:(0...𝑀)⟶(-π[,]π) → Fun 𝑄)
8781, 86syl 17 . . . . 5 (𝜑 → Fun 𝑄)
8824nnnn0d 12437 . . . . . . . 8 (𝜑𝑀 ∈ ℕ0)
89 nn0uz 12769 . . . . . . . 8 0 = (ℤ‘0)
9088, 89eleqtrdi 2841 . . . . . . 7 (𝜑𝑀 ∈ (ℤ‘0))
91 eluzfz2 13427 . . . . . . 7 (𝑀 ∈ (ℤ‘0) → 𝑀 ∈ (0...𝑀))
9290, 91syl 17 . . . . . 6 (𝜑𝑀 ∈ (0...𝑀))
93 fdm 6655 . . . . . . . 8 (𝑄:(0...𝑀)⟶(-π[,]π) → dom 𝑄 = (0...𝑀))
9481, 93syl 17 . . . . . . 7 (𝜑 → dom 𝑄 = (0...𝑀))
9594eqcomd 2737 . . . . . 6 (𝜑 → (0...𝑀) = dom 𝑄)
9692, 95eleqtrd 2833 . . . . 5 (𝜑𝑀 ∈ dom 𝑄)
97 fvelrn 7004 . . . . 5 ((Fun 𝑄𝑀 ∈ dom 𝑄) → (𝑄𝑀) ∈ ran 𝑄)
9887, 96, 97syl2anc 584 . . . 4 (𝜑 → (𝑄𝑀) ∈ ran 𝑄)
9985, 98eqeltrrd 2832 . . 3 (𝜑 → π ∈ ran 𝑄)
100 fourierdlem113.e . . 3 𝐸 = (𝑥 ∈ ℝ ↦ (𝑥 + ((⌊‘((π − 𝑥) / 𝑇)) · 𝑇)))
101 fourierdlem113.exq . . 3 (𝜑 → (𝐸𝑋) ∈ ran 𝑄)
102 eqid 2731 . . 3 ({(-π + 𝑋), (π + 𝑋)} ∪ {𝑤 ∈ ((-π + 𝑋)[,](π + 𝑋)) ∣ ∃𝑘 ∈ ℤ (𝑤 + (𝑘 · 𝑇)) ∈ ran 𝑄}) = ({(-π + 𝑋), (π + 𝑋)} ∪ {𝑤 ∈ ((-π + 𝑋)[,](π + 𝑋)) ∣ ∃𝑘 ∈ ℤ (𝑤 + (𝑘 · 𝑇)) ∈ ran 𝑄})
103 isoeq1 7246 . . . . 5 (𝑔 = 𝑓 → (𝑔 Isom < , < ((0...((♯‘({(-π + 𝑋), (π + 𝑋)} ∪ {𝑤 ∈ ((-π + 𝑋)[,](π + 𝑋)) ∣ ∃𝑘 ∈ ℤ (𝑤 + (𝑘 · 𝑇)) ∈ ran 𝑄})) − 1)), ({(-π + 𝑋), (π + 𝑋)} ∪ {𝑦 ∈ ((-π + 𝑋)[,](π + 𝑋)) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄})) ↔ 𝑓 Isom < , < ((0...((♯‘({(-π + 𝑋), (π + 𝑋)} ∪ {𝑤 ∈ ((-π + 𝑋)[,](π + 𝑋)) ∣ ∃𝑘 ∈ ℤ (𝑤 + (𝑘 · 𝑇)) ∈ ran 𝑄})) − 1)), ({(-π + 𝑋), (π + 𝑋)} ∪ {𝑦 ∈ ((-π + 𝑋)[,](π + 𝑋)) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄}))))
10430, 48, 393eqtr4ri 2765 . . . . . 6 ({(-π + 𝑋), (π + 𝑋)} ∪ {𝑦 ∈ ((-π + 𝑋)[,](π + 𝑋)) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄}) = ({(-π + 𝑋), (π + 𝑋)} ∪ {𝑤 ∈ ((-π + 𝑋)[,](π + 𝑋)) ∣ ∃𝑘 ∈ ℤ (𝑤 + (𝑘 · 𝑇)) ∈ ran 𝑄})
105 isoeq5 7250 . . . . . 6 (({(-π + 𝑋), (π + 𝑋)} ∪ {𝑦 ∈ ((-π + 𝑋)[,](π + 𝑋)) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄}) = ({(-π + 𝑋), (π + 𝑋)} ∪ {𝑤 ∈ ((-π + 𝑋)[,](π + 𝑋)) ∣ ∃𝑘 ∈ ℤ (𝑤 + (𝑘 · 𝑇)) ∈ ran 𝑄}) → (𝑓 Isom < , < ((0...((♯‘({(-π + 𝑋), (π + 𝑋)} ∪ {𝑤 ∈ ((-π + 𝑋)[,](π + 𝑋)) ∣ ∃𝑘 ∈ ℤ (𝑤 + (𝑘 · 𝑇)) ∈ ran 𝑄})) − 1)), ({(-π + 𝑋), (π + 𝑋)} ∪ {𝑦 ∈ ((-π + 𝑋)[,](π + 𝑋)) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄})) ↔ 𝑓 Isom < , < ((0...((♯‘({(-π + 𝑋), (π + 𝑋)} ∪ {𝑤 ∈ ((-π + 𝑋)[,](π + 𝑋)) ∣ ∃𝑘 ∈ ℤ (𝑤 + (𝑘 · 𝑇)) ∈ ran 𝑄})) − 1)), ({(-π + 𝑋), (π + 𝑋)} ∪ {𝑤 ∈ ((-π + 𝑋)[,](π + 𝑋)) ∣ ∃𝑘 ∈ ℤ (𝑤 + (𝑘 · 𝑇)) ∈ ran 𝑄}))))
106104, 105ax-mp 5 . . . . 5 (𝑓 Isom < , < ((0...((♯‘({(-π + 𝑋), (π + 𝑋)} ∪ {𝑤 ∈ ((-π + 𝑋)[,](π + 𝑋)) ∣ ∃𝑘 ∈ ℤ (𝑤 + (𝑘 · 𝑇)) ∈ ran 𝑄})) − 1)), ({(-π + 𝑋), (π + 𝑋)} ∪ {𝑦 ∈ ((-π + 𝑋)[,](π + 𝑋)) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄})) ↔ 𝑓 Isom < , < ((0...((♯‘({(-π + 𝑋), (π + 𝑋)} ∪ {𝑤 ∈ ((-π + 𝑋)[,](π + 𝑋)) ∣ ∃𝑘 ∈ ℤ (𝑤 + (𝑘 · 𝑇)) ∈ ran 𝑄})) − 1)), ({(-π + 𝑋), (π + 𝑋)} ∪ {𝑤 ∈ ((-π + 𝑋)[,](π + 𝑋)) ∣ ∃𝑘 ∈ ℤ (𝑤 + (𝑘 · 𝑇)) ∈ ran 𝑄})))
107103, 106bitrdi 287 . . . 4 (𝑔 = 𝑓 → (𝑔 Isom < , < ((0...((♯‘({(-π + 𝑋), (π + 𝑋)} ∪ {𝑤 ∈ ((-π + 𝑋)[,](π + 𝑋)) ∣ ∃𝑘 ∈ ℤ (𝑤 + (𝑘 · 𝑇)) ∈ ran 𝑄})) − 1)), ({(-π + 𝑋), (π + 𝑋)} ∪ {𝑦 ∈ ((-π + 𝑋)[,](π + 𝑋)) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄})) ↔ 𝑓 Isom < , < ((0...((♯‘({(-π + 𝑋), (π + 𝑋)} ∪ {𝑤 ∈ ((-π + 𝑋)[,](π + 𝑋)) ∣ ∃𝑘 ∈ ℤ (𝑤 + (𝑘 · 𝑇)) ∈ ran 𝑄})) − 1)), ({(-π + 𝑋), (π + 𝑋)} ∪ {𝑤 ∈ ((-π + 𝑋)[,](π + 𝑋)) ∣ ∃𝑘 ∈ ℤ (𝑤 + (𝑘 · 𝑇)) ∈ ran 𝑄}))))
108107cbviotavw 6440 . . 3 (℩𝑔𝑔 Isom < , < ((0...((♯‘({(-π + 𝑋), (π + 𝑋)} ∪ {𝑤 ∈ ((-π + 𝑋)[,](π + 𝑋)) ∣ ∃𝑘 ∈ ℤ (𝑤 + (𝑘 · 𝑇)) ∈ ran 𝑄})) − 1)), ({(-π + 𝑋), (π + 𝑋)} ∪ {𝑦 ∈ ((-π + 𝑋)[,](π + 𝑋)) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄}))) = (℩𝑓𝑓 Isom < , < ((0...((♯‘({(-π + 𝑋), (π + 𝑋)} ∪ {𝑤 ∈ ((-π + 𝑋)[,](π + 𝑋)) ∣ ∃𝑘 ∈ ℤ (𝑤 + (𝑘 · 𝑇)) ∈ ran 𝑄})) − 1)), ({(-π + 𝑋), (π + 𝑋)} ∪ {𝑤 ∈ ((-π + 𝑋)[,](π + 𝑋)) ∣ ∃𝑘 ∈ ℤ (𝑤 + (𝑘 · 𝑇)) ∈ ran 𝑄})))
109 eqid 2731 . . 3 {𝑤 ∈ ((-π + 𝑋)(,](π + 𝑋)) ∣ ∃𝑘 ∈ ℤ (𝑤 + (𝑘 · 𝑇)) ∈ ran 𝑄} = {𝑤 ∈ ((-π + 𝑋)(,](π + 𝑋)) ∣ ∃𝑘 ∈ ℤ (𝑤 + (𝑘 · 𝑇)) ∈ ran 𝑄}
11061, 62, 64, 66, 71, 80, 83, 99, 100, 58, 101, 102, 108, 109fourierdlem51 46195 . 2 (𝜑𝑋 ∈ ran (℩𝑔𝑔 Isom < , < ((0...((♯‘({(-π + 𝑋), (π + 𝑋)} ∪ {𝑤 ∈ ((-π + 𝑋)[,](π + 𝑋)) ∣ ∃𝑘 ∈ ℤ (𝑤 + (𝑘 · 𝑇)) ∈ ran 𝑄})) − 1)), ({(-π + 𝑋), (π + 𝑋)} ∪ {𝑦 ∈ ((-π + 𝑋)[,](π + 𝑋)) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄}))))
111 fourierdlem113.per . 2 ((𝜑𝑥 ∈ ℝ) → (𝐹‘(𝑥 + 𝑇)) = (𝐹𝑥))
112 ax-resscn 11058 . . . 4 ℝ ⊆ ℂ
113112a1i 11 . . 3 ((𝜑𝑖 ∈ (0..^𝑀)) → ℝ ⊆ ℂ)
114 ioossre 13302 . . . . . . 7 ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ⊆ ℝ
115114a1i 11 . . . . . 6 (𝜑 → ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ⊆ ℝ)
1161, 115fssresd 6685 . . . . 5 (𝜑 → (𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))):((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))⟶ℝ)
117112a1i 11 . . . . 5 (𝜑 → ℝ ⊆ ℂ)
118116, 117fssd 6663 . . . 4 (𝜑 → (𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))):((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))⟶ℂ)
119118adantr 480 . . 3 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))):((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))⟶ℂ)
120114a1i 11 . . 3 ((𝜑𝑖 ∈ (0..^𝑀)) → ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ⊆ ℝ)
1211, 117fssd 6663 . . . . . . 7 (𝜑𝐹:ℝ⟶ℂ)
122121adantr 480 . . . . . 6 ((𝜑𝑖 ∈ (0..^𝑀)) → 𝐹:ℝ⟶ℂ)
123 ssid 3952 . . . . . . 7 ℝ ⊆ ℝ
124123a1i 11 . . . . . 6 ((𝜑𝑖 ∈ (0..^𝑀)) → ℝ ⊆ ℝ)
125 eqid 2731 . . . . . . 7 (TopOpen‘ℂfld) = (TopOpen‘ℂfld)
126 tgioo4 24715 . . . . . . 7 (topGen‘ran (,)) = ((TopOpen‘ℂfld) ↾t ℝ)
127125, 126dvres 25834 . . . . . 6 (((ℝ ⊆ ℂ ∧ 𝐹:ℝ⟶ℂ) ∧ (ℝ ⊆ ℝ ∧ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ⊆ ℝ)) → (ℝ D (𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))) = ((ℝ D 𝐹) ↾ ((int‘(topGen‘ran (,)))‘((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))))
128113, 122, 124, 120, 127syl22anc 838 . . . . 5 ((𝜑𝑖 ∈ (0..^𝑀)) → (ℝ D (𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))) = ((ℝ D 𝐹) ↾ ((int‘(topGen‘ran (,)))‘((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))))
129128dmeqd 5840 . . . 4 ((𝜑𝑖 ∈ (0..^𝑀)) → dom (ℝ D (𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))) = dom ((ℝ D 𝐹) ↾ ((int‘(topGen‘ran (,)))‘((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))))
130 ioontr 45551 . . . . . . 7 ((int‘(topGen‘ran (,)))‘((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) = ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))
131130reseq2i 5920 . . . . . 6 ((ℝ D 𝐹) ↾ ((int‘(topGen‘ran (,)))‘((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))) = ((ℝ D 𝐹) ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))
132131dmeqi 5839 . . . . 5 dom ((ℝ D 𝐹) ↾ ((int‘(topGen‘ran (,)))‘((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))) = dom ((ℝ D 𝐹) ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))
133132a1i 11 . . . 4 ((𝜑𝑖 ∈ (0..^𝑀)) → dom ((ℝ D 𝐹) ↾ ((int‘(topGen‘ran (,)))‘((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))) = dom ((ℝ D 𝐹) ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))))
134 fourierdlem113.dvcn . . . . 5 ((𝜑𝑖 ∈ (0..^𝑀)) → ((ℝ D 𝐹) ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) ∈ (((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))–cn→ℂ))
135 cncff 24808 . . . . 5 (((ℝ D 𝐹) ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) ∈ (((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))–cn→ℂ) → ((ℝ D 𝐹) ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))):((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))⟶ℂ)
136 fdm 6655 . . . . 5 (((ℝ D 𝐹) ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))):((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))⟶ℂ → dom ((ℝ D 𝐹) ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) = ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))
137134, 135, 1363syl 18 . . . 4 ((𝜑𝑖 ∈ (0..^𝑀)) → dom ((ℝ D 𝐹) ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) = ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))
138129, 133, 1373eqtrd 2770 . . 3 ((𝜑𝑖 ∈ (0..^𝑀)) → dom (ℝ D (𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))) = ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))
139 dvcn 25845 . . 3 (((ℝ ⊆ ℂ ∧ (𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))):((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))⟶ℂ ∧ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ⊆ ℝ) ∧ dom (ℝ D (𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))) = ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → (𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) ∈ (((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))–cn→ℂ))
140113, 119, 120, 138, 139syl31anc 1375 . 2 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) ∈ (((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))–cn→ℂ))
141120, 113sstrd 3940 . . 3 ((𝜑𝑖 ∈ (0..^𝑀)) → ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ⊆ ℂ)
14277adantr 480 . . . . . 6 ((𝜑𝑖 ∈ (0..^𝑀)) → 𝑄:(0...𝑀)⟶ℝ)
143 fzofzp1 13659 . . . . . . 7 (𝑖 ∈ (0..^𝑀) → (𝑖 + 1) ∈ (0...𝑀))
144143adantl 481 . . . . . 6 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑖 + 1) ∈ (0...𝑀))
145142, 144ffvelcdmd 7013 . . . . 5 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑄‘(𝑖 + 1)) ∈ ℝ)
146145rexrd 11157 . . . 4 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑄‘(𝑖 + 1)) ∈ ℝ*)
147 elfzofz 13570 . . . . . 6 (𝑖 ∈ (0..^𝑀) → 𝑖 ∈ (0...𝑀))
148147adantl 481 . . . . 5 ((𝜑𝑖 ∈ (0..^𝑀)) → 𝑖 ∈ (0...𝑀))
149142, 148ffvelcdmd 7013 . . . 4 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑄𝑖) ∈ ℝ)
15074simprrd 773 . . . . 5 (𝜑 → ∀𝑖 ∈ (0..^𝑀)(𝑄𝑖) < (𝑄‘(𝑖 + 1)))
151150r19.21bi 3224 . . . 4 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑄𝑖) < (𝑄‘(𝑖 + 1)))
152125, 146, 149, 151lptioo1cn 45684 . . 3 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑄𝑖) ∈ ((limPt‘(TopOpen‘ℂfld))‘((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))))
153116adantr 480 . . . 4 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))):((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))⟶ℝ)
154123a1i 11 . . . . . . . 8 (𝜑 → ℝ ⊆ ℝ)
155117, 121, 154dvbss 25824 . . . . . . 7 (𝜑 → dom (ℝ D 𝐹) ⊆ ℝ)
156 dvfre 25877 . . . . . . . 8 ((𝐹:ℝ⟶ℝ ∧ ℝ ⊆ ℝ) → (ℝ D 𝐹):dom (ℝ D 𝐹)⟶ℝ)
1571, 154, 156syl2anc 584 . . . . . . 7 (𝜑 → (ℝ D 𝐹):dom (ℝ D 𝐹)⟶ℝ)
158 0re 11109 . . . . . . . . . 10 0 ∈ ℝ
15960, 158, 59lttri 11234 . . . . . . . . 9 ((-π < 0 ∧ 0 < π) → -π < π)
16063, 65, 159mp2an 692 . . . . . . . 8 -π < π
161160a1i 11 . . . . . . 7 (𝜑 → -π < π)
16284simplld 767 . . . . . . 7 (𝜑 → (𝑄‘0) = -π)
163134, 135syl 17 . . . . . . . 8 ((𝜑𝑖 ∈ (0..^𝑀)) → ((ℝ D 𝐹) ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))):((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))⟶ℂ)
164 fourierdlem113.dvlb . . . . . . . 8 ((𝜑𝑖 ∈ (0..^𝑀)) → (((ℝ D 𝐹) ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) lim (𝑄𝑖)) ≠ ∅)
165163, 141, 152, 164, 125ellimciota 45654 . . . . . . 7 ((𝜑𝑖 ∈ (0..^𝑀)) → (℩𝑥𝑥 ∈ (((ℝ D 𝐹) ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) lim (𝑄𝑖))) ∈ (((ℝ D 𝐹) ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) lim (𝑄𝑖)))
166149rexrd 11157 . . . . . . . . 9 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑄𝑖) ∈ ℝ*)
167125, 166, 145, 151lptioo2cn 45683 . . . . . . . 8 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑄‘(𝑖 + 1)) ∈ ((limPt‘(TopOpen‘ℂfld))‘((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))))
168 fourierdlem113.dvub . . . . . . . 8 ((𝜑𝑖 ∈ (0..^𝑀)) → (((ℝ D 𝐹) ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) lim (𝑄‘(𝑖 + 1))) ≠ ∅)
169163, 141, 167, 168, 125ellimciota 45654 . . . . . . 7 ((𝜑𝑖 ∈ (0..^𝑀)) → (℩𝑥𝑥 ∈ (((ℝ D 𝐹) ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) lim (𝑄‘(𝑖 + 1)))) ∈ (((ℝ D 𝐹) ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) lim (𝑄‘(𝑖 + 1))))
170121adantr 480 . . . . . . . . . 10 ((𝜑𝑘 ∈ ℤ) → 𝐹:ℝ⟶ℂ)
171 zre 12467 . . . . . . . . . . . 12 (𝑘 ∈ ℤ → 𝑘 ∈ ℝ)
172171adantl 481 . . . . . . . . . . 11 ((𝜑𝑘 ∈ ℤ) → 𝑘 ∈ ℝ)
173 2re 12194 . . . . . . . . . . . . . . 15 2 ∈ ℝ
174173, 59remulcli 11123 . . . . . . . . . . . . . 14 (2 · π) ∈ ℝ
175174a1i 11 . . . . . . . . . . . . 13 (𝜑 → (2 · π) ∈ ℝ)
17669, 175eqeltrid 2835 . . . . . . . . . . . 12 (𝜑𝑇 ∈ ℝ)
177176adantr 480 . . . . . . . . . . 11 ((𝜑𝑘 ∈ ℤ) → 𝑇 ∈ ℝ)
178172, 177remulcld 11137 . . . . . . . . . 10 ((𝜑𝑘 ∈ ℤ) → (𝑘 · 𝑇) ∈ ℝ)
179170adantr 480 . . . . . . . . . . 11 (((𝜑𝑘 ∈ ℤ) ∧ 𝑡 ∈ ℝ) → 𝐹:ℝ⟶ℂ)
180177adantr 480 . . . . . . . . . . 11 (((𝜑𝑘 ∈ ℤ) ∧ 𝑡 ∈ ℝ) → 𝑇 ∈ ℝ)
181 simplr 768 . . . . . . . . . . 11 (((𝜑𝑘 ∈ ℤ) ∧ 𝑡 ∈ ℝ) → 𝑘 ∈ ℤ)
182 simpr 484 . . . . . . . . . . 11 (((𝜑𝑘 ∈ ℤ) ∧ 𝑡 ∈ ℝ) → 𝑡 ∈ ℝ)
183111ad4ant14 752 . . . . . . . . . . 11 ((((𝜑𝑘 ∈ ℤ) ∧ 𝑡 ∈ ℝ) ∧ 𝑥 ∈ ℝ) → (𝐹‘(𝑥 + 𝑇)) = (𝐹𝑥))
184179, 180, 181, 182, 183fperiodmul 45345 . . . . . . . . . 10 (((𝜑𝑘 ∈ ℤ) ∧ 𝑡 ∈ ℝ) → (𝐹‘(𝑡 + (𝑘 · 𝑇))) = (𝐹𝑡))
185 eqid 2731 . . . . . . . . . 10 (ℝ D 𝐹) = (ℝ D 𝐹)
186170, 178, 184, 185fperdvper 45957 . . . . . . . . 9 (((𝜑𝑘 ∈ ℤ) ∧ 𝑡 ∈ dom (ℝ D 𝐹)) → ((𝑡 + (𝑘 · 𝑇)) ∈ dom (ℝ D 𝐹) ∧ ((ℝ D 𝐹)‘(𝑡 + (𝑘 · 𝑇))) = ((ℝ D 𝐹)‘𝑡)))
187186an32s 652 . . . . . . . 8 (((𝜑𝑡 ∈ dom (ℝ D 𝐹)) ∧ 𝑘 ∈ ℤ) → ((𝑡 + (𝑘 · 𝑇)) ∈ dom (ℝ D 𝐹) ∧ ((ℝ D 𝐹)‘(𝑡 + (𝑘 · 𝑇))) = ((ℝ D 𝐹)‘𝑡)))
188187simpld 494 . . . . . . 7 (((𝜑𝑡 ∈ dom (ℝ D 𝐹)) ∧ 𝑘 ∈ ℤ) → (𝑡 + (𝑘 · 𝑇)) ∈ dom (ℝ D 𝐹))
189187simprd 495 . . . . . . 7 (((𝜑𝑡 ∈ dom (ℝ D 𝐹)) ∧ 𝑘 ∈ ℤ) → ((ℝ D 𝐹)‘(𝑡 + (𝑘 · 𝑇))) = ((ℝ D 𝐹)‘𝑡))
190 fveq2 6817 . . . . . . . . 9 (𝑗 = 𝑖 → (𝑄𝑗) = (𝑄𝑖))
191 oveq1 7348 . . . . . . . . . 10 (𝑗 = 𝑖 → (𝑗 + 1) = (𝑖 + 1))
192191fveq2d 6821 . . . . . . . . 9 (𝑗 = 𝑖 → (𝑄‘(𝑗 + 1)) = (𝑄‘(𝑖 + 1)))
193190, 192oveq12d 7359 . . . . . . . 8 (𝑗 = 𝑖 → ((𝑄𝑗)(,)(𝑄‘(𝑗 + 1))) = ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))
194193cbvmptv 5190 . . . . . . 7 (𝑗 ∈ (0..^𝑀) ↦ ((𝑄𝑗)(,)(𝑄‘(𝑗 + 1)))) = (𝑖 ∈ (0..^𝑀) ↦ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))
195 eqid 2731 . . . . . . 7 (𝑡 ∈ ℝ ↦ (𝑡 + ((⌊‘((π − 𝑡) / 𝑇)) · 𝑇))) = (𝑡 ∈ ℝ ↦ (𝑡 + ((⌊‘((π − 𝑡) / 𝑇)) · 𝑇)))
196155, 157, 61, 62, 161, 71, 24, 77, 162, 85, 134, 165, 169, 188, 189, 194, 195fourierdlem71 46215 . . . . . 6 (𝜑 → ∃𝑧 ∈ ℝ ∀𝑡 ∈ dom (ℝ D 𝐹)(abs‘((ℝ D 𝐹)‘𝑡)) ≤ 𝑧)
197196adantr 480 . . . . 5 ((𝜑𝑖 ∈ (0..^𝑀)) → ∃𝑧 ∈ ℝ ∀𝑡 ∈ dom (ℝ D 𝐹)(abs‘((ℝ D 𝐹)‘𝑡)) ≤ 𝑧)
198 nfv 1915 . . . . . . . . 9 𝑡(𝜑𝑖 ∈ (0..^𝑀))
199 nfra1 3256 . . . . . . . . 9 𝑡𝑡 ∈ dom (ℝ D 𝐹)(abs‘((ℝ D 𝐹)‘𝑡)) ≤ 𝑧
200198, 199nfan 1900 . . . . . . . 8 𝑡((𝜑𝑖 ∈ (0..^𝑀)) ∧ ∀𝑡 ∈ dom (ℝ D 𝐹)(abs‘((ℝ D 𝐹)‘𝑡)) ≤ 𝑧)
201128, 131eqtrdi 2782 . . . . . . . . . . . . . 14 ((𝜑𝑖 ∈ (0..^𝑀)) → (ℝ D (𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))) = ((ℝ D 𝐹) ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))))
202201fveq1d 6819 . . . . . . . . . . . . 13 ((𝜑𝑖 ∈ (0..^𝑀)) → ((ℝ D (𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))))‘𝑡) = (((ℝ D 𝐹) ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))‘𝑡))
203 fvres 6836 . . . . . . . . . . . . 13 (𝑡 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) → (((ℝ D 𝐹) ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))‘𝑡) = ((ℝ D 𝐹)‘𝑡))
204202, 203sylan9eq 2786 . . . . . . . . . . . 12 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑡 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → ((ℝ D (𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))))‘𝑡) = ((ℝ D 𝐹)‘𝑡))
205204fveq2d 6821 . . . . . . . . . . 11 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑡 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → (abs‘((ℝ D (𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))))‘𝑡)) = (abs‘((ℝ D 𝐹)‘𝑡)))
206205adantlr 715 . . . . . . . . . 10 ((((𝜑𝑖 ∈ (0..^𝑀)) ∧ ∀𝑡 ∈ dom (ℝ D 𝐹)(abs‘((ℝ D 𝐹)‘𝑡)) ≤ 𝑧) ∧ 𝑡 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → (abs‘((ℝ D (𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))))‘𝑡)) = (abs‘((ℝ D 𝐹)‘𝑡)))
207 simplr 768 . . . . . . . . . . 11 ((((𝜑𝑖 ∈ (0..^𝑀)) ∧ ∀𝑡 ∈ dom (ℝ D 𝐹)(abs‘((ℝ D 𝐹)‘𝑡)) ≤ 𝑧) ∧ 𝑡 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → ∀𝑡 ∈ dom (ℝ D 𝐹)(abs‘((ℝ D 𝐹)‘𝑡)) ≤ 𝑧)
208 ssdmres 5957 . . . . . . . . . . . . . 14 (((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ⊆ dom (ℝ D 𝐹) ↔ dom ((ℝ D 𝐹) ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) = ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))
209137, 208sylibr 234 . . . . . . . . . . . . 13 ((𝜑𝑖 ∈ (0..^𝑀)) → ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ⊆ dom (ℝ D 𝐹))
210209ad2antrr 726 . . . . . . . . . . . 12 ((((𝜑𝑖 ∈ (0..^𝑀)) ∧ ∀𝑡 ∈ dom (ℝ D 𝐹)(abs‘((ℝ D 𝐹)‘𝑡)) ≤ 𝑧) ∧ 𝑡 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ⊆ dom (ℝ D 𝐹))
211 simpr 484 . . . . . . . . . . . 12 ((((𝜑𝑖 ∈ (0..^𝑀)) ∧ ∀𝑡 ∈ dom (ℝ D 𝐹)(abs‘((ℝ D 𝐹)‘𝑡)) ≤ 𝑧) ∧ 𝑡 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → 𝑡 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))
212210, 211sseldd 3930 . . . . . . . . . . 11 ((((𝜑𝑖 ∈ (0..^𝑀)) ∧ ∀𝑡 ∈ dom (ℝ D 𝐹)(abs‘((ℝ D 𝐹)‘𝑡)) ≤ 𝑧) ∧ 𝑡 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → 𝑡 ∈ dom (ℝ D 𝐹))
213 rspa 3221 . . . . . . . . . . 11 ((∀𝑡 ∈ dom (ℝ D 𝐹)(abs‘((ℝ D 𝐹)‘𝑡)) ≤ 𝑧𝑡 ∈ dom (ℝ D 𝐹)) → (abs‘((ℝ D 𝐹)‘𝑡)) ≤ 𝑧)
214207, 212, 213syl2anc 584 . . . . . . . . . 10 ((((𝜑𝑖 ∈ (0..^𝑀)) ∧ ∀𝑡 ∈ dom (ℝ D 𝐹)(abs‘((ℝ D 𝐹)‘𝑡)) ≤ 𝑧) ∧ 𝑡 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → (abs‘((ℝ D 𝐹)‘𝑡)) ≤ 𝑧)
215206, 214eqbrtrd 5108 . . . . . . . . 9 ((((𝜑𝑖 ∈ (0..^𝑀)) ∧ ∀𝑡 ∈ dom (ℝ D 𝐹)(abs‘((ℝ D 𝐹)‘𝑡)) ≤ 𝑧) ∧ 𝑡 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → (abs‘((ℝ D (𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))))‘𝑡)) ≤ 𝑧)
216215ex 412 . . . . . . . 8 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ ∀𝑡 ∈ dom (ℝ D 𝐹)(abs‘((ℝ D 𝐹)‘𝑡)) ≤ 𝑧) → (𝑡 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) → (abs‘((ℝ D (𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))))‘𝑡)) ≤ 𝑧))
217200, 216ralrimi 3230 . . . . . . 7 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ ∀𝑡 ∈ dom (ℝ D 𝐹)(abs‘((ℝ D 𝐹)‘𝑡)) ≤ 𝑧) → ∀𝑡 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))(abs‘((ℝ D (𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))))‘𝑡)) ≤ 𝑧)
218217ex 412 . . . . . 6 ((𝜑𝑖 ∈ (0..^𝑀)) → (∀𝑡 ∈ dom (ℝ D 𝐹)(abs‘((ℝ D 𝐹)‘𝑡)) ≤ 𝑧 → ∀𝑡 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))(abs‘((ℝ D (𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))))‘𝑡)) ≤ 𝑧))
219218reximdv 3147 . . . . 5 ((𝜑𝑖 ∈ (0..^𝑀)) → (∃𝑧 ∈ ℝ ∀𝑡 ∈ dom (ℝ D 𝐹)(abs‘((ℝ D 𝐹)‘𝑡)) ≤ 𝑧 → ∃𝑧 ∈ ℝ ∀𝑡 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))(abs‘((ℝ D (𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))))‘𝑡)) ≤ 𝑧))
220197, 219mpd 15 . . . 4 ((𝜑𝑖 ∈ (0..^𝑀)) → ∃𝑧 ∈ ℝ ∀𝑡 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))(abs‘((ℝ D (𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))))‘𝑡)) ≤ 𝑧)
221149, 145, 153, 138, 220ioodvbdlimc1 45971 . . 3 ((𝜑𝑖 ∈ (0..^𝑀)) → ((𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) lim (𝑄𝑖)) ≠ ∅)
222119, 141, 152, 221, 125ellimciota 45654 . 2 ((𝜑𝑖 ∈ (0..^𝑀)) → (℩𝑦𝑦 ∈ ((𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) lim (𝑄𝑖))) ∈ ((𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) lim (𝑄𝑖)))
223149, 145, 153, 138, 220ioodvbdlimc2 45973 . . 3 ((𝜑𝑖 ∈ (0..^𝑀)) → ((𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) lim (𝑄‘(𝑖 + 1))) ≠ ∅)
224119, 141, 167, 223, 125ellimciota 45654 . 2 ((𝜑𝑖 ∈ (0..^𝑀)) → (℩𝑦𝑦 ∈ ((𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) lim (𝑄‘(𝑖 + 1)))) ∈ ((𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) lim (𝑄‘(𝑖 + 1))))
225 frel 6651 . . . . . . 7 ((ℝ D 𝐹):dom (ℝ D 𝐹)⟶ℝ → Rel (ℝ D 𝐹))
226157, 225syl 17 . . . . . 6 (𝜑 → Rel (ℝ D 𝐹))
227 resindm 5974 . . . . . 6 (Rel (ℝ D 𝐹) → ((ℝ D 𝐹) ↾ ((-∞(,)𝑋) ∩ dom (ℝ D 𝐹))) = ((ℝ D 𝐹) ↾ (-∞(,)𝑋)))
228226, 227syl 17 . . . . 5 (𝜑 → ((ℝ D 𝐹) ↾ ((-∞(,)𝑋) ∩ dom (ℝ D 𝐹))) = ((ℝ D 𝐹) ↾ (-∞(,)𝑋)))
229 inss2 4183 . . . . . . 7 ((-∞(,)𝑋) ∩ dom (ℝ D 𝐹)) ⊆ dom (ℝ D 𝐹)
230229a1i 11 . . . . . 6 (𝜑 → ((-∞(,)𝑋) ∩ dom (ℝ D 𝐹)) ⊆ dom (ℝ D 𝐹))
231157, 230fssresd 6685 . . . . 5 (𝜑 → ((ℝ D 𝐹) ↾ ((-∞(,)𝑋) ∩ dom (ℝ D 𝐹))):((-∞(,)𝑋) ∩ dom (ℝ D 𝐹))⟶ℝ)
232228, 231feq1dd 6629 . . . 4 (𝜑 → ((ℝ D 𝐹) ↾ (-∞(,)𝑋)):((-∞(,)𝑋) ∩ dom (ℝ D 𝐹))⟶ℝ)
233232, 117fssd 6663 . . 3 (𝜑 → ((ℝ D 𝐹) ↾ (-∞(,)𝑋)):((-∞(,)𝑋) ∩ dom (ℝ D 𝐹))⟶ℂ)
234 ioosscn 13303 . . . . 5 (-∞(,)𝑋) ⊆ ℂ
235 ssinss1 4191 . . . . 5 ((-∞(,)𝑋) ⊆ ℂ → ((-∞(,)𝑋) ∩ dom (ℝ D 𝐹)) ⊆ ℂ)
236234, 235ax-mp 5 . . . 4 ((-∞(,)𝑋) ∩ dom (ℝ D 𝐹)) ⊆ ℂ
237236a1i 11 . . 3 (𝜑 → ((-∞(,)𝑋) ∩ dom (ℝ D 𝐹)) ⊆ ℂ)
238 3simpb 1149 . . . . . . . 8 ((𝜑𝑥 ∈ dom (ℝ D 𝐹) ∧ 𝑘 ∈ ℤ) → (𝜑𝑘 ∈ ℤ))
239 simp2 1137 . . . . . . . 8 ((𝜑𝑥 ∈ dom (ℝ D 𝐹) ∧ 𝑘 ∈ ℤ) → 𝑥 ∈ dom (ℝ D 𝐹))
240170adantr 480 . . . . . . . . . 10 (((𝜑𝑘 ∈ ℤ) ∧ 𝑥 ∈ ℝ) → 𝐹:ℝ⟶ℂ)
241177adantr 480 . . . . . . . . . 10 (((𝜑𝑘 ∈ ℤ) ∧ 𝑥 ∈ ℝ) → 𝑇 ∈ ℝ)
242 simplr 768 . . . . . . . . . 10 (((𝜑𝑘 ∈ ℤ) ∧ 𝑥 ∈ ℝ) → 𝑘 ∈ ℤ)
243 simpr 484 . . . . . . . . . 10 (((𝜑𝑘 ∈ ℤ) ∧ 𝑥 ∈ ℝ) → 𝑥 ∈ ℝ)
244 eleq1w 2814 . . . . . . . . . . . . . 14 (𝑥 = 𝑦 → (𝑥 ∈ ℝ ↔ 𝑦 ∈ ℝ))
245244anbi2d 630 . . . . . . . . . . . . 13 (𝑥 = 𝑦 → ((𝜑𝑥 ∈ ℝ) ↔ (𝜑𝑦 ∈ ℝ)))
246 oveq1 7348 . . . . . . . . . . . . . . 15 (𝑥 = 𝑦 → (𝑥 + 𝑇) = (𝑦 + 𝑇))
247246fveq2d 6821 . . . . . . . . . . . . . 14 (𝑥 = 𝑦 → (𝐹‘(𝑥 + 𝑇)) = (𝐹‘(𝑦 + 𝑇)))
248 fveq2 6817 . . . . . . . . . . . . . 14 (𝑥 = 𝑦 → (𝐹𝑥) = (𝐹𝑦))
249247, 248eqeq12d 2747 . . . . . . . . . . . . 13 (𝑥 = 𝑦 → ((𝐹‘(𝑥 + 𝑇)) = (𝐹𝑥) ↔ (𝐹‘(𝑦 + 𝑇)) = (𝐹𝑦)))
250245, 249imbi12d 344 . . . . . . . . . . . 12 (𝑥 = 𝑦 → (((𝜑𝑥 ∈ ℝ) → (𝐹‘(𝑥 + 𝑇)) = (𝐹𝑥)) ↔ ((𝜑𝑦 ∈ ℝ) → (𝐹‘(𝑦 + 𝑇)) = (𝐹𝑦))))
251250, 111chvarvv 1990 . . . . . . . . . . 11 ((𝜑𝑦 ∈ ℝ) → (𝐹‘(𝑦 + 𝑇)) = (𝐹𝑦))
252251ad4ant14 752 . . . . . . . . . 10 ((((𝜑𝑘 ∈ ℤ) ∧ 𝑥 ∈ ℝ) ∧ 𝑦 ∈ ℝ) → (𝐹‘(𝑦 + 𝑇)) = (𝐹𝑦))
253240, 241, 242, 243, 252fperiodmul 45345 . . . . . . . . 9 (((𝜑𝑘 ∈ ℤ) ∧ 𝑥 ∈ ℝ) → (𝐹‘(𝑥 + (𝑘 · 𝑇))) = (𝐹𝑥))
254170, 178, 253, 185fperdvper 45957 . . . . . . . 8 (((𝜑𝑘 ∈ ℤ) ∧ 𝑥 ∈ dom (ℝ D 𝐹)) → ((𝑥 + (𝑘 · 𝑇)) ∈ dom (ℝ D 𝐹) ∧ ((ℝ D 𝐹)‘(𝑥 + (𝑘 · 𝑇))) = ((ℝ D 𝐹)‘𝑥)))
255238, 239, 254syl2anc 584 . . . . . . 7 ((𝜑𝑥 ∈ dom (ℝ D 𝐹) ∧ 𝑘 ∈ ℤ) → ((𝑥 + (𝑘 · 𝑇)) ∈ dom (ℝ D 𝐹) ∧ ((ℝ D 𝐹)‘(𝑥 + (𝑘 · 𝑇))) = ((ℝ D 𝐹)‘𝑥)))
256255simpld 494 . . . . . 6 ((𝜑𝑥 ∈ dom (ℝ D 𝐹) ∧ 𝑘 ∈ ℤ) → (𝑥 + (𝑘 · 𝑇)) ∈ dom (ℝ D 𝐹))
257 oveq2 7349 . . . . . . . . . 10 (𝑤 = 𝑥 → (π − 𝑤) = (π − 𝑥))
258257oveq1d 7356 . . . . . . . . 9 (𝑤 = 𝑥 → ((π − 𝑤) / 𝑇) = ((π − 𝑥) / 𝑇))
259258fveq2d 6821 . . . . . . . 8 (𝑤 = 𝑥 → (⌊‘((π − 𝑤) / 𝑇)) = (⌊‘((π − 𝑥) / 𝑇)))
260259oveq1d 7356 . . . . . . 7 (𝑤 = 𝑥 → ((⌊‘((π − 𝑤) / 𝑇)) · 𝑇) = ((⌊‘((π − 𝑥) / 𝑇)) · 𝑇))
261260cbvmptv 5190 . . . . . 6 (𝑤 ∈ ℝ ↦ ((⌊‘((π − 𝑤) / 𝑇)) · 𝑇)) = (𝑥 ∈ ℝ ↦ ((⌊‘((π − 𝑥) / 𝑇)) · 𝑇))
262 eqid 2731 . . . . . 6 (𝑥 ∈ ℝ ↦ (𝑥 + ((𝑤 ∈ ℝ ↦ ((⌊‘((π − 𝑤) / 𝑇)) · 𝑇))‘𝑥))) = (𝑥 ∈ ℝ ↦ (𝑥 + ((𝑤 ∈ ℝ ↦ ((⌊‘((π − 𝑤) / 𝑇)) · 𝑇))‘𝑥)))
26361, 62, 161, 71, 256, 58, 261, 262, 23, 24, 25, 209fourierdlem41 46186 . . . . 5 (𝜑 → (∃𝑦 ∈ ℝ (𝑦 < 𝑋 ∧ (𝑦(,)𝑋) ⊆ dom (ℝ D 𝐹)) ∧ ∃𝑦 ∈ ℝ (𝑋 < 𝑦 ∧ (𝑋(,)𝑦) ⊆ dom (ℝ D 𝐹))))
264263simpld 494 . . . 4 (𝜑 → ∃𝑦 ∈ ℝ (𝑦 < 𝑋 ∧ (𝑦(,)𝑋) ⊆ dom (ℝ D 𝐹)))
265125cnfldtop 24693 . . . . . . . . 9 (TopOpen‘ℂfld) ∈ Top
266265a1i 11 . . . . . . . 8 ((𝜑𝑦 ∈ ℝ ∧ (𝑦(,)𝑋) ⊆ dom (ℝ D 𝐹)) → (TopOpen‘ℂfld) ∈ Top)
267236a1i 11 . . . . . . . 8 ((𝜑𝑦 ∈ ℝ ∧ (𝑦(,)𝑋) ⊆ dom (ℝ D 𝐹)) → ((-∞(,)𝑋) ∩ dom (ℝ D 𝐹)) ⊆ ℂ)
268 mnfxr 11164 . . . . . . . . . . . 12 -∞ ∈ ℝ*
269268a1i 11 . . . . . . . . . . 11 (𝑦 ∈ ℝ → -∞ ∈ ℝ*)
270 rexr 11153 . . . . . . . . . . . 12 (𝑦 ∈ ℝ → 𝑦 ∈ ℝ*)
271 mnflt 13017 . . . . . . . . . . . 12 (𝑦 ∈ ℝ → -∞ < 𝑦)
272269, 270, 271xrltled 13044 . . . . . . . . . . 11 (𝑦 ∈ ℝ → -∞ ≤ 𝑦)
273 iooss1 13275 . . . . . . . . . . 11 ((-∞ ∈ ℝ* ∧ -∞ ≤ 𝑦) → (𝑦(,)𝑋) ⊆ (-∞(,)𝑋))
274269, 272, 273syl2anc 584 . . . . . . . . . 10 (𝑦 ∈ ℝ → (𝑦(,)𝑋) ⊆ (-∞(,)𝑋))
2752743ad2ant2 1134 . . . . . . . . 9 ((𝜑𝑦 ∈ ℝ ∧ (𝑦(,)𝑋) ⊆ dom (ℝ D 𝐹)) → (𝑦(,)𝑋) ⊆ (-∞(,)𝑋))
276 simp3 1138 . . . . . . . . 9 ((𝜑𝑦 ∈ ℝ ∧ (𝑦(,)𝑋) ⊆ dom (ℝ D 𝐹)) → (𝑦(,)𝑋) ⊆ dom (ℝ D 𝐹))
277275, 276ssind 4186 . . . . . . . 8 ((𝜑𝑦 ∈ ℝ ∧ (𝑦(,)𝑋) ⊆ dom (ℝ D 𝐹)) → (𝑦(,)𝑋) ⊆ ((-∞(,)𝑋) ∩ dom (ℝ D 𝐹)))
278 unicntop 24695 . . . . . . . . 9 ℂ = (TopOpen‘ℂfld)
279278lpss3 23054 . . . . . . . 8 (((TopOpen‘ℂfld) ∈ Top ∧ ((-∞(,)𝑋) ∩ dom (ℝ D 𝐹)) ⊆ ℂ ∧ (𝑦(,)𝑋) ⊆ ((-∞(,)𝑋) ∩ dom (ℝ D 𝐹))) → ((limPt‘(TopOpen‘ℂfld))‘(𝑦(,)𝑋)) ⊆ ((limPt‘(TopOpen‘ℂfld))‘((-∞(,)𝑋) ∩ dom (ℝ D 𝐹))))
280266, 267, 277, 279syl3anc 1373 . . . . . . 7 ((𝜑𝑦 ∈ ℝ ∧ (𝑦(,)𝑋) ⊆ dom (ℝ D 𝐹)) → ((limPt‘(TopOpen‘ℂfld))‘(𝑦(,)𝑋)) ⊆ ((limPt‘(TopOpen‘ℂfld))‘((-∞(,)𝑋) ∩ dom (ℝ D 𝐹))))
2812803adant3l 1181 . . . . . 6 ((𝜑𝑦 ∈ ℝ ∧ (𝑦 < 𝑋 ∧ (𝑦(,)𝑋) ⊆ dom (ℝ D 𝐹))) → ((limPt‘(TopOpen‘ℂfld))‘(𝑦(,)𝑋)) ⊆ ((limPt‘(TopOpen‘ℂfld))‘((-∞(,)𝑋) ∩ dom (ℝ D 𝐹))))
2822703ad2ant2 1134 . . . . . . 7 ((𝜑𝑦 ∈ ℝ ∧ (𝑦 < 𝑋 ∧ (𝑦(,)𝑋) ⊆ dom (ℝ D 𝐹))) → 𝑦 ∈ ℝ*)
283583ad2ant1 1133 . . . . . . 7 ((𝜑𝑦 ∈ ℝ ∧ (𝑦 < 𝑋 ∧ (𝑦(,)𝑋) ⊆ dom (ℝ D 𝐹))) → 𝑋 ∈ ℝ)
284 simp3l 1202 . . . . . . 7 ((𝜑𝑦 ∈ ℝ ∧ (𝑦 < 𝑋 ∧ (𝑦(,)𝑋) ⊆ dom (ℝ D 𝐹))) → 𝑦 < 𝑋)
285125, 282, 283, 284lptioo2cn 45683 . . . . . 6 ((𝜑𝑦 ∈ ℝ ∧ (𝑦 < 𝑋 ∧ (𝑦(,)𝑋) ⊆ dom (ℝ D 𝐹))) → 𝑋 ∈ ((limPt‘(TopOpen‘ℂfld))‘(𝑦(,)𝑋)))
286281, 285sseldd 3930 . . . . 5 ((𝜑𝑦 ∈ ℝ ∧ (𝑦 < 𝑋 ∧ (𝑦(,)𝑋) ⊆ dom (ℝ D 𝐹))) → 𝑋 ∈ ((limPt‘(TopOpen‘ℂfld))‘((-∞(,)𝑋) ∩ dom (ℝ D 𝐹))))
287286rexlimdv3a 3137 . . . 4 (𝜑 → (∃𝑦 ∈ ℝ (𝑦 < 𝑋 ∧ (𝑦(,)𝑋) ⊆ dom (ℝ D 𝐹)) → 𝑋 ∈ ((limPt‘(TopOpen‘ℂfld))‘((-∞(,)𝑋) ∩ dom (ℝ D 𝐹)))))
288264, 287mpd 15 . . 3 (𝜑𝑋 ∈ ((limPt‘(TopOpen‘ℂfld))‘((-∞(,)𝑋) ∩ dom (ℝ D 𝐹))))
289255simprd 495 . . . 4 ((𝜑𝑥 ∈ dom (ℝ D 𝐹) ∧ 𝑘 ∈ ℤ) → ((ℝ D 𝐹)‘(𝑥 + (𝑘 · 𝑇))) = ((ℝ D 𝐹)‘𝑥))
290 oveq2 7349 . . . . . . . 8 (𝑦 = 𝑥 → (π − 𝑦) = (π − 𝑥))
291290oveq1d 7356 . . . . . . 7 (𝑦 = 𝑥 → ((π − 𝑦) / 𝑇) = ((π − 𝑥) / 𝑇))
292291fveq2d 6821 . . . . . 6 (𝑦 = 𝑥 → (⌊‘((π − 𝑦) / 𝑇)) = (⌊‘((π − 𝑥) / 𝑇)))
293292oveq1d 7356 . . . . 5 (𝑦 = 𝑥 → ((⌊‘((π − 𝑦) / 𝑇)) · 𝑇) = ((⌊‘((π − 𝑥) / 𝑇)) · 𝑇))
294293cbvmptv 5190 . . . 4 (𝑦 ∈ ℝ ↦ ((⌊‘((π − 𝑦) / 𝑇)) · 𝑇)) = (𝑥 ∈ ℝ ↦ ((⌊‘((π − 𝑥) / 𝑇)) · 𝑇))
295 id 22 . . . . . 6 (𝑧 = 𝑥𝑧 = 𝑥)
296 fveq2 6817 . . . . . 6 (𝑧 = 𝑥 → ((𝑦 ∈ ℝ ↦ ((⌊‘((π − 𝑦) / 𝑇)) · 𝑇))‘𝑧) = ((𝑦 ∈ ℝ ↦ ((⌊‘((π − 𝑦) / 𝑇)) · 𝑇))‘𝑥))
297295, 296oveq12d 7359 . . . . 5 (𝑧 = 𝑥 → (𝑧 + ((𝑦 ∈ ℝ ↦ ((⌊‘((π − 𝑦) / 𝑇)) · 𝑇))‘𝑧)) = (𝑥 + ((𝑦 ∈ ℝ ↦ ((⌊‘((π − 𝑦) / 𝑇)) · 𝑇))‘𝑥)))
298297cbvmptv 5190 . . . 4 (𝑧 ∈ ℝ ↦ (𝑧 + ((𝑦 ∈ ℝ ↦ ((⌊‘((π − 𝑦) / 𝑇)) · 𝑇))‘𝑧))) = (𝑥 ∈ ℝ ↦ (𝑥 + ((𝑦 ∈ ℝ ↦ ((⌊‘((π − 𝑦) / 𝑇)) · 𝑇))‘𝑥)))
29961, 62, 161, 23, 71, 24, 25, 155, 157, 256, 289, 134, 169, 58, 294, 298fourierdlem49 46193 . . 3 (𝜑 → (((ℝ D 𝐹) ↾ (-∞(,)𝑋)) lim 𝑋) ≠ ∅)
300233, 237, 288, 299, 125ellimciota 45654 . 2 (𝜑 → (℩𝑥𝑥 ∈ (((ℝ D 𝐹) ↾ (-∞(,)𝑋)) lim 𝑋)) ∈ (((ℝ D 𝐹) ↾ (-∞(,)𝑋)) lim 𝑋))
301 resindm 5974 . . . . . 6 (Rel (ℝ D 𝐹) → ((ℝ D 𝐹) ↾ ((𝑋(,)+∞) ∩ dom (ℝ D 𝐹))) = ((ℝ D 𝐹) ↾ (𝑋(,)+∞)))
302226, 301syl 17 . . . . 5 (𝜑 → ((ℝ D 𝐹) ↾ ((𝑋(,)+∞) ∩ dom (ℝ D 𝐹))) = ((ℝ D 𝐹) ↾ (𝑋(,)+∞)))
303 inss2 4183 . . . . . . 7 ((𝑋(,)+∞) ∩ dom (ℝ D 𝐹)) ⊆ dom (ℝ D 𝐹)
304303a1i 11 . . . . . 6 (𝜑 → ((𝑋(,)+∞) ∩ dom (ℝ D 𝐹)) ⊆ dom (ℝ D 𝐹))
305157, 304fssresd 6685 . . . . 5 (𝜑 → ((ℝ D 𝐹) ↾ ((𝑋(,)+∞) ∩ dom (ℝ D 𝐹))):((𝑋(,)+∞) ∩ dom (ℝ D 𝐹))⟶ℝ)
306302, 305feq1dd 6629 . . . 4 (𝜑 → ((ℝ D 𝐹) ↾ (𝑋(,)+∞)):((𝑋(,)+∞) ∩ dom (ℝ D 𝐹))⟶ℝ)
307306, 117fssd 6663 . . 3 (𝜑 → ((ℝ D 𝐹) ↾ (𝑋(,)+∞)):((𝑋(,)+∞) ∩ dom (ℝ D 𝐹))⟶ℂ)
308 ioosscn 13303 . . . . 5 (𝑋(,)+∞) ⊆ ℂ
309 ssinss1 4191 . . . . 5 ((𝑋(,)+∞) ⊆ ℂ → ((𝑋(,)+∞) ∩ dom (ℝ D 𝐹)) ⊆ ℂ)
310308, 309ax-mp 5 . . . 4 ((𝑋(,)+∞) ∩ dom (ℝ D 𝐹)) ⊆ ℂ
311310a1i 11 . . 3 (𝜑 → ((𝑋(,)+∞) ∩ dom (ℝ D 𝐹)) ⊆ ℂ)
312263simprd 495 . . . 4 (𝜑 → ∃𝑦 ∈ ℝ (𝑋 < 𝑦 ∧ (𝑋(,)𝑦) ⊆ dom (ℝ D 𝐹)))
313265a1i 11 . . . . . . . 8 ((𝜑𝑦 ∈ ℝ ∧ (𝑋(,)𝑦) ⊆ dom (ℝ D 𝐹)) → (TopOpen‘ℂfld) ∈ Top)
314310a1i 11 . . . . . . . 8 ((𝜑𝑦 ∈ ℝ ∧ (𝑋(,)𝑦) ⊆ dom (ℝ D 𝐹)) → ((𝑋(,)+∞) ∩ dom (ℝ D 𝐹)) ⊆ ℂ)
315 pnfxr 11161 . . . . . . . . . . . 12 +∞ ∈ ℝ*
316315a1i 11 . . . . . . . . . . 11 (𝑦 ∈ ℝ → +∞ ∈ ℝ*)
317 ltpnf 13014 . . . . . . . . . . . 12 (𝑦 ∈ ℝ → 𝑦 < +∞)
318270, 316, 317xrltled 13044 . . . . . . . . . . 11 (𝑦 ∈ ℝ → 𝑦 ≤ +∞)
319 iooss2 13276 . . . . . . . . . . 11 ((+∞ ∈ ℝ*𝑦 ≤ +∞) → (𝑋(,)𝑦) ⊆ (𝑋(,)+∞))
320316, 318, 319syl2anc 584 . . . . . . . . . 10 (𝑦 ∈ ℝ → (𝑋(,)𝑦) ⊆ (𝑋(,)+∞))
3213203ad2ant2 1134 . . . . . . . . 9 ((𝜑𝑦 ∈ ℝ ∧ (𝑋(,)𝑦) ⊆ dom (ℝ D 𝐹)) → (𝑋(,)𝑦) ⊆ (𝑋(,)+∞))
322 simp3 1138 . . . . . . . . 9 ((𝜑𝑦 ∈ ℝ ∧ (𝑋(,)𝑦) ⊆ dom (ℝ D 𝐹)) → (𝑋(,)𝑦) ⊆ dom (ℝ D 𝐹))
323321, 322ssind 4186 . . . . . . . 8 ((𝜑𝑦 ∈ ℝ ∧ (𝑋(,)𝑦) ⊆ dom (ℝ D 𝐹)) → (𝑋(,)𝑦) ⊆ ((𝑋(,)+∞) ∩ dom (ℝ D 𝐹)))
324278lpss3 23054 . . . . . . . 8 (((TopOpen‘ℂfld) ∈ Top ∧ ((𝑋(,)+∞) ∩ dom (ℝ D 𝐹)) ⊆ ℂ ∧ (𝑋(,)𝑦) ⊆ ((𝑋(,)+∞) ∩ dom (ℝ D 𝐹))) → ((limPt‘(TopOpen‘ℂfld))‘(𝑋(,)𝑦)) ⊆ ((limPt‘(TopOpen‘ℂfld))‘((𝑋(,)+∞) ∩ dom (ℝ D 𝐹))))
325313, 314, 323, 324syl3anc 1373 . . . . . . 7 ((𝜑𝑦 ∈ ℝ ∧ (𝑋(,)𝑦) ⊆ dom (ℝ D 𝐹)) → ((limPt‘(TopOpen‘ℂfld))‘(𝑋(,)𝑦)) ⊆ ((limPt‘(TopOpen‘ℂfld))‘((𝑋(,)+∞) ∩ dom (ℝ D 𝐹))))
3263253adant3l 1181 . . . . . 6 ((𝜑𝑦 ∈ ℝ ∧ (𝑋 < 𝑦 ∧ (𝑋(,)𝑦) ⊆ dom (ℝ D 𝐹))) → ((limPt‘(TopOpen‘ℂfld))‘(𝑋(,)𝑦)) ⊆ ((limPt‘(TopOpen‘ℂfld))‘((𝑋(,)+∞) ∩ dom (ℝ D 𝐹))))
3272703ad2ant2 1134 . . . . . . 7 ((𝜑𝑦 ∈ ℝ ∧ (𝑋 < 𝑦 ∧ (𝑋(,)𝑦) ⊆ dom (ℝ D 𝐹))) → 𝑦 ∈ ℝ*)
328583ad2ant1 1133 . . . . . . 7 ((𝜑𝑦 ∈ ℝ ∧ (𝑋 < 𝑦 ∧ (𝑋(,)𝑦) ⊆ dom (ℝ D 𝐹))) → 𝑋 ∈ ℝ)
329 simp3l 1202 . . . . . . 7 ((𝜑𝑦 ∈ ℝ ∧ (𝑋 < 𝑦 ∧ (𝑋(,)𝑦) ⊆ dom (ℝ D 𝐹))) → 𝑋 < 𝑦)
330125, 327, 328, 329lptioo1cn 45684 . . . . . 6 ((𝜑𝑦 ∈ ℝ ∧ (𝑋 < 𝑦 ∧ (𝑋(,)𝑦) ⊆ dom (ℝ D 𝐹))) → 𝑋 ∈ ((limPt‘(TopOpen‘ℂfld))‘(𝑋(,)𝑦)))
331326, 330sseldd 3930 . . . . 5 ((𝜑𝑦 ∈ ℝ ∧ (𝑋 < 𝑦 ∧ (𝑋(,)𝑦) ⊆ dom (ℝ D 𝐹))) → 𝑋 ∈ ((limPt‘(TopOpen‘ℂfld))‘((𝑋(,)+∞) ∩ dom (ℝ D 𝐹))))
332331rexlimdv3a 3137 . . . 4 (𝜑 → (∃𝑦 ∈ ℝ (𝑋 < 𝑦 ∧ (𝑋(,)𝑦) ⊆ dom (ℝ D 𝐹)) → 𝑋 ∈ ((limPt‘(TopOpen‘ℂfld))‘((𝑋(,)+∞) ∩ dom (ℝ D 𝐹)))))
333312, 332mpd 15 . . 3 (𝜑𝑋 ∈ ((limPt‘(TopOpen‘ℂfld))‘((𝑋(,)+∞) ∩ dom (ℝ D 𝐹))))
334 biid 261 . . . 4 (((((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑤 ∈ ((𝑄𝑖)[,)(𝑄‘(𝑖 + 1)))) ∧ 𝑘 ∈ ℤ) ∧ 𝑤 = (𝑋 + (𝑘 · 𝑇))) ↔ ((((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑤 ∈ ((𝑄𝑖)[,)(𝑄‘(𝑖 + 1)))) ∧ 𝑘 ∈ ℤ) ∧ 𝑤 = (𝑋 + (𝑘 · 𝑇))))
33561, 62, 161, 23, 71, 24, 25, 157, 256, 289, 134, 165, 58, 294, 298, 334fourierdlem48 46192 . . 3 (𝜑 → (((ℝ D 𝐹) ↾ (𝑋(,)+∞)) lim 𝑋) ≠ ∅)
336307, 311, 333, 335, 125ellimciota 45654 . 2 (𝜑 → (℩𝑥𝑥 ∈ (((ℝ D 𝐹) ↾ (𝑋(,)+∞)) lim 𝑋)) ∈ (((ℝ D 𝐹) ↾ (𝑋(,)+∞)) lim 𝑋))
337 fourierdlem113.l . 2 (𝜑𝐿 ∈ ((𝐹 ↾ (-∞(,)𝑋)) lim 𝑋))
338 fourierdlem113.r . 2 (𝜑𝑅 ∈ ((𝐹 ↾ (𝑋(,)+∞)) lim 𝑋))
339 fourierdlem113.a . 2 𝐴 = (𝑛 ∈ ℕ0 ↦ (∫(-π(,)π)((𝐹𝑥) · (cos‘(𝑛 · 𝑥))) d𝑥 / π))
340 fourierdlem113.b . 2 𝐵 = (𝑛 ∈ ℕ ↦ (∫(-π(,)π)((𝐹𝑥) · (sin‘(𝑛 · 𝑥))) d𝑥 / π))
341 fveq2 6817 . . . . . . . 8 (𝑛 = 𝑘 → (𝐴𝑛) = (𝐴𝑘))
342 oveq1 7348 . . . . . . . . 9 (𝑛 = 𝑘 → (𝑛 · 𝑋) = (𝑘 · 𝑋))
343342fveq2d 6821 . . . . . . . 8 (𝑛 = 𝑘 → (cos‘(𝑛 · 𝑋)) = (cos‘(𝑘 · 𝑋)))
344341, 343oveq12d 7359 . . . . . . 7 (𝑛 = 𝑘 → ((𝐴𝑛) · (cos‘(𝑛 · 𝑋))) = ((𝐴𝑘) · (cos‘(𝑘 · 𝑋))))
345 fveq2 6817 . . . . . . . 8 (𝑛 = 𝑘 → (𝐵𝑛) = (𝐵𝑘))
346342fveq2d 6821 . . . . . . . 8 (𝑛 = 𝑘 → (sin‘(𝑛 · 𝑋)) = (sin‘(𝑘 · 𝑋)))
347345, 346oveq12d 7359 . . . . . . 7 (𝑛 = 𝑘 → ((𝐵𝑛) · (sin‘(𝑛 · 𝑋))) = ((𝐵𝑘) · (sin‘(𝑘 · 𝑋))))
348344, 347oveq12d 7359 . . . . . 6 (𝑛 = 𝑘 → (((𝐴𝑛) · (cos‘(𝑛 · 𝑋))) + ((𝐵𝑛) · (sin‘(𝑛 · 𝑋)))) = (((𝐴𝑘) · (cos‘(𝑘 · 𝑋))) + ((𝐵𝑘) · (sin‘(𝑘 · 𝑋)))))
349348cbvsumv 15598 . . . . 5 Σ𝑛 ∈ (1...𝑚)(((𝐴𝑛) · (cos‘(𝑛 · 𝑋))) + ((𝐵𝑛) · (sin‘(𝑛 · 𝑋)))) = Σ𝑘 ∈ (1...𝑚)(((𝐴𝑘) · (cos‘(𝑘 · 𝑋))) + ((𝐵𝑘) · (sin‘(𝑘 · 𝑋))))
350 oveq2 7349 . . . . . . 7 (𝑗 = 𝑚 → (1...𝑗) = (1...𝑚))
351350eqcomd 2737 . . . . . 6 (𝑗 = 𝑚 → (1...𝑚) = (1...𝑗))
352351sumeq1d 15602 . . . . 5 (𝑗 = 𝑚 → Σ𝑘 ∈ (1...𝑚)(((𝐴𝑘) · (cos‘(𝑘 · 𝑋))) + ((𝐵𝑘) · (sin‘(𝑘 · 𝑋)))) = Σ𝑘 ∈ (1...𝑗)(((𝐴𝑘) · (cos‘(𝑘 · 𝑋))) + ((𝐵𝑘) · (sin‘(𝑘 · 𝑋)))))
353349, 352eqtr2id 2779 . . . 4 (𝑗 = 𝑚 → Σ𝑘 ∈ (1...𝑗)(((𝐴𝑘) · (cos‘(𝑘 · 𝑋))) + ((𝐵𝑘) · (sin‘(𝑘 · 𝑋)))) = Σ𝑛 ∈ (1...𝑚)(((𝐴𝑛) · (cos‘(𝑛 · 𝑋))) + ((𝐵𝑛) · (sin‘(𝑛 · 𝑋)))))
354353oveq2d 7357 . . 3 (𝑗 = 𝑚 → (((𝐴‘0) / 2) + Σ𝑘 ∈ (1...𝑗)(((𝐴𝑘) · (cos‘(𝑘 · 𝑋))) + ((𝐵𝑘) · (sin‘(𝑘 · 𝑋))))) = (((𝐴‘0) / 2) + Σ𝑛 ∈ (1...𝑚)(((𝐴𝑛) · (cos‘(𝑛 · 𝑋))) + ((𝐵𝑛) · (sin‘(𝑛 · 𝑋))))))
355354cbvmptv 5190 . 2 (𝑗 ∈ ℕ ↦ (((𝐴‘0) / 2) + Σ𝑘 ∈ (1...𝑗)(((𝐴𝑘) · (cos‘(𝑘 · 𝑋))) + ((𝐵𝑘) · (sin‘(𝑘 · 𝑋)))))) = (𝑚 ∈ ℕ ↦ (((𝐴‘0) / 2) + Σ𝑛 ∈ (1...𝑚)(((𝐴𝑛) · (cos‘(𝑛 · 𝑋))) + ((𝐵𝑛) · (sin‘(𝑛 · 𝑋))))))
356 fourierdlem113.15 . 2 𝑆 = (𝑛 ∈ ℕ ↦ (((𝐴𝑛) · (cos‘(𝑛 · 𝑋))) + ((𝐵𝑛) · (sin‘(𝑛 · 𝑋)))))
357 fdm 6655 . . . . . 6 (𝐹:ℝ⟶ℝ → dom 𝐹 = ℝ)
3581, 357syl 17 . . . . 5 (𝜑 → dom 𝐹 = ℝ)
359358, 154eqsstrd 3964 . . . 4 (𝜑 → dom 𝐹 ⊆ ℝ)
360358feq2d 6630 . . . . 5 (𝜑 → (𝐹:dom 𝐹⟶ℝ ↔ 𝐹:ℝ⟶ℝ))
3611, 360mpbird 257 . . . 4 (𝜑𝐹:dom 𝐹⟶ℝ)
362359sselda 3929 . . . . . . 7 ((𝜑𝑡 ∈ dom 𝐹) → 𝑡 ∈ ℝ)
363362adantr 480 . . . . . 6 (((𝜑𝑡 ∈ dom 𝐹) ∧ 𝑘 ∈ ℤ) → 𝑡 ∈ ℝ)
364171adantl 481 . . . . . . 7 (((𝜑𝑡 ∈ dom 𝐹) ∧ 𝑘 ∈ ℤ) → 𝑘 ∈ ℝ)
365177adantlr 715 . . . . . . 7 (((𝜑𝑡 ∈ dom 𝐹) ∧ 𝑘 ∈ ℤ) → 𝑇 ∈ ℝ)
366364, 365remulcld 11137 . . . . . 6 (((𝜑𝑡 ∈ dom 𝐹) ∧ 𝑘 ∈ ℤ) → (𝑘 · 𝑇) ∈ ℝ)
367363, 366readdcld 11136 . . . . 5 (((𝜑𝑡 ∈ dom 𝐹) ∧ 𝑘 ∈ ℤ) → (𝑡 + (𝑘 · 𝑇)) ∈ ℝ)
368358eqcomd 2737 . . . . . 6 (𝜑 → ℝ = dom 𝐹)
369368ad2antrr 726 . . . . 5 (((𝜑𝑡 ∈ dom 𝐹) ∧ 𝑘 ∈ ℤ) → ℝ = dom 𝐹)
370367, 369eleqtrd 2833 . . . 4 (((𝜑𝑡 ∈ dom 𝐹) ∧ 𝑘 ∈ ℤ) → (𝑡 + (𝑘 · 𝑇)) ∈ dom 𝐹)
371 id 22 . . . . . 6 ((𝜑𝑘 ∈ ℤ) → (𝜑𝑘 ∈ ℤ))
372371adantlr 715 . . . . 5 (((𝜑𝑡 ∈ dom 𝐹) ∧ 𝑘 ∈ ℤ) → (𝜑𝑘 ∈ ℤ))
373372, 363, 184syl2anc 584 . . . 4 (((𝜑𝑡 ∈ dom 𝐹) ∧ 𝑘 ∈ ℤ) → (𝐹‘(𝑡 + (𝑘 · 𝑇))) = (𝐹𝑡))
374359, 361, 61, 62, 161, 71, 24, 77, 162, 85, 140, 222, 224, 370, 373, 194, 195fourierdlem71 46215 . . 3 (𝜑 → ∃𝑢 ∈ ℝ ∀𝑡 ∈ dom 𝐹(abs‘(𝐹𝑡)) ≤ 𝑢)
375358raleqdv 3292 . . . 4 (𝜑 → (∀𝑡 ∈ dom 𝐹(abs‘(𝐹𝑡)) ≤ 𝑢 ↔ ∀𝑡 ∈ ℝ (abs‘(𝐹𝑡)) ≤ 𝑢))
376375rexbidv 3156 . . 3 (𝜑 → (∃𝑢 ∈ ℝ ∀𝑡 ∈ dom 𝐹(abs‘(𝐹𝑡)) ≤ 𝑢 ↔ ∃𝑢 ∈ ℝ ∀𝑡 ∈ ℝ (abs‘(𝐹𝑡)) ≤ 𝑢))
377374, 376mpbid 232 . 2 (𝜑 → ∃𝑢 ∈ ℝ ∀𝑡 ∈ ℝ (abs‘(𝐹𝑡)) ≤ 𝑢)
3781, 22, 23, 24, 25, 32, 57, 58, 110, 69, 111, 140, 222, 224, 134, 300, 336, 337, 338, 339, 340, 355, 356, 377, 196, 58fourierdlem112 46256 1 (𝜑 → (seq1( + , 𝑆) ⇝ (((𝐿 + 𝑅) / 2) − ((𝐴‘0) / 2)) ∧ (((𝐴‘0) / 2) + Σ𝑛 ∈ ℕ (((𝐴𝑛) · (cos‘(𝑛 · 𝑋))) + ((𝐵𝑛) · (sin‘(𝑛 · 𝑋))))) = ((𝐿 + 𝑅) / 2)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1541  wcel 2111  wne 2928  wral 3047  wrex 3056  {crab 3395  cun 3895  cin 3896  wss 3897  c0 4278  ifcif 4470  {cpr 4573   class class class wbr 5086  cmpt 5167  dom cdm 5611  ran crn 5612  cres 5613  Rel wrel 5616  cio 6430  Fun wfun 6470  wf 6472  cfv 6476   Isom wiso 6477  (class class class)co 7341  m cmap 8745  Fincfn 8864  cc 10999  cr 11000  0cc0 11001  1c1 11002   + caddc 11004   · cmul 11006  +∞cpnf 11138  -∞cmnf 11139  *cxr 11140   < clt 11141  cle 11142  cmin 11339  -cneg 11340   / cdiv 11769  cn 12120  2c2 12175  0cn0 12376  cz 12463  cuz 12727  (,)cioo 13240  (,]cioc 13241  [,)cico 13242  [,]cicc 13243  ...cfz 13402  ..^cfzo 13549  cfl 13689   mod cmo 13768  seqcseq 13903  chash 14232  abscabs 15136  cli 15386  Σcsu 15588  sincsin 15965  cosccos 15966  πcpi 15968  TopOpenctopn 17320  topGenctg 17336  fldccnfld 21286  Topctop 22803  intcnt 22927  limPtclp 23044  cnccncf 24791  citg 25541   lim climc 25785   D cdv 25786
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5212  ax-sep 5229  ax-nul 5239  ax-pow 5298  ax-pr 5365  ax-un 7663  ax-inf2 9526  ax-cc 10321  ax-cnex 11057  ax-resscn 11058  ax-1cn 11059  ax-icn 11060  ax-addcl 11061  ax-addrcl 11062  ax-mulcl 11063  ax-mulrcl 11064  ax-mulcom 11065  ax-addass 11066  ax-mulass 11067  ax-distr 11068  ax-i2m1 11069  ax-1ne0 11070  ax-1rid 11071  ax-rnegex 11072  ax-rrecex 11073  ax-cnre 11074  ax-pre-lttri 11075  ax-pre-lttrn 11076  ax-pre-ltadd 11077  ax-pre-mulgt0 11078  ax-pre-sup 11079  ax-addf 11080
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-symdif 4198  df-nul 4279  df-if 4471  df-pw 4547  df-sn 4572  df-pr 4574  df-tp 4576  df-op 4578  df-uni 4855  df-int 4893  df-iun 4938  df-iin 4939  df-disj 5054  df-br 5087  df-opab 5149  df-mpt 5168  df-tr 5194  df-id 5506  df-eprel 5511  df-po 5519  df-so 5520  df-fr 5564  df-se 5565  df-we 5566  df-xp 5617  df-rel 5618  df-cnv 5619  df-co 5620  df-dm 5621  df-rn 5622  df-res 5623  df-ima 5624  df-pred 6243  df-ord 6304  df-on 6305  df-lim 6306  df-suc 6307  df-iota 6432  df-fun 6478  df-fn 6479  df-f 6480  df-f1 6481  df-fo 6482  df-f1o 6483  df-fv 6484  df-isom 6485  df-riota 7298  df-ov 7344  df-oprab 7345  df-mpo 7346  df-of 7605  df-ofr 7606  df-om 7792  df-1st 7916  df-2nd 7917  df-supp 8086  df-frecs 8206  df-wrecs 8237  df-recs 8286  df-rdg 8324  df-1o 8380  df-2o 8381  df-oadd 8384  df-omul 8385  df-er 8617  df-map 8747  df-pm 8748  df-ixp 8817  df-en 8865  df-dom 8866  df-sdom 8867  df-fin 8868  df-fsupp 9241  df-fi 9290  df-sup 9321  df-inf 9322  df-oi 9391  df-dju 9789  df-card 9827  df-acn 9830  df-pnf 11143  df-mnf 11144  df-xr 11145  df-ltxr 11146  df-le 11147  df-sub 11341  df-neg 11342  df-div 11770  df-nn 12121  df-2 12183  df-3 12184  df-4 12185  df-5 12186  df-6 12187  df-7 12188  df-8 12189  df-9 12190  df-n0 12377  df-xnn0 12450  df-z 12464  df-dec 12584  df-uz 12728  df-q 12842  df-rp 12886  df-xneg 13006  df-xadd 13007  df-xmul 13008  df-ioo 13244  df-ioc 13245  df-ico 13246  df-icc 13247  df-fz 13403  df-fzo 13550  df-fl 13691  df-mod 13769  df-seq 13904  df-exp 13964  df-fac 14176  df-bc 14205  df-hash 14233  df-shft 14969  df-cj 15001  df-re 15002  df-im 15003  df-sqrt 15137  df-abs 15138  df-limsup 15373  df-clim 15390  df-rlim 15391  df-sum 15589  df-ef 15969  df-sin 15971  df-cos 15972  df-pi 15974  df-struct 17053  df-sets 17070  df-slot 17088  df-ndx 17100  df-base 17116  df-ress 17137  df-plusg 17169  df-mulr 17170  df-starv 17171  df-sca 17172  df-vsca 17173  df-ip 17174  df-tset 17175  df-ple 17176  df-ds 17178  df-unif 17179  df-hom 17180  df-cco 17181  df-rest 17321  df-topn 17322  df-0g 17340  df-gsum 17341  df-topgen 17342  df-pt 17343  df-prds 17346  df-xrs 17401  df-qtop 17406  df-imas 17407  df-xps 17409  df-mre 17483  df-mrc 17484  df-acs 17486  df-mgm 18543  df-sgrp 18622  df-mnd 18638  df-submnd 18687  df-mulg 18976  df-cntz 19224  df-cmn 19689  df-psmet 21278  df-xmet 21279  df-met 21280  df-bl 21281  df-mopn 21282  df-fbas 21283  df-fg 21284  df-cnfld 21287  df-top 22804  df-topon 22821  df-topsp 22843  df-bases 22856  df-cld 22929  df-ntr 22930  df-cls 22931  df-nei 23008  df-lp 23046  df-perf 23047  df-cn 23137  df-cnp 23138  df-t1 23224  df-haus 23225  df-cmp 23297  df-tx 23472  df-hmeo 23665  df-fil 23756  df-fm 23848  df-flim 23849  df-flf 23850  df-xms 24230  df-ms 24231  df-tms 24232  df-cncf 24793  df-ovol 25387  df-vol 25388  df-mbf 25542  df-itg1 25543  df-itg2 25544  df-ibl 25545  df-itg 25546  df-0p 25593  df-ditg 25770  df-limc 25789  df-dv 25790
This theorem is referenced by:  fourierdlem114  46258
  Copyright terms: Public domain W3C validator