Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdlemeg46rjgN Structured version   Visualization version   GIF version

Theorem cdlemeg46rjgN 39932
Description: NOT NEEDED? TODO FIX COMMENT. r ∨ g(s) = r ∨ v2 p. 115 last line. (Contributed by NM, 2-Apr-2013.) (New usage is discouraged.)
Hypotheses
Ref Expression
cdlemef46g.b 𝐡 = (Baseβ€˜πΎ)
cdlemef46g.l ≀ = (leβ€˜πΎ)
cdlemef46g.j ∨ = (joinβ€˜πΎ)
cdlemef46g.m ∧ = (meetβ€˜πΎ)
cdlemef46g.a 𝐴 = (Atomsβ€˜πΎ)
cdlemef46g.h 𝐻 = (LHypβ€˜πΎ)
cdlemef46g.u π‘ˆ = ((𝑃 ∨ 𝑄) ∧ π‘Š)
cdlemef46g.d 𝐷 = ((𝑑 ∨ π‘ˆ) ∧ (𝑄 ∨ ((𝑃 ∨ 𝑑) ∧ π‘Š)))
cdlemefs46g.e 𝐸 = ((𝑃 ∨ 𝑄) ∧ (𝐷 ∨ ((𝑠 ∨ 𝑑) ∧ π‘Š)))
cdlemef46g.f 𝐹 = (π‘₯ ∈ 𝐡 ↦ if((𝑃 β‰  𝑄 ∧ Β¬ π‘₯ ≀ π‘Š), (℩𝑧 ∈ 𝐡 βˆ€π‘  ∈ 𝐴 ((Β¬ 𝑠 ≀ π‘Š ∧ (𝑠 ∨ (π‘₯ ∧ π‘Š)) = π‘₯) β†’ 𝑧 = (if(𝑠 ≀ (𝑃 ∨ 𝑄), (℩𝑦 ∈ 𝐡 βˆ€π‘‘ ∈ 𝐴 ((Β¬ 𝑑 ≀ π‘Š ∧ Β¬ 𝑑 ≀ (𝑃 ∨ 𝑄)) β†’ 𝑦 = 𝐸)), ⦋𝑠 / π‘‘β¦Œπ·) ∨ (π‘₯ ∧ π‘Š)))), π‘₯))
cdlemef46.v 𝑉 = ((𝑄 ∨ 𝑃) ∧ π‘Š)
cdlemef46.n 𝑁 = ((𝑣 ∨ 𝑉) ∧ (𝑃 ∨ ((𝑄 ∨ 𝑣) ∧ π‘Š)))
cdlemefs46.o 𝑂 = ((𝑄 ∨ 𝑃) ∧ (𝑁 ∨ ((𝑒 ∨ 𝑣) ∧ π‘Š)))
cdlemef46.g 𝐺 = (π‘Ž ∈ 𝐡 ↦ if((𝑄 β‰  𝑃 ∧ Β¬ π‘Ž ≀ π‘Š), (℩𝑐 ∈ 𝐡 βˆ€π‘’ ∈ 𝐴 ((Β¬ 𝑒 ≀ π‘Š ∧ (𝑒 ∨ (π‘Ž ∧ π‘Š)) = π‘Ž) β†’ 𝑐 = (if(𝑒 ≀ (𝑄 ∨ 𝑃), (℩𝑏 ∈ 𝐡 βˆ€π‘£ ∈ 𝐴 ((Β¬ 𝑣 ≀ π‘Š ∧ Β¬ 𝑣 ≀ (𝑄 ∨ 𝑃)) β†’ 𝑏 = 𝑂)), ⦋𝑒 / π‘£β¦Œπ‘) ∨ (π‘Ž ∧ π‘Š)))), π‘Ž))
cdlemeg46.y π‘Œ = ((𝑅 ∨ (πΊβ€˜π‘†)) ∧ π‘Š)
Assertion
Ref Expression
cdlemeg46rjgN ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ (𝑃 β‰  𝑄 ∧ (𝑅 ∈ 𝐴 ∧ Β¬ 𝑅 ≀ π‘Š) ∧ (𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š)) ∧ (𝑅 ≀ (𝑃 ∨ 𝑄) ∧ Β¬ 𝑆 ≀ (𝑃 ∨ 𝑄))) β†’ (𝑅 ∨ (πΊβ€˜π‘†)) = (𝑅 ∨ π‘Œ))
Distinct variable groups:   𝑑,𝑠,π‘₯,𝑦,𝑧,𝐴   𝐡,𝑠,𝑑,π‘₯,𝑦,𝑧   𝐷,𝑠,π‘₯,𝑦,𝑧   π‘₯,𝐸,𝑦,𝑧   𝐻,𝑠,𝑑,π‘₯,𝑦,𝑧   ∨ ,𝑠,𝑑,π‘₯,𝑦,𝑧   𝐾,𝑠,𝑑,π‘₯,𝑦,𝑧   ≀ ,𝑠,𝑑,π‘₯,𝑦,𝑧   ∧ ,𝑠,𝑑,π‘₯,𝑦,𝑧   𝑃,𝑠,𝑑,π‘₯,𝑦,𝑧   𝑄,𝑠,𝑑,π‘₯,𝑦,𝑧   𝑅,𝑠,𝑑,π‘₯,𝑦,𝑧   π‘ˆ,𝑠,𝑑,π‘₯,𝑦,𝑧   π‘Š,𝑠,𝑑,π‘₯,𝑦,𝑧   𝑆,𝑠,𝑑,π‘₯,𝑦,𝑧   π‘Ž,𝑏,𝑐,𝑒,𝑣,𝐴   𝐡,π‘Ž,𝑏,𝑐,𝑒,𝑣   𝑣,𝐷   𝐺,𝑠,𝑑,π‘₯,𝑦,𝑧   𝐻,π‘Ž,𝑏,𝑐,𝑒,𝑣   ∨ ,π‘Ž,𝑏,𝑐,𝑒,𝑣   𝐾,π‘Ž,𝑏,𝑐,𝑒,𝑣   ≀ ,π‘Ž,𝑏,𝑐,𝑒,𝑣   ∧ ,π‘Ž,𝑏,𝑐,𝑒,𝑣   𝑁,π‘Ž,𝑏,𝑐   𝑂,π‘Ž,𝑏,𝑐   𝑃,π‘Ž,𝑏,𝑐,𝑒,𝑣   𝑄,π‘Ž,𝑏,𝑐,𝑒,𝑣   𝑅,π‘Ž,𝑏,𝑐,𝑒,𝑣   𝑆,π‘Ž,𝑏,𝑐,𝑒,𝑣   𝑉,π‘Ž,𝑏,𝑐   π‘Š,π‘Ž,𝑏,𝑐,𝑒,𝑣   π‘₯,𝑒,𝑦,𝑧,𝑁   π‘₯,𝑂,𝑦,𝑧   𝑣,𝑑   𝑒,𝑉   π‘₯,𝑣,𝑦,𝑧,𝑉   𝐷,π‘Ž,𝑏,𝑐   𝐸,π‘Ž,𝑏,𝑐   𝐹,π‘Ž,𝑏,𝑐,𝑒,𝑣   𝑑,𝑁   π‘ˆ,π‘Ž,𝑏,𝑐,𝑣   𝑑,𝑉   𝑠,π‘Ž,𝑑,𝑏,𝑐
Allowed substitution hints:   𝐷(𝑒,𝑑)   π‘ˆ(𝑒)   𝐸(𝑣,𝑒,𝑑,𝑠)   𝐹(π‘₯,𝑦,𝑧,𝑑,𝑠)   𝐺(𝑣,𝑒,π‘Ž,𝑏,𝑐)   𝑁(𝑣,𝑠)   𝑂(𝑣,𝑒,𝑑,𝑠)   𝑉(𝑠)   π‘Œ(π‘₯,𝑦,𝑧,𝑣,𝑒,𝑑,𝑠,π‘Ž,𝑏,𝑐)

Proof of Theorem cdlemeg46rjgN
StepHypRef Expression
1 cdlemef46g.b . . . 4 𝐡 = (Baseβ€˜πΎ)
2 cdlemef46g.l . . . 4 ≀ = (leβ€˜πΎ)
3 cdlemef46g.j . . . 4 ∨ = (joinβ€˜πΎ)
4 cdlemef46g.m . . . 4 ∧ = (meetβ€˜πΎ)
5 cdlemef46g.a . . . 4 𝐴 = (Atomsβ€˜πΎ)
6 cdlemef46g.h . . . 4 𝐻 = (LHypβ€˜πΎ)
7 cdlemef46g.u . . . 4 π‘ˆ = ((𝑃 ∨ 𝑄) ∧ π‘Š)
8 cdlemef46.v . . . 4 𝑉 = ((𝑄 ∨ 𝑃) ∧ π‘Š)
9 eqid 2727 . . . 4 ((𝑆 ∨ π‘ˆ) ∧ (𝑄 ∨ ((𝑃 ∨ 𝑆) ∧ π‘Š))) = ((𝑆 ∨ π‘ˆ) ∧ (𝑄 ∨ ((𝑃 ∨ 𝑆) ∧ π‘Š)))
10 eqid 2727 . . . 4 ((𝑃 ∨ 𝑄) ∧ (((𝑆 ∨ π‘ˆ) ∧ (𝑄 ∨ ((𝑃 ∨ 𝑆) ∧ π‘Š))) ∨ ((𝑅 ∨ 𝑆) ∧ π‘Š))) = ((𝑃 ∨ 𝑄) ∧ (((𝑆 ∨ π‘ˆ) ∧ (𝑄 ∨ ((𝑃 ∨ 𝑆) ∧ π‘Š))) ∨ ((𝑅 ∨ 𝑆) ∧ π‘Š)))
11 eqid 2727 . . . 4 ((𝑆 ∨ 𝑉) ∧ (𝑃 ∨ ((𝑄 ∨ 𝑆) ∧ π‘Š))) = ((𝑆 ∨ 𝑉) ∧ (𝑃 ∨ ((𝑄 ∨ 𝑆) ∧ π‘Š)))
12 eqid 2727 . . . 4 ((𝑄 ∨ 𝑃) ∧ (((𝑆 ∨ 𝑉) ∧ (𝑃 ∨ ((𝑄 ∨ 𝑆) ∧ π‘Š))) ∨ ((((𝑃 ∨ 𝑄) ∧ (((𝑆 ∨ π‘ˆ) ∧ (𝑄 ∨ ((𝑃 ∨ 𝑆) ∧ π‘Š))) ∨ ((𝑅 ∨ 𝑆) ∧ π‘Š))) ∨ 𝑆) ∧ π‘Š))) = ((𝑄 ∨ 𝑃) ∧ (((𝑆 ∨ 𝑉) ∧ (𝑃 ∨ ((𝑄 ∨ 𝑆) ∧ π‘Š))) ∨ ((((𝑃 ∨ 𝑄) ∧ (((𝑆 ∨ π‘ˆ) ∧ (𝑄 ∨ ((𝑃 ∨ 𝑆) ∧ π‘Š))) ∨ ((𝑅 ∨ 𝑆) ∧ π‘Š))) ∨ 𝑆) ∧ π‘Š)))
13 eqid 2727 . . . 4 ((((𝑆 ∨ 𝑉) ∧ (𝑃 ∨ ((𝑄 ∨ 𝑆) ∧ π‘Š))) ∨ π‘ˆ) ∧ (𝑄 ∨ ((𝑃 ∨ ((𝑆 ∨ 𝑉) ∧ (𝑃 ∨ ((𝑄 ∨ 𝑆) ∧ π‘Š)))) ∧ π‘Š))) = ((((𝑆 ∨ 𝑉) ∧ (𝑃 ∨ ((𝑄 ∨ 𝑆) ∧ π‘Š))) ∨ π‘ˆ) ∧ (𝑄 ∨ ((𝑃 ∨ ((𝑆 ∨ 𝑉) ∧ (𝑃 ∨ ((𝑄 ∨ 𝑆) ∧ π‘Š)))) ∧ π‘Š)))
14 eqid 2727 . . . 4 ((((𝑃 ∨ 𝑄) ∧ (((𝑆 ∨ π‘ˆ) ∧ (𝑄 ∨ ((𝑃 ∨ 𝑆) ∧ π‘Š))) ∨ ((𝑅 ∨ 𝑆) ∧ π‘Š))) ∨ 𝑆) ∧ π‘Š) = ((((𝑃 ∨ 𝑄) ∧ (((𝑆 ∨ π‘ˆ) ∧ (𝑄 ∨ ((𝑃 ∨ 𝑆) ∧ π‘Š))) ∨ ((𝑅 ∨ 𝑆) ∧ π‘Š))) ∨ 𝑆) ∧ π‘Š)
15 eqid 2727 . . . 4 ((𝑅 ∨ ((𝑆 ∨ 𝑉) ∧ (𝑃 ∨ ((𝑄 ∨ 𝑆) ∧ π‘Š)))) ∧ π‘Š) = ((𝑅 ∨ ((𝑆 ∨ 𝑉) ∧ (𝑃 ∨ ((𝑄 ∨ 𝑆) ∧ π‘Š)))) ∧ π‘Š)
161, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15cdleme43cN 39901 . . 3 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ (𝑃 β‰  𝑄 ∧ (𝑅 ∈ 𝐴 ∧ Β¬ 𝑅 ≀ π‘Š) ∧ (𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š)) ∧ Β¬ 𝑆 ≀ (𝑃 ∨ 𝑄)) β†’ (𝑅 ∨ ((𝑆 ∨ 𝑉) ∧ (𝑃 ∨ ((𝑄 ∨ 𝑆) ∧ π‘Š)))) = (𝑅 ∨ ((𝑅 ∨ ((𝑆 ∨ 𝑉) ∧ (𝑃 ∨ ((𝑄 ∨ 𝑆) ∧ π‘Š)))) ∧ π‘Š)))
17163adant3l 1178 . 2 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ (𝑃 β‰  𝑄 ∧ (𝑅 ∈ 𝐴 ∧ Β¬ 𝑅 ≀ π‘Š) ∧ (𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š)) ∧ (𝑅 ≀ (𝑃 ∨ 𝑄) ∧ Β¬ 𝑆 ≀ (𝑃 ∨ 𝑄))) β†’ (𝑅 ∨ ((𝑆 ∨ 𝑉) ∧ (𝑃 ∨ ((𝑄 ∨ 𝑆) ∧ π‘Š)))) = (𝑅 ∨ ((𝑅 ∨ ((𝑆 ∨ 𝑉) ∧ (𝑃 ∨ ((𝑄 ∨ 𝑆) ∧ π‘Š)))) ∧ π‘Š)))
18 simp1 1134 . . . . 5 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ (𝑃 β‰  𝑄 ∧ (𝑅 ∈ 𝐴 ∧ Β¬ 𝑅 ≀ π‘Š) ∧ (𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š)) ∧ (𝑅 ≀ (𝑃 ∨ 𝑄) ∧ Β¬ 𝑆 ≀ (𝑃 ∨ 𝑄))) β†’ ((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)))
19 simp21 1204 . . . . 5 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ (𝑃 β‰  𝑄 ∧ (𝑅 ∈ 𝐴 ∧ Β¬ 𝑅 ≀ π‘Š) ∧ (𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š)) ∧ (𝑅 ≀ (𝑃 ∨ 𝑄) ∧ Β¬ 𝑆 ≀ (𝑃 ∨ 𝑄))) β†’ 𝑃 β‰  𝑄)
20 simp23 1206 . . . . 5 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ (𝑃 β‰  𝑄 ∧ (𝑅 ∈ 𝐴 ∧ Β¬ 𝑅 ≀ π‘Š) ∧ (𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š)) ∧ (𝑅 ≀ (𝑃 ∨ 𝑄) ∧ Β¬ 𝑆 ≀ (𝑃 ∨ 𝑄))) β†’ (𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š))
21 simp3r 1200 . . . . 5 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ (𝑃 β‰  𝑄 ∧ (𝑅 ∈ 𝐴 ∧ Β¬ 𝑅 ≀ π‘Š) ∧ (𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š)) ∧ (𝑅 ≀ (𝑃 ∨ 𝑄) ∧ Β¬ 𝑆 ≀ (𝑃 ∨ 𝑄))) β†’ Β¬ 𝑆 ≀ (𝑃 ∨ 𝑄))
22 cdlemef46.n . . . . . 6 𝑁 = ((𝑣 ∨ 𝑉) ∧ (𝑃 ∨ ((𝑄 ∨ 𝑣) ∧ π‘Š)))
23 cdlemefs46.o . . . . . 6 𝑂 = ((𝑄 ∨ 𝑃) ∧ (𝑁 ∨ ((𝑒 ∨ 𝑣) ∧ π‘Š)))
24 cdlemef46.g . . . . . 6 𝐺 = (π‘Ž ∈ 𝐡 ↦ if((𝑄 β‰  𝑃 ∧ Β¬ π‘Ž ≀ π‘Š), (℩𝑐 ∈ 𝐡 βˆ€π‘’ ∈ 𝐴 ((Β¬ 𝑒 ≀ π‘Š ∧ (𝑒 ∨ (π‘Ž ∧ π‘Š)) = π‘Ž) β†’ 𝑐 = (if(𝑒 ≀ (𝑄 ∨ 𝑃), (℩𝑏 ∈ 𝐡 βˆ€π‘£ ∈ 𝐴 ((Β¬ 𝑣 ≀ π‘Š ∧ Β¬ 𝑣 ≀ (𝑄 ∨ 𝑃)) β†’ 𝑏 = 𝑂)), ⦋𝑒 / π‘£β¦Œπ‘) ∨ (π‘Ž ∧ π‘Š)))), π‘Ž))
251, 2, 3, 4, 5, 6, 8, 22, 23, 24cdlemeg47b 39918 . . . . 5 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ (𝑃 β‰  𝑄 ∧ (𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š)) ∧ Β¬ 𝑆 ≀ (𝑃 ∨ 𝑄)) β†’ (πΊβ€˜π‘†) = ⦋𝑆 / π‘£β¦Œπ‘)
2618, 19, 20, 21, 25syl121anc 1373 . . . 4 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ (𝑃 β‰  𝑄 ∧ (𝑅 ∈ 𝐴 ∧ Β¬ 𝑅 ≀ π‘Š) ∧ (𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š)) ∧ (𝑅 ≀ (𝑃 ∨ 𝑄) ∧ Β¬ 𝑆 ≀ (𝑃 ∨ 𝑄))) β†’ (πΊβ€˜π‘†) = ⦋𝑆 / π‘£β¦Œπ‘)
27 simp23l 1292 . . . . 5 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ (𝑃 β‰  𝑄 ∧ (𝑅 ∈ 𝐴 ∧ Β¬ 𝑅 ≀ π‘Š) ∧ (𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š)) ∧ (𝑅 ≀ (𝑃 ∨ 𝑄) ∧ Β¬ 𝑆 ≀ (𝑃 ∨ 𝑄))) β†’ 𝑆 ∈ 𝐴)
2822, 11cdleme31sc 39794 . . . . 5 (𝑆 ∈ 𝐴 β†’ ⦋𝑆 / π‘£β¦Œπ‘ = ((𝑆 ∨ 𝑉) ∧ (𝑃 ∨ ((𝑄 ∨ 𝑆) ∧ π‘Š))))
2927, 28syl 17 . . . 4 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ (𝑃 β‰  𝑄 ∧ (𝑅 ∈ 𝐴 ∧ Β¬ 𝑅 ≀ π‘Š) ∧ (𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š)) ∧ (𝑅 ≀ (𝑃 ∨ 𝑄) ∧ Β¬ 𝑆 ≀ (𝑃 ∨ 𝑄))) β†’ ⦋𝑆 / π‘£β¦Œπ‘ = ((𝑆 ∨ 𝑉) ∧ (𝑃 ∨ ((𝑄 ∨ 𝑆) ∧ π‘Š))))
3026, 29eqtrd 2767 . . 3 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ (𝑃 β‰  𝑄 ∧ (𝑅 ∈ 𝐴 ∧ Β¬ 𝑅 ≀ π‘Š) ∧ (𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š)) ∧ (𝑅 ≀ (𝑃 ∨ 𝑄) ∧ Β¬ 𝑆 ≀ (𝑃 ∨ 𝑄))) β†’ (πΊβ€˜π‘†) = ((𝑆 ∨ 𝑉) ∧ (𝑃 ∨ ((𝑄 ∨ 𝑆) ∧ π‘Š))))
3130oveq2d 7430 . 2 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ (𝑃 β‰  𝑄 ∧ (𝑅 ∈ 𝐴 ∧ Β¬ 𝑅 ≀ π‘Š) ∧ (𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š)) ∧ (𝑅 ≀ (𝑃 ∨ 𝑄) ∧ Β¬ 𝑆 ≀ (𝑃 ∨ 𝑄))) β†’ (𝑅 ∨ (πΊβ€˜π‘†)) = (𝑅 ∨ ((𝑆 ∨ 𝑉) ∧ (𝑃 ∨ ((𝑄 ∨ 𝑆) ∧ π‘Š)))))
32 cdlemeg46.y . . . 4 π‘Œ = ((𝑅 ∨ (πΊβ€˜π‘†)) ∧ π‘Š)
3331oveq1d 7429 . . . 4 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ (𝑃 β‰  𝑄 ∧ (𝑅 ∈ 𝐴 ∧ Β¬ 𝑅 ≀ π‘Š) ∧ (𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š)) ∧ (𝑅 ≀ (𝑃 ∨ 𝑄) ∧ Β¬ 𝑆 ≀ (𝑃 ∨ 𝑄))) β†’ ((𝑅 ∨ (πΊβ€˜π‘†)) ∧ π‘Š) = ((𝑅 ∨ ((𝑆 ∨ 𝑉) ∧ (𝑃 ∨ ((𝑄 ∨ 𝑆) ∧ π‘Š)))) ∧ π‘Š))
3432, 33eqtrid 2779 . . 3 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ (𝑃 β‰  𝑄 ∧ (𝑅 ∈ 𝐴 ∧ Β¬ 𝑅 ≀ π‘Š) ∧ (𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š)) ∧ (𝑅 ≀ (𝑃 ∨ 𝑄) ∧ Β¬ 𝑆 ≀ (𝑃 ∨ 𝑄))) β†’ π‘Œ = ((𝑅 ∨ ((𝑆 ∨ 𝑉) ∧ (𝑃 ∨ ((𝑄 ∨ 𝑆) ∧ π‘Š)))) ∧ π‘Š))
3534oveq2d 7430 . 2 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ (𝑃 β‰  𝑄 ∧ (𝑅 ∈ 𝐴 ∧ Β¬ 𝑅 ≀ π‘Š) ∧ (𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š)) ∧ (𝑅 ≀ (𝑃 ∨ 𝑄) ∧ Β¬ 𝑆 ≀ (𝑃 ∨ 𝑄))) β†’ (𝑅 ∨ π‘Œ) = (𝑅 ∨ ((𝑅 ∨ ((𝑆 ∨ 𝑉) ∧ (𝑃 ∨ ((𝑄 ∨ 𝑆) ∧ π‘Š)))) ∧ π‘Š)))
3617, 31, 353eqtr4d 2777 1 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ (𝑃 β‰  𝑄 ∧ (𝑅 ∈ 𝐴 ∧ Β¬ 𝑅 ≀ π‘Š) ∧ (𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š)) ∧ (𝑅 ≀ (𝑃 ∨ 𝑄) ∧ Β¬ 𝑆 ≀ (𝑃 ∨ 𝑄))) β†’ (𝑅 ∨ (πΊβ€˜π‘†)) = (𝑅 ∨ π‘Œ))
Colors of variables: wff setvar class
Syntax hints:  Β¬ wn 3   β†’ wi 4   ∧ wa 395   ∧ w3a 1085   = wceq 1534   ∈ wcel 2099   β‰  wne 2935  βˆ€wral 3056  β¦‹csb 3889  ifcif 4524   class class class wbr 5142   ↦ cmpt 5225  β€˜cfv 6542  β„©crio 7369  (class class class)co 7414  Basecbs 17171  lecple 17231  joincjn 18294  meetcmee 18295  Atomscatm 38672  HLchlt 38759  LHypclh 39394
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2164  ax-ext 2698  ax-rep 5279  ax-sep 5293  ax-nul 5300  ax-pow 5359  ax-pr 5423  ax-un 7734
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2705  df-cleq 2719  df-clel 2805  df-nfc 2880  df-ne 2936  df-ral 3057  df-rex 3066  df-rmo 3371  df-reu 3372  df-rab 3428  df-v 3471  df-sbc 3775  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-nul 4319  df-if 4525  df-pw 4600  df-sn 4625  df-pr 4627  df-op 4631  df-uni 4904  df-iun 4993  df-iin 4994  df-br 5143  df-opab 5205  df-mpt 5226  df-id 5570  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-rn 5683  df-res 5684  df-ima 5685  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-riota 7370  df-ov 7417  df-oprab 7418  df-mpo 7419  df-1st 7987  df-2nd 7988  df-proset 18278  df-poset 18296  df-plt 18313  df-lub 18329  df-glb 18330  df-join 18331  df-meet 18332  df-p0 18408  df-p1 18409  df-lat 18415  df-clat 18482  df-oposet 38585  df-ol 38587  df-oml 38588  df-covers 38675  df-ats 38676  df-atl 38707  df-cvlat 38731  df-hlat 38760  df-lines 38911  df-psubsp 38913  df-pmap 38914  df-padd 39206  df-lhyp 39398
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator