| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 3adant3r | Structured version Visualization version GIF version | ||
| Description: Deduction adding a conjunct to antecedent. (Contributed by NM, 8-Jan-2006.) (Proof shortened by Wolf Lammen, 25-Jun-2022.) |
| Ref | Expression |
|---|---|
| ad4ant3.1 | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) |
| Ref | Expression |
|---|---|
| 3adant3r | ⊢ ((𝜑 ∧ 𝜓 ∧ (𝜒 ∧ 𝜏)) → 𝜃) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl 482 | . 2 ⊢ ((𝜒 ∧ 𝜏) → 𝜒) | |
| 2 | ad4ant3.1 | . 2 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) | |
| 3 | 1, 2 | syl3an3 1165 | 1 ⊢ ((𝜑 ∧ 𝜓 ∧ (𝜒 ∧ 𝜏)) → 𝜃) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: wfrlem12OLD 8334 mapfien2 9421 cfeq0 10270 ltmul2 12092 lemul1 12093 lemul2 12094 lemuldiv 12122 lediv2 12132 ltdiv23 12133 lediv23 12134 dvdscmulr 16304 dvdsmulcr 16305 modremain 16427 ndvdsadd 16429 rpexp12i 16743 isdrngd 20725 isdrngdOLD 20727 cramerimp 22624 tsmsxp 24093 xblcntrps 24349 xblcntr 24350 rrxmet 25360 nvaddsub4 30638 hvmulcan2 31054 adjlnop 32067 rrnmet 37853 lfladd 39084 lflsub 39085 lshpset2N 39137 atcvrj1 39450 athgt 39475 ltrncnvel 40161 trlcnv 40184 trljat2 40186 cdlemc5 40214 trlcoabs 40740 trlcolem 40745 dicvaddcl 41209 limsupre3uzlem 45764 fourierdlem42 46178 ovnhoilem2 46631 lincext3 48432 |
| Copyright terms: Public domain | W3C validator |