![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 3adant3r | Structured version Visualization version GIF version |
Description: Deduction adding a conjunct to antecedent. (Contributed by NM, 8-Jan-2006.) (Proof shortened by Wolf Lammen, 25-Jun-2022.) |
Ref | Expression |
---|---|
ad4ant3.1 | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) |
Ref | Expression |
---|---|
3adant3r | ⊢ ((𝜑 ∧ 𝜓 ∧ (𝜒 ∧ 𝜏)) → 𝜃) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl 482 | . 2 ⊢ ((𝜒 ∧ 𝜏) → 𝜒) | |
2 | ad4ant3.1 | . 2 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) | |
3 | 1, 2 | syl3an3 1164 | 1 ⊢ ((𝜑 ∧ 𝜓 ∧ (𝜒 ∧ 𝜏)) → 𝜃) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
This theorem is referenced by: wfrlem12OLD 8359 mapfien2 9447 cfeq0 10294 ltmul2 12116 lemul1 12117 lemul2 12118 lemuldiv 12146 lediv2 12156 ltdiv23 12157 lediv23 12158 dvdscmulr 16319 dvdsmulcr 16320 modremain 16442 ndvdsadd 16444 rpexp12i 16758 isdrngd 20782 isdrngdOLD 20784 cramerimp 22708 tsmsxp 24179 xblcntrps 24436 xblcntr 24437 rrxmet 25456 nvaddsub4 30686 hvmulcan2 31102 adjlnop 32115 rrnmet 37816 lfladd 39048 lflsub 39049 lshpset2N 39101 atcvrj1 39414 athgt 39439 ltrncnvel 40125 trlcnv 40148 trljat2 40150 cdlemc5 40178 trlcoabs 40704 trlcolem 40709 dicvaddcl 41173 limsupre3uzlem 45691 fourierdlem42 46105 ovnhoilem2 46558 lincext3 48302 |
Copyright terms: Public domain | W3C validator |