| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 3adant3r | Structured version Visualization version GIF version | ||
| Description: Deduction adding a conjunct to antecedent. (Contributed by NM, 8-Jan-2006.) (Proof shortened by Wolf Lammen, 25-Jun-2022.) |
| Ref | Expression |
|---|---|
| ad4ant3.1 | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) |
| Ref | Expression |
|---|---|
| 3adant3r | ⊢ ((𝜑 ∧ 𝜓 ∧ (𝜒 ∧ 𝜏)) → 𝜃) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl 482 | . 2 ⊢ ((𝜒 ∧ 𝜏) → 𝜒) | |
| 2 | ad4ant3.1 | . 2 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) | |
| 3 | 1, 2 | syl3an3 1165 | 1 ⊢ ((𝜑 ∧ 𝜓 ∧ (𝜒 ∧ 𝜏)) → 𝜃) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: mapfien2 9367 cfeq0 10216 ltmul2 12040 lemul1 12041 lemul2 12042 lemuldiv 12070 lediv2 12080 ltdiv23 12081 lediv23 12082 dvdscmulr 16261 dvdsmulcr 16262 modremain 16385 ndvdsadd 16387 rpexp12i 16701 isdrngd 20681 isdrngdOLD 20683 cramerimp 22580 tsmsxp 24049 xblcntrps 24305 xblcntr 24306 rrxmet 25315 nvaddsub4 30593 hvmulcan2 31009 adjlnop 32022 rrnmet 37830 lfladd 39066 lflsub 39067 lshpset2N 39119 atcvrj1 39432 athgt 39457 ltrncnvel 40143 trlcnv 40166 trljat2 40168 cdlemc5 40196 trlcoabs 40722 trlcolem 40727 dicvaddcl 41191 limsupre3uzlem 45740 fourierdlem42 46154 ovnhoilem2 46607 lincext3 48449 |
| Copyright terms: Public domain | W3C validator |