| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 3adant3r | Structured version Visualization version GIF version | ||
| Description: Deduction adding a conjunct to antecedent. (Contributed by NM, 8-Jan-2006.) (Proof shortened by Wolf Lammen, 25-Jun-2022.) |
| Ref | Expression |
|---|---|
| ad4ant3.1 | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) |
| Ref | Expression |
|---|---|
| 3adant3r | ⊢ ((𝜑 ∧ 𝜓 ∧ (𝜒 ∧ 𝜏)) → 𝜃) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl 482 | . 2 ⊢ ((𝜒 ∧ 𝜏) → 𝜒) | |
| 2 | ad4ant3.1 | . 2 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) | |
| 3 | 1, 2 | syl3an3 1165 | 1 ⊢ ((𝜑 ∧ 𝜓 ∧ (𝜒 ∧ 𝜏)) → 𝜃) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: mapfien2 9336 cfeq0 10185 ltmul2 12009 lemul1 12010 lemul2 12011 lemuldiv 12039 lediv2 12049 ltdiv23 12050 lediv23 12051 dvdscmulr 16230 dvdsmulcr 16231 modremain 16354 ndvdsadd 16356 rpexp12i 16670 isdrngd 20650 isdrngdOLD 20652 cramerimp 22549 tsmsxp 24018 xblcntrps 24274 xblcntr 24275 rrxmet 25284 nvaddsub4 30559 hvmulcan2 30975 adjlnop 31988 rrnmet 37796 lfladd 39032 lflsub 39033 lshpset2N 39085 atcvrj1 39398 athgt 39423 ltrncnvel 40109 trlcnv 40132 trljat2 40134 cdlemc5 40162 trlcoabs 40688 trlcolem 40693 dicvaddcl 41157 limsupre3uzlem 45706 fourierdlem42 46120 ovnhoilem2 46573 lincext3 48418 |
| Copyright terms: Public domain | W3C validator |