![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 3adant3r | Structured version Visualization version GIF version |
Description: Deduction adding a conjunct to antecedent. (Contributed by NM, 8-Jan-2006.) (Proof shortened by Wolf Lammen, 25-Jun-2022.) |
Ref | Expression |
---|---|
ad4ant3.1 | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) |
Ref | Expression |
---|---|
3adant3r | ⊢ ((𝜑 ∧ 𝜓 ∧ (𝜒 ∧ 𝜏)) → 𝜃) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl 482 | . 2 ⊢ ((𝜒 ∧ 𝜏) → 𝜒) | |
2 | ad4ant3.1 | . 2 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) | |
3 | 1, 2 | syl3an3 1162 | 1 ⊢ ((𝜑 ∧ 𝜓 ∧ (𝜒 ∧ 𝜏)) → 𝜃) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1084 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 396 df-3an 1086 |
This theorem is referenced by: wfrlem12OLD 8315 mapfien2 9400 cfeq0 10247 ltmul2 12062 lemul1 12063 lemul2 12064 lemuldiv 12091 lediv2 12101 ltdiv23 12102 lediv23 12103 dvdscmulr 16225 dvdsmulcr 16226 modremain 16348 ndvdsadd 16350 rpexp12i 16659 isdrngd 20610 isdrngdOLD 20612 cramerimp 22510 tsmsxp 23981 xblcntrps 24238 xblcntr 24239 rrxmet 25258 nvaddsub4 30379 hvmulcan2 30795 adjlnop 31808 rrnmet 37187 lfladd 38426 lflsub 38427 lshpset2N 38479 atcvrj1 38792 athgt 38817 ltrncnvel 39503 trlcnv 39526 trljat2 39528 cdlemc5 39556 trlcoabs 40082 trlcolem 40087 dicvaddcl 40551 limsupre3uzlem 44936 fourierdlem42 45350 ovnhoilem2 45803 lincext3 47325 |
Copyright terms: Public domain | W3C validator |