![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 3adant3r | Structured version Visualization version GIF version |
Description: Deduction adding a conjunct to antecedent. (Contributed by NM, 8-Jan-2006.) (Proof shortened by Wolf Lammen, 25-Jun-2022.) |
Ref | Expression |
---|---|
ad4ant3.1 | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) |
Ref | Expression |
---|---|
3adant3r | ⊢ ((𝜑 ∧ 𝜓 ∧ (𝜒 ∧ 𝜏)) → 𝜃) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl 483 | . 2 ⊢ ((𝜒 ∧ 𝜏) → 𝜒) | |
2 | ad4ant3.1 | . 2 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) | |
3 | 1, 2 | syl3an3 1165 | 1 ⊢ ((𝜑 ∧ 𝜓 ∧ (𝜒 ∧ 𝜏)) → 𝜃) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∧ w3a 1087 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 397 df-3an 1089 |
This theorem is referenced by: wfrlem12OLD 8322 mapfien2 9406 cfeq0 10253 ltmul2 12067 lemul1 12068 lemul2 12069 lemuldiv 12096 lediv2 12106 ltdiv23 12107 lediv23 12108 dvdscmulr 16230 dvdsmulcr 16231 modremain 16353 ndvdsadd 16355 rpexp12i 16663 isdrngd 20394 isdrngdOLD 20396 cramerimp 22195 tsmsxp 23666 xblcntrps 23923 xblcntr 23924 rrxmet 24932 nvaddsub4 29948 hvmulcan2 30364 adjlnop 31377 rrnmet 36783 lfladd 38022 lflsub 38023 lshpset2N 38075 atcvrj1 38388 athgt 38413 ltrncnvel 39099 trlcnv 39122 trljat2 39124 cdlemc5 39152 trlcoabs 39678 trlcolem 39683 dicvaddcl 40147 limsupre3uzlem 44530 fourierdlem42 44944 ovnhoilem2 45397 lincext3 47215 |
Copyright terms: Public domain | W3C validator |