| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 3adant3r | Structured version Visualization version GIF version | ||
| Description: Deduction adding a conjunct to antecedent. (Contributed by NM, 8-Jan-2006.) (Proof shortened by Wolf Lammen, 25-Jun-2022.) |
| Ref | Expression |
|---|---|
| ad4ant3.1 | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) |
| Ref | Expression |
|---|---|
| 3adant3r | ⊢ ((𝜑 ∧ 𝜓 ∧ (𝜒 ∧ 𝜏)) → 𝜃) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl 482 | . 2 ⊢ ((𝜒 ∧ 𝜏) → 𝜒) | |
| 2 | ad4ant3.1 | . 2 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) | |
| 3 | 1, 2 | syl3an3 1165 | 1 ⊢ ((𝜑 ∧ 𝜓 ∧ (𝜒 ∧ 𝜏)) → 𝜃) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: mapfien2 9360 cfeq0 10209 ltmul2 12033 lemul1 12034 lemul2 12035 lemuldiv 12063 lediv2 12073 ltdiv23 12074 lediv23 12075 dvdscmulr 16254 dvdsmulcr 16255 modremain 16378 ndvdsadd 16380 rpexp12i 16694 isdrngd 20674 isdrngdOLD 20676 cramerimp 22573 tsmsxp 24042 xblcntrps 24298 xblcntr 24299 rrxmet 25308 nvaddsub4 30586 hvmulcan2 31002 adjlnop 32015 rrnmet 37823 lfladd 39059 lflsub 39060 lshpset2N 39112 atcvrj1 39425 athgt 39450 ltrncnvel 40136 trlcnv 40159 trljat2 40161 cdlemc5 40189 trlcoabs 40715 trlcolem 40720 dicvaddcl 41184 limsupre3uzlem 45733 fourierdlem42 46147 ovnhoilem2 46600 lincext3 48445 |
| Copyright terms: Public domain | W3C validator |