MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  3adant3r Structured version   Visualization version   GIF version

Theorem 3adant3r 1180
Description: Deduction adding a conjunct to antecedent. (Contributed by NM, 8-Jan-2006.) (Proof shortened by Wolf Lammen, 25-Jun-2022.)
Hypothesis
Ref Expression
ad4ant3.1 ((𝜑𝜓𝜒) → 𝜃)
Assertion
Ref Expression
3adant3r ((𝜑𝜓 ∧ (𝜒𝜏)) → 𝜃)

Proof of Theorem 3adant3r
StepHypRef Expression
1 simpl 483 . 2 ((𝜒𝜏) → 𝜒)
2 ad4ant3.1 . 2 ((𝜑𝜓𝜒) → 𝜃)
31, 2syl3an3 1164 1 ((𝜑𝜓 ∧ (𝜒𝜏)) → 𝜃)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  w3a 1086
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-an 397  df-3an 1088
This theorem is referenced by:  wfrlem12OLD  8151  mapfien2  9168  cfeq0  10012  ltmul2  11826  lemul1  11827  lemul2  11828  lemuldiv  11855  lediv2  11865  ltdiv23  11866  lediv23  11867  dvdscmulr  15994  dvdsmulcr  15995  modremain  16117  ndvdsadd  16119  rpexp12i  16429  isdrngd  20016  cramerimp  21835  tsmsxp  23306  xblcntrps  23563  xblcntr  23564  rrxmet  24572  nvaddsub4  29019  hvmulcan2  29435  adjlnop  30448  rrnmet  35987  lfladd  37080  lflsub  37081  lshpset2N  37133  atcvrj1  37445  athgt  37470  ltrncnvel  38156  trlcnv  38179  trljat2  38181  cdlemc5  38209  trlcoabs  38735  trlcolem  38740  dicvaddcl  39204  limsupre3uzlem  43276  fourierdlem42  43690  ovnhoilem2  44140  lincext3  45797
  Copyright terms: Public domain W3C validator