| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 3adant3r | Structured version Visualization version GIF version | ||
| Description: Deduction adding a conjunct to antecedent. (Contributed by NM, 8-Jan-2006.) (Proof shortened by Wolf Lammen, 25-Jun-2022.) |
| Ref | Expression |
|---|---|
| ad4ant3.1 | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) |
| Ref | Expression |
|---|---|
| 3adant3r | ⊢ ((𝜑 ∧ 𝜓 ∧ (𝜒 ∧ 𝜏)) → 𝜃) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl 482 | . 2 ⊢ ((𝜒 ∧ 𝜏) → 𝜒) | |
| 2 | ad4ant3.1 | . 2 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) | |
| 3 | 1, 2 | syl3an3 1165 | 1 ⊢ ((𝜑 ∧ 𝜓 ∧ (𝜒 ∧ 𝜏)) → 𝜃) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: mapfien2 9318 cfeq0 10169 ltmul2 11993 lemul1 11994 lemul2 11995 lemuldiv 12023 lediv2 12033 ltdiv23 12034 lediv23 12035 dvdscmulr 16213 dvdsmulcr 16214 modremain 16337 ndvdsadd 16339 rpexp12i 16653 isdrngd 20668 isdrngdOLD 20670 cramerimp 22589 tsmsxp 24058 xblcntrps 24314 xblcntr 24315 rrxmet 25324 nvaddsub4 30619 hvmulcan2 31035 adjlnop 32048 rrnmet 37811 lfladd 39047 lflsub 39048 lshpset2N 39100 atcvrj1 39413 athgt 39438 ltrncnvel 40124 trlcnv 40147 trljat2 40149 cdlemc5 40177 trlcoabs 40703 trlcolem 40708 dicvaddcl 41172 limsupre3uzlem 45720 fourierdlem42 46134 ovnhoilem2 46587 lincext3 48445 |
| Copyright terms: Public domain | W3C validator |