![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 3adant3r | Structured version Visualization version GIF version |
Description: Deduction adding a conjunct to antecedent. (Contributed by NM, 8-Jan-2006.) (Proof shortened by Wolf Lammen, 25-Jun-2022.) |
Ref | Expression |
---|---|
ad4ant3.1 | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) |
Ref | Expression |
---|---|
3adant3r | ⊢ ((𝜑 ∧ 𝜓 ∧ (𝜒 ∧ 𝜏)) → 𝜃) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl 483 | . 2 ⊢ ((𝜒 ∧ 𝜏) → 𝜒) | |
2 | ad4ant3.1 | . 2 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) | |
3 | 1, 2 | syl3an3 1165 | 1 ⊢ ((𝜑 ∧ 𝜓 ∧ (𝜒 ∧ 𝜏)) → 𝜃) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∧ w3a 1087 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 397 df-3an 1089 |
This theorem is referenced by: wfrlem12OLD 8316 mapfien2 9400 cfeq0 10247 ltmul2 12061 lemul1 12062 lemul2 12063 lemuldiv 12090 lediv2 12100 ltdiv23 12101 lediv23 12102 dvdscmulr 16224 dvdsmulcr 16225 modremain 16347 ndvdsadd 16349 rpexp12i 16657 isdrngd 20340 isdrngdOLD 20342 cramerimp 22179 tsmsxp 23650 xblcntrps 23907 xblcntr 23908 rrxmet 24916 nvaddsub4 29897 hvmulcan2 30313 adjlnop 31326 rrnmet 36685 lfladd 37924 lflsub 37925 lshpset2N 37977 atcvrj1 38290 athgt 38315 ltrncnvel 39001 trlcnv 39024 trljat2 39026 cdlemc5 39054 trlcoabs 39580 trlcolem 39585 dicvaddcl 40049 limsupre3uzlem 44437 fourierdlem42 44851 ovnhoilem2 45304 lincext3 47090 |
Copyright terms: Public domain | W3C validator |