| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 3adant3r | Structured version Visualization version GIF version | ||
| Description: Deduction adding a conjunct to antecedent. (Contributed by NM, 8-Jan-2006.) (Proof shortened by Wolf Lammen, 25-Jun-2022.) |
| Ref | Expression |
|---|---|
| ad4ant3.1 | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) |
| Ref | Expression |
|---|---|
| 3adant3r | ⊢ ((𝜑 ∧ 𝜓 ∧ (𝜒 ∧ 𝜏)) → 𝜃) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl 482 | . 2 ⊢ ((𝜒 ∧ 𝜏) → 𝜒) | |
| 2 | ad4ant3.1 | . 2 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) | |
| 3 | 1, 2 | syl3an3 1165 | 1 ⊢ ((𝜑 ∧ 𝜓 ∧ (𝜒 ∧ 𝜏)) → 𝜃) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: mapfien2 9288 cfeq0 10142 ltmul2 11967 lemul1 11968 lemul2 11969 lemuldiv 11997 lediv2 12007 ltdiv23 12008 lediv23 12009 dvdscmulr 16190 dvdsmulcr 16191 modremain 16314 ndvdsadd 16316 rpexp12i 16630 isdrngd 20675 isdrngdOLD 20677 cramerimp 22596 tsmsxp 24065 xblcntrps 24320 xblcntr 24321 rrxmet 25330 nvaddsub4 30629 hvmulcan2 31045 adjlnop 32058 rrnmet 37869 lfladd 39105 lflsub 39106 lshpset2N 39158 atcvrj1 39470 athgt 39495 ltrncnvel 40181 trlcnv 40204 trljat2 40206 cdlemc5 40234 trlcoabs 40760 trlcolem 40765 dicvaddcl 41229 limsupre3uzlem 45773 fourierdlem42 46187 ovnhoilem2 46640 lincext3 48488 |
| Copyright terms: Public domain | W3C validator |