MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  3adant3r Structured version   Visualization version   GIF version

Theorem 3adant3r 1179
Description: Deduction adding a conjunct to antecedent. (Contributed by NM, 8-Jan-2006.) (Proof shortened by Wolf Lammen, 25-Jun-2022.)
Hypothesis
Ref Expression
ad4ant3.1 ((𝜑𝜓𝜒) → 𝜃)
Assertion
Ref Expression
3adant3r ((𝜑𝜓 ∧ (𝜒𝜏)) → 𝜃)

Proof of Theorem 3adant3r
StepHypRef Expression
1 simpl 482 . 2 ((𝜒𝜏) → 𝜒)
2 ad4ant3.1 . 2 ((𝜑𝜓𝜒) → 𝜃)
31, 2syl3an3 1163 1 ((𝜑𝜓 ∧ (𝜒𝜏)) → 𝜃)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1085
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-an 396  df-3an 1087
This theorem is referenced by:  wfrlem12OLD  8122  mapfien2  9098  cfeq0  9943  ltmul2  11756  lemul1  11757  lemul2  11758  lemuldiv  11785  lediv2  11795  ltdiv23  11796  lediv23  11797  dvdscmulr  15922  dvdsmulcr  15923  modremain  16045  ndvdsadd  16047  rpexp12i  16357  isdrngd  19931  cramerimp  21743  tsmsxp  23214  xblcntrps  23471  xblcntr  23472  rrxmet  24477  nvaddsub4  28920  hvmulcan2  29336  adjlnop  30349  rrnmet  35914  lfladd  37007  lflsub  37008  lshpset2N  37060  atcvrj1  37372  athgt  37397  ltrncnvel  38083  trlcnv  38106  trljat2  38108  cdlemc5  38136  trlcoabs  38662  trlcolem  38667  dicvaddcl  39131  limsupre3uzlem  43166  fourierdlem42  43580  ovnhoilem2  44030  lincext3  45685
  Copyright terms: Public domain W3C validator