Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 3adant3r | Structured version Visualization version GIF version |
Description: Deduction adding a conjunct to antecedent. (Contributed by NM, 8-Jan-2006.) (Proof shortened by Wolf Lammen, 25-Jun-2022.) |
Ref | Expression |
---|---|
ad4ant3.1 | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) |
Ref | Expression |
---|---|
3adant3r | ⊢ ((𝜑 ∧ 𝜓 ∧ (𝜒 ∧ 𝜏)) → 𝜃) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl 482 | . 2 ⊢ ((𝜒 ∧ 𝜏) → 𝜒) | |
2 | ad4ant3.1 | . 2 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) | |
3 | 1, 2 | syl3an3 1163 | 1 ⊢ ((𝜑 ∧ 𝜓 ∧ (𝜒 ∧ 𝜏)) → 𝜃) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1085 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 396 df-3an 1087 |
This theorem is referenced by: wfrlem12OLD 8122 mapfien2 9098 cfeq0 9943 ltmul2 11756 lemul1 11757 lemul2 11758 lemuldiv 11785 lediv2 11795 ltdiv23 11796 lediv23 11797 dvdscmulr 15922 dvdsmulcr 15923 modremain 16045 ndvdsadd 16047 rpexp12i 16357 isdrngd 19931 cramerimp 21743 tsmsxp 23214 xblcntrps 23471 xblcntr 23472 rrxmet 24477 nvaddsub4 28920 hvmulcan2 29336 adjlnop 30349 rrnmet 35914 lfladd 37007 lflsub 37008 lshpset2N 37060 atcvrj1 37372 athgt 37397 ltrncnvel 38083 trlcnv 38106 trljat2 38108 cdlemc5 38136 trlcoabs 38662 trlcolem 38667 dicvaddcl 39131 limsupre3uzlem 43166 fourierdlem42 43580 ovnhoilem2 44030 lincext3 45685 |
Copyright terms: Public domain | W3C validator |