Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 3adant3r | Structured version Visualization version GIF version |
Description: Deduction adding a conjunct to antecedent. (Contributed by NM, 8-Jan-2006.) (Proof shortened by Wolf Lammen, 25-Jun-2022.) |
Ref | Expression |
---|---|
ad4ant3.1 | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) |
Ref | Expression |
---|---|
3adant3r | ⊢ ((𝜑 ∧ 𝜓 ∧ (𝜒 ∧ 𝜏)) → 𝜃) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl 486 | . 2 ⊢ ((𝜒 ∧ 𝜏) → 𝜒) | |
2 | ad4ant3.1 | . 2 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) | |
3 | 1, 2 | syl3an3 1166 | 1 ⊢ ((𝜑 ∧ 𝜓 ∧ (𝜒 ∧ 𝜏)) → 𝜃) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 399 ∧ w3a 1088 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 210 df-an 400 df-3an 1090 |
This theorem is referenced by: wfrlem12 7995 mapfien2 8946 cfeq0 9756 ltmul2 11569 lemul1 11570 lemul2 11571 lemuldiv 11598 lediv2 11608 ltdiv23 11609 lediv23 11610 dvdscmulr 15730 dvdsmulcr 15731 modremain 15853 ndvdsadd 15855 rpexp12i 16165 isdrngd 19646 cramerimp 21437 tsmsxp 22906 xblcntrps 23163 xblcntr 23164 rrxmet 24160 nvaddsub4 28592 hvmulcan2 29008 adjlnop 30021 rrnmet 35610 lfladd 36703 lflsub 36704 lshpset2N 36756 atcvrj1 37068 athgt 37093 ltrncnvel 37779 trlcnv 37802 trljat2 37804 cdlemc5 37832 trlcoabs 38358 trlcolem 38363 dicvaddcl 38827 limsupre3uzlem 42818 fourierdlem42 43232 ovnhoilem2 43682 lincext3 45331 |
Copyright terms: Public domain | W3C validator |