![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 3adant3r | Structured version Visualization version GIF version |
Description: Deduction adding a conjunct to antecedent. (Contributed by NM, 8-Jan-2006.) (Proof shortened by Wolf Lammen, 25-Jun-2022.) |
Ref | Expression |
---|---|
ad4ant3.1 | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) |
Ref | Expression |
---|---|
3adant3r | ⊢ ((𝜑 ∧ 𝜓 ∧ (𝜒 ∧ 𝜏)) → 𝜃) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl 482 | . 2 ⊢ ((𝜒 ∧ 𝜏) → 𝜒) | |
2 | ad4ant3.1 | . 2 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) | |
3 | 1, 2 | syl3an3 1165 | 1 ⊢ ((𝜑 ∧ 𝜓 ∧ (𝜒 ∧ 𝜏)) → 𝜃) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1087 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1089 |
This theorem is referenced by: wfrlem12OLD 8376 mapfien2 9478 cfeq0 10325 ltmul2 12145 lemul1 12146 lemul2 12147 lemuldiv 12175 lediv2 12185 ltdiv23 12186 lediv23 12187 dvdscmulr 16333 dvdsmulcr 16334 modremain 16456 ndvdsadd 16458 rpexp12i 16771 isdrngd 20787 isdrngdOLD 20789 cramerimp 22713 tsmsxp 24184 xblcntrps 24441 xblcntr 24442 rrxmet 25461 nvaddsub4 30689 hvmulcan2 31105 adjlnop 32118 rrnmet 37789 lfladd 39022 lflsub 39023 lshpset2N 39075 atcvrj1 39388 athgt 39413 ltrncnvel 40099 trlcnv 40122 trljat2 40124 cdlemc5 40152 trlcoabs 40678 trlcolem 40683 dicvaddcl 41147 limsupre3uzlem 45656 fourierdlem42 46070 ovnhoilem2 46523 lincext3 48185 |
Copyright terms: Public domain | W3C validator |