| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 3adant3r | Structured version Visualization version GIF version | ||
| Description: Deduction adding a conjunct to antecedent. (Contributed by NM, 8-Jan-2006.) (Proof shortened by Wolf Lammen, 25-Jun-2022.) |
| Ref | Expression |
|---|---|
| ad4ant3.1 | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) |
| Ref | Expression |
|---|---|
| 3adant3r | ⊢ ((𝜑 ∧ 𝜓 ∧ (𝜒 ∧ 𝜏)) → 𝜃) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl 482 | . 2 ⊢ ((𝜒 ∧ 𝜏) → 𝜒) | |
| 2 | ad4ant3.1 | . 2 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) | |
| 3 | 1, 2 | syl3an3 1165 | 1 ⊢ ((𝜑 ∧ 𝜓 ∧ (𝜒 ∧ 𝜏)) → 𝜃) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: mapfien2 9304 cfeq0 10158 ltmul2 11983 lemul1 11984 lemul2 11985 lemuldiv 12013 lediv2 12023 ltdiv23 12024 lediv23 12025 dvdscmulr 16202 dvdsmulcr 16203 modremain 16326 ndvdsadd 16328 rpexp12i 16642 isdrngd 20689 isdrngdOLD 20691 cramerimp 22621 tsmsxp 24090 xblcntrps 24345 xblcntr 24346 rrxmet 25355 nvaddsub4 30658 hvmulcan2 31074 adjlnop 32087 rrnmet 37942 lfladd 39238 lflsub 39239 lshpset2N 39291 atcvrj1 39603 athgt 39628 ltrncnvel 40314 trlcnv 40337 trljat2 40339 cdlemc5 40367 trlcoabs 40893 trlcolem 40898 dicvaddcl 41362 limsupre3uzlem 45895 fourierdlem42 46309 ovnhoilem2 46762 lincext3 48618 |
| Copyright terms: Public domain | W3C validator |