Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 3adant3r | Structured version Visualization version GIF version |
Description: Deduction adding a conjunct to antecedent. (Contributed by NM, 8-Jan-2006.) (Proof shortened by Wolf Lammen, 25-Jun-2022.) |
Ref | Expression |
---|---|
ad4ant3.1 | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) |
Ref | Expression |
---|---|
3adant3r | ⊢ ((𝜑 ∧ 𝜓 ∧ (𝜒 ∧ 𝜏)) → 𝜃) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl 483 | . 2 ⊢ ((𝜒 ∧ 𝜏) → 𝜒) | |
2 | ad4ant3.1 | . 2 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) | |
3 | 1, 2 | syl3an3 1164 | 1 ⊢ ((𝜑 ∧ 𝜓 ∧ (𝜒 ∧ 𝜏)) → 𝜃) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∧ w3a 1086 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 397 df-3an 1088 |
This theorem is referenced by: wfrlem12OLD 8151 mapfien2 9168 cfeq0 10012 ltmul2 11826 lemul1 11827 lemul2 11828 lemuldiv 11855 lediv2 11865 ltdiv23 11866 lediv23 11867 dvdscmulr 15994 dvdsmulcr 15995 modremain 16117 ndvdsadd 16119 rpexp12i 16429 isdrngd 20016 cramerimp 21835 tsmsxp 23306 xblcntrps 23563 xblcntr 23564 rrxmet 24572 nvaddsub4 29019 hvmulcan2 29435 adjlnop 30448 rrnmet 35987 lfladd 37080 lflsub 37081 lshpset2N 37133 atcvrj1 37445 athgt 37470 ltrncnvel 38156 trlcnv 38179 trljat2 38181 cdlemc5 38209 trlcoabs 38735 trlcolem 38740 dicvaddcl 39204 limsupre3uzlem 43276 fourierdlem42 43690 ovnhoilem2 44140 lincext3 45797 |
Copyright terms: Public domain | W3C validator |