![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 3adant3r | Structured version Visualization version GIF version |
Description: Deduction adding a conjunct to antecedent. (Contributed by NM, 8-Jan-2006.) (Proof shortened by Wolf Lammen, 25-Jun-2022.) |
Ref | Expression |
---|---|
ad4ant3.1 | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) |
Ref | Expression |
---|---|
3adant3r | ⊢ ((𝜑 ∧ 𝜓 ∧ (𝜒 ∧ 𝜏)) → 𝜃) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl 484 | . 2 ⊢ ((𝜒 ∧ 𝜏) → 𝜒) | |
2 | ad4ant3.1 | . 2 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) | |
3 | 1, 2 | syl3an3 1166 | 1 ⊢ ((𝜑 ∧ 𝜓 ∧ (𝜒 ∧ 𝜏)) → 𝜃) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 ∧ w3a 1088 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 398 df-3an 1090 |
This theorem is referenced by: wfrlem12OLD 8320 mapfien2 9404 cfeq0 10251 ltmul2 12065 lemul1 12066 lemul2 12067 lemuldiv 12094 lediv2 12104 ltdiv23 12105 lediv23 12106 dvdscmulr 16228 dvdsmulcr 16229 modremain 16351 ndvdsadd 16353 rpexp12i 16661 isdrngd 20390 isdrngdOLD 20392 cramerimp 22188 tsmsxp 23659 xblcntrps 23916 xblcntr 23917 rrxmet 24925 nvaddsub4 29910 hvmulcan2 30326 adjlnop 31339 rrnmet 36697 lfladd 37936 lflsub 37937 lshpset2N 37989 atcvrj1 38302 athgt 38327 ltrncnvel 39013 trlcnv 39036 trljat2 39038 cdlemc5 39066 trlcoabs 39592 trlcolem 39597 dicvaddcl 40061 limsupre3uzlem 44451 fourierdlem42 44865 ovnhoilem2 45318 lincext3 47137 |
Copyright terms: Public domain | W3C validator |