MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  3adant3r Structured version   Visualization version   GIF version

Theorem 3adant3r 1182
Description: Deduction adding a conjunct to antecedent. (Contributed by NM, 8-Jan-2006.) (Proof shortened by Wolf Lammen, 25-Jun-2022.)
Hypothesis
Ref Expression
ad4ant3.1 ((𝜑𝜓𝜒) → 𝜃)
Assertion
Ref Expression
3adant3r ((𝜑𝜓 ∧ (𝜒𝜏)) → 𝜃)

Proof of Theorem 3adant3r
StepHypRef Expression
1 simpl 482 . 2 ((𝜒𝜏) → 𝜒)
2 ad4ant3.1 . 2 ((𝜑𝜓𝜒) → 𝜃)
31, 2syl3an3 1165 1 ((𝜑𝜓 ∧ (𝜒𝜏)) → 𝜃)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-an 396  df-3an 1088
This theorem is referenced by:  mapfien2  9360  cfeq0  10209  ltmul2  12033  lemul1  12034  lemul2  12035  lemuldiv  12063  lediv2  12073  ltdiv23  12074  lediv23  12075  dvdscmulr  16254  dvdsmulcr  16255  modremain  16378  ndvdsadd  16380  rpexp12i  16694  isdrngd  20674  isdrngdOLD  20676  cramerimp  22573  tsmsxp  24042  xblcntrps  24298  xblcntr  24299  rrxmet  25308  nvaddsub4  30586  hvmulcan2  31002  adjlnop  32015  rrnmet  37823  lfladd  39059  lflsub  39060  lshpset2N  39112  atcvrj1  39425  athgt  39450  ltrncnvel  40136  trlcnv  40159  trljat2  40161  cdlemc5  40189  trlcoabs  40715  trlcolem  40720  dicvaddcl  41184  limsupre3uzlem  45733  fourierdlem42  46147  ovnhoilem2  46600  lincext3  48445
  Copyright terms: Public domain W3C validator