Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lflsub Structured version   Visualization version   GIF version

Theorem lflsub 35230
Description: Property of a linear functional. (lnfnaddi 29491 analog.) (Contributed by NM, 18-Apr-2014.)
Hypotheses
Ref Expression
lflsub.d 𝐷 = (Scalar‘𝑊)
lflsub.m 𝑀 = (-g𝐷)
lflsub.v 𝑉 = (Base‘𝑊)
lflsub.a = (-g𝑊)
lflsub.f 𝐹 = (LFnl‘𝑊)
Assertion
Ref Expression
lflsub ((𝑊 ∈ LMod ∧ 𝐺𝐹 ∧ (𝑋𝑉𝑌𝑉)) → (𝐺‘(𝑋 𝑌)) = ((𝐺𝑋)𝑀(𝐺𝑌)))

Proof of Theorem lflsub
StepHypRef Expression
1 simp1 1127 . . . . 5 ((𝑊 ∈ LMod ∧ 𝐺𝐹 ∧ (𝑋𝑉𝑌𝑉)) → 𝑊 ∈ LMod)
2 simp3l 1215 . . . . 5 ((𝑊 ∈ LMod ∧ 𝐺𝐹 ∧ (𝑋𝑉𝑌𝑉)) → 𝑋𝑉)
3 lflsub.d . . . . . . . . . 10 𝐷 = (Scalar‘𝑊)
43lmodring 19274 . . . . . . . . 9 (𝑊 ∈ LMod → 𝐷 ∈ Ring)
543ad2ant1 1124 . . . . . . . 8 ((𝑊 ∈ LMod ∧ 𝐺𝐹 ∧ (𝑋𝑉𝑌𝑉)) → 𝐷 ∈ Ring)
6 ringgrp 18950 . . . . . . . 8 (𝐷 ∈ Ring → 𝐷 ∈ Grp)
75, 6syl 17 . . . . . . 7 ((𝑊 ∈ LMod ∧ 𝐺𝐹 ∧ (𝑋𝑉𝑌𝑉)) → 𝐷 ∈ Grp)
8 eqid 2778 . . . . . . . . 9 (Base‘𝐷) = (Base‘𝐷)
9 eqid 2778 . . . . . . . . 9 (1r𝐷) = (1r𝐷)
108, 9ringidcl 18966 . . . . . . . 8 (𝐷 ∈ Ring → (1r𝐷) ∈ (Base‘𝐷))
115, 10syl 17 . . . . . . 7 ((𝑊 ∈ LMod ∧ 𝐺𝐹 ∧ (𝑋𝑉𝑌𝑉)) → (1r𝐷) ∈ (Base‘𝐷))
12 eqid 2778 . . . . . . . 8 (invg𝐷) = (invg𝐷)
138, 12grpinvcl 17865 . . . . . . 7 ((𝐷 ∈ Grp ∧ (1r𝐷) ∈ (Base‘𝐷)) → ((invg𝐷)‘(1r𝐷)) ∈ (Base‘𝐷))
147, 11, 13syl2anc 579 . . . . . 6 ((𝑊 ∈ LMod ∧ 𝐺𝐹 ∧ (𝑋𝑉𝑌𝑉)) → ((invg𝐷)‘(1r𝐷)) ∈ (Base‘𝐷))
15 simp3r 1216 . . . . . 6 ((𝑊 ∈ LMod ∧ 𝐺𝐹 ∧ (𝑋𝑉𝑌𝑉)) → 𝑌𝑉)
16 lflsub.v . . . . . . 7 𝑉 = (Base‘𝑊)
17 eqid 2778 . . . . . . 7 ( ·𝑠𝑊) = ( ·𝑠𝑊)
1816, 3, 17, 8lmodvscl 19283 . . . . . 6 ((𝑊 ∈ LMod ∧ ((invg𝐷)‘(1r𝐷)) ∈ (Base‘𝐷) ∧ 𝑌𝑉) → (((invg𝐷)‘(1r𝐷))( ·𝑠𝑊)𝑌) ∈ 𝑉)
191, 14, 15, 18syl3anc 1439 . . . . 5 ((𝑊 ∈ LMod ∧ 𝐺𝐹 ∧ (𝑋𝑉𝑌𝑉)) → (((invg𝐷)‘(1r𝐷))( ·𝑠𝑊)𝑌) ∈ 𝑉)
20 eqid 2778 . . . . . 6 (+g𝑊) = (+g𝑊)
2116, 20lmodcom 19312 . . . . 5 ((𝑊 ∈ LMod ∧ 𝑋𝑉 ∧ (((invg𝐷)‘(1r𝐷))( ·𝑠𝑊)𝑌) ∈ 𝑉) → (𝑋(+g𝑊)(((invg𝐷)‘(1r𝐷))( ·𝑠𝑊)𝑌)) = ((((invg𝐷)‘(1r𝐷))( ·𝑠𝑊)𝑌)(+g𝑊)𝑋))
221, 2, 19, 21syl3anc 1439 . . . 4 ((𝑊 ∈ LMod ∧ 𝐺𝐹 ∧ (𝑋𝑉𝑌𝑉)) → (𝑋(+g𝑊)(((invg𝐷)‘(1r𝐷))( ·𝑠𝑊)𝑌)) = ((((invg𝐷)‘(1r𝐷))( ·𝑠𝑊)𝑌)(+g𝑊)𝑋))
2322fveq2d 6452 . . 3 ((𝑊 ∈ LMod ∧ 𝐺𝐹 ∧ (𝑋𝑉𝑌𝑉)) → (𝐺‘(𝑋(+g𝑊)(((invg𝐷)‘(1r𝐷))( ·𝑠𝑊)𝑌))) = (𝐺‘((((invg𝐷)‘(1r𝐷))( ·𝑠𝑊)𝑌)(+g𝑊)𝑋)))
24 simp2 1128 . . . 4 ((𝑊 ∈ LMod ∧ 𝐺𝐹 ∧ (𝑋𝑉𝑌𝑉)) → 𝐺𝐹)
25 eqid 2778 . . . . 5 (+g𝐷) = (+g𝐷)
26 eqid 2778 . . . . 5 (.r𝐷) = (.r𝐷)
27 lflsub.f . . . . 5 𝐹 = (LFnl‘𝑊)
2816, 20, 3, 17, 8, 25, 26, 27lfli 35224 . . . 4 ((𝑊 ∈ LMod ∧ 𝐺𝐹 ∧ (((invg𝐷)‘(1r𝐷)) ∈ (Base‘𝐷) ∧ 𝑌𝑉𝑋𝑉)) → (𝐺‘((((invg𝐷)‘(1r𝐷))( ·𝑠𝑊)𝑌)(+g𝑊)𝑋)) = ((((invg𝐷)‘(1r𝐷))(.r𝐷)(𝐺𝑌))(+g𝐷)(𝐺𝑋)))
291, 24, 14, 15, 2, 28syl113anc 1450 . . 3 ((𝑊 ∈ LMod ∧ 𝐺𝐹 ∧ (𝑋𝑉𝑌𝑉)) → (𝐺‘((((invg𝐷)‘(1r𝐷))( ·𝑠𝑊)𝑌)(+g𝑊)𝑋)) = ((((invg𝐷)‘(1r𝐷))(.r𝐷)(𝐺𝑌))(+g𝐷)(𝐺𝑋)))
303, 8, 16, 27lflcl 35227 . . . . . . 7 ((𝑊 ∈ LMod ∧ 𝐺𝐹𝑌𝑉) → (𝐺𝑌) ∈ (Base‘𝐷))
31303adant3l 1186 . . . . . 6 ((𝑊 ∈ LMod ∧ 𝐺𝐹 ∧ (𝑋𝑉𝑌𝑉)) → (𝐺𝑌) ∈ (Base‘𝐷))
328, 26, 9, 12, 5, 31ringnegl 18992 . . . . 5 ((𝑊 ∈ LMod ∧ 𝐺𝐹 ∧ (𝑋𝑉𝑌𝑉)) → (((invg𝐷)‘(1r𝐷))(.r𝐷)(𝐺𝑌)) = ((invg𝐷)‘(𝐺𝑌)))
3332oveq1d 6939 . . . 4 ((𝑊 ∈ LMod ∧ 𝐺𝐹 ∧ (𝑋𝑉𝑌𝑉)) → ((((invg𝐷)‘(1r𝐷))(.r𝐷)(𝐺𝑌))(+g𝐷)(𝐺𝑋)) = (((invg𝐷)‘(𝐺𝑌))(+g𝐷)(𝐺𝑋)))
34 ringabl 18978 . . . . . 6 (𝐷 ∈ Ring → 𝐷 ∈ Abel)
355, 34syl 17 . . . . 5 ((𝑊 ∈ LMod ∧ 𝐺𝐹 ∧ (𝑋𝑉𝑌𝑉)) → 𝐷 ∈ Abel)
368, 12grpinvcl 17865 . . . . . 6 ((𝐷 ∈ Grp ∧ (𝐺𝑌) ∈ (Base‘𝐷)) → ((invg𝐷)‘(𝐺𝑌)) ∈ (Base‘𝐷))
377, 31, 36syl2anc 579 . . . . 5 ((𝑊 ∈ LMod ∧ 𝐺𝐹 ∧ (𝑋𝑉𝑌𝑉)) → ((invg𝐷)‘(𝐺𝑌)) ∈ (Base‘𝐷))
383, 8, 16, 27lflcl 35227 . . . . . 6 ((𝑊 ∈ LMod ∧ 𝐺𝐹𝑋𝑉) → (𝐺𝑋) ∈ (Base‘𝐷))
39383adant3r 1188 . . . . 5 ((𝑊 ∈ LMod ∧ 𝐺𝐹 ∧ (𝑋𝑉𝑌𝑉)) → (𝐺𝑋) ∈ (Base‘𝐷))
408, 25ablcom 18607 . . . . 5 ((𝐷 ∈ Abel ∧ ((invg𝐷)‘(𝐺𝑌)) ∈ (Base‘𝐷) ∧ (𝐺𝑋) ∈ (Base‘𝐷)) → (((invg𝐷)‘(𝐺𝑌))(+g𝐷)(𝐺𝑋)) = ((𝐺𝑋)(+g𝐷)((invg𝐷)‘(𝐺𝑌))))
4135, 37, 39, 40syl3anc 1439 . . . 4 ((𝑊 ∈ LMod ∧ 𝐺𝐹 ∧ (𝑋𝑉𝑌𝑉)) → (((invg𝐷)‘(𝐺𝑌))(+g𝐷)(𝐺𝑋)) = ((𝐺𝑋)(+g𝐷)((invg𝐷)‘(𝐺𝑌))))
4233, 41eqtrd 2814 . . 3 ((𝑊 ∈ LMod ∧ 𝐺𝐹 ∧ (𝑋𝑉𝑌𝑉)) → ((((invg𝐷)‘(1r𝐷))(.r𝐷)(𝐺𝑌))(+g𝐷)(𝐺𝑋)) = ((𝐺𝑋)(+g𝐷)((invg𝐷)‘(𝐺𝑌))))
4323, 29, 423eqtrd 2818 . 2 ((𝑊 ∈ LMod ∧ 𝐺𝐹 ∧ (𝑋𝑉𝑌𝑉)) → (𝐺‘(𝑋(+g𝑊)(((invg𝐷)‘(1r𝐷))( ·𝑠𝑊)𝑌))) = ((𝐺𝑋)(+g𝐷)((invg𝐷)‘(𝐺𝑌))))
44 lflsub.a . . . . 5 = (-g𝑊)
4516, 20, 44, 3, 17, 12, 9lmodvsubval2 19321 . . . 4 ((𝑊 ∈ LMod ∧ 𝑋𝑉𝑌𝑉) → (𝑋 𝑌) = (𝑋(+g𝑊)(((invg𝐷)‘(1r𝐷))( ·𝑠𝑊)𝑌)))
461, 2, 15, 45syl3anc 1439 . . 3 ((𝑊 ∈ LMod ∧ 𝐺𝐹 ∧ (𝑋𝑉𝑌𝑉)) → (𝑋 𝑌) = (𝑋(+g𝑊)(((invg𝐷)‘(1r𝐷))( ·𝑠𝑊)𝑌)))
4746fveq2d 6452 . 2 ((𝑊 ∈ LMod ∧ 𝐺𝐹 ∧ (𝑋𝑉𝑌𝑉)) → (𝐺‘(𝑋 𝑌)) = (𝐺‘(𝑋(+g𝑊)(((invg𝐷)‘(1r𝐷))( ·𝑠𝑊)𝑌))))
48 lflsub.m . . . 4 𝑀 = (-g𝐷)
498, 25, 12, 48grpsubval 17863 . . 3 (((𝐺𝑋) ∈ (Base‘𝐷) ∧ (𝐺𝑌) ∈ (Base‘𝐷)) → ((𝐺𝑋)𝑀(𝐺𝑌)) = ((𝐺𝑋)(+g𝐷)((invg𝐷)‘(𝐺𝑌))))
5039, 31, 49syl2anc 579 . 2 ((𝑊 ∈ LMod ∧ 𝐺𝐹 ∧ (𝑋𝑉𝑌𝑉)) → ((𝐺𝑋)𝑀(𝐺𝑌)) = ((𝐺𝑋)(+g𝐷)((invg𝐷)‘(𝐺𝑌))))
5143, 47, 503eqtr4d 2824 1 ((𝑊 ∈ LMod ∧ 𝐺𝐹 ∧ (𝑋𝑉𝑌𝑉)) → (𝐺‘(𝑋 𝑌)) = ((𝐺𝑋)𝑀(𝐺𝑌)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 386  w3a 1071   = wceq 1601  wcel 2107  cfv 6137  (class class class)co 6924  Basecbs 16266  +gcplusg 16349  .rcmulr 16350  Scalarcsca 16352   ·𝑠 cvsca 16353  Grpcgrp 17820  invgcminusg 17821  -gcsg 17822  Abelcabl 18591  1rcur 18899  Ringcrg 18945  LModclmod 19266  LFnlclfn 35220
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1839  ax-4 1853  ax-5 1953  ax-6 2021  ax-7 2055  ax-8 2109  ax-9 2116  ax-10 2135  ax-11 2150  ax-12 2163  ax-13 2334  ax-ext 2754  ax-rep 5008  ax-sep 5019  ax-nul 5027  ax-pow 5079  ax-pr 5140  ax-un 7228  ax-cnex 10330  ax-resscn 10331  ax-1cn 10332  ax-icn 10333  ax-addcl 10334  ax-addrcl 10335  ax-mulcl 10336  ax-mulrcl 10337  ax-mulcom 10338  ax-addass 10339  ax-mulass 10340  ax-distr 10341  ax-i2m1 10342  ax-1ne0 10343  ax-1rid 10344  ax-rnegex 10345  ax-rrecex 10346  ax-cnre 10347  ax-pre-lttri 10348  ax-pre-lttrn 10349  ax-pre-ltadd 10350  ax-pre-mulgt0 10351
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 837  df-3or 1072  df-3an 1073  df-tru 1605  df-ex 1824  df-nf 1828  df-sb 2012  df-mo 2551  df-eu 2587  df-clab 2764  df-cleq 2770  df-clel 2774  df-nfc 2921  df-ne 2970  df-nel 3076  df-ral 3095  df-rex 3096  df-reu 3097  df-rmo 3098  df-rab 3099  df-v 3400  df-sbc 3653  df-csb 3752  df-dif 3795  df-un 3797  df-in 3799  df-ss 3806  df-pss 3808  df-nul 4142  df-if 4308  df-pw 4381  df-sn 4399  df-pr 4401  df-tp 4403  df-op 4405  df-uni 4674  df-iun 4757  df-br 4889  df-opab 4951  df-mpt 4968  df-tr 4990  df-id 5263  df-eprel 5268  df-po 5276  df-so 5277  df-fr 5316  df-we 5318  df-xp 5363  df-rel 5364  df-cnv 5365  df-co 5366  df-dm 5367  df-rn 5368  df-res 5369  df-ima 5370  df-pred 5935  df-ord 5981  df-on 5982  df-lim 5983  df-suc 5984  df-iota 6101  df-fun 6139  df-fn 6140  df-f 6141  df-f1 6142  df-fo 6143  df-f1o 6144  df-fv 6145  df-riota 6885  df-ov 6927  df-oprab 6928  df-mpt2 6929  df-om 7346  df-1st 7447  df-2nd 7448  df-wrecs 7691  df-recs 7753  df-rdg 7791  df-er 8028  df-map 8144  df-en 8244  df-dom 8245  df-sdom 8246  df-pnf 10415  df-mnf 10416  df-xr 10417  df-ltxr 10418  df-le 10419  df-sub 10610  df-neg 10611  df-nn 11380  df-2 11443  df-ndx 16269  df-slot 16270  df-base 16272  df-sets 16273  df-plusg 16362  df-0g 16499  df-mgm 17639  df-sgrp 17681  df-mnd 17692  df-grp 17823  df-minusg 17824  df-sbg 17825  df-cmn 18592  df-abl 18593  df-mgp 18888  df-ur 18900  df-ring 18947  df-lmod 19268  df-lfl 35221
This theorem is referenced by:  eqlkr  35262  lkrlsp  35265  lclkrlem2m  37682  hdmaplns1  38071
  Copyright terms: Public domain W3C validator