Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lflsub Structured version   Visualization version   GIF version

Theorem lflsub 39085
Description: Property of a linear functional. (lnfnaddi 32013 analog.) (Contributed by NM, 18-Apr-2014.)
Hypotheses
Ref Expression
lflsub.d 𝐷 = (Scalar‘𝑊)
lflsub.m 𝑀 = (-g𝐷)
lflsub.v 𝑉 = (Base‘𝑊)
lflsub.a = (-g𝑊)
lflsub.f 𝐹 = (LFnl‘𝑊)
Assertion
Ref Expression
lflsub ((𝑊 ∈ LMod ∧ 𝐺𝐹 ∧ (𝑋𝑉𝑌𝑉)) → (𝐺‘(𝑋 𝑌)) = ((𝐺𝑋)𝑀(𝐺𝑌)))

Proof of Theorem lflsub
StepHypRef Expression
1 simp1 1136 . . . . 5 ((𝑊 ∈ LMod ∧ 𝐺𝐹 ∧ (𝑋𝑉𝑌𝑉)) → 𝑊 ∈ LMod)
2 simp3l 1202 . . . . 5 ((𝑊 ∈ LMod ∧ 𝐺𝐹 ∧ (𝑋𝑉𝑌𝑉)) → 𝑋𝑉)
3 lflsub.d . . . . . . . . . 10 𝐷 = (Scalar‘𝑊)
43lmodring 20794 . . . . . . . . 9 (𝑊 ∈ LMod → 𝐷 ∈ Ring)
543ad2ant1 1133 . . . . . . . 8 ((𝑊 ∈ LMod ∧ 𝐺𝐹 ∧ (𝑋𝑉𝑌𝑉)) → 𝐷 ∈ Ring)
6 ringgrp 20149 . . . . . . . 8 (𝐷 ∈ Ring → 𝐷 ∈ Grp)
75, 6syl 17 . . . . . . 7 ((𝑊 ∈ LMod ∧ 𝐺𝐹 ∧ (𝑋𝑉𝑌𝑉)) → 𝐷 ∈ Grp)
8 eqid 2730 . . . . . . . . 9 (Base‘𝐷) = (Base‘𝐷)
9 eqid 2730 . . . . . . . . 9 (1r𝐷) = (1r𝐷)
108, 9ringidcl 20176 . . . . . . . 8 (𝐷 ∈ Ring → (1r𝐷) ∈ (Base‘𝐷))
115, 10syl 17 . . . . . . 7 ((𝑊 ∈ LMod ∧ 𝐺𝐹 ∧ (𝑋𝑉𝑌𝑉)) → (1r𝐷) ∈ (Base‘𝐷))
12 eqid 2730 . . . . . . . 8 (invg𝐷) = (invg𝐷)
138, 12grpinvcl 18892 . . . . . . 7 ((𝐷 ∈ Grp ∧ (1r𝐷) ∈ (Base‘𝐷)) → ((invg𝐷)‘(1r𝐷)) ∈ (Base‘𝐷))
147, 11, 13syl2anc 584 . . . . . 6 ((𝑊 ∈ LMod ∧ 𝐺𝐹 ∧ (𝑋𝑉𝑌𝑉)) → ((invg𝐷)‘(1r𝐷)) ∈ (Base‘𝐷))
15 simp3r 1203 . . . . . 6 ((𝑊 ∈ LMod ∧ 𝐺𝐹 ∧ (𝑋𝑉𝑌𝑉)) → 𝑌𝑉)
16 lflsub.v . . . . . . 7 𝑉 = (Base‘𝑊)
17 eqid 2730 . . . . . . 7 ( ·𝑠𝑊) = ( ·𝑠𝑊)
1816, 3, 17, 8lmodvscl 20804 . . . . . 6 ((𝑊 ∈ LMod ∧ ((invg𝐷)‘(1r𝐷)) ∈ (Base‘𝐷) ∧ 𝑌𝑉) → (((invg𝐷)‘(1r𝐷))( ·𝑠𝑊)𝑌) ∈ 𝑉)
191, 14, 15, 18syl3anc 1373 . . . . 5 ((𝑊 ∈ LMod ∧ 𝐺𝐹 ∧ (𝑋𝑉𝑌𝑉)) → (((invg𝐷)‘(1r𝐷))( ·𝑠𝑊)𝑌) ∈ 𝑉)
20 eqid 2730 . . . . . 6 (+g𝑊) = (+g𝑊)
2116, 20lmodcom 20834 . . . . 5 ((𝑊 ∈ LMod ∧ 𝑋𝑉 ∧ (((invg𝐷)‘(1r𝐷))( ·𝑠𝑊)𝑌) ∈ 𝑉) → (𝑋(+g𝑊)(((invg𝐷)‘(1r𝐷))( ·𝑠𝑊)𝑌)) = ((((invg𝐷)‘(1r𝐷))( ·𝑠𝑊)𝑌)(+g𝑊)𝑋))
221, 2, 19, 21syl3anc 1373 . . . 4 ((𝑊 ∈ LMod ∧ 𝐺𝐹 ∧ (𝑋𝑉𝑌𝑉)) → (𝑋(+g𝑊)(((invg𝐷)‘(1r𝐷))( ·𝑠𝑊)𝑌)) = ((((invg𝐷)‘(1r𝐷))( ·𝑠𝑊)𝑌)(+g𝑊)𝑋))
2322fveq2d 6821 . . 3 ((𝑊 ∈ LMod ∧ 𝐺𝐹 ∧ (𝑋𝑉𝑌𝑉)) → (𝐺‘(𝑋(+g𝑊)(((invg𝐷)‘(1r𝐷))( ·𝑠𝑊)𝑌))) = (𝐺‘((((invg𝐷)‘(1r𝐷))( ·𝑠𝑊)𝑌)(+g𝑊)𝑋)))
24 simp2 1137 . . . 4 ((𝑊 ∈ LMod ∧ 𝐺𝐹 ∧ (𝑋𝑉𝑌𝑉)) → 𝐺𝐹)
25 eqid 2730 . . . . 5 (+g𝐷) = (+g𝐷)
26 eqid 2730 . . . . 5 (.r𝐷) = (.r𝐷)
27 lflsub.f . . . . 5 𝐹 = (LFnl‘𝑊)
2816, 20, 3, 17, 8, 25, 26, 27lfli 39079 . . . 4 ((𝑊 ∈ LMod ∧ 𝐺𝐹 ∧ (((invg𝐷)‘(1r𝐷)) ∈ (Base‘𝐷) ∧ 𝑌𝑉𝑋𝑉)) → (𝐺‘((((invg𝐷)‘(1r𝐷))( ·𝑠𝑊)𝑌)(+g𝑊)𝑋)) = ((((invg𝐷)‘(1r𝐷))(.r𝐷)(𝐺𝑌))(+g𝐷)(𝐺𝑋)))
291, 24, 14, 15, 2, 28syl113anc 1384 . . 3 ((𝑊 ∈ LMod ∧ 𝐺𝐹 ∧ (𝑋𝑉𝑌𝑉)) → (𝐺‘((((invg𝐷)‘(1r𝐷))( ·𝑠𝑊)𝑌)(+g𝑊)𝑋)) = ((((invg𝐷)‘(1r𝐷))(.r𝐷)(𝐺𝑌))(+g𝐷)(𝐺𝑋)))
303, 8, 16, 27lflcl 39082 . . . . . . 7 ((𝑊 ∈ LMod ∧ 𝐺𝐹𝑌𝑉) → (𝐺𝑌) ∈ (Base‘𝐷))
31303adant3l 1181 . . . . . 6 ((𝑊 ∈ LMod ∧ 𝐺𝐹 ∧ (𝑋𝑉𝑌𝑉)) → (𝐺𝑌) ∈ (Base‘𝐷))
328, 26, 9, 12, 5, 31ringnegl 20213 . . . . 5 ((𝑊 ∈ LMod ∧ 𝐺𝐹 ∧ (𝑋𝑉𝑌𝑉)) → (((invg𝐷)‘(1r𝐷))(.r𝐷)(𝐺𝑌)) = ((invg𝐷)‘(𝐺𝑌)))
3332oveq1d 7356 . . . 4 ((𝑊 ∈ LMod ∧ 𝐺𝐹 ∧ (𝑋𝑉𝑌𝑉)) → ((((invg𝐷)‘(1r𝐷))(.r𝐷)(𝐺𝑌))(+g𝐷)(𝐺𝑋)) = (((invg𝐷)‘(𝐺𝑌))(+g𝐷)(𝐺𝑋)))
34 ringabl 20192 . . . . . 6 (𝐷 ∈ Ring → 𝐷 ∈ Abel)
355, 34syl 17 . . . . 5 ((𝑊 ∈ LMod ∧ 𝐺𝐹 ∧ (𝑋𝑉𝑌𝑉)) → 𝐷 ∈ Abel)
368, 12grpinvcl 18892 . . . . . 6 ((𝐷 ∈ Grp ∧ (𝐺𝑌) ∈ (Base‘𝐷)) → ((invg𝐷)‘(𝐺𝑌)) ∈ (Base‘𝐷))
377, 31, 36syl2anc 584 . . . . 5 ((𝑊 ∈ LMod ∧ 𝐺𝐹 ∧ (𝑋𝑉𝑌𝑉)) → ((invg𝐷)‘(𝐺𝑌)) ∈ (Base‘𝐷))
383, 8, 16, 27lflcl 39082 . . . . . 6 ((𝑊 ∈ LMod ∧ 𝐺𝐹𝑋𝑉) → (𝐺𝑋) ∈ (Base‘𝐷))
39383adant3r 1182 . . . . 5 ((𝑊 ∈ LMod ∧ 𝐺𝐹 ∧ (𝑋𝑉𝑌𝑉)) → (𝐺𝑋) ∈ (Base‘𝐷))
408, 25ablcom 19704 . . . . 5 ((𝐷 ∈ Abel ∧ ((invg𝐷)‘(𝐺𝑌)) ∈ (Base‘𝐷) ∧ (𝐺𝑋) ∈ (Base‘𝐷)) → (((invg𝐷)‘(𝐺𝑌))(+g𝐷)(𝐺𝑋)) = ((𝐺𝑋)(+g𝐷)((invg𝐷)‘(𝐺𝑌))))
4135, 37, 39, 40syl3anc 1373 . . . 4 ((𝑊 ∈ LMod ∧ 𝐺𝐹 ∧ (𝑋𝑉𝑌𝑉)) → (((invg𝐷)‘(𝐺𝑌))(+g𝐷)(𝐺𝑋)) = ((𝐺𝑋)(+g𝐷)((invg𝐷)‘(𝐺𝑌))))
4233, 41eqtrd 2765 . . 3 ((𝑊 ∈ LMod ∧ 𝐺𝐹 ∧ (𝑋𝑉𝑌𝑉)) → ((((invg𝐷)‘(1r𝐷))(.r𝐷)(𝐺𝑌))(+g𝐷)(𝐺𝑋)) = ((𝐺𝑋)(+g𝐷)((invg𝐷)‘(𝐺𝑌))))
4323, 29, 423eqtrd 2769 . 2 ((𝑊 ∈ LMod ∧ 𝐺𝐹 ∧ (𝑋𝑉𝑌𝑉)) → (𝐺‘(𝑋(+g𝑊)(((invg𝐷)‘(1r𝐷))( ·𝑠𝑊)𝑌))) = ((𝐺𝑋)(+g𝐷)((invg𝐷)‘(𝐺𝑌))))
44 lflsub.a . . . . 5 = (-g𝑊)
4516, 20, 44, 3, 17, 12, 9lmodvsubval2 20843 . . . 4 ((𝑊 ∈ LMod ∧ 𝑋𝑉𝑌𝑉) → (𝑋 𝑌) = (𝑋(+g𝑊)(((invg𝐷)‘(1r𝐷))( ·𝑠𝑊)𝑌)))
461, 2, 15, 45syl3anc 1373 . . 3 ((𝑊 ∈ LMod ∧ 𝐺𝐹 ∧ (𝑋𝑉𝑌𝑉)) → (𝑋 𝑌) = (𝑋(+g𝑊)(((invg𝐷)‘(1r𝐷))( ·𝑠𝑊)𝑌)))
4746fveq2d 6821 . 2 ((𝑊 ∈ LMod ∧ 𝐺𝐹 ∧ (𝑋𝑉𝑌𝑉)) → (𝐺‘(𝑋 𝑌)) = (𝐺‘(𝑋(+g𝑊)(((invg𝐷)‘(1r𝐷))( ·𝑠𝑊)𝑌))))
48 lflsub.m . . . 4 𝑀 = (-g𝐷)
498, 25, 12, 48grpsubval 18890 . . 3 (((𝐺𝑋) ∈ (Base‘𝐷) ∧ (𝐺𝑌) ∈ (Base‘𝐷)) → ((𝐺𝑋)𝑀(𝐺𝑌)) = ((𝐺𝑋)(+g𝐷)((invg𝐷)‘(𝐺𝑌))))
5039, 31, 49syl2anc 584 . 2 ((𝑊 ∈ LMod ∧ 𝐺𝐹 ∧ (𝑋𝑉𝑌𝑉)) → ((𝐺𝑋)𝑀(𝐺𝑌)) = ((𝐺𝑋)(+g𝐷)((invg𝐷)‘(𝐺𝑌))))
5143, 47, 503eqtr4d 2775 1 ((𝑊 ∈ LMod ∧ 𝐺𝐹 ∧ (𝑋𝑉𝑌𝑉)) → (𝐺‘(𝑋 𝑌)) = ((𝐺𝑋)𝑀(𝐺𝑌)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1541  wcel 2110  cfv 6477  (class class class)co 7341  Basecbs 17112  +gcplusg 17153  .rcmulr 17154  Scalarcsca 17156   ·𝑠 cvsca 17157  Grpcgrp 18838  invgcminusg 18839  -gcsg 18840  Abelcabl 19686  1rcur 20092  Ringcrg 20144  LModclmod 20786  LFnlclfn 39075
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2112  ax-9 2120  ax-10 2143  ax-11 2159  ax-12 2179  ax-ext 2702  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7663  ax-cnex 11054  ax-resscn 11055  ax-1cn 11056  ax-icn 11057  ax-addcl 11058  ax-addrcl 11059  ax-mulcl 11060  ax-mulrcl 11061  ax-mulcom 11062  ax-addass 11063  ax-mulass 11064  ax-distr 11065  ax-i2m1 11066  ax-1ne0 11067  ax-1rid 11068  ax-rnegex 11069  ax-rrecex 11070  ax-cnre 11071  ax-pre-lttri 11072  ax-pre-lttrn 11073  ax-pre-ltadd 11074  ax-pre-mulgt0 11075
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3344  df-reu 3345  df-rab 3394  df-v 3436  df-sbc 3740  df-csb 3849  df-dif 3903  df-un 3905  df-in 3907  df-ss 3917  df-pss 3920  df-nul 4282  df-if 4474  df-pw 4550  df-sn 4575  df-pr 4577  df-op 4581  df-uni 4858  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6244  df-ord 6305  df-on 6306  df-lim 6307  df-suc 6308  df-iota 6433  df-fun 6479  df-fn 6480  df-f 6481  df-f1 6482  df-fo 6483  df-f1o 6484  df-fv 6485  df-riota 7298  df-ov 7344  df-oprab 7345  df-mpo 7346  df-om 7792  df-1st 7916  df-2nd 7917  df-frecs 8206  df-wrecs 8237  df-recs 8286  df-rdg 8324  df-er 8617  df-map 8747  df-en 8865  df-dom 8866  df-sdom 8867  df-pnf 11140  df-mnf 11141  df-xr 11142  df-ltxr 11143  df-le 11144  df-sub 11338  df-neg 11339  df-nn 12118  df-2 12180  df-sets 17067  df-slot 17085  df-ndx 17097  df-base 17113  df-plusg 17166  df-0g 17337  df-mgm 18540  df-sgrp 18619  df-mnd 18635  df-grp 18841  df-minusg 18842  df-sbg 18843  df-cmn 19687  df-abl 19688  df-mgp 20052  df-rng 20064  df-ur 20093  df-ring 20146  df-lmod 20788  df-lfl 39076
This theorem is referenced by:  eqlkr  39117  lkrlsp  39120  lclkrlem2m  41537  hdmaplns1  41926
  Copyright terms: Public domain W3C validator