Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lflsub Structured version   Visualization version   GIF version

Theorem lflsub 37529
Description: Property of a linear functional. (lnfnaddi 30985 analog.) (Contributed by NM, 18-Apr-2014.)
Hypotheses
Ref Expression
lflsub.d 𝐷 = (Scalar‘𝑊)
lflsub.m 𝑀 = (-g𝐷)
lflsub.v 𝑉 = (Base‘𝑊)
lflsub.a = (-g𝑊)
lflsub.f 𝐹 = (LFnl‘𝑊)
Assertion
Ref Expression
lflsub ((𝑊 ∈ LMod ∧ 𝐺𝐹 ∧ (𝑋𝑉𝑌𝑉)) → (𝐺‘(𝑋 𝑌)) = ((𝐺𝑋)𝑀(𝐺𝑌)))

Proof of Theorem lflsub
StepHypRef Expression
1 simp1 1136 . . . . 5 ((𝑊 ∈ LMod ∧ 𝐺𝐹 ∧ (𝑋𝑉𝑌𝑉)) → 𝑊 ∈ LMod)
2 simp3l 1201 . . . . 5 ((𝑊 ∈ LMod ∧ 𝐺𝐹 ∧ (𝑋𝑉𝑌𝑉)) → 𝑋𝑉)
3 lflsub.d . . . . . . . . . 10 𝐷 = (Scalar‘𝑊)
43lmodring 20330 . . . . . . . . 9 (𝑊 ∈ LMod → 𝐷 ∈ Ring)
543ad2ant1 1133 . . . . . . . 8 ((𝑊 ∈ LMod ∧ 𝐺𝐹 ∧ (𝑋𝑉𝑌𝑉)) → 𝐷 ∈ Ring)
6 ringgrp 19969 . . . . . . . 8 (𝐷 ∈ Ring → 𝐷 ∈ Grp)
75, 6syl 17 . . . . . . 7 ((𝑊 ∈ LMod ∧ 𝐺𝐹 ∧ (𝑋𝑉𝑌𝑉)) → 𝐷 ∈ Grp)
8 eqid 2736 . . . . . . . . 9 (Base‘𝐷) = (Base‘𝐷)
9 eqid 2736 . . . . . . . . 9 (1r𝐷) = (1r𝐷)
108, 9ringidcl 19989 . . . . . . . 8 (𝐷 ∈ Ring → (1r𝐷) ∈ (Base‘𝐷))
115, 10syl 17 . . . . . . 7 ((𝑊 ∈ LMod ∧ 𝐺𝐹 ∧ (𝑋𝑉𝑌𝑉)) → (1r𝐷) ∈ (Base‘𝐷))
12 eqid 2736 . . . . . . . 8 (invg𝐷) = (invg𝐷)
138, 12grpinvcl 18798 . . . . . . 7 ((𝐷 ∈ Grp ∧ (1r𝐷) ∈ (Base‘𝐷)) → ((invg𝐷)‘(1r𝐷)) ∈ (Base‘𝐷))
147, 11, 13syl2anc 584 . . . . . 6 ((𝑊 ∈ LMod ∧ 𝐺𝐹 ∧ (𝑋𝑉𝑌𝑉)) → ((invg𝐷)‘(1r𝐷)) ∈ (Base‘𝐷))
15 simp3r 1202 . . . . . 6 ((𝑊 ∈ LMod ∧ 𝐺𝐹 ∧ (𝑋𝑉𝑌𝑉)) → 𝑌𝑉)
16 lflsub.v . . . . . . 7 𝑉 = (Base‘𝑊)
17 eqid 2736 . . . . . . 7 ( ·𝑠𝑊) = ( ·𝑠𝑊)
1816, 3, 17, 8lmodvscl 20339 . . . . . 6 ((𝑊 ∈ LMod ∧ ((invg𝐷)‘(1r𝐷)) ∈ (Base‘𝐷) ∧ 𝑌𝑉) → (((invg𝐷)‘(1r𝐷))( ·𝑠𝑊)𝑌) ∈ 𝑉)
191, 14, 15, 18syl3anc 1371 . . . . 5 ((𝑊 ∈ LMod ∧ 𝐺𝐹 ∧ (𝑋𝑉𝑌𝑉)) → (((invg𝐷)‘(1r𝐷))( ·𝑠𝑊)𝑌) ∈ 𝑉)
20 eqid 2736 . . . . . 6 (+g𝑊) = (+g𝑊)
2116, 20lmodcom 20368 . . . . 5 ((𝑊 ∈ LMod ∧ 𝑋𝑉 ∧ (((invg𝐷)‘(1r𝐷))( ·𝑠𝑊)𝑌) ∈ 𝑉) → (𝑋(+g𝑊)(((invg𝐷)‘(1r𝐷))( ·𝑠𝑊)𝑌)) = ((((invg𝐷)‘(1r𝐷))( ·𝑠𝑊)𝑌)(+g𝑊)𝑋))
221, 2, 19, 21syl3anc 1371 . . . 4 ((𝑊 ∈ LMod ∧ 𝐺𝐹 ∧ (𝑋𝑉𝑌𝑉)) → (𝑋(+g𝑊)(((invg𝐷)‘(1r𝐷))( ·𝑠𝑊)𝑌)) = ((((invg𝐷)‘(1r𝐷))( ·𝑠𝑊)𝑌)(+g𝑊)𝑋))
2322fveq2d 6846 . . 3 ((𝑊 ∈ LMod ∧ 𝐺𝐹 ∧ (𝑋𝑉𝑌𝑉)) → (𝐺‘(𝑋(+g𝑊)(((invg𝐷)‘(1r𝐷))( ·𝑠𝑊)𝑌))) = (𝐺‘((((invg𝐷)‘(1r𝐷))( ·𝑠𝑊)𝑌)(+g𝑊)𝑋)))
24 simp2 1137 . . . 4 ((𝑊 ∈ LMod ∧ 𝐺𝐹 ∧ (𝑋𝑉𝑌𝑉)) → 𝐺𝐹)
25 eqid 2736 . . . . 5 (+g𝐷) = (+g𝐷)
26 eqid 2736 . . . . 5 (.r𝐷) = (.r𝐷)
27 lflsub.f . . . . 5 𝐹 = (LFnl‘𝑊)
2816, 20, 3, 17, 8, 25, 26, 27lfli 37523 . . . 4 ((𝑊 ∈ LMod ∧ 𝐺𝐹 ∧ (((invg𝐷)‘(1r𝐷)) ∈ (Base‘𝐷) ∧ 𝑌𝑉𝑋𝑉)) → (𝐺‘((((invg𝐷)‘(1r𝐷))( ·𝑠𝑊)𝑌)(+g𝑊)𝑋)) = ((((invg𝐷)‘(1r𝐷))(.r𝐷)(𝐺𝑌))(+g𝐷)(𝐺𝑋)))
291, 24, 14, 15, 2, 28syl113anc 1382 . . 3 ((𝑊 ∈ LMod ∧ 𝐺𝐹 ∧ (𝑋𝑉𝑌𝑉)) → (𝐺‘((((invg𝐷)‘(1r𝐷))( ·𝑠𝑊)𝑌)(+g𝑊)𝑋)) = ((((invg𝐷)‘(1r𝐷))(.r𝐷)(𝐺𝑌))(+g𝐷)(𝐺𝑋)))
303, 8, 16, 27lflcl 37526 . . . . . . 7 ((𝑊 ∈ LMod ∧ 𝐺𝐹𝑌𝑉) → (𝐺𝑌) ∈ (Base‘𝐷))
31303adant3l 1180 . . . . . 6 ((𝑊 ∈ LMod ∧ 𝐺𝐹 ∧ (𝑋𝑉𝑌𝑉)) → (𝐺𝑌) ∈ (Base‘𝐷))
328, 26, 9, 12, 5, 31ringnegl 20018 . . . . 5 ((𝑊 ∈ LMod ∧ 𝐺𝐹 ∧ (𝑋𝑉𝑌𝑉)) → (((invg𝐷)‘(1r𝐷))(.r𝐷)(𝐺𝑌)) = ((invg𝐷)‘(𝐺𝑌)))
3332oveq1d 7372 . . . 4 ((𝑊 ∈ LMod ∧ 𝐺𝐹 ∧ (𝑋𝑉𝑌𝑉)) → ((((invg𝐷)‘(1r𝐷))(.r𝐷)(𝐺𝑌))(+g𝐷)(𝐺𝑋)) = (((invg𝐷)‘(𝐺𝑌))(+g𝐷)(𝐺𝑋)))
34 ringabl 20002 . . . . . 6 (𝐷 ∈ Ring → 𝐷 ∈ Abel)
355, 34syl 17 . . . . 5 ((𝑊 ∈ LMod ∧ 𝐺𝐹 ∧ (𝑋𝑉𝑌𝑉)) → 𝐷 ∈ Abel)
368, 12grpinvcl 18798 . . . . . 6 ((𝐷 ∈ Grp ∧ (𝐺𝑌) ∈ (Base‘𝐷)) → ((invg𝐷)‘(𝐺𝑌)) ∈ (Base‘𝐷))
377, 31, 36syl2anc 584 . . . . 5 ((𝑊 ∈ LMod ∧ 𝐺𝐹 ∧ (𝑋𝑉𝑌𝑉)) → ((invg𝐷)‘(𝐺𝑌)) ∈ (Base‘𝐷))
383, 8, 16, 27lflcl 37526 . . . . . 6 ((𝑊 ∈ LMod ∧ 𝐺𝐹𝑋𝑉) → (𝐺𝑋) ∈ (Base‘𝐷))
39383adant3r 1181 . . . . 5 ((𝑊 ∈ LMod ∧ 𝐺𝐹 ∧ (𝑋𝑉𝑌𝑉)) → (𝐺𝑋) ∈ (Base‘𝐷))
408, 25ablcom 19581 . . . . 5 ((𝐷 ∈ Abel ∧ ((invg𝐷)‘(𝐺𝑌)) ∈ (Base‘𝐷) ∧ (𝐺𝑋) ∈ (Base‘𝐷)) → (((invg𝐷)‘(𝐺𝑌))(+g𝐷)(𝐺𝑋)) = ((𝐺𝑋)(+g𝐷)((invg𝐷)‘(𝐺𝑌))))
4135, 37, 39, 40syl3anc 1371 . . . 4 ((𝑊 ∈ LMod ∧ 𝐺𝐹 ∧ (𝑋𝑉𝑌𝑉)) → (((invg𝐷)‘(𝐺𝑌))(+g𝐷)(𝐺𝑋)) = ((𝐺𝑋)(+g𝐷)((invg𝐷)‘(𝐺𝑌))))
4233, 41eqtrd 2776 . . 3 ((𝑊 ∈ LMod ∧ 𝐺𝐹 ∧ (𝑋𝑉𝑌𝑉)) → ((((invg𝐷)‘(1r𝐷))(.r𝐷)(𝐺𝑌))(+g𝐷)(𝐺𝑋)) = ((𝐺𝑋)(+g𝐷)((invg𝐷)‘(𝐺𝑌))))
4323, 29, 423eqtrd 2780 . 2 ((𝑊 ∈ LMod ∧ 𝐺𝐹 ∧ (𝑋𝑉𝑌𝑉)) → (𝐺‘(𝑋(+g𝑊)(((invg𝐷)‘(1r𝐷))( ·𝑠𝑊)𝑌))) = ((𝐺𝑋)(+g𝐷)((invg𝐷)‘(𝐺𝑌))))
44 lflsub.a . . . . 5 = (-g𝑊)
4516, 20, 44, 3, 17, 12, 9lmodvsubval2 20377 . . . 4 ((𝑊 ∈ LMod ∧ 𝑋𝑉𝑌𝑉) → (𝑋 𝑌) = (𝑋(+g𝑊)(((invg𝐷)‘(1r𝐷))( ·𝑠𝑊)𝑌)))
461, 2, 15, 45syl3anc 1371 . . 3 ((𝑊 ∈ LMod ∧ 𝐺𝐹 ∧ (𝑋𝑉𝑌𝑉)) → (𝑋 𝑌) = (𝑋(+g𝑊)(((invg𝐷)‘(1r𝐷))( ·𝑠𝑊)𝑌)))
4746fveq2d 6846 . 2 ((𝑊 ∈ LMod ∧ 𝐺𝐹 ∧ (𝑋𝑉𝑌𝑉)) → (𝐺‘(𝑋 𝑌)) = (𝐺‘(𝑋(+g𝑊)(((invg𝐷)‘(1r𝐷))( ·𝑠𝑊)𝑌))))
48 lflsub.m . . . 4 𝑀 = (-g𝐷)
498, 25, 12, 48grpsubval 18796 . . 3 (((𝐺𝑋) ∈ (Base‘𝐷) ∧ (𝐺𝑌) ∈ (Base‘𝐷)) → ((𝐺𝑋)𝑀(𝐺𝑌)) = ((𝐺𝑋)(+g𝐷)((invg𝐷)‘(𝐺𝑌))))
5039, 31, 49syl2anc 584 . 2 ((𝑊 ∈ LMod ∧ 𝐺𝐹 ∧ (𝑋𝑉𝑌𝑉)) → ((𝐺𝑋)𝑀(𝐺𝑌)) = ((𝐺𝑋)(+g𝐷)((invg𝐷)‘(𝐺𝑌))))
5143, 47, 503eqtr4d 2786 1 ((𝑊 ∈ LMod ∧ 𝐺𝐹 ∧ (𝑋𝑉𝑌𝑉)) → (𝐺‘(𝑋 𝑌)) = ((𝐺𝑋)𝑀(𝐺𝑌)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  w3a 1087   = wceq 1541  wcel 2106  cfv 6496  (class class class)co 7357  Basecbs 17083  +gcplusg 17133  .rcmulr 17134  Scalarcsca 17136   ·𝑠 cvsca 17137  Grpcgrp 18748  invgcminusg 18749  -gcsg 18750  Abelcabl 19563  1rcur 19913  Ringcrg 19964  LModclmod 20322  LFnlclfn 37519
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-cnex 11107  ax-resscn 11108  ax-1cn 11109  ax-icn 11110  ax-addcl 11111  ax-addrcl 11112  ax-mulcl 11113  ax-mulrcl 11114  ax-mulcom 11115  ax-addass 11116  ax-mulass 11117  ax-distr 11118  ax-i2m1 11119  ax-1ne0 11120  ax-1rid 11121  ax-rnegex 11122  ax-rrecex 11123  ax-cnre 11124  ax-pre-lttri 11125  ax-pre-lttrn 11126  ax-pre-ltadd 11127  ax-pre-mulgt0 11128
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-rmo 3353  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-op 4593  df-uni 4866  df-iun 4956  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-om 7803  df-1st 7921  df-2nd 7922  df-frecs 8212  df-wrecs 8243  df-recs 8317  df-rdg 8356  df-er 8648  df-map 8767  df-en 8884  df-dom 8885  df-sdom 8886  df-pnf 11191  df-mnf 11192  df-xr 11193  df-ltxr 11194  df-le 11195  df-sub 11387  df-neg 11388  df-nn 12154  df-2 12216  df-sets 17036  df-slot 17054  df-ndx 17066  df-base 17084  df-plusg 17146  df-0g 17323  df-mgm 18497  df-sgrp 18546  df-mnd 18557  df-grp 18751  df-minusg 18752  df-sbg 18753  df-cmn 19564  df-abl 19565  df-mgp 19897  df-ur 19914  df-ring 19966  df-lmod 20324  df-lfl 37520
This theorem is referenced by:  eqlkr  37561  lkrlsp  37564  lclkrlem2m  39982  hdmaplns1  40371
  Copyright terms: Public domain W3C validator