Proof of Theorem lflsub
| Step | Hyp | Ref
| Expression |
| 1 | | simp1 1137 |
. . . . 5
⊢ ((𝑊 ∈ LMod ∧ 𝐺 ∈ 𝐹 ∧ (𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉)) → 𝑊 ∈ LMod) |
| 2 | | simp3l 1202 |
. . . . 5
⊢ ((𝑊 ∈ LMod ∧ 𝐺 ∈ 𝐹 ∧ (𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉)) → 𝑋 ∈ 𝑉) |
| 3 | | lflsub.d |
. . . . . . . . . 10
⊢ 𝐷 = (Scalar‘𝑊) |
| 4 | 3 | lmodring 20866 |
. . . . . . . . 9
⊢ (𝑊 ∈ LMod → 𝐷 ∈ Ring) |
| 5 | 4 | 3ad2ant1 1134 |
. . . . . . . 8
⊢ ((𝑊 ∈ LMod ∧ 𝐺 ∈ 𝐹 ∧ (𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉)) → 𝐷 ∈ Ring) |
| 6 | | ringgrp 20235 |
. . . . . . . 8
⊢ (𝐷 ∈ Ring → 𝐷 ∈ Grp) |
| 7 | 5, 6 | syl 17 |
. . . . . . 7
⊢ ((𝑊 ∈ LMod ∧ 𝐺 ∈ 𝐹 ∧ (𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉)) → 𝐷 ∈ Grp) |
| 8 | | eqid 2737 |
. . . . . . . . 9
⊢
(Base‘𝐷) =
(Base‘𝐷) |
| 9 | | eqid 2737 |
. . . . . . . . 9
⊢
(1r‘𝐷) = (1r‘𝐷) |
| 10 | 8, 9 | ringidcl 20262 |
. . . . . . . 8
⊢ (𝐷 ∈ Ring →
(1r‘𝐷)
∈ (Base‘𝐷)) |
| 11 | 5, 10 | syl 17 |
. . . . . . 7
⊢ ((𝑊 ∈ LMod ∧ 𝐺 ∈ 𝐹 ∧ (𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉)) → (1r‘𝐷) ∈ (Base‘𝐷)) |
| 12 | | eqid 2737 |
. . . . . . . 8
⊢
(invg‘𝐷) = (invg‘𝐷) |
| 13 | 8, 12 | grpinvcl 19005 |
. . . . . . 7
⊢ ((𝐷 ∈ Grp ∧
(1r‘𝐷)
∈ (Base‘𝐷))
→ ((invg‘𝐷)‘(1r‘𝐷)) ∈ (Base‘𝐷)) |
| 14 | 7, 11, 13 | syl2anc 584 |
. . . . . 6
⊢ ((𝑊 ∈ LMod ∧ 𝐺 ∈ 𝐹 ∧ (𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉)) → ((invg‘𝐷)‘(1r‘𝐷)) ∈ (Base‘𝐷)) |
| 15 | | simp3r 1203 |
. . . . . 6
⊢ ((𝑊 ∈ LMod ∧ 𝐺 ∈ 𝐹 ∧ (𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉)) → 𝑌 ∈ 𝑉) |
| 16 | | lflsub.v |
. . . . . . 7
⊢ 𝑉 = (Base‘𝑊) |
| 17 | | eqid 2737 |
. . . . . . 7
⊢ (
·𝑠 ‘𝑊) = ( ·𝑠
‘𝑊) |
| 18 | 16, 3, 17, 8 | lmodvscl 20876 |
. . . . . 6
⊢ ((𝑊 ∈ LMod ∧
((invg‘𝐷)‘(1r‘𝐷)) ∈ (Base‘𝐷) ∧ 𝑌 ∈ 𝑉) → (((invg‘𝐷)‘(1r‘𝐷))(
·𝑠 ‘𝑊)𝑌) ∈ 𝑉) |
| 19 | 1, 14, 15, 18 | syl3anc 1373 |
. . . . 5
⊢ ((𝑊 ∈ LMod ∧ 𝐺 ∈ 𝐹 ∧ (𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉)) → (((invg‘𝐷)‘(1r‘𝐷))(
·𝑠 ‘𝑊)𝑌) ∈ 𝑉) |
| 20 | | eqid 2737 |
. . . . . 6
⊢
(+g‘𝑊) = (+g‘𝑊) |
| 21 | 16, 20 | lmodcom 20906 |
. . . . 5
⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉 ∧ (((invg‘𝐷)‘(1r‘𝐷))(
·𝑠 ‘𝑊)𝑌) ∈ 𝑉) → (𝑋(+g‘𝑊)(((invg‘𝐷)‘(1r‘𝐷))(
·𝑠 ‘𝑊)𝑌)) = ((((invg‘𝐷)‘(1r‘𝐷))(
·𝑠 ‘𝑊)𝑌)(+g‘𝑊)𝑋)) |
| 22 | 1, 2, 19, 21 | syl3anc 1373 |
. . . 4
⊢ ((𝑊 ∈ LMod ∧ 𝐺 ∈ 𝐹 ∧ (𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉)) → (𝑋(+g‘𝑊)(((invg‘𝐷)‘(1r‘𝐷))(
·𝑠 ‘𝑊)𝑌)) = ((((invg‘𝐷)‘(1r‘𝐷))(
·𝑠 ‘𝑊)𝑌)(+g‘𝑊)𝑋)) |
| 23 | 22 | fveq2d 6910 |
. . 3
⊢ ((𝑊 ∈ LMod ∧ 𝐺 ∈ 𝐹 ∧ (𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉)) → (𝐺‘(𝑋(+g‘𝑊)(((invg‘𝐷)‘(1r‘𝐷))(
·𝑠 ‘𝑊)𝑌))) = (𝐺‘((((invg‘𝐷)‘(1r‘𝐷))(
·𝑠 ‘𝑊)𝑌)(+g‘𝑊)𝑋))) |
| 24 | | simp2 1138 |
. . . 4
⊢ ((𝑊 ∈ LMod ∧ 𝐺 ∈ 𝐹 ∧ (𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉)) → 𝐺 ∈ 𝐹) |
| 25 | | eqid 2737 |
. . . . 5
⊢
(+g‘𝐷) = (+g‘𝐷) |
| 26 | | eqid 2737 |
. . . . 5
⊢
(.r‘𝐷) = (.r‘𝐷) |
| 27 | | lflsub.f |
. . . . 5
⊢ 𝐹 = (LFnl‘𝑊) |
| 28 | 16, 20, 3, 17, 8, 25, 26, 27 | lfli 39062 |
. . . 4
⊢ ((𝑊 ∈ LMod ∧ 𝐺 ∈ 𝐹 ∧ (((invg‘𝐷)‘(1r‘𝐷)) ∈ (Base‘𝐷) ∧ 𝑌 ∈ 𝑉 ∧ 𝑋 ∈ 𝑉)) → (𝐺‘((((invg‘𝐷)‘(1r‘𝐷))(
·𝑠 ‘𝑊)𝑌)(+g‘𝑊)𝑋)) = ((((invg‘𝐷)‘(1r‘𝐷))(.r‘𝐷)(𝐺‘𝑌))(+g‘𝐷)(𝐺‘𝑋))) |
| 29 | 1, 24, 14, 15, 2, 28 | syl113anc 1384 |
. . 3
⊢ ((𝑊 ∈ LMod ∧ 𝐺 ∈ 𝐹 ∧ (𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉)) → (𝐺‘((((invg‘𝐷)‘(1r‘𝐷))(
·𝑠 ‘𝑊)𝑌)(+g‘𝑊)𝑋)) = ((((invg‘𝐷)‘(1r‘𝐷))(.r‘𝐷)(𝐺‘𝑌))(+g‘𝐷)(𝐺‘𝑋))) |
| 30 | 3, 8, 16, 27 | lflcl 39065 |
. . . . . . 7
⊢ ((𝑊 ∈ LMod ∧ 𝐺 ∈ 𝐹 ∧ 𝑌 ∈ 𝑉) → (𝐺‘𝑌) ∈ (Base‘𝐷)) |
| 31 | 30 | 3adant3l 1181 |
. . . . . 6
⊢ ((𝑊 ∈ LMod ∧ 𝐺 ∈ 𝐹 ∧ (𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉)) → (𝐺‘𝑌) ∈ (Base‘𝐷)) |
| 32 | 8, 26, 9, 12, 5, 31 | ringnegl 20299 |
. . . . 5
⊢ ((𝑊 ∈ LMod ∧ 𝐺 ∈ 𝐹 ∧ (𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉)) → (((invg‘𝐷)‘(1r‘𝐷))(.r‘𝐷)(𝐺‘𝑌)) = ((invg‘𝐷)‘(𝐺‘𝑌))) |
| 33 | 32 | oveq1d 7446 |
. . . 4
⊢ ((𝑊 ∈ LMod ∧ 𝐺 ∈ 𝐹 ∧ (𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉)) → ((((invg‘𝐷)‘(1r‘𝐷))(.r‘𝐷)(𝐺‘𝑌))(+g‘𝐷)(𝐺‘𝑋)) = (((invg‘𝐷)‘(𝐺‘𝑌))(+g‘𝐷)(𝐺‘𝑋))) |
| 34 | | ringabl 20278 |
. . . . . 6
⊢ (𝐷 ∈ Ring → 𝐷 ∈ Abel) |
| 35 | 5, 34 | syl 17 |
. . . . 5
⊢ ((𝑊 ∈ LMod ∧ 𝐺 ∈ 𝐹 ∧ (𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉)) → 𝐷 ∈ Abel) |
| 36 | 8, 12 | grpinvcl 19005 |
. . . . . 6
⊢ ((𝐷 ∈ Grp ∧ (𝐺‘𝑌) ∈ (Base‘𝐷)) → ((invg‘𝐷)‘(𝐺‘𝑌)) ∈ (Base‘𝐷)) |
| 37 | 7, 31, 36 | syl2anc 584 |
. . . . 5
⊢ ((𝑊 ∈ LMod ∧ 𝐺 ∈ 𝐹 ∧ (𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉)) → ((invg‘𝐷)‘(𝐺‘𝑌)) ∈ (Base‘𝐷)) |
| 38 | 3, 8, 16, 27 | lflcl 39065 |
. . . . . 6
⊢ ((𝑊 ∈ LMod ∧ 𝐺 ∈ 𝐹 ∧ 𝑋 ∈ 𝑉) → (𝐺‘𝑋) ∈ (Base‘𝐷)) |
| 39 | 38 | 3adant3r 1182 |
. . . . 5
⊢ ((𝑊 ∈ LMod ∧ 𝐺 ∈ 𝐹 ∧ (𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉)) → (𝐺‘𝑋) ∈ (Base‘𝐷)) |
| 40 | 8, 25 | ablcom 19817 |
. . . . 5
⊢ ((𝐷 ∈ Abel ∧
((invg‘𝐷)‘(𝐺‘𝑌)) ∈ (Base‘𝐷) ∧ (𝐺‘𝑋) ∈ (Base‘𝐷)) → (((invg‘𝐷)‘(𝐺‘𝑌))(+g‘𝐷)(𝐺‘𝑋)) = ((𝐺‘𝑋)(+g‘𝐷)((invg‘𝐷)‘(𝐺‘𝑌)))) |
| 41 | 35, 37, 39, 40 | syl3anc 1373 |
. . . 4
⊢ ((𝑊 ∈ LMod ∧ 𝐺 ∈ 𝐹 ∧ (𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉)) → (((invg‘𝐷)‘(𝐺‘𝑌))(+g‘𝐷)(𝐺‘𝑋)) = ((𝐺‘𝑋)(+g‘𝐷)((invg‘𝐷)‘(𝐺‘𝑌)))) |
| 42 | 33, 41 | eqtrd 2777 |
. . 3
⊢ ((𝑊 ∈ LMod ∧ 𝐺 ∈ 𝐹 ∧ (𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉)) → ((((invg‘𝐷)‘(1r‘𝐷))(.r‘𝐷)(𝐺‘𝑌))(+g‘𝐷)(𝐺‘𝑋)) = ((𝐺‘𝑋)(+g‘𝐷)((invg‘𝐷)‘(𝐺‘𝑌)))) |
| 43 | 23, 29, 42 | 3eqtrd 2781 |
. 2
⊢ ((𝑊 ∈ LMod ∧ 𝐺 ∈ 𝐹 ∧ (𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉)) → (𝐺‘(𝑋(+g‘𝑊)(((invg‘𝐷)‘(1r‘𝐷))(
·𝑠 ‘𝑊)𝑌))) = ((𝐺‘𝑋)(+g‘𝐷)((invg‘𝐷)‘(𝐺‘𝑌)))) |
| 44 | | lflsub.a |
. . . . 5
⊢ − =
(-g‘𝑊) |
| 45 | 16, 20, 44, 3, 17, 12, 9 | lmodvsubval2 20915 |
. . . 4
⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉) → (𝑋 − 𝑌) = (𝑋(+g‘𝑊)(((invg‘𝐷)‘(1r‘𝐷))(
·𝑠 ‘𝑊)𝑌))) |
| 46 | 1, 2, 15, 45 | syl3anc 1373 |
. . 3
⊢ ((𝑊 ∈ LMod ∧ 𝐺 ∈ 𝐹 ∧ (𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉)) → (𝑋 − 𝑌) = (𝑋(+g‘𝑊)(((invg‘𝐷)‘(1r‘𝐷))(
·𝑠 ‘𝑊)𝑌))) |
| 47 | 46 | fveq2d 6910 |
. 2
⊢ ((𝑊 ∈ LMod ∧ 𝐺 ∈ 𝐹 ∧ (𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉)) → (𝐺‘(𝑋 − 𝑌)) = (𝐺‘(𝑋(+g‘𝑊)(((invg‘𝐷)‘(1r‘𝐷))(
·𝑠 ‘𝑊)𝑌)))) |
| 48 | | lflsub.m |
. . . 4
⊢ 𝑀 = (-g‘𝐷) |
| 49 | 8, 25, 12, 48 | grpsubval 19003 |
. . 3
⊢ (((𝐺‘𝑋) ∈ (Base‘𝐷) ∧ (𝐺‘𝑌) ∈ (Base‘𝐷)) → ((𝐺‘𝑋)𝑀(𝐺‘𝑌)) = ((𝐺‘𝑋)(+g‘𝐷)((invg‘𝐷)‘(𝐺‘𝑌)))) |
| 50 | 39, 31, 49 | syl2anc 584 |
. 2
⊢ ((𝑊 ∈ LMod ∧ 𝐺 ∈ 𝐹 ∧ (𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉)) → ((𝐺‘𝑋)𝑀(𝐺‘𝑌)) = ((𝐺‘𝑋)(+g‘𝐷)((invg‘𝐷)‘(𝐺‘𝑌)))) |
| 51 | 43, 47, 50 | 3eqtr4d 2787 |
1
⊢ ((𝑊 ∈ LMod ∧ 𝐺 ∈ 𝐹 ∧ (𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉)) → (𝐺‘(𝑋 − 𝑌)) = ((𝐺‘𝑋)𝑀(𝐺‘𝑌))) |