Proof of Theorem lflsub
Step | Hyp | Ref
| Expression |
1 | | simp1 1134 |
. . . . 5
⊢ ((𝑊 ∈ LMod ∧ 𝐺 ∈ 𝐹 ∧ (𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉)) → 𝑊 ∈ LMod) |
2 | | simp3l 1199 |
. . . . 5
⊢ ((𝑊 ∈ LMod ∧ 𝐺 ∈ 𝐹 ∧ (𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉)) → 𝑋 ∈ 𝑉) |
3 | | lflsub.d |
. . . . . . . . . 10
⊢ 𝐷 = (Scalar‘𝑊) |
4 | 3 | lmodring 20046 |
. . . . . . . . 9
⊢ (𝑊 ∈ LMod → 𝐷 ∈ Ring) |
5 | 4 | 3ad2ant1 1131 |
. . . . . . . 8
⊢ ((𝑊 ∈ LMod ∧ 𝐺 ∈ 𝐹 ∧ (𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉)) → 𝐷 ∈ Ring) |
6 | | ringgrp 19703 |
. . . . . . . 8
⊢ (𝐷 ∈ Ring → 𝐷 ∈ Grp) |
7 | 5, 6 | syl 17 |
. . . . . . 7
⊢ ((𝑊 ∈ LMod ∧ 𝐺 ∈ 𝐹 ∧ (𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉)) → 𝐷 ∈ Grp) |
8 | | eqid 2738 |
. . . . . . . . 9
⊢
(Base‘𝐷) =
(Base‘𝐷) |
9 | | eqid 2738 |
. . . . . . . . 9
⊢
(1r‘𝐷) = (1r‘𝐷) |
10 | 8, 9 | ringidcl 19722 |
. . . . . . . 8
⊢ (𝐷 ∈ Ring →
(1r‘𝐷)
∈ (Base‘𝐷)) |
11 | 5, 10 | syl 17 |
. . . . . . 7
⊢ ((𝑊 ∈ LMod ∧ 𝐺 ∈ 𝐹 ∧ (𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉)) → (1r‘𝐷) ∈ (Base‘𝐷)) |
12 | | eqid 2738 |
. . . . . . . 8
⊢
(invg‘𝐷) = (invg‘𝐷) |
13 | 8, 12 | grpinvcl 18542 |
. . . . . . 7
⊢ ((𝐷 ∈ Grp ∧
(1r‘𝐷)
∈ (Base‘𝐷))
→ ((invg‘𝐷)‘(1r‘𝐷)) ∈ (Base‘𝐷)) |
14 | 7, 11, 13 | syl2anc 583 |
. . . . . 6
⊢ ((𝑊 ∈ LMod ∧ 𝐺 ∈ 𝐹 ∧ (𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉)) → ((invg‘𝐷)‘(1r‘𝐷)) ∈ (Base‘𝐷)) |
15 | | simp3r 1200 |
. . . . . 6
⊢ ((𝑊 ∈ LMod ∧ 𝐺 ∈ 𝐹 ∧ (𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉)) → 𝑌 ∈ 𝑉) |
16 | | lflsub.v |
. . . . . . 7
⊢ 𝑉 = (Base‘𝑊) |
17 | | eqid 2738 |
. . . . . . 7
⊢ (
·𝑠 ‘𝑊) = ( ·𝑠
‘𝑊) |
18 | 16, 3, 17, 8 | lmodvscl 20055 |
. . . . . 6
⊢ ((𝑊 ∈ LMod ∧
((invg‘𝐷)‘(1r‘𝐷)) ∈ (Base‘𝐷) ∧ 𝑌 ∈ 𝑉) → (((invg‘𝐷)‘(1r‘𝐷))(
·𝑠 ‘𝑊)𝑌) ∈ 𝑉) |
19 | 1, 14, 15, 18 | syl3anc 1369 |
. . . . 5
⊢ ((𝑊 ∈ LMod ∧ 𝐺 ∈ 𝐹 ∧ (𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉)) → (((invg‘𝐷)‘(1r‘𝐷))(
·𝑠 ‘𝑊)𝑌) ∈ 𝑉) |
20 | | eqid 2738 |
. . . . . 6
⊢
(+g‘𝑊) = (+g‘𝑊) |
21 | 16, 20 | lmodcom 20084 |
. . . . 5
⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉 ∧ (((invg‘𝐷)‘(1r‘𝐷))(
·𝑠 ‘𝑊)𝑌) ∈ 𝑉) → (𝑋(+g‘𝑊)(((invg‘𝐷)‘(1r‘𝐷))(
·𝑠 ‘𝑊)𝑌)) = ((((invg‘𝐷)‘(1r‘𝐷))(
·𝑠 ‘𝑊)𝑌)(+g‘𝑊)𝑋)) |
22 | 1, 2, 19, 21 | syl3anc 1369 |
. . . 4
⊢ ((𝑊 ∈ LMod ∧ 𝐺 ∈ 𝐹 ∧ (𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉)) → (𝑋(+g‘𝑊)(((invg‘𝐷)‘(1r‘𝐷))(
·𝑠 ‘𝑊)𝑌)) = ((((invg‘𝐷)‘(1r‘𝐷))(
·𝑠 ‘𝑊)𝑌)(+g‘𝑊)𝑋)) |
23 | 22 | fveq2d 6760 |
. . 3
⊢ ((𝑊 ∈ LMod ∧ 𝐺 ∈ 𝐹 ∧ (𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉)) → (𝐺‘(𝑋(+g‘𝑊)(((invg‘𝐷)‘(1r‘𝐷))(
·𝑠 ‘𝑊)𝑌))) = (𝐺‘((((invg‘𝐷)‘(1r‘𝐷))(
·𝑠 ‘𝑊)𝑌)(+g‘𝑊)𝑋))) |
24 | | simp2 1135 |
. . . 4
⊢ ((𝑊 ∈ LMod ∧ 𝐺 ∈ 𝐹 ∧ (𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉)) → 𝐺 ∈ 𝐹) |
25 | | eqid 2738 |
. . . . 5
⊢
(+g‘𝐷) = (+g‘𝐷) |
26 | | eqid 2738 |
. . . . 5
⊢
(.r‘𝐷) = (.r‘𝐷) |
27 | | lflsub.f |
. . . . 5
⊢ 𝐹 = (LFnl‘𝑊) |
28 | 16, 20, 3, 17, 8, 25, 26, 27 | lfli 37002 |
. . . 4
⊢ ((𝑊 ∈ LMod ∧ 𝐺 ∈ 𝐹 ∧ (((invg‘𝐷)‘(1r‘𝐷)) ∈ (Base‘𝐷) ∧ 𝑌 ∈ 𝑉 ∧ 𝑋 ∈ 𝑉)) → (𝐺‘((((invg‘𝐷)‘(1r‘𝐷))(
·𝑠 ‘𝑊)𝑌)(+g‘𝑊)𝑋)) = ((((invg‘𝐷)‘(1r‘𝐷))(.r‘𝐷)(𝐺‘𝑌))(+g‘𝐷)(𝐺‘𝑋))) |
29 | 1, 24, 14, 15, 2, 28 | syl113anc 1380 |
. . 3
⊢ ((𝑊 ∈ LMod ∧ 𝐺 ∈ 𝐹 ∧ (𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉)) → (𝐺‘((((invg‘𝐷)‘(1r‘𝐷))(
·𝑠 ‘𝑊)𝑌)(+g‘𝑊)𝑋)) = ((((invg‘𝐷)‘(1r‘𝐷))(.r‘𝐷)(𝐺‘𝑌))(+g‘𝐷)(𝐺‘𝑋))) |
30 | 3, 8, 16, 27 | lflcl 37005 |
. . . . . . 7
⊢ ((𝑊 ∈ LMod ∧ 𝐺 ∈ 𝐹 ∧ 𝑌 ∈ 𝑉) → (𝐺‘𝑌) ∈ (Base‘𝐷)) |
31 | 30 | 3adant3l 1178 |
. . . . . 6
⊢ ((𝑊 ∈ LMod ∧ 𝐺 ∈ 𝐹 ∧ (𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉)) → (𝐺‘𝑌) ∈ (Base‘𝐷)) |
32 | 8, 26, 9, 12, 5, 31 | ringnegl 19748 |
. . . . 5
⊢ ((𝑊 ∈ LMod ∧ 𝐺 ∈ 𝐹 ∧ (𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉)) → (((invg‘𝐷)‘(1r‘𝐷))(.r‘𝐷)(𝐺‘𝑌)) = ((invg‘𝐷)‘(𝐺‘𝑌))) |
33 | 32 | oveq1d 7270 |
. . . 4
⊢ ((𝑊 ∈ LMod ∧ 𝐺 ∈ 𝐹 ∧ (𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉)) → ((((invg‘𝐷)‘(1r‘𝐷))(.r‘𝐷)(𝐺‘𝑌))(+g‘𝐷)(𝐺‘𝑋)) = (((invg‘𝐷)‘(𝐺‘𝑌))(+g‘𝐷)(𝐺‘𝑋))) |
34 | | ringabl 19734 |
. . . . . 6
⊢ (𝐷 ∈ Ring → 𝐷 ∈ Abel) |
35 | 5, 34 | syl 17 |
. . . . 5
⊢ ((𝑊 ∈ LMod ∧ 𝐺 ∈ 𝐹 ∧ (𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉)) → 𝐷 ∈ Abel) |
36 | 8, 12 | grpinvcl 18542 |
. . . . . 6
⊢ ((𝐷 ∈ Grp ∧ (𝐺‘𝑌) ∈ (Base‘𝐷)) → ((invg‘𝐷)‘(𝐺‘𝑌)) ∈ (Base‘𝐷)) |
37 | 7, 31, 36 | syl2anc 583 |
. . . . 5
⊢ ((𝑊 ∈ LMod ∧ 𝐺 ∈ 𝐹 ∧ (𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉)) → ((invg‘𝐷)‘(𝐺‘𝑌)) ∈ (Base‘𝐷)) |
38 | 3, 8, 16, 27 | lflcl 37005 |
. . . . . 6
⊢ ((𝑊 ∈ LMod ∧ 𝐺 ∈ 𝐹 ∧ 𝑋 ∈ 𝑉) → (𝐺‘𝑋) ∈ (Base‘𝐷)) |
39 | 38 | 3adant3r 1179 |
. . . . 5
⊢ ((𝑊 ∈ LMod ∧ 𝐺 ∈ 𝐹 ∧ (𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉)) → (𝐺‘𝑋) ∈ (Base‘𝐷)) |
40 | 8, 25 | ablcom 19319 |
. . . . 5
⊢ ((𝐷 ∈ Abel ∧
((invg‘𝐷)‘(𝐺‘𝑌)) ∈ (Base‘𝐷) ∧ (𝐺‘𝑋) ∈ (Base‘𝐷)) → (((invg‘𝐷)‘(𝐺‘𝑌))(+g‘𝐷)(𝐺‘𝑋)) = ((𝐺‘𝑋)(+g‘𝐷)((invg‘𝐷)‘(𝐺‘𝑌)))) |
41 | 35, 37, 39, 40 | syl3anc 1369 |
. . . 4
⊢ ((𝑊 ∈ LMod ∧ 𝐺 ∈ 𝐹 ∧ (𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉)) → (((invg‘𝐷)‘(𝐺‘𝑌))(+g‘𝐷)(𝐺‘𝑋)) = ((𝐺‘𝑋)(+g‘𝐷)((invg‘𝐷)‘(𝐺‘𝑌)))) |
42 | 33, 41 | eqtrd 2778 |
. . 3
⊢ ((𝑊 ∈ LMod ∧ 𝐺 ∈ 𝐹 ∧ (𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉)) → ((((invg‘𝐷)‘(1r‘𝐷))(.r‘𝐷)(𝐺‘𝑌))(+g‘𝐷)(𝐺‘𝑋)) = ((𝐺‘𝑋)(+g‘𝐷)((invg‘𝐷)‘(𝐺‘𝑌)))) |
43 | 23, 29, 42 | 3eqtrd 2782 |
. 2
⊢ ((𝑊 ∈ LMod ∧ 𝐺 ∈ 𝐹 ∧ (𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉)) → (𝐺‘(𝑋(+g‘𝑊)(((invg‘𝐷)‘(1r‘𝐷))(
·𝑠 ‘𝑊)𝑌))) = ((𝐺‘𝑋)(+g‘𝐷)((invg‘𝐷)‘(𝐺‘𝑌)))) |
44 | | lflsub.a |
. . . . 5
⊢ − =
(-g‘𝑊) |
45 | 16, 20, 44, 3, 17, 12, 9 | lmodvsubval2 20093 |
. . . 4
⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉) → (𝑋 − 𝑌) = (𝑋(+g‘𝑊)(((invg‘𝐷)‘(1r‘𝐷))(
·𝑠 ‘𝑊)𝑌))) |
46 | 1, 2, 15, 45 | syl3anc 1369 |
. . 3
⊢ ((𝑊 ∈ LMod ∧ 𝐺 ∈ 𝐹 ∧ (𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉)) → (𝑋 − 𝑌) = (𝑋(+g‘𝑊)(((invg‘𝐷)‘(1r‘𝐷))(
·𝑠 ‘𝑊)𝑌))) |
47 | 46 | fveq2d 6760 |
. 2
⊢ ((𝑊 ∈ LMod ∧ 𝐺 ∈ 𝐹 ∧ (𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉)) → (𝐺‘(𝑋 − 𝑌)) = (𝐺‘(𝑋(+g‘𝑊)(((invg‘𝐷)‘(1r‘𝐷))(
·𝑠 ‘𝑊)𝑌)))) |
48 | | lflsub.m |
. . . 4
⊢ 𝑀 = (-g‘𝐷) |
49 | 8, 25, 12, 48 | grpsubval 18540 |
. . 3
⊢ (((𝐺‘𝑋) ∈ (Base‘𝐷) ∧ (𝐺‘𝑌) ∈ (Base‘𝐷)) → ((𝐺‘𝑋)𝑀(𝐺‘𝑌)) = ((𝐺‘𝑋)(+g‘𝐷)((invg‘𝐷)‘(𝐺‘𝑌)))) |
50 | 39, 31, 49 | syl2anc 583 |
. 2
⊢ ((𝑊 ∈ LMod ∧ 𝐺 ∈ 𝐹 ∧ (𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉)) → ((𝐺‘𝑋)𝑀(𝐺‘𝑌)) = ((𝐺‘𝑋)(+g‘𝐷)((invg‘𝐷)‘(𝐺‘𝑌)))) |
51 | 43, 47, 50 | 3eqtr4d 2788 |
1
⊢ ((𝑊 ∈ LMod ∧ 𝐺 ∈ 𝐹 ∧ (𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉)) → (𝐺‘(𝑋 − 𝑌)) = ((𝐺‘𝑋)𝑀(𝐺‘𝑌))) |