Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lflsub Structured version   Visualization version   GIF version

Theorem lflsub 39053
Description: Property of a linear functional. (lnfnaddi 32022 analog.) (Contributed by NM, 18-Apr-2014.)
Hypotheses
Ref Expression
lflsub.d 𝐷 = (Scalar‘𝑊)
lflsub.m 𝑀 = (-g𝐷)
lflsub.v 𝑉 = (Base‘𝑊)
lflsub.a = (-g𝑊)
lflsub.f 𝐹 = (LFnl‘𝑊)
Assertion
Ref Expression
lflsub ((𝑊 ∈ LMod ∧ 𝐺𝐹 ∧ (𝑋𝑉𝑌𝑉)) → (𝐺‘(𝑋 𝑌)) = ((𝐺𝑋)𝑀(𝐺𝑌)))

Proof of Theorem lflsub
StepHypRef Expression
1 simp1 1136 . . . . 5 ((𝑊 ∈ LMod ∧ 𝐺𝐹 ∧ (𝑋𝑉𝑌𝑉)) → 𝑊 ∈ LMod)
2 simp3l 1202 . . . . 5 ((𝑊 ∈ LMod ∧ 𝐺𝐹 ∧ (𝑋𝑉𝑌𝑉)) → 𝑋𝑉)
3 lflsub.d . . . . . . . . . 10 𝐷 = (Scalar‘𝑊)
43lmodring 20806 . . . . . . . . 9 (𝑊 ∈ LMod → 𝐷 ∈ Ring)
543ad2ant1 1133 . . . . . . . 8 ((𝑊 ∈ LMod ∧ 𝐺𝐹 ∧ (𝑋𝑉𝑌𝑉)) → 𝐷 ∈ Ring)
6 ringgrp 20158 . . . . . . . 8 (𝐷 ∈ Ring → 𝐷 ∈ Grp)
75, 6syl 17 . . . . . . 7 ((𝑊 ∈ LMod ∧ 𝐺𝐹 ∧ (𝑋𝑉𝑌𝑉)) → 𝐷 ∈ Grp)
8 eqid 2729 . . . . . . . . 9 (Base‘𝐷) = (Base‘𝐷)
9 eqid 2729 . . . . . . . . 9 (1r𝐷) = (1r𝐷)
108, 9ringidcl 20185 . . . . . . . 8 (𝐷 ∈ Ring → (1r𝐷) ∈ (Base‘𝐷))
115, 10syl 17 . . . . . . 7 ((𝑊 ∈ LMod ∧ 𝐺𝐹 ∧ (𝑋𝑉𝑌𝑉)) → (1r𝐷) ∈ (Base‘𝐷))
12 eqid 2729 . . . . . . . 8 (invg𝐷) = (invg𝐷)
138, 12grpinvcl 18901 . . . . . . 7 ((𝐷 ∈ Grp ∧ (1r𝐷) ∈ (Base‘𝐷)) → ((invg𝐷)‘(1r𝐷)) ∈ (Base‘𝐷))
147, 11, 13syl2anc 584 . . . . . 6 ((𝑊 ∈ LMod ∧ 𝐺𝐹 ∧ (𝑋𝑉𝑌𝑉)) → ((invg𝐷)‘(1r𝐷)) ∈ (Base‘𝐷))
15 simp3r 1203 . . . . . 6 ((𝑊 ∈ LMod ∧ 𝐺𝐹 ∧ (𝑋𝑉𝑌𝑉)) → 𝑌𝑉)
16 lflsub.v . . . . . . 7 𝑉 = (Base‘𝑊)
17 eqid 2729 . . . . . . 7 ( ·𝑠𝑊) = ( ·𝑠𝑊)
1816, 3, 17, 8lmodvscl 20816 . . . . . 6 ((𝑊 ∈ LMod ∧ ((invg𝐷)‘(1r𝐷)) ∈ (Base‘𝐷) ∧ 𝑌𝑉) → (((invg𝐷)‘(1r𝐷))( ·𝑠𝑊)𝑌) ∈ 𝑉)
191, 14, 15, 18syl3anc 1373 . . . . 5 ((𝑊 ∈ LMod ∧ 𝐺𝐹 ∧ (𝑋𝑉𝑌𝑉)) → (((invg𝐷)‘(1r𝐷))( ·𝑠𝑊)𝑌) ∈ 𝑉)
20 eqid 2729 . . . . . 6 (+g𝑊) = (+g𝑊)
2116, 20lmodcom 20846 . . . . 5 ((𝑊 ∈ LMod ∧ 𝑋𝑉 ∧ (((invg𝐷)‘(1r𝐷))( ·𝑠𝑊)𝑌) ∈ 𝑉) → (𝑋(+g𝑊)(((invg𝐷)‘(1r𝐷))( ·𝑠𝑊)𝑌)) = ((((invg𝐷)‘(1r𝐷))( ·𝑠𝑊)𝑌)(+g𝑊)𝑋))
221, 2, 19, 21syl3anc 1373 . . . 4 ((𝑊 ∈ LMod ∧ 𝐺𝐹 ∧ (𝑋𝑉𝑌𝑉)) → (𝑋(+g𝑊)(((invg𝐷)‘(1r𝐷))( ·𝑠𝑊)𝑌)) = ((((invg𝐷)‘(1r𝐷))( ·𝑠𝑊)𝑌)(+g𝑊)𝑋))
2322fveq2d 6844 . . 3 ((𝑊 ∈ LMod ∧ 𝐺𝐹 ∧ (𝑋𝑉𝑌𝑉)) → (𝐺‘(𝑋(+g𝑊)(((invg𝐷)‘(1r𝐷))( ·𝑠𝑊)𝑌))) = (𝐺‘((((invg𝐷)‘(1r𝐷))( ·𝑠𝑊)𝑌)(+g𝑊)𝑋)))
24 simp2 1137 . . . 4 ((𝑊 ∈ LMod ∧ 𝐺𝐹 ∧ (𝑋𝑉𝑌𝑉)) → 𝐺𝐹)
25 eqid 2729 . . . . 5 (+g𝐷) = (+g𝐷)
26 eqid 2729 . . . . 5 (.r𝐷) = (.r𝐷)
27 lflsub.f . . . . 5 𝐹 = (LFnl‘𝑊)
2816, 20, 3, 17, 8, 25, 26, 27lfli 39047 . . . 4 ((𝑊 ∈ LMod ∧ 𝐺𝐹 ∧ (((invg𝐷)‘(1r𝐷)) ∈ (Base‘𝐷) ∧ 𝑌𝑉𝑋𝑉)) → (𝐺‘((((invg𝐷)‘(1r𝐷))( ·𝑠𝑊)𝑌)(+g𝑊)𝑋)) = ((((invg𝐷)‘(1r𝐷))(.r𝐷)(𝐺𝑌))(+g𝐷)(𝐺𝑋)))
291, 24, 14, 15, 2, 28syl113anc 1384 . . 3 ((𝑊 ∈ LMod ∧ 𝐺𝐹 ∧ (𝑋𝑉𝑌𝑉)) → (𝐺‘((((invg𝐷)‘(1r𝐷))( ·𝑠𝑊)𝑌)(+g𝑊)𝑋)) = ((((invg𝐷)‘(1r𝐷))(.r𝐷)(𝐺𝑌))(+g𝐷)(𝐺𝑋)))
303, 8, 16, 27lflcl 39050 . . . . . . 7 ((𝑊 ∈ LMod ∧ 𝐺𝐹𝑌𝑉) → (𝐺𝑌) ∈ (Base‘𝐷))
31303adant3l 1181 . . . . . 6 ((𝑊 ∈ LMod ∧ 𝐺𝐹 ∧ (𝑋𝑉𝑌𝑉)) → (𝐺𝑌) ∈ (Base‘𝐷))
328, 26, 9, 12, 5, 31ringnegl 20222 . . . . 5 ((𝑊 ∈ LMod ∧ 𝐺𝐹 ∧ (𝑋𝑉𝑌𝑉)) → (((invg𝐷)‘(1r𝐷))(.r𝐷)(𝐺𝑌)) = ((invg𝐷)‘(𝐺𝑌)))
3332oveq1d 7384 . . . 4 ((𝑊 ∈ LMod ∧ 𝐺𝐹 ∧ (𝑋𝑉𝑌𝑉)) → ((((invg𝐷)‘(1r𝐷))(.r𝐷)(𝐺𝑌))(+g𝐷)(𝐺𝑋)) = (((invg𝐷)‘(𝐺𝑌))(+g𝐷)(𝐺𝑋)))
34 ringabl 20201 . . . . . 6 (𝐷 ∈ Ring → 𝐷 ∈ Abel)
355, 34syl 17 . . . . 5 ((𝑊 ∈ LMod ∧ 𝐺𝐹 ∧ (𝑋𝑉𝑌𝑉)) → 𝐷 ∈ Abel)
368, 12grpinvcl 18901 . . . . . 6 ((𝐷 ∈ Grp ∧ (𝐺𝑌) ∈ (Base‘𝐷)) → ((invg𝐷)‘(𝐺𝑌)) ∈ (Base‘𝐷))
377, 31, 36syl2anc 584 . . . . 5 ((𝑊 ∈ LMod ∧ 𝐺𝐹 ∧ (𝑋𝑉𝑌𝑉)) → ((invg𝐷)‘(𝐺𝑌)) ∈ (Base‘𝐷))
383, 8, 16, 27lflcl 39050 . . . . . 6 ((𝑊 ∈ LMod ∧ 𝐺𝐹𝑋𝑉) → (𝐺𝑋) ∈ (Base‘𝐷))
39383adant3r 1182 . . . . 5 ((𝑊 ∈ LMod ∧ 𝐺𝐹 ∧ (𝑋𝑉𝑌𝑉)) → (𝐺𝑋) ∈ (Base‘𝐷))
408, 25ablcom 19713 . . . . 5 ((𝐷 ∈ Abel ∧ ((invg𝐷)‘(𝐺𝑌)) ∈ (Base‘𝐷) ∧ (𝐺𝑋) ∈ (Base‘𝐷)) → (((invg𝐷)‘(𝐺𝑌))(+g𝐷)(𝐺𝑋)) = ((𝐺𝑋)(+g𝐷)((invg𝐷)‘(𝐺𝑌))))
4135, 37, 39, 40syl3anc 1373 . . . 4 ((𝑊 ∈ LMod ∧ 𝐺𝐹 ∧ (𝑋𝑉𝑌𝑉)) → (((invg𝐷)‘(𝐺𝑌))(+g𝐷)(𝐺𝑋)) = ((𝐺𝑋)(+g𝐷)((invg𝐷)‘(𝐺𝑌))))
4233, 41eqtrd 2764 . . 3 ((𝑊 ∈ LMod ∧ 𝐺𝐹 ∧ (𝑋𝑉𝑌𝑉)) → ((((invg𝐷)‘(1r𝐷))(.r𝐷)(𝐺𝑌))(+g𝐷)(𝐺𝑋)) = ((𝐺𝑋)(+g𝐷)((invg𝐷)‘(𝐺𝑌))))
4323, 29, 423eqtrd 2768 . 2 ((𝑊 ∈ LMod ∧ 𝐺𝐹 ∧ (𝑋𝑉𝑌𝑉)) → (𝐺‘(𝑋(+g𝑊)(((invg𝐷)‘(1r𝐷))( ·𝑠𝑊)𝑌))) = ((𝐺𝑋)(+g𝐷)((invg𝐷)‘(𝐺𝑌))))
44 lflsub.a . . . . 5 = (-g𝑊)
4516, 20, 44, 3, 17, 12, 9lmodvsubval2 20855 . . . 4 ((𝑊 ∈ LMod ∧ 𝑋𝑉𝑌𝑉) → (𝑋 𝑌) = (𝑋(+g𝑊)(((invg𝐷)‘(1r𝐷))( ·𝑠𝑊)𝑌)))
461, 2, 15, 45syl3anc 1373 . . 3 ((𝑊 ∈ LMod ∧ 𝐺𝐹 ∧ (𝑋𝑉𝑌𝑉)) → (𝑋 𝑌) = (𝑋(+g𝑊)(((invg𝐷)‘(1r𝐷))( ·𝑠𝑊)𝑌)))
4746fveq2d 6844 . 2 ((𝑊 ∈ LMod ∧ 𝐺𝐹 ∧ (𝑋𝑉𝑌𝑉)) → (𝐺‘(𝑋 𝑌)) = (𝐺‘(𝑋(+g𝑊)(((invg𝐷)‘(1r𝐷))( ·𝑠𝑊)𝑌))))
48 lflsub.m . . . 4 𝑀 = (-g𝐷)
498, 25, 12, 48grpsubval 18899 . . 3 (((𝐺𝑋) ∈ (Base‘𝐷) ∧ (𝐺𝑌) ∈ (Base‘𝐷)) → ((𝐺𝑋)𝑀(𝐺𝑌)) = ((𝐺𝑋)(+g𝐷)((invg𝐷)‘(𝐺𝑌))))
5039, 31, 49syl2anc 584 . 2 ((𝑊 ∈ LMod ∧ 𝐺𝐹 ∧ (𝑋𝑉𝑌𝑉)) → ((𝐺𝑋)𝑀(𝐺𝑌)) = ((𝐺𝑋)(+g𝐷)((invg𝐷)‘(𝐺𝑌))))
5143, 47, 503eqtr4d 2774 1 ((𝑊 ∈ LMod ∧ 𝐺𝐹 ∧ (𝑋𝑉𝑌𝑉)) → (𝐺‘(𝑋 𝑌)) = ((𝐺𝑋)𝑀(𝐺𝑌)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  cfv 6499  (class class class)co 7369  Basecbs 17155  +gcplusg 17196  .rcmulr 17197  Scalarcsca 17199   ·𝑠 cvsca 17200  Grpcgrp 18847  invgcminusg 18848  -gcsg 18849  Abelcabl 19695  1rcur 20101  Ringcrg 20153  LModclmod 20798  LFnlclfn 39043
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-om 7823  df-1st 7947  df-2nd 7948  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-er 8648  df-map 8778  df-en 8896  df-dom 8897  df-sdom 8898  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-nn 12163  df-2 12225  df-sets 17110  df-slot 17128  df-ndx 17140  df-base 17156  df-plusg 17209  df-0g 17380  df-mgm 18549  df-sgrp 18628  df-mnd 18644  df-grp 18850  df-minusg 18851  df-sbg 18852  df-cmn 19696  df-abl 19697  df-mgp 20061  df-rng 20073  df-ur 20102  df-ring 20155  df-lmod 20800  df-lfl 39044
This theorem is referenced by:  eqlkr  39085  lkrlsp  39088  lclkrlem2m  41506  hdmaplns1  41895
  Copyright terms: Public domain W3C validator