HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  adjlnop Structured version   Visualization version   GIF version

Theorem adjlnop 32066
Description: The adjoint of an operator is linear. Proposition 1 of [AkhiezerGlazman] p. 80. (Contributed by NM, 17-Jun-2006.) (New usage is discouraged.)
Assertion
Ref Expression
adjlnop (𝑇 ∈ dom adj → (adj𝑇) ∈ LinOp)

Proof of Theorem adjlnop
Dummy variables 𝑤 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dmadjrn 31875 . . 3 (𝑇 ∈ dom adj → (adj𝑇) ∈ dom adj)
2 dmadjop 31868 . . 3 ((adj𝑇) ∈ dom adj → (adj𝑇): ℋ⟶ ℋ)
31, 2syl 17 . 2 (𝑇 ∈ dom adj → (adj𝑇): ℋ⟶ ℋ)
4 simp2 1137 . . . . . . . . . . 11 ((𝑇 ∈ dom adj𝑤 ∈ ℋ ∧ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ) ∧ 𝑧 ∈ ℋ)) → 𝑤 ∈ ℋ)
5 adjcl 31912 . . . . . . . . . . . . . . 15 ((𝑇 ∈ dom adj𝑦 ∈ ℋ) → ((adj𝑇)‘𝑦) ∈ ℋ)
6 hvmulcl 30993 . . . . . . . . . . . . . . 15 ((𝑥 ∈ ℂ ∧ ((adj𝑇)‘𝑦) ∈ ℋ) → (𝑥 · ((adj𝑇)‘𝑦)) ∈ ℋ)
75, 6sylan2 593 . . . . . . . . . . . . . 14 ((𝑥 ∈ ℂ ∧ (𝑇 ∈ dom adj𝑦 ∈ ℋ)) → (𝑥 · ((adj𝑇)‘𝑦)) ∈ ℋ)
87an12s 649 . . . . . . . . . . . . 13 ((𝑇 ∈ dom adj ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ)) → (𝑥 · ((adj𝑇)‘𝑦)) ∈ ℋ)
98adantrr 717 . . . . . . . . . . . 12 ((𝑇 ∈ dom adj ∧ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ) ∧ 𝑧 ∈ ℋ)) → (𝑥 · ((adj𝑇)‘𝑦)) ∈ ℋ)
1093adant2 1131 . . . . . . . . . . 11 ((𝑇 ∈ dom adj𝑤 ∈ ℋ ∧ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ) ∧ 𝑧 ∈ ℋ)) → (𝑥 · ((adj𝑇)‘𝑦)) ∈ ℋ)
11 adjcl 31912 . . . . . . . . . . . . 13 ((𝑇 ∈ dom adj𝑧 ∈ ℋ) → ((adj𝑇)‘𝑧) ∈ ℋ)
1211adantrl 716 . . . . . . . . . . . 12 ((𝑇 ∈ dom adj ∧ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ) ∧ 𝑧 ∈ ℋ)) → ((adj𝑇)‘𝑧) ∈ ℋ)
13123adant2 1131 . . . . . . . . . . 11 ((𝑇 ∈ dom adj𝑤 ∈ ℋ ∧ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ) ∧ 𝑧 ∈ ℋ)) → ((adj𝑇)‘𝑧) ∈ ℋ)
14 his7 31070 . . . . . . . . . . 11 ((𝑤 ∈ ℋ ∧ (𝑥 · ((adj𝑇)‘𝑦)) ∈ ℋ ∧ ((adj𝑇)‘𝑧) ∈ ℋ) → (𝑤 ·ih ((𝑥 · ((adj𝑇)‘𝑦)) + ((adj𝑇)‘𝑧))) = ((𝑤 ·ih (𝑥 · ((adj𝑇)‘𝑦))) + (𝑤 ·ih ((adj𝑇)‘𝑧))))
154, 10, 13, 14syl3anc 1373 . . . . . . . . . 10 ((𝑇 ∈ dom adj𝑤 ∈ ℋ ∧ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ) ∧ 𝑧 ∈ ℋ)) → (𝑤 ·ih ((𝑥 · ((adj𝑇)‘𝑦)) + ((adj𝑇)‘𝑧))) = ((𝑤 ·ih (𝑥 · ((adj𝑇)‘𝑦))) + (𝑤 ·ih ((adj𝑇)‘𝑧))))
16 adj2 31914 . . . . . . . . . . . . . . 15 ((𝑇 ∈ dom adj𝑤 ∈ ℋ ∧ 𝑦 ∈ ℋ) → ((𝑇𝑤) ·ih 𝑦) = (𝑤 ·ih ((adj𝑇)‘𝑦)))
17163adant3l 1181 . . . . . . . . . . . . . 14 ((𝑇 ∈ dom adj𝑤 ∈ ℋ ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ)) → ((𝑇𝑤) ·ih 𝑦) = (𝑤 ·ih ((adj𝑇)‘𝑦)))
1817oveq2d 7362 . . . . . . . . . . . . 13 ((𝑇 ∈ dom adj𝑤 ∈ ℋ ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ)) → ((∗‘𝑥) · ((𝑇𝑤) ·ih 𝑦)) = ((∗‘𝑥) · (𝑤 ·ih ((adj𝑇)‘𝑦))))
19 simp3l 1202 . . . . . . . . . . . . . 14 ((𝑇 ∈ dom adj𝑤 ∈ ℋ ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ)) → 𝑥 ∈ ℂ)
20 dmadjop 31868 . . . . . . . . . . . . . . . 16 (𝑇 ∈ dom adj𝑇: ℋ⟶ ℋ)
2120ffvelcdmda 7017 . . . . . . . . . . . . . . 15 ((𝑇 ∈ dom adj𝑤 ∈ ℋ) → (𝑇𝑤) ∈ ℋ)
22213adant3 1132 . . . . . . . . . . . . . 14 ((𝑇 ∈ dom adj𝑤 ∈ ℋ ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ)) → (𝑇𝑤) ∈ ℋ)
23 simp3r 1203 . . . . . . . . . . . . . 14 ((𝑇 ∈ dom adj𝑤 ∈ ℋ ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ)) → 𝑦 ∈ ℋ)
24 his5 31066 . . . . . . . . . . . . . 14 ((𝑥 ∈ ℂ ∧ (𝑇𝑤) ∈ ℋ ∧ 𝑦 ∈ ℋ) → ((𝑇𝑤) ·ih (𝑥 · 𝑦)) = ((∗‘𝑥) · ((𝑇𝑤) ·ih 𝑦)))
2519, 22, 23, 24syl3anc 1373 . . . . . . . . . . . . 13 ((𝑇 ∈ dom adj𝑤 ∈ ℋ ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ)) → ((𝑇𝑤) ·ih (𝑥 · 𝑦)) = ((∗‘𝑥) · ((𝑇𝑤) ·ih 𝑦)))
26 simp2 1137 . . . . . . . . . . . . . 14 ((𝑇 ∈ dom adj𝑤 ∈ ℋ ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ)) → 𝑤 ∈ ℋ)
275adantrl 716 . . . . . . . . . . . . . . 15 ((𝑇 ∈ dom adj ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ)) → ((adj𝑇)‘𝑦) ∈ ℋ)
28273adant2 1131 . . . . . . . . . . . . . 14 ((𝑇 ∈ dom adj𝑤 ∈ ℋ ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ)) → ((adj𝑇)‘𝑦) ∈ ℋ)
29 his5 31066 . . . . . . . . . . . . . 14 ((𝑥 ∈ ℂ ∧ 𝑤 ∈ ℋ ∧ ((adj𝑇)‘𝑦) ∈ ℋ) → (𝑤 ·ih (𝑥 · ((adj𝑇)‘𝑦))) = ((∗‘𝑥) · (𝑤 ·ih ((adj𝑇)‘𝑦))))
3019, 26, 28, 29syl3anc 1373 . . . . . . . . . . . . 13 ((𝑇 ∈ dom adj𝑤 ∈ ℋ ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ)) → (𝑤 ·ih (𝑥 · ((adj𝑇)‘𝑦))) = ((∗‘𝑥) · (𝑤 ·ih ((adj𝑇)‘𝑦))))
3118, 25, 303eqtr4d 2776 . . . . . . . . . . . 12 ((𝑇 ∈ dom adj𝑤 ∈ ℋ ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ)) → ((𝑇𝑤) ·ih (𝑥 · 𝑦)) = (𝑤 ·ih (𝑥 · ((adj𝑇)‘𝑦))))
32313adant3r 1182 . . . . . . . . . . 11 ((𝑇 ∈ dom adj𝑤 ∈ ℋ ∧ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ) ∧ 𝑧 ∈ ℋ)) → ((𝑇𝑤) ·ih (𝑥 · 𝑦)) = (𝑤 ·ih (𝑥 · ((adj𝑇)‘𝑦))))
33 adj2 31914 . . . . . . . . . . . 12 ((𝑇 ∈ dom adj𝑤 ∈ ℋ ∧ 𝑧 ∈ ℋ) → ((𝑇𝑤) ·ih 𝑧) = (𝑤 ·ih ((adj𝑇)‘𝑧)))
34333adant3l 1181 . . . . . . . . . . 11 ((𝑇 ∈ dom adj𝑤 ∈ ℋ ∧ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ) ∧ 𝑧 ∈ ℋ)) → ((𝑇𝑤) ·ih 𝑧) = (𝑤 ·ih ((adj𝑇)‘𝑧)))
3532, 34oveq12d 7364 . . . . . . . . . 10 ((𝑇 ∈ dom adj𝑤 ∈ ℋ ∧ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ) ∧ 𝑧 ∈ ℋ)) → (((𝑇𝑤) ·ih (𝑥 · 𝑦)) + ((𝑇𝑤) ·ih 𝑧)) = ((𝑤 ·ih (𝑥 · ((adj𝑇)‘𝑦))) + (𝑤 ·ih ((adj𝑇)‘𝑧))))
36213adant3 1132 . . . . . . . . . . . 12 ((𝑇 ∈ dom adj𝑤 ∈ ℋ ∧ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ) ∧ 𝑧 ∈ ℋ)) → (𝑇𝑤) ∈ ℋ)
37 hvmulcl 30993 . . . . . . . . . . . . . 14 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ) → (𝑥 · 𝑦) ∈ ℋ)
3837adantr 480 . . . . . . . . . . . . 13 (((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ) ∧ 𝑧 ∈ ℋ) → (𝑥 · 𝑦) ∈ ℋ)
39383ad2ant3 1135 . . . . . . . . . . . 12 ((𝑇 ∈ dom adj𝑤 ∈ ℋ ∧ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ) ∧ 𝑧 ∈ ℋ)) → (𝑥 · 𝑦) ∈ ℋ)
40 simp3r 1203 . . . . . . . . . . . 12 ((𝑇 ∈ dom adj𝑤 ∈ ℋ ∧ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ) ∧ 𝑧 ∈ ℋ)) → 𝑧 ∈ ℋ)
41 his7 31070 . . . . . . . . . . . 12 (((𝑇𝑤) ∈ ℋ ∧ (𝑥 · 𝑦) ∈ ℋ ∧ 𝑧 ∈ ℋ) → ((𝑇𝑤) ·ih ((𝑥 · 𝑦) + 𝑧)) = (((𝑇𝑤) ·ih (𝑥 · 𝑦)) + ((𝑇𝑤) ·ih 𝑧)))
4236, 39, 40, 41syl3anc 1373 . . . . . . . . . . 11 ((𝑇 ∈ dom adj𝑤 ∈ ℋ ∧ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ) ∧ 𝑧 ∈ ℋ)) → ((𝑇𝑤) ·ih ((𝑥 · 𝑦) + 𝑧)) = (((𝑇𝑤) ·ih (𝑥 · 𝑦)) + ((𝑇𝑤) ·ih 𝑧)))
43 hvaddcl 30992 . . . . . . . . . . . . 13 (((𝑥 · 𝑦) ∈ ℋ ∧ 𝑧 ∈ ℋ) → ((𝑥 · 𝑦) + 𝑧) ∈ ℋ)
4437, 43sylan 580 . . . . . . . . . . . 12 (((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ) ∧ 𝑧 ∈ ℋ) → ((𝑥 · 𝑦) + 𝑧) ∈ ℋ)
45 adj2 31914 . . . . . . . . . . . 12 ((𝑇 ∈ dom adj𝑤 ∈ ℋ ∧ ((𝑥 · 𝑦) + 𝑧) ∈ ℋ) → ((𝑇𝑤) ·ih ((𝑥 · 𝑦) + 𝑧)) = (𝑤 ·ih ((adj𝑇)‘((𝑥 · 𝑦) + 𝑧))))
4644, 45syl3an3 1165 . . . . . . . . . . 11 ((𝑇 ∈ dom adj𝑤 ∈ ℋ ∧ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ) ∧ 𝑧 ∈ ℋ)) → ((𝑇𝑤) ·ih ((𝑥 · 𝑦) + 𝑧)) = (𝑤 ·ih ((adj𝑇)‘((𝑥 · 𝑦) + 𝑧))))
4742, 46eqtr3d 2768 . . . . . . . . . 10 ((𝑇 ∈ dom adj𝑤 ∈ ℋ ∧ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ) ∧ 𝑧 ∈ ℋ)) → (((𝑇𝑤) ·ih (𝑥 · 𝑦)) + ((𝑇𝑤) ·ih 𝑧)) = (𝑤 ·ih ((adj𝑇)‘((𝑥 · 𝑦) + 𝑧))))
4815, 35, 473eqtr2rd 2773 . . . . . . . . 9 ((𝑇 ∈ dom adj𝑤 ∈ ℋ ∧ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ) ∧ 𝑧 ∈ ℋ)) → (𝑤 ·ih ((adj𝑇)‘((𝑥 · 𝑦) + 𝑧))) = (𝑤 ·ih ((𝑥 · ((adj𝑇)‘𝑦)) + ((adj𝑇)‘𝑧))))
49483com23 1126 . . . . . . . 8 ((𝑇 ∈ dom adj ∧ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ) ∧ 𝑧 ∈ ℋ) ∧ 𝑤 ∈ ℋ) → (𝑤 ·ih ((adj𝑇)‘((𝑥 · 𝑦) + 𝑧))) = (𝑤 ·ih ((𝑥 · ((adj𝑇)‘𝑦)) + ((adj𝑇)‘𝑧))))
50493expa 1118 . . . . . . 7 (((𝑇 ∈ dom adj ∧ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ) ∧ 𝑧 ∈ ℋ)) ∧ 𝑤 ∈ ℋ) → (𝑤 ·ih ((adj𝑇)‘((𝑥 · 𝑦) + 𝑧))) = (𝑤 ·ih ((𝑥 · ((adj𝑇)‘𝑦)) + ((adj𝑇)‘𝑧))))
5150ralrimiva 3124 . . . . . 6 ((𝑇 ∈ dom adj ∧ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ) ∧ 𝑧 ∈ ℋ)) → ∀𝑤 ∈ ℋ (𝑤 ·ih ((adj𝑇)‘((𝑥 · 𝑦) + 𝑧))) = (𝑤 ·ih ((𝑥 · ((adj𝑇)‘𝑦)) + ((adj𝑇)‘𝑧))))
52 adjcl 31912 . . . . . . . 8 ((𝑇 ∈ dom adj ∧ ((𝑥 · 𝑦) + 𝑧) ∈ ℋ) → ((adj𝑇)‘((𝑥 · 𝑦) + 𝑧)) ∈ ℋ)
5344, 52sylan2 593 . . . . . . 7 ((𝑇 ∈ dom adj ∧ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ) ∧ 𝑧 ∈ ℋ)) → ((adj𝑇)‘((𝑥 · 𝑦) + 𝑧)) ∈ ℋ)
54 hvaddcl 30992 . . . . . . . . 9 (((𝑥 · ((adj𝑇)‘𝑦)) ∈ ℋ ∧ ((adj𝑇)‘𝑧) ∈ ℋ) → ((𝑥 · ((adj𝑇)‘𝑦)) + ((adj𝑇)‘𝑧)) ∈ ℋ)
558, 11, 54syl2an 596 . . . . . . . 8 (((𝑇 ∈ dom adj ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ)) ∧ (𝑇 ∈ dom adj𝑧 ∈ ℋ)) → ((𝑥 · ((adj𝑇)‘𝑦)) + ((adj𝑇)‘𝑧)) ∈ ℋ)
5655anandis 678 . . . . . . 7 ((𝑇 ∈ dom adj ∧ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ) ∧ 𝑧 ∈ ℋ)) → ((𝑥 · ((adj𝑇)‘𝑦)) + ((adj𝑇)‘𝑧)) ∈ ℋ)
57 hial2eq2 31087 . . . . . . 7 ((((adj𝑇)‘((𝑥 · 𝑦) + 𝑧)) ∈ ℋ ∧ ((𝑥 · ((adj𝑇)‘𝑦)) + ((adj𝑇)‘𝑧)) ∈ ℋ) → (∀𝑤 ∈ ℋ (𝑤 ·ih ((adj𝑇)‘((𝑥 · 𝑦) + 𝑧))) = (𝑤 ·ih ((𝑥 · ((adj𝑇)‘𝑦)) + ((adj𝑇)‘𝑧))) ↔ ((adj𝑇)‘((𝑥 · 𝑦) + 𝑧)) = ((𝑥 · ((adj𝑇)‘𝑦)) + ((adj𝑇)‘𝑧))))
5853, 56, 57syl2anc 584 . . . . . 6 ((𝑇 ∈ dom adj ∧ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ) ∧ 𝑧 ∈ ℋ)) → (∀𝑤 ∈ ℋ (𝑤 ·ih ((adj𝑇)‘((𝑥 · 𝑦) + 𝑧))) = (𝑤 ·ih ((𝑥 · ((adj𝑇)‘𝑦)) + ((adj𝑇)‘𝑧))) ↔ ((adj𝑇)‘((𝑥 · 𝑦) + 𝑧)) = ((𝑥 · ((adj𝑇)‘𝑦)) + ((adj𝑇)‘𝑧))))
5951, 58mpbid 232 . . . . 5 ((𝑇 ∈ dom adj ∧ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ) ∧ 𝑧 ∈ ℋ)) → ((adj𝑇)‘((𝑥 · 𝑦) + 𝑧)) = ((𝑥 · ((adj𝑇)‘𝑦)) + ((adj𝑇)‘𝑧)))
6059exp32 420 . . . 4 (𝑇 ∈ dom adj → ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ) → (𝑧 ∈ ℋ → ((adj𝑇)‘((𝑥 · 𝑦) + 𝑧)) = ((𝑥 · ((adj𝑇)‘𝑦)) + ((adj𝑇)‘𝑧)))))
6160ralrimdv 3130 . . 3 (𝑇 ∈ dom adj → ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ) → ∀𝑧 ∈ ℋ ((adj𝑇)‘((𝑥 · 𝑦) + 𝑧)) = ((𝑥 · ((adj𝑇)‘𝑦)) + ((adj𝑇)‘𝑧))))
6261ralrimivv 3173 . 2 (𝑇 ∈ dom adj → ∀𝑥 ∈ ℂ ∀𝑦 ∈ ℋ ∀𝑧 ∈ ℋ ((adj𝑇)‘((𝑥 · 𝑦) + 𝑧)) = ((𝑥 · ((adj𝑇)‘𝑦)) + ((adj𝑇)‘𝑧)))
63 ellnop 31838 . 2 ((adj𝑇) ∈ LinOp ↔ ((adj𝑇): ℋ⟶ ℋ ∧ ∀𝑥 ∈ ℂ ∀𝑦 ∈ ℋ ∀𝑧 ∈ ℋ ((adj𝑇)‘((𝑥 · 𝑦) + 𝑧)) = ((𝑥 · ((adj𝑇)‘𝑦)) + ((adj𝑇)‘𝑧))))
643, 62, 63sylanbrc 583 1 (𝑇 ∈ dom adj → (adj𝑇) ∈ LinOp)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1541  wcel 2111  wral 3047  dom cdm 5614  wf 6477  cfv 6481  (class class class)co 7346  cc 11004   + caddc 11009   · cmul 11011  ccj 15003  chba 30899   + cva 30900   · csm 30901   ·ih csp 30902  LinOpclo 30927  adjcado 30935
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083  ax-hilex 30979  ax-hfvadd 30980  ax-hvcom 30981  ax-hvass 30982  ax-hv0cl 30983  ax-hvaddid 30984  ax-hfvmul 30985  ax-hvmulid 30986  ax-hvdistr2 30989  ax-hvmul0 30990  ax-hfi 31059  ax-his1 31062  ax-his2 31063  ax-his3 31064  ax-his4 31065
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-er 8622  df-map 8752  df-en 8870  df-dom 8871  df-sdom 8872  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-div 11775  df-nn 12126  df-2 12188  df-cj 15006  df-re 15007  df-im 15008  df-hvsub 30951  df-lnop 31821  df-adjh 31829
This theorem is referenced by:  adjsslnop  32067
  Copyright terms: Public domain W3C validator