HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  adjlnop Structured version   Visualization version   GIF version

Theorem adjlnop 32065
Description: The adjoint of an operator is linear. Proposition 1 of [AkhiezerGlazman] p. 80. (Contributed by NM, 17-Jun-2006.) (New usage is discouraged.)
Assertion
Ref Expression
adjlnop (𝑇 ∈ dom adj → (adj𝑇) ∈ LinOp)

Proof of Theorem adjlnop
Dummy variables 𝑤 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dmadjrn 31874 . . 3 (𝑇 ∈ dom adj → (adj𝑇) ∈ dom adj)
2 dmadjop 31867 . . 3 ((adj𝑇) ∈ dom adj → (adj𝑇): ℋ⟶ ℋ)
31, 2syl 17 . 2 (𝑇 ∈ dom adj → (adj𝑇): ℋ⟶ ℋ)
4 simp2 1137 . . . . . . . . . . 11 ((𝑇 ∈ dom adj𝑤 ∈ ℋ ∧ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ) ∧ 𝑧 ∈ ℋ)) → 𝑤 ∈ ℋ)
5 adjcl 31911 . . . . . . . . . . . . . . 15 ((𝑇 ∈ dom adj𝑦 ∈ ℋ) → ((adj𝑇)‘𝑦) ∈ ℋ)
6 hvmulcl 30992 . . . . . . . . . . . . . . 15 ((𝑥 ∈ ℂ ∧ ((adj𝑇)‘𝑦) ∈ ℋ) → (𝑥 · ((adj𝑇)‘𝑦)) ∈ ℋ)
75, 6sylan2 593 . . . . . . . . . . . . . 14 ((𝑥 ∈ ℂ ∧ (𝑇 ∈ dom adj𝑦 ∈ ℋ)) → (𝑥 · ((adj𝑇)‘𝑦)) ∈ ℋ)
87an12s 649 . . . . . . . . . . . . 13 ((𝑇 ∈ dom adj ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ)) → (𝑥 · ((adj𝑇)‘𝑦)) ∈ ℋ)
98adantrr 717 . . . . . . . . . . . 12 ((𝑇 ∈ dom adj ∧ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ) ∧ 𝑧 ∈ ℋ)) → (𝑥 · ((adj𝑇)‘𝑦)) ∈ ℋ)
1093adant2 1131 . . . . . . . . . . 11 ((𝑇 ∈ dom adj𝑤 ∈ ℋ ∧ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ) ∧ 𝑧 ∈ ℋ)) → (𝑥 · ((adj𝑇)‘𝑦)) ∈ ℋ)
11 adjcl 31911 . . . . . . . . . . . . 13 ((𝑇 ∈ dom adj𝑧 ∈ ℋ) → ((adj𝑇)‘𝑧) ∈ ℋ)
1211adantrl 716 . . . . . . . . . . . 12 ((𝑇 ∈ dom adj ∧ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ) ∧ 𝑧 ∈ ℋ)) → ((adj𝑇)‘𝑧) ∈ ℋ)
13123adant2 1131 . . . . . . . . . . 11 ((𝑇 ∈ dom adj𝑤 ∈ ℋ ∧ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ) ∧ 𝑧 ∈ ℋ)) → ((adj𝑇)‘𝑧) ∈ ℋ)
14 his7 31069 . . . . . . . . . . 11 ((𝑤 ∈ ℋ ∧ (𝑥 · ((adj𝑇)‘𝑦)) ∈ ℋ ∧ ((adj𝑇)‘𝑧) ∈ ℋ) → (𝑤 ·ih ((𝑥 · ((adj𝑇)‘𝑦)) + ((adj𝑇)‘𝑧))) = ((𝑤 ·ih (𝑥 · ((adj𝑇)‘𝑦))) + (𝑤 ·ih ((adj𝑇)‘𝑧))))
154, 10, 13, 14syl3anc 1373 . . . . . . . . . 10 ((𝑇 ∈ dom adj𝑤 ∈ ℋ ∧ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ) ∧ 𝑧 ∈ ℋ)) → (𝑤 ·ih ((𝑥 · ((adj𝑇)‘𝑦)) + ((adj𝑇)‘𝑧))) = ((𝑤 ·ih (𝑥 · ((adj𝑇)‘𝑦))) + (𝑤 ·ih ((adj𝑇)‘𝑧))))
16 adj2 31913 . . . . . . . . . . . . . . 15 ((𝑇 ∈ dom adj𝑤 ∈ ℋ ∧ 𝑦 ∈ ℋ) → ((𝑇𝑤) ·ih 𝑦) = (𝑤 ·ih ((adj𝑇)‘𝑦)))
17163adant3l 1181 . . . . . . . . . . . . . 14 ((𝑇 ∈ dom adj𝑤 ∈ ℋ ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ)) → ((𝑇𝑤) ·ih 𝑦) = (𝑤 ·ih ((adj𝑇)‘𝑦)))
1817oveq2d 7385 . . . . . . . . . . . . 13 ((𝑇 ∈ dom adj𝑤 ∈ ℋ ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ)) → ((∗‘𝑥) · ((𝑇𝑤) ·ih 𝑦)) = ((∗‘𝑥) · (𝑤 ·ih ((adj𝑇)‘𝑦))))
19 simp3l 1202 . . . . . . . . . . . . . 14 ((𝑇 ∈ dom adj𝑤 ∈ ℋ ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ)) → 𝑥 ∈ ℂ)
20 dmadjop 31867 . . . . . . . . . . . . . . . 16 (𝑇 ∈ dom adj𝑇: ℋ⟶ ℋ)
2120ffvelcdmda 7038 . . . . . . . . . . . . . . 15 ((𝑇 ∈ dom adj𝑤 ∈ ℋ) → (𝑇𝑤) ∈ ℋ)
22213adant3 1132 . . . . . . . . . . . . . 14 ((𝑇 ∈ dom adj𝑤 ∈ ℋ ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ)) → (𝑇𝑤) ∈ ℋ)
23 simp3r 1203 . . . . . . . . . . . . . 14 ((𝑇 ∈ dom adj𝑤 ∈ ℋ ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ)) → 𝑦 ∈ ℋ)
24 his5 31065 . . . . . . . . . . . . . 14 ((𝑥 ∈ ℂ ∧ (𝑇𝑤) ∈ ℋ ∧ 𝑦 ∈ ℋ) → ((𝑇𝑤) ·ih (𝑥 · 𝑦)) = ((∗‘𝑥) · ((𝑇𝑤) ·ih 𝑦)))
2519, 22, 23, 24syl3anc 1373 . . . . . . . . . . . . 13 ((𝑇 ∈ dom adj𝑤 ∈ ℋ ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ)) → ((𝑇𝑤) ·ih (𝑥 · 𝑦)) = ((∗‘𝑥) · ((𝑇𝑤) ·ih 𝑦)))
26 simp2 1137 . . . . . . . . . . . . . 14 ((𝑇 ∈ dom adj𝑤 ∈ ℋ ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ)) → 𝑤 ∈ ℋ)
275adantrl 716 . . . . . . . . . . . . . . 15 ((𝑇 ∈ dom adj ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ)) → ((adj𝑇)‘𝑦) ∈ ℋ)
28273adant2 1131 . . . . . . . . . . . . . 14 ((𝑇 ∈ dom adj𝑤 ∈ ℋ ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ)) → ((adj𝑇)‘𝑦) ∈ ℋ)
29 his5 31065 . . . . . . . . . . . . . 14 ((𝑥 ∈ ℂ ∧ 𝑤 ∈ ℋ ∧ ((adj𝑇)‘𝑦) ∈ ℋ) → (𝑤 ·ih (𝑥 · ((adj𝑇)‘𝑦))) = ((∗‘𝑥) · (𝑤 ·ih ((adj𝑇)‘𝑦))))
3019, 26, 28, 29syl3anc 1373 . . . . . . . . . . . . 13 ((𝑇 ∈ dom adj𝑤 ∈ ℋ ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ)) → (𝑤 ·ih (𝑥 · ((adj𝑇)‘𝑦))) = ((∗‘𝑥) · (𝑤 ·ih ((adj𝑇)‘𝑦))))
3118, 25, 303eqtr4d 2774 . . . . . . . . . . . 12 ((𝑇 ∈ dom adj𝑤 ∈ ℋ ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ)) → ((𝑇𝑤) ·ih (𝑥 · 𝑦)) = (𝑤 ·ih (𝑥 · ((adj𝑇)‘𝑦))))
32313adant3r 1182 . . . . . . . . . . 11 ((𝑇 ∈ dom adj𝑤 ∈ ℋ ∧ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ) ∧ 𝑧 ∈ ℋ)) → ((𝑇𝑤) ·ih (𝑥 · 𝑦)) = (𝑤 ·ih (𝑥 · ((adj𝑇)‘𝑦))))
33 adj2 31913 . . . . . . . . . . . 12 ((𝑇 ∈ dom adj𝑤 ∈ ℋ ∧ 𝑧 ∈ ℋ) → ((𝑇𝑤) ·ih 𝑧) = (𝑤 ·ih ((adj𝑇)‘𝑧)))
34333adant3l 1181 . . . . . . . . . . 11 ((𝑇 ∈ dom adj𝑤 ∈ ℋ ∧ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ) ∧ 𝑧 ∈ ℋ)) → ((𝑇𝑤) ·ih 𝑧) = (𝑤 ·ih ((adj𝑇)‘𝑧)))
3532, 34oveq12d 7387 . . . . . . . . . 10 ((𝑇 ∈ dom adj𝑤 ∈ ℋ ∧ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ) ∧ 𝑧 ∈ ℋ)) → (((𝑇𝑤) ·ih (𝑥 · 𝑦)) + ((𝑇𝑤) ·ih 𝑧)) = ((𝑤 ·ih (𝑥 · ((adj𝑇)‘𝑦))) + (𝑤 ·ih ((adj𝑇)‘𝑧))))
36213adant3 1132 . . . . . . . . . . . 12 ((𝑇 ∈ dom adj𝑤 ∈ ℋ ∧ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ) ∧ 𝑧 ∈ ℋ)) → (𝑇𝑤) ∈ ℋ)
37 hvmulcl 30992 . . . . . . . . . . . . . 14 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ) → (𝑥 · 𝑦) ∈ ℋ)
3837adantr 480 . . . . . . . . . . . . 13 (((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ) ∧ 𝑧 ∈ ℋ) → (𝑥 · 𝑦) ∈ ℋ)
39383ad2ant3 1135 . . . . . . . . . . . 12 ((𝑇 ∈ dom adj𝑤 ∈ ℋ ∧ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ) ∧ 𝑧 ∈ ℋ)) → (𝑥 · 𝑦) ∈ ℋ)
40 simp3r 1203 . . . . . . . . . . . 12 ((𝑇 ∈ dom adj𝑤 ∈ ℋ ∧ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ) ∧ 𝑧 ∈ ℋ)) → 𝑧 ∈ ℋ)
41 his7 31069 . . . . . . . . . . . 12 (((𝑇𝑤) ∈ ℋ ∧ (𝑥 · 𝑦) ∈ ℋ ∧ 𝑧 ∈ ℋ) → ((𝑇𝑤) ·ih ((𝑥 · 𝑦) + 𝑧)) = (((𝑇𝑤) ·ih (𝑥 · 𝑦)) + ((𝑇𝑤) ·ih 𝑧)))
4236, 39, 40, 41syl3anc 1373 . . . . . . . . . . 11 ((𝑇 ∈ dom adj𝑤 ∈ ℋ ∧ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ) ∧ 𝑧 ∈ ℋ)) → ((𝑇𝑤) ·ih ((𝑥 · 𝑦) + 𝑧)) = (((𝑇𝑤) ·ih (𝑥 · 𝑦)) + ((𝑇𝑤) ·ih 𝑧)))
43 hvaddcl 30991 . . . . . . . . . . . . 13 (((𝑥 · 𝑦) ∈ ℋ ∧ 𝑧 ∈ ℋ) → ((𝑥 · 𝑦) + 𝑧) ∈ ℋ)
4437, 43sylan 580 . . . . . . . . . . . 12 (((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ) ∧ 𝑧 ∈ ℋ) → ((𝑥 · 𝑦) + 𝑧) ∈ ℋ)
45 adj2 31913 . . . . . . . . . . . 12 ((𝑇 ∈ dom adj𝑤 ∈ ℋ ∧ ((𝑥 · 𝑦) + 𝑧) ∈ ℋ) → ((𝑇𝑤) ·ih ((𝑥 · 𝑦) + 𝑧)) = (𝑤 ·ih ((adj𝑇)‘((𝑥 · 𝑦) + 𝑧))))
4644, 45syl3an3 1165 . . . . . . . . . . 11 ((𝑇 ∈ dom adj𝑤 ∈ ℋ ∧ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ) ∧ 𝑧 ∈ ℋ)) → ((𝑇𝑤) ·ih ((𝑥 · 𝑦) + 𝑧)) = (𝑤 ·ih ((adj𝑇)‘((𝑥 · 𝑦) + 𝑧))))
4742, 46eqtr3d 2766 . . . . . . . . . 10 ((𝑇 ∈ dom adj𝑤 ∈ ℋ ∧ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ) ∧ 𝑧 ∈ ℋ)) → (((𝑇𝑤) ·ih (𝑥 · 𝑦)) + ((𝑇𝑤) ·ih 𝑧)) = (𝑤 ·ih ((adj𝑇)‘((𝑥 · 𝑦) + 𝑧))))
4815, 35, 473eqtr2rd 2771 . . . . . . . . 9 ((𝑇 ∈ dom adj𝑤 ∈ ℋ ∧ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ) ∧ 𝑧 ∈ ℋ)) → (𝑤 ·ih ((adj𝑇)‘((𝑥 · 𝑦) + 𝑧))) = (𝑤 ·ih ((𝑥 · ((adj𝑇)‘𝑦)) + ((adj𝑇)‘𝑧))))
49483com23 1126 . . . . . . . 8 ((𝑇 ∈ dom adj ∧ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ) ∧ 𝑧 ∈ ℋ) ∧ 𝑤 ∈ ℋ) → (𝑤 ·ih ((adj𝑇)‘((𝑥 · 𝑦) + 𝑧))) = (𝑤 ·ih ((𝑥 · ((adj𝑇)‘𝑦)) + ((adj𝑇)‘𝑧))))
50493expa 1118 . . . . . . 7 (((𝑇 ∈ dom adj ∧ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ) ∧ 𝑧 ∈ ℋ)) ∧ 𝑤 ∈ ℋ) → (𝑤 ·ih ((adj𝑇)‘((𝑥 · 𝑦) + 𝑧))) = (𝑤 ·ih ((𝑥 · ((adj𝑇)‘𝑦)) + ((adj𝑇)‘𝑧))))
5150ralrimiva 3125 . . . . . 6 ((𝑇 ∈ dom adj ∧ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ) ∧ 𝑧 ∈ ℋ)) → ∀𝑤 ∈ ℋ (𝑤 ·ih ((adj𝑇)‘((𝑥 · 𝑦) + 𝑧))) = (𝑤 ·ih ((𝑥 · ((adj𝑇)‘𝑦)) + ((adj𝑇)‘𝑧))))
52 adjcl 31911 . . . . . . . 8 ((𝑇 ∈ dom adj ∧ ((𝑥 · 𝑦) + 𝑧) ∈ ℋ) → ((adj𝑇)‘((𝑥 · 𝑦) + 𝑧)) ∈ ℋ)
5344, 52sylan2 593 . . . . . . 7 ((𝑇 ∈ dom adj ∧ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ) ∧ 𝑧 ∈ ℋ)) → ((adj𝑇)‘((𝑥 · 𝑦) + 𝑧)) ∈ ℋ)
54 hvaddcl 30991 . . . . . . . . 9 (((𝑥 · ((adj𝑇)‘𝑦)) ∈ ℋ ∧ ((adj𝑇)‘𝑧) ∈ ℋ) → ((𝑥 · ((adj𝑇)‘𝑦)) + ((adj𝑇)‘𝑧)) ∈ ℋ)
558, 11, 54syl2an 596 . . . . . . . 8 (((𝑇 ∈ dom adj ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ)) ∧ (𝑇 ∈ dom adj𝑧 ∈ ℋ)) → ((𝑥 · ((adj𝑇)‘𝑦)) + ((adj𝑇)‘𝑧)) ∈ ℋ)
5655anandis 678 . . . . . . 7 ((𝑇 ∈ dom adj ∧ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ) ∧ 𝑧 ∈ ℋ)) → ((𝑥 · ((adj𝑇)‘𝑦)) + ((adj𝑇)‘𝑧)) ∈ ℋ)
57 hial2eq2 31086 . . . . . . 7 ((((adj𝑇)‘((𝑥 · 𝑦) + 𝑧)) ∈ ℋ ∧ ((𝑥 · ((adj𝑇)‘𝑦)) + ((adj𝑇)‘𝑧)) ∈ ℋ) → (∀𝑤 ∈ ℋ (𝑤 ·ih ((adj𝑇)‘((𝑥 · 𝑦) + 𝑧))) = (𝑤 ·ih ((𝑥 · ((adj𝑇)‘𝑦)) + ((adj𝑇)‘𝑧))) ↔ ((adj𝑇)‘((𝑥 · 𝑦) + 𝑧)) = ((𝑥 · ((adj𝑇)‘𝑦)) + ((adj𝑇)‘𝑧))))
5853, 56, 57syl2anc 584 . . . . . 6 ((𝑇 ∈ dom adj ∧ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ) ∧ 𝑧 ∈ ℋ)) → (∀𝑤 ∈ ℋ (𝑤 ·ih ((adj𝑇)‘((𝑥 · 𝑦) + 𝑧))) = (𝑤 ·ih ((𝑥 · ((adj𝑇)‘𝑦)) + ((adj𝑇)‘𝑧))) ↔ ((adj𝑇)‘((𝑥 · 𝑦) + 𝑧)) = ((𝑥 · ((adj𝑇)‘𝑦)) + ((adj𝑇)‘𝑧))))
5951, 58mpbid 232 . . . . 5 ((𝑇 ∈ dom adj ∧ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ) ∧ 𝑧 ∈ ℋ)) → ((adj𝑇)‘((𝑥 · 𝑦) + 𝑧)) = ((𝑥 · ((adj𝑇)‘𝑦)) + ((adj𝑇)‘𝑧)))
6059exp32 420 . . . 4 (𝑇 ∈ dom adj → ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ) → (𝑧 ∈ ℋ → ((adj𝑇)‘((𝑥 · 𝑦) + 𝑧)) = ((𝑥 · ((adj𝑇)‘𝑦)) + ((adj𝑇)‘𝑧)))))
6160ralrimdv 3131 . . 3 (𝑇 ∈ dom adj → ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ) → ∀𝑧 ∈ ℋ ((adj𝑇)‘((𝑥 · 𝑦) + 𝑧)) = ((𝑥 · ((adj𝑇)‘𝑦)) + ((adj𝑇)‘𝑧))))
6261ralrimivv 3176 . 2 (𝑇 ∈ dom adj → ∀𝑥 ∈ ℂ ∀𝑦 ∈ ℋ ∀𝑧 ∈ ℋ ((adj𝑇)‘((𝑥 · 𝑦) + 𝑧)) = ((𝑥 · ((adj𝑇)‘𝑦)) + ((adj𝑇)‘𝑧)))
63 ellnop 31837 . 2 ((adj𝑇) ∈ LinOp ↔ ((adj𝑇): ℋ⟶ ℋ ∧ ∀𝑥 ∈ ℂ ∀𝑦 ∈ ℋ ∀𝑧 ∈ ℋ ((adj𝑇)‘((𝑥 · 𝑦) + 𝑧)) = ((𝑥 · ((adj𝑇)‘𝑦)) + ((adj𝑇)‘𝑧))))
643, 62, 63sylanbrc 583 1 (𝑇 ∈ dom adj → (adj𝑇) ∈ LinOp)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wral 3044  dom cdm 5631  wf 6495  cfv 6499  (class class class)co 7369  cc 11042   + caddc 11047   · cmul 11049  ccj 15038  chba 30898   + cva 30899   · csm 30900   ·ih csp 30901  LinOpclo 30926  adjcado 30934
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121  ax-hilex 30978  ax-hfvadd 30979  ax-hvcom 30980  ax-hvass 30981  ax-hv0cl 30982  ax-hvaddid 30983  ax-hfvmul 30984  ax-hvmulid 30985  ax-hvdistr2 30988  ax-hvmul0 30989  ax-hfi 31058  ax-his1 31061  ax-his2 31062  ax-his3 31063  ax-his4 31064
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-om 7823  df-2nd 7948  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-er 8648  df-map 8778  df-en 8896  df-dom 8897  df-sdom 8898  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-div 11812  df-nn 12163  df-2 12225  df-cj 15041  df-re 15042  df-im 15043  df-hvsub 30950  df-lnop 31820  df-adjh 31828
This theorem is referenced by:  adjsslnop  32066
  Copyright terms: Public domain W3C validator