HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  adjlnop Structured version   Visualization version   GIF version

Theorem adjlnop 32030
Description: The adjoint of an operator is linear. Proposition 1 of [AkhiezerGlazman] p. 80. (Contributed by NM, 17-Jun-2006.) (New usage is discouraged.)
Assertion
Ref Expression
adjlnop (𝑇 ∈ dom adj → (adj𝑇) ∈ LinOp)

Proof of Theorem adjlnop
Dummy variables 𝑤 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dmadjrn 31839 . . 3 (𝑇 ∈ dom adj → (adj𝑇) ∈ dom adj)
2 dmadjop 31832 . . 3 ((adj𝑇) ∈ dom adj → (adj𝑇): ℋ⟶ ℋ)
31, 2syl 17 . 2 (𝑇 ∈ dom adj → (adj𝑇): ℋ⟶ ℋ)
4 simp2 1137 . . . . . . . . . . 11 ((𝑇 ∈ dom adj𝑤 ∈ ℋ ∧ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ) ∧ 𝑧 ∈ ℋ)) → 𝑤 ∈ ℋ)
5 adjcl 31876 . . . . . . . . . . . . . . 15 ((𝑇 ∈ dom adj𝑦 ∈ ℋ) → ((adj𝑇)‘𝑦) ∈ ℋ)
6 hvmulcl 30957 . . . . . . . . . . . . . . 15 ((𝑥 ∈ ℂ ∧ ((adj𝑇)‘𝑦) ∈ ℋ) → (𝑥 · ((adj𝑇)‘𝑦)) ∈ ℋ)
75, 6sylan2 593 . . . . . . . . . . . . . 14 ((𝑥 ∈ ℂ ∧ (𝑇 ∈ dom adj𝑦 ∈ ℋ)) → (𝑥 · ((adj𝑇)‘𝑦)) ∈ ℋ)
87an12s 649 . . . . . . . . . . . . 13 ((𝑇 ∈ dom adj ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ)) → (𝑥 · ((adj𝑇)‘𝑦)) ∈ ℋ)
98adantrr 717 . . . . . . . . . . . 12 ((𝑇 ∈ dom adj ∧ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ) ∧ 𝑧 ∈ ℋ)) → (𝑥 · ((adj𝑇)‘𝑦)) ∈ ℋ)
1093adant2 1131 . . . . . . . . . . 11 ((𝑇 ∈ dom adj𝑤 ∈ ℋ ∧ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ) ∧ 𝑧 ∈ ℋ)) → (𝑥 · ((adj𝑇)‘𝑦)) ∈ ℋ)
11 adjcl 31876 . . . . . . . . . . . . 13 ((𝑇 ∈ dom adj𝑧 ∈ ℋ) → ((adj𝑇)‘𝑧) ∈ ℋ)
1211adantrl 716 . . . . . . . . . . . 12 ((𝑇 ∈ dom adj ∧ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ) ∧ 𝑧 ∈ ℋ)) → ((adj𝑇)‘𝑧) ∈ ℋ)
13123adant2 1131 . . . . . . . . . . 11 ((𝑇 ∈ dom adj𝑤 ∈ ℋ ∧ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ) ∧ 𝑧 ∈ ℋ)) → ((adj𝑇)‘𝑧) ∈ ℋ)
14 his7 31034 . . . . . . . . . . 11 ((𝑤 ∈ ℋ ∧ (𝑥 · ((adj𝑇)‘𝑦)) ∈ ℋ ∧ ((adj𝑇)‘𝑧) ∈ ℋ) → (𝑤 ·ih ((𝑥 · ((adj𝑇)‘𝑦)) + ((adj𝑇)‘𝑧))) = ((𝑤 ·ih (𝑥 · ((adj𝑇)‘𝑦))) + (𝑤 ·ih ((adj𝑇)‘𝑧))))
154, 10, 13, 14syl3anc 1373 . . . . . . . . . 10 ((𝑇 ∈ dom adj𝑤 ∈ ℋ ∧ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ) ∧ 𝑧 ∈ ℋ)) → (𝑤 ·ih ((𝑥 · ((adj𝑇)‘𝑦)) + ((adj𝑇)‘𝑧))) = ((𝑤 ·ih (𝑥 · ((adj𝑇)‘𝑦))) + (𝑤 ·ih ((adj𝑇)‘𝑧))))
16 adj2 31878 . . . . . . . . . . . . . . 15 ((𝑇 ∈ dom adj𝑤 ∈ ℋ ∧ 𝑦 ∈ ℋ) → ((𝑇𝑤) ·ih 𝑦) = (𝑤 ·ih ((adj𝑇)‘𝑦)))
17163adant3l 1181 . . . . . . . . . . . . . 14 ((𝑇 ∈ dom adj𝑤 ∈ ℋ ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ)) → ((𝑇𝑤) ·ih 𝑦) = (𝑤 ·ih ((adj𝑇)‘𝑦)))
1817oveq2d 7365 . . . . . . . . . . . . 13 ((𝑇 ∈ dom adj𝑤 ∈ ℋ ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ)) → ((∗‘𝑥) · ((𝑇𝑤) ·ih 𝑦)) = ((∗‘𝑥) · (𝑤 ·ih ((adj𝑇)‘𝑦))))
19 simp3l 1202 . . . . . . . . . . . . . 14 ((𝑇 ∈ dom adj𝑤 ∈ ℋ ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ)) → 𝑥 ∈ ℂ)
20 dmadjop 31832 . . . . . . . . . . . . . . . 16 (𝑇 ∈ dom adj𝑇: ℋ⟶ ℋ)
2120ffvelcdmda 7018 . . . . . . . . . . . . . . 15 ((𝑇 ∈ dom adj𝑤 ∈ ℋ) → (𝑇𝑤) ∈ ℋ)
22213adant3 1132 . . . . . . . . . . . . . 14 ((𝑇 ∈ dom adj𝑤 ∈ ℋ ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ)) → (𝑇𝑤) ∈ ℋ)
23 simp3r 1203 . . . . . . . . . . . . . 14 ((𝑇 ∈ dom adj𝑤 ∈ ℋ ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ)) → 𝑦 ∈ ℋ)
24 his5 31030 . . . . . . . . . . . . . 14 ((𝑥 ∈ ℂ ∧ (𝑇𝑤) ∈ ℋ ∧ 𝑦 ∈ ℋ) → ((𝑇𝑤) ·ih (𝑥 · 𝑦)) = ((∗‘𝑥) · ((𝑇𝑤) ·ih 𝑦)))
2519, 22, 23, 24syl3anc 1373 . . . . . . . . . . . . 13 ((𝑇 ∈ dom adj𝑤 ∈ ℋ ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ)) → ((𝑇𝑤) ·ih (𝑥 · 𝑦)) = ((∗‘𝑥) · ((𝑇𝑤) ·ih 𝑦)))
26 simp2 1137 . . . . . . . . . . . . . 14 ((𝑇 ∈ dom adj𝑤 ∈ ℋ ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ)) → 𝑤 ∈ ℋ)
275adantrl 716 . . . . . . . . . . . . . . 15 ((𝑇 ∈ dom adj ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ)) → ((adj𝑇)‘𝑦) ∈ ℋ)
28273adant2 1131 . . . . . . . . . . . . . 14 ((𝑇 ∈ dom adj𝑤 ∈ ℋ ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ)) → ((adj𝑇)‘𝑦) ∈ ℋ)
29 his5 31030 . . . . . . . . . . . . . 14 ((𝑥 ∈ ℂ ∧ 𝑤 ∈ ℋ ∧ ((adj𝑇)‘𝑦) ∈ ℋ) → (𝑤 ·ih (𝑥 · ((adj𝑇)‘𝑦))) = ((∗‘𝑥) · (𝑤 ·ih ((adj𝑇)‘𝑦))))
3019, 26, 28, 29syl3anc 1373 . . . . . . . . . . . . 13 ((𝑇 ∈ dom adj𝑤 ∈ ℋ ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ)) → (𝑤 ·ih (𝑥 · ((adj𝑇)‘𝑦))) = ((∗‘𝑥) · (𝑤 ·ih ((adj𝑇)‘𝑦))))
3118, 25, 303eqtr4d 2774 . . . . . . . . . . . 12 ((𝑇 ∈ dom adj𝑤 ∈ ℋ ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ)) → ((𝑇𝑤) ·ih (𝑥 · 𝑦)) = (𝑤 ·ih (𝑥 · ((adj𝑇)‘𝑦))))
32313adant3r 1182 . . . . . . . . . . 11 ((𝑇 ∈ dom adj𝑤 ∈ ℋ ∧ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ) ∧ 𝑧 ∈ ℋ)) → ((𝑇𝑤) ·ih (𝑥 · 𝑦)) = (𝑤 ·ih (𝑥 · ((adj𝑇)‘𝑦))))
33 adj2 31878 . . . . . . . . . . . 12 ((𝑇 ∈ dom adj𝑤 ∈ ℋ ∧ 𝑧 ∈ ℋ) → ((𝑇𝑤) ·ih 𝑧) = (𝑤 ·ih ((adj𝑇)‘𝑧)))
34333adant3l 1181 . . . . . . . . . . 11 ((𝑇 ∈ dom adj𝑤 ∈ ℋ ∧ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ) ∧ 𝑧 ∈ ℋ)) → ((𝑇𝑤) ·ih 𝑧) = (𝑤 ·ih ((adj𝑇)‘𝑧)))
3532, 34oveq12d 7367 . . . . . . . . . 10 ((𝑇 ∈ dom adj𝑤 ∈ ℋ ∧ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ) ∧ 𝑧 ∈ ℋ)) → (((𝑇𝑤) ·ih (𝑥 · 𝑦)) + ((𝑇𝑤) ·ih 𝑧)) = ((𝑤 ·ih (𝑥 · ((adj𝑇)‘𝑦))) + (𝑤 ·ih ((adj𝑇)‘𝑧))))
36213adant3 1132 . . . . . . . . . . . 12 ((𝑇 ∈ dom adj𝑤 ∈ ℋ ∧ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ) ∧ 𝑧 ∈ ℋ)) → (𝑇𝑤) ∈ ℋ)
37 hvmulcl 30957 . . . . . . . . . . . . . 14 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ) → (𝑥 · 𝑦) ∈ ℋ)
3837adantr 480 . . . . . . . . . . . . 13 (((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ) ∧ 𝑧 ∈ ℋ) → (𝑥 · 𝑦) ∈ ℋ)
39383ad2ant3 1135 . . . . . . . . . . . 12 ((𝑇 ∈ dom adj𝑤 ∈ ℋ ∧ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ) ∧ 𝑧 ∈ ℋ)) → (𝑥 · 𝑦) ∈ ℋ)
40 simp3r 1203 . . . . . . . . . . . 12 ((𝑇 ∈ dom adj𝑤 ∈ ℋ ∧ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ) ∧ 𝑧 ∈ ℋ)) → 𝑧 ∈ ℋ)
41 his7 31034 . . . . . . . . . . . 12 (((𝑇𝑤) ∈ ℋ ∧ (𝑥 · 𝑦) ∈ ℋ ∧ 𝑧 ∈ ℋ) → ((𝑇𝑤) ·ih ((𝑥 · 𝑦) + 𝑧)) = (((𝑇𝑤) ·ih (𝑥 · 𝑦)) + ((𝑇𝑤) ·ih 𝑧)))
4236, 39, 40, 41syl3anc 1373 . . . . . . . . . . 11 ((𝑇 ∈ dom adj𝑤 ∈ ℋ ∧ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ) ∧ 𝑧 ∈ ℋ)) → ((𝑇𝑤) ·ih ((𝑥 · 𝑦) + 𝑧)) = (((𝑇𝑤) ·ih (𝑥 · 𝑦)) + ((𝑇𝑤) ·ih 𝑧)))
43 hvaddcl 30956 . . . . . . . . . . . . 13 (((𝑥 · 𝑦) ∈ ℋ ∧ 𝑧 ∈ ℋ) → ((𝑥 · 𝑦) + 𝑧) ∈ ℋ)
4437, 43sylan 580 . . . . . . . . . . . 12 (((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ) ∧ 𝑧 ∈ ℋ) → ((𝑥 · 𝑦) + 𝑧) ∈ ℋ)
45 adj2 31878 . . . . . . . . . . . 12 ((𝑇 ∈ dom adj𝑤 ∈ ℋ ∧ ((𝑥 · 𝑦) + 𝑧) ∈ ℋ) → ((𝑇𝑤) ·ih ((𝑥 · 𝑦) + 𝑧)) = (𝑤 ·ih ((adj𝑇)‘((𝑥 · 𝑦) + 𝑧))))
4644, 45syl3an3 1165 . . . . . . . . . . 11 ((𝑇 ∈ dom adj𝑤 ∈ ℋ ∧ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ) ∧ 𝑧 ∈ ℋ)) → ((𝑇𝑤) ·ih ((𝑥 · 𝑦) + 𝑧)) = (𝑤 ·ih ((adj𝑇)‘((𝑥 · 𝑦) + 𝑧))))
4742, 46eqtr3d 2766 . . . . . . . . . 10 ((𝑇 ∈ dom adj𝑤 ∈ ℋ ∧ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ) ∧ 𝑧 ∈ ℋ)) → (((𝑇𝑤) ·ih (𝑥 · 𝑦)) + ((𝑇𝑤) ·ih 𝑧)) = (𝑤 ·ih ((adj𝑇)‘((𝑥 · 𝑦) + 𝑧))))
4815, 35, 473eqtr2rd 2771 . . . . . . . . 9 ((𝑇 ∈ dom adj𝑤 ∈ ℋ ∧ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ) ∧ 𝑧 ∈ ℋ)) → (𝑤 ·ih ((adj𝑇)‘((𝑥 · 𝑦) + 𝑧))) = (𝑤 ·ih ((𝑥 · ((adj𝑇)‘𝑦)) + ((adj𝑇)‘𝑧))))
49483com23 1126 . . . . . . . 8 ((𝑇 ∈ dom adj ∧ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ) ∧ 𝑧 ∈ ℋ) ∧ 𝑤 ∈ ℋ) → (𝑤 ·ih ((adj𝑇)‘((𝑥 · 𝑦) + 𝑧))) = (𝑤 ·ih ((𝑥 · ((adj𝑇)‘𝑦)) + ((adj𝑇)‘𝑧))))
50493expa 1118 . . . . . . 7 (((𝑇 ∈ dom adj ∧ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ) ∧ 𝑧 ∈ ℋ)) ∧ 𝑤 ∈ ℋ) → (𝑤 ·ih ((adj𝑇)‘((𝑥 · 𝑦) + 𝑧))) = (𝑤 ·ih ((𝑥 · ((adj𝑇)‘𝑦)) + ((adj𝑇)‘𝑧))))
5150ralrimiva 3121 . . . . . 6 ((𝑇 ∈ dom adj ∧ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ) ∧ 𝑧 ∈ ℋ)) → ∀𝑤 ∈ ℋ (𝑤 ·ih ((adj𝑇)‘((𝑥 · 𝑦) + 𝑧))) = (𝑤 ·ih ((𝑥 · ((adj𝑇)‘𝑦)) + ((adj𝑇)‘𝑧))))
52 adjcl 31876 . . . . . . . 8 ((𝑇 ∈ dom adj ∧ ((𝑥 · 𝑦) + 𝑧) ∈ ℋ) → ((adj𝑇)‘((𝑥 · 𝑦) + 𝑧)) ∈ ℋ)
5344, 52sylan2 593 . . . . . . 7 ((𝑇 ∈ dom adj ∧ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ) ∧ 𝑧 ∈ ℋ)) → ((adj𝑇)‘((𝑥 · 𝑦) + 𝑧)) ∈ ℋ)
54 hvaddcl 30956 . . . . . . . . 9 (((𝑥 · ((adj𝑇)‘𝑦)) ∈ ℋ ∧ ((adj𝑇)‘𝑧) ∈ ℋ) → ((𝑥 · ((adj𝑇)‘𝑦)) + ((adj𝑇)‘𝑧)) ∈ ℋ)
558, 11, 54syl2an 596 . . . . . . . 8 (((𝑇 ∈ dom adj ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ)) ∧ (𝑇 ∈ dom adj𝑧 ∈ ℋ)) → ((𝑥 · ((adj𝑇)‘𝑦)) + ((adj𝑇)‘𝑧)) ∈ ℋ)
5655anandis 678 . . . . . . 7 ((𝑇 ∈ dom adj ∧ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ) ∧ 𝑧 ∈ ℋ)) → ((𝑥 · ((adj𝑇)‘𝑦)) + ((adj𝑇)‘𝑧)) ∈ ℋ)
57 hial2eq2 31051 . . . . . . 7 ((((adj𝑇)‘((𝑥 · 𝑦) + 𝑧)) ∈ ℋ ∧ ((𝑥 · ((adj𝑇)‘𝑦)) + ((adj𝑇)‘𝑧)) ∈ ℋ) → (∀𝑤 ∈ ℋ (𝑤 ·ih ((adj𝑇)‘((𝑥 · 𝑦) + 𝑧))) = (𝑤 ·ih ((𝑥 · ((adj𝑇)‘𝑦)) + ((adj𝑇)‘𝑧))) ↔ ((adj𝑇)‘((𝑥 · 𝑦) + 𝑧)) = ((𝑥 · ((adj𝑇)‘𝑦)) + ((adj𝑇)‘𝑧))))
5853, 56, 57syl2anc 584 . . . . . 6 ((𝑇 ∈ dom adj ∧ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ) ∧ 𝑧 ∈ ℋ)) → (∀𝑤 ∈ ℋ (𝑤 ·ih ((adj𝑇)‘((𝑥 · 𝑦) + 𝑧))) = (𝑤 ·ih ((𝑥 · ((adj𝑇)‘𝑦)) + ((adj𝑇)‘𝑧))) ↔ ((adj𝑇)‘((𝑥 · 𝑦) + 𝑧)) = ((𝑥 · ((adj𝑇)‘𝑦)) + ((adj𝑇)‘𝑧))))
5951, 58mpbid 232 . . . . 5 ((𝑇 ∈ dom adj ∧ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ) ∧ 𝑧 ∈ ℋ)) → ((adj𝑇)‘((𝑥 · 𝑦) + 𝑧)) = ((𝑥 · ((adj𝑇)‘𝑦)) + ((adj𝑇)‘𝑧)))
6059exp32 420 . . . 4 (𝑇 ∈ dom adj → ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ) → (𝑧 ∈ ℋ → ((adj𝑇)‘((𝑥 · 𝑦) + 𝑧)) = ((𝑥 · ((adj𝑇)‘𝑦)) + ((adj𝑇)‘𝑧)))))
6160ralrimdv 3127 . . 3 (𝑇 ∈ dom adj → ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ) → ∀𝑧 ∈ ℋ ((adj𝑇)‘((𝑥 · 𝑦) + 𝑧)) = ((𝑥 · ((adj𝑇)‘𝑦)) + ((adj𝑇)‘𝑧))))
6261ralrimivv 3170 . 2 (𝑇 ∈ dom adj → ∀𝑥 ∈ ℂ ∀𝑦 ∈ ℋ ∀𝑧 ∈ ℋ ((adj𝑇)‘((𝑥 · 𝑦) + 𝑧)) = ((𝑥 · ((adj𝑇)‘𝑦)) + ((adj𝑇)‘𝑧)))
63 ellnop 31802 . 2 ((adj𝑇) ∈ LinOp ↔ ((adj𝑇): ℋ⟶ ℋ ∧ ∀𝑥 ∈ ℂ ∀𝑦 ∈ ℋ ∀𝑧 ∈ ℋ ((adj𝑇)‘((𝑥 · 𝑦) + 𝑧)) = ((𝑥 · ((adj𝑇)‘𝑦)) + ((adj𝑇)‘𝑧))))
643, 62, 63sylanbrc 583 1 (𝑇 ∈ dom adj → (adj𝑇) ∈ LinOp)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wral 3044  dom cdm 5619  wf 6478  cfv 6482  (class class class)co 7349  cc 11007   + caddc 11012   · cmul 11014  ccj 15003  chba 30863   + cva 30864   · csm 30865   ·ih csp 30866  LinOpclo 30891  adjcado 30899
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-resscn 11066  ax-1cn 11067  ax-icn 11068  ax-addcl 11069  ax-addrcl 11070  ax-mulcl 11071  ax-mulrcl 11072  ax-mulcom 11073  ax-addass 11074  ax-mulass 11075  ax-distr 11076  ax-i2m1 11077  ax-1ne0 11078  ax-1rid 11079  ax-rnegex 11080  ax-rrecex 11081  ax-cnre 11082  ax-pre-lttri 11083  ax-pre-lttrn 11084  ax-pre-ltadd 11085  ax-pre-mulgt0 11086  ax-hilex 30943  ax-hfvadd 30944  ax-hvcom 30945  ax-hvass 30946  ax-hv0cl 30947  ax-hvaddid 30948  ax-hfvmul 30949  ax-hvmulid 30950  ax-hvdistr2 30953  ax-hvmul0 30954  ax-hfi 31023  ax-his1 31026  ax-his2 31027  ax-his3 31028  ax-his4 31029
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3343  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-riota 7306  df-ov 7352  df-oprab 7353  df-mpo 7354  df-om 7800  df-2nd 7925  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-rdg 8332  df-er 8625  df-map 8755  df-en 8873  df-dom 8874  df-sdom 8875  df-pnf 11151  df-mnf 11152  df-xr 11153  df-ltxr 11154  df-le 11155  df-sub 11349  df-neg 11350  df-div 11778  df-nn 12129  df-2 12191  df-cj 15006  df-re 15007  df-im 15008  df-hvsub 30915  df-lnop 31785  df-adjh 31793
This theorem is referenced by:  adjsslnop  32031
  Copyright terms: Public domain W3C validator