HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  adjlnop Structured version   Visualization version   GIF version

Theorem adjlnop 32105
Description: The adjoint of an operator is linear. Proposition 1 of [AkhiezerGlazman] p. 80. (Contributed by NM, 17-Jun-2006.) (New usage is discouraged.)
Assertion
Ref Expression
adjlnop (𝑇 ∈ dom adj → (adj𝑇) ∈ LinOp)

Proof of Theorem adjlnop
Dummy variables 𝑤 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dmadjrn 31914 . . 3 (𝑇 ∈ dom adj → (adj𝑇) ∈ dom adj)
2 dmadjop 31907 . . 3 ((adj𝑇) ∈ dom adj → (adj𝑇): ℋ⟶ ℋ)
31, 2syl 17 . 2 (𝑇 ∈ dom adj → (adj𝑇): ℋ⟶ ℋ)
4 simp2 1138 . . . . . . . . . . 11 ((𝑇 ∈ dom adj𝑤 ∈ ℋ ∧ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ) ∧ 𝑧 ∈ ℋ)) → 𝑤 ∈ ℋ)
5 adjcl 31951 . . . . . . . . . . . . . . 15 ((𝑇 ∈ dom adj𝑦 ∈ ℋ) → ((adj𝑇)‘𝑦) ∈ ℋ)
6 hvmulcl 31032 . . . . . . . . . . . . . . 15 ((𝑥 ∈ ℂ ∧ ((adj𝑇)‘𝑦) ∈ ℋ) → (𝑥 · ((adj𝑇)‘𝑦)) ∈ ℋ)
75, 6sylan2 593 . . . . . . . . . . . . . 14 ((𝑥 ∈ ℂ ∧ (𝑇 ∈ dom adj𝑦 ∈ ℋ)) → (𝑥 · ((adj𝑇)‘𝑦)) ∈ ℋ)
87an12s 649 . . . . . . . . . . . . 13 ((𝑇 ∈ dom adj ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ)) → (𝑥 · ((adj𝑇)‘𝑦)) ∈ ℋ)
98adantrr 717 . . . . . . . . . . . 12 ((𝑇 ∈ dom adj ∧ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ) ∧ 𝑧 ∈ ℋ)) → (𝑥 · ((adj𝑇)‘𝑦)) ∈ ℋ)
1093adant2 1132 . . . . . . . . . . 11 ((𝑇 ∈ dom adj𝑤 ∈ ℋ ∧ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ) ∧ 𝑧 ∈ ℋ)) → (𝑥 · ((adj𝑇)‘𝑦)) ∈ ℋ)
11 adjcl 31951 . . . . . . . . . . . . 13 ((𝑇 ∈ dom adj𝑧 ∈ ℋ) → ((adj𝑇)‘𝑧) ∈ ℋ)
1211adantrl 716 . . . . . . . . . . . 12 ((𝑇 ∈ dom adj ∧ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ) ∧ 𝑧 ∈ ℋ)) → ((adj𝑇)‘𝑧) ∈ ℋ)
13123adant2 1132 . . . . . . . . . . 11 ((𝑇 ∈ dom adj𝑤 ∈ ℋ ∧ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ) ∧ 𝑧 ∈ ℋ)) → ((adj𝑇)‘𝑧) ∈ ℋ)
14 his7 31109 . . . . . . . . . . 11 ((𝑤 ∈ ℋ ∧ (𝑥 · ((adj𝑇)‘𝑦)) ∈ ℋ ∧ ((adj𝑇)‘𝑧) ∈ ℋ) → (𝑤 ·ih ((𝑥 · ((adj𝑇)‘𝑦)) + ((adj𝑇)‘𝑧))) = ((𝑤 ·ih (𝑥 · ((adj𝑇)‘𝑦))) + (𝑤 ·ih ((adj𝑇)‘𝑧))))
154, 10, 13, 14syl3anc 1373 . . . . . . . . . 10 ((𝑇 ∈ dom adj𝑤 ∈ ℋ ∧ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ) ∧ 𝑧 ∈ ℋ)) → (𝑤 ·ih ((𝑥 · ((adj𝑇)‘𝑦)) + ((adj𝑇)‘𝑧))) = ((𝑤 ·ih (𝑥 · ((adj𝑇)‘𝑦))) + (𝑤 ·ih ((adj𝑇)‘𝑧))))
16 adj2 31953 . . . . . . . . . . . . . . 15 ((𝑇 ∈ dom adj𝑤 ∈ ℋ ∧ 𝑦 ∈ ℋ) → ((𝑇𝑤) ·ih 𝑦) = (𝑤 ·ih ((adj𝑇)‘𝑦)))
17163adant3l 1181 . . . . . . . . . . . . . 14 ((𝑇 ∈ dom adj𝑤 ∈ ℋ ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ)) → ((𝑇𝑤) ·ih 𝑦) = (𝑤 ·ih ((adj𝑇)‘𝑦)))
1817oveq2d 7447 . . . . . . . . . . . . 13 ((𝑇 ∈ dom adj𝑤 ∈ ℋ ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ)) → ((∗‘𝑥) · ((𝑇𝑤) ·ih 𝑦)) = ((∗‘𝑥) · (𝑤 ·ih ((adj𝑇)‘𝑦))))
19 simp3l 1202 . . . . . . . . . . . . . 14 ((𝑇 ∈ dom adj𝑤 ∈ ℋ ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ)) → 𝑥 ∈ ℂ)
20 dmadjop 31907 . . . . . . . . . . . . . . . 16 (𝑇 ∈ dom adj𝑇: ℋ⟶ ℋ)
2120ffvelcdmda 7104 . . . . . . . . . . . . . . 15 ((𝑇 ∈ dom adj𝑤 ∈ ℋ) → (𝑇𝑤) ∈ ℋ)
22213adant3 1133 . . . . . . . . . . . . . 14 ((𝑇 ∈ dom adj𝑤 ∈ ℋ ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ)) → (𝑇𝑤) ∈ ℋ)
23 simp3r 1203 . . . . . . . . . . . . . 14 ((𝑇 ∈ dom adj𝑤 ∈ ℋ ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ)) → 𝑦 ∈ ℋ)
24 his5 31105 . . . . . . . . . . . . . 14 ((𝑥 ∈ ℂ ∧ (𝑇𝑤) ∈ ℋ ∧ 𝑦 ∈ ℋ) → ((𝑇𝑤) ·ih (𝑥 · 𝑦)) = ((∗‘𝑥) · ((𝑇𝑤) ·ih 𝑦)))
2519, 22, 23, 24syl3anc 1373 . . . . . . . . . . . . 13 ((𝑇 ∈ dom adj𝑤 ∈ ℋ ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ)) → ((𝑇𝑤) ·ih (𝑥 · 𝑦)) = ((∗‘𝑥) · ((𝑇𝑤) ·ih 𝑦)))
26 simp2 1138 . . . . . . . . . . . . . 14 ((𝑇 ∈ dom adj𝑤 ∈ ℋ ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ)) → 𝑤 ∈ ℋ)
275adantrl 716 . . . . . . . . . . . . . . 15 ((𝑇 ∈ dom adj ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ)) → ((adj𝑇)‘𝑦) ∈ ℋ)
28273adant2 1132 . . . . . . . . . . . . . 14 ((𝑇 ∈ dom adj𝑤 ∈ ℋ ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ)) → ((adj𝑇)‘𝑦) ∈ ℋ)
29 his5 31105 . . . . . . . . . . . . . 14 ((𝑥 ∈ ℂ ∧ 𝑤 ∈ ℋ ∧ ((adj𝑇)‘𝑦) ∈ ℋ) → (𝑤 ·ih (𝑥 · ((adj𝑇)‘𝑦))) = ((∗‘𝑥) · (𝑤 ·ih ((adj𝑇)‘𝑦))))
3019, 26, 28, 29syl3anc 1373 . . . . . . . . . . . . 13 ((𝑇 ∈ dom adj𝑤 ∈ ℋ ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ)) → (𝑤 ·ih (𝑥 · ((adj𝑇)‘𝑦))) = ((∗‘𝑥) · (𝑤 ·ih ((adj𝑇)‘𝑦))))
3118, 25, 303eqtr4d 2787 . . . . . . . . . . . 12 ((𝑇 ∈ dom adj𝑤 ∈ ℋ ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ)) → ((𝑇𝑤) ·ih (𝑥 · 𝑦)) = (𝑤 ·ih (𝑥 · ((adj𝑇)‘𝑦))))
32313adant3r 1182 . . . . . . . . . . 11 ((𝑇 ∈ dom adj𝑤 ∈ ℋ ∧ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ) ∧ 𝑧 ∈ ℋ)) → ((𝑇𝑤) ·ih (𝑥 · 𝑦)) = (𝑤 ·ih (𝑥 · ((adj𝑇)‘𝑦))))
33 adj2 31953 . . . . . . . . . . . 12 ((𝑇 ∈ dom adj𝑤 ∈ ℋ ∧ 𝑧 ∈ ℋ) → ((𝑇𝑤) ·ih 𝑧) = (𝑤 ·ih ((adj𝑇)‘𝑧)))
34333adant3l 1181 . . . . . . . . . . 11 ((𝑇 ∈ dom adj𝑤 ∈ ℋ ∧ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ) ∧ 𝑧 ∈ ℋ)) → ((𝑇𝑤) ·ih 𝑧) = (𝑤 ·ih ((adj𝑇)‘𝑧)))
3532, 34oveq12d 7449 . . . . . . . . . 10 ((𝑇 ∈ dom adj𝑤 ∈ ℋ ∧ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ) ∧ 𝑧 ∈ ℋ)) → (((𝑇𝑤) ·ih (𝑥 · 𝑦)) + ((𝑇𝑤) ·ih 𝑧)) = ((𝑤 ·ih (𝑥 · ((adj𝑇)‘𝑦))) + (𝑤 ·ih ((adj𝑇)‘𝑧))))
36213adant3 1133 . . . . . . . . . . . 12 ((𝑇 ∈ dom adj𝑤 ∈ ℋ ∧ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ) ∧ 𝑧 ∈ ℋ)) → (𝑇𝑤) ∈ ℋ)
37 hvmulcl 31032 . . . . . . . . . . . . . 14 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ) → (𝑥 · 𝑦) ∈ ℋ)
3837adantr 480 . . . . . . . . . . . . 13 (((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ) ∧ 𝑧 ∈ ℋ) → (𝑥 · 𝑦) ∈ ℋ)
39383ad2ant3 1136 . . . . . . . . . . . 12 ((𝑇 ∈ dom adj𝑤 ∈ ℋ ∧ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ) ∧ 𝑧 ∈ ℋ)) → (𝑥 · 𝑦) ∈ ℋ)
40 simp3r 1203 . . . . . . . . . . . 12 ((𝑇 ∈ dom adj𝑤 ∈ ℋ ∧ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ) ∧ 𝑧 ∈ ℋ)) → 𝑧 ∈ ℋ)
41 his7 31109 . . . . . . . . . . . 12 (((𝑇𝑤) ∈ ℋ ∧ (𝑥 · 𝑦) ∈ ℋ ∧ 𝑧 ∈ ℋ) → ((𝑇𝑤) ·ih ((𝑥 · 𝑦) + 𝑧)) = (((𝑇𝑤) ·ih (𝑥 · 𝑦)) + ((𝑇𝑤) ·ih 𝑧)))
4236, 39, 40, 41syl3anc 1373 . . . . . . . . . . 11 ((𝑇 ∈ dom adj𝑤 ∈ ℋ ∧ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ) ∧ 𝑧 ∈ ℋ)) → ((𝑇𝑤) ·ih ((𝑥 · 𝑦) + 𝑧)) = (((𝑇𝑤) ·ih (𝑥 · 𝑦)) + ((𝑇𝑤) ·ih 𝑧)))
43 hvaddcl 31031 . . . . . . . . . . . . 13 (((𝑥 · 𝑦) ∈ ℋ ∧ 𝑧 ∈ ℋ) → ((𝑥 · 𝑦) + 𝑧) ∈ ℋ)
4437, 43sylan 580 . . . . . . . . . . . 12 (((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ) ∧ 𝑧 ∈ ℋ) → ((𝑥 · 𝑦) + 𝑧) ∈ ℋ)
45 adj2 31953 . . . . . . . . . . . 12 ((𝑇 ∈ dom adj𝑤 ∈ ℋ ∧ ((𝑥 · 𝑦) + 𝑧) ∈ ℋ) → ((𝑇𝑤) ·ih ((𝑥 · 𝑦) + 𝑧)) = (𝑤 ·ih ((adj𝑇)‘((𝑥 · 𝑦) + 𝑧))))
4644, 45syl3an3 1166 . . . . . . . . . . 11 ((𝑇 ∈ dom adj𝑤 ∈ ℋ ∧ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ) ∧ 𝑧 ∈ ℋ)) → ((𝑇𝑤) ·ih ((𝑥 · 𝑦) + 𝑧)) = (𝑤 ·ih ((adj𝑇)‘((𝑥 · 𝑦) + 𝑧))))
4742, 46eqtr3d 2779 . . . . . . . . . 10 ((𝑇 ∈ dom adj𝑤 ∈ ℋ ∧ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ) ∧ 𝑧 ∈ ℋ)) → (((𝑇𝑤) ·ih (𝑥 · 𝑦)) + ((𝑇𝑤) ·ih 𝑧)) = (𝑤 ·ih ((adj𝑇)‘((𝑥 · 𝑦) + 𝑧))))
4815, 35, 473eqtr2rd 2784 . . . . . . . . 9 ((𝑇 ∈ dom adj𝑤 ∈ ℋ ∧ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ) ∧ 𝑧 ∈ ℋ)) → (𝑤 ·ih ((adj𝑇)‘((𝑥 · 𝑦) + 𝑧))) = (𝑤 ·ih ((𝑥 · ((adj𝑇)‘𝑦)) + ((adj𝑇)‘𝑧))))
49483com23 1127 . . . . . . . 8 ((𝑇 ∈ dom adj ∧ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ) ∧ 𝑧 ∈ ℋ) ∧ 𝑤 ∈ ℋ) → (𝑤 ·ih ((adj𝑇)‘((𝑥 · 𝑦) + 𝑧))) = (𝑤 ·ih ((𝑥 · ((adj𝑇)‘𝑦)) + ((adj𝑇)‘𝑧))))
50493expa 1119 . . . . . . 7 (((𝑇 ∈ dom adj ∧ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ) ∧ 𝑧 ∈ ℋ)) ∧ 𝑤 ∈ ℋ) → (𝑤 ·ih ((adj𝑇)‘((𝑥 · 𝑦) + 𝑧))) = (𝑤 ·ih ((𝑥 · ((adj𝑇)‘𝑦)) + ((adj𝑇)‘𝑧))))
5150ralrimiva 3146 . . . . . 6 ((𝑇 ∈ dom adj ∧ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ) ∧ 𝑧 ∈ ℋ)) → ∀𝑤 ∈ ℋ (𝑤 ·ih ((adj𝑇)‘((𝑥 · 𝑦) + 𝑧))) = (𝑤 ·ih ((𝑥 · ((adj𝑇)‘𝑦)) + ((adj𝑇)‘𝑧))))
52 adjcl 31951 . . . . . . . 8 ((𝑇 ∈ dom adj ∧ ((𝑥 · 𝑦) + 𝑧) ∈ ℋ) → ((adj𝑇)‘((𝑥 · 𝑦) + 𝑧)) ∈ ℋ)
5344, 52sylan2 593 . . . . . . 7 ((𝑇 ∈ dom adj ∧ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ) ∧ 𝑧 ∈ ℋ)) → ((adj𝑇)‘((𝑥 · 𝑦) + 𝑧)) ∈ ℋ)
54 hvaddcl 31031 . . . . . . . . 9 (((𝑥 · ((adj𝑇)‘𝑦)) ∈ ℋ ∧ ((adj𝑇)‘𝑧) ∈ ℋ) → ((𝑥 · ((adj𝑇)‘𝑦)) + ((adj𝑇)‘𝑧)) ∈ ℋ)
558, 11, 54syl2an 596 . . . . . . . 8 (((𝑇 ∈ dom adj ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ)) ∧ (𝑇 ∈ dom adj𝑧 ∈ ℋ)) → ((𝑥 · ((adj𝑇)‘𝑦)) + ((adj𝑇)‘𝑧)) ∈ ℋ)
5655anandis 678 . . . . . . 7 ((𝑇 ∈ dom adj ∧ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ) ∧ 𝑧 ∈ ℋ)) → ((𝑥 · ((adj𝑇)‘𝑦)) + ((adj𝑇)‘𝑧)) ∈ ℋ)
57 hial2eq2 31126 . . . . . . 7 ((((adj𝑇)‘((𝑥 · 𝑦) + 𝑧)) ∈ ℋ ∧ ((𝑥 · ((adj𝑇)‘𝑦)) + ((adj𝑇)‘𝑧)) ∈ ℋ) → (∀𝑤 ∈ ℋ (𝑤 ·ih ((adj𝑇)‘((𝑥 · 𝑦) + 𝑧))) = (𝑤 ·ih ((𝑥 · ((adj𝑇)‘𝑦)) + ((adj𝑇)‘𝑧))) ↔ ((adj𝑇)‘((𝑥 · 𝑦) + 𝑧)) = ((𝑥 · ((adj𝑇)‘𝑦)) + ((adj𝑇)‘𝑧))))
5853, 56, 57syl2anc 584 . . . . . 6 ((𝑇 ∈ dom adj ∧ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ) ∧ 𝑧 ∈ ℋ)) → (∀𝑤 ∈ ℋ (𝑤 ·ih ((adj𝑇)‘((𝑥 · 𝑦) + 𝑧))) = (𝑤 ·ih ((𝑥 · ((adj𝑇)‘𝑦)) + ((adj𝑇)‘𝑧))) ↔ ((adj𝑇)‘((𝑥 · 𝑦) + 𝑧)) = ((𝑥 · ((adj𝑇)‘𝑦)) + ((adj𝑇)‘𝑧))))
5951, 58mpbid 232 . . . . 5 ((𝑇 ∈ dom adj ∧ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ) ∧ 𝑧 ∈ ℋ)) → ((adj𝑇)‘((𝑥 · 𝑦) + 𝑧)) = ((𝑥 · ((adj𝑇)‘𝑦)) + ((adj𝑇)‘𝑧)))
6059exp32 420 . . . 4 (𝑇 ∈ dom adj → ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ) → (𝑧 ∈ ℋ → ((adj𝑇)‘((𝑥 · 𝑦) + 𝑧)) = ((𝑥 · ((adj𝑇)‘𝑦)) + ((adj𝑇)‘𝑧)))))
6160ralrimdv 3152 . . 3 (𝑇 ∈ dom adj → ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ) → ∀𝑧 ∈ ℋ ((adj𝑇)‘((𝑥 · 𝑦) + 𝑧)) = ((𝑥 · ((adj𝑇)‘𝑦)) + ((adj𝑇)‘𝑧))))
6261ralrimivv 3200 . 2 (𝑇 ∈ dom adj → ∀𝑥 ∈ ℂ ∀𝑦 ∈ ℋ ∀𝑧 ∈ ℋ ((adj𝑇)‘((𝑥 · 𝑦) + 𝑧)) = ((𝑥 · ((adj𝑇)‘𝑦)) + ((adj𝑇)‘𝑧)))
63 ellnop 31877 . 2 ((adj𝑇) ∈ LinOp ↔ ((adj𝑇): ℋ⟶ ℋ ∧ ∀𝑥 ∈ ℂ ∀𝑦 ∈ ℋ ∀𝑧 ∈ ℋ ((adj𝑇)‘((𝑥 · 𝑦) + 𝑧)) = ((𝑥 · ((adj𝑇)‘𝑦)) + ((adj𝑇)‘𝑧))))
643, 62, 63sylanbrc 583 1 (𝑇 ∈ dom adj → (adj𝑇) ∈ LinOp)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1087   = wceq 1540  wcel 2108  wral 3061  dom cdm 5685  wf 6557  cfv 6561  (class class class)co 7431  cc 11153   + caddc 11158   · cmul 11160  ccj 15135  chba 30938   + cva 30939   · csm 30940   ·ih csp 30941  LinOpclo 30966  adjcado 30974
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232  ax-hilex 31018  ax-hfvadd 31019  ax-hvcom 31020  ax-hvass 31021  ax-hv0cl 31022  ax-hvaddid 31023  ax-hfvmul 31024  ax-hvmulid 31025  ax-hvdistr2 31028  ax-hvmul0 31029  ax-hfi 31098  ax-his1 31101  ax-his2 31102  ax-his3 31103  ax-his4 31104
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-id 5578  df-po 5592  df-so 5593  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-er 8745  df-map 8868  df-en 8986  df-dom 8987  df-sdom 8988  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-div 11921  df-2 12329  df-cj 15138  df-re 15139  df-im 15140  df-hvsub 30990  df-lnop 31860  df-adjh 31868
This theorem is referenced by:  adjsslnop  32106
  Copyright terms: Public domain W3C validator