Step | Hyp | Ref
| Expression |
1 | | simpl 483 |
. . . . . . 7
⊢ ((𝐼 ∈ Fin ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋)) → 𝐼 ∈ Fin) |
2 | | simprl 768 |
. . . . . . . . . . . 12
⊢ ((𝐼 ∈ Fin ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋)) → 𝑥 ∈ 𝑋) |
3 | | rrnval.1 |
. . . . . . . . . . . 12
⊢ 𝑋 = (ℝ ↑m
𝐼) |
4 | 2, 3 | eleqtrdi 2849 |
. . . . . . . . . . 11
⊢ ((𝐼 ∈ Fin ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋)) → 𝑥 ∈ (ℝ ↑m 𝐼)) |
5 | | elmapi 8637 |
. . . . . . . . . . 11
⊢ (𝑥 ∈ (ℝ
↑m 𝐼)
→ 𝑥:𝐼⟶ℝ) |
6 | 4, 5 | syl 17 |
. . . . . . . . . 10
⊢ ((𝐼 ∈ Fin ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋)) → 𝑥:𝐼⟶ℝ) |
7 | 6 | ffvelrnda 6961 |
. . . . . . . . 9
⊢ (((𝐼 ∈ Fin ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋)) ∧ 𝑘 ∈ 𝐼) → (𝑥‘𝑘) ∈ ℝ) |
8 | | simprr 770 |
. . . . . . . . . . . 12
⊢ ((𝐼 ∈ Fin ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋)) → 𝑦 ∈ 𝑋) |
9 | 8, 3 | eleqtrdi 2849 |
. . . . . . . . . . 11
⊢ ((𝐼 ∈ Fin ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋)) → 𝑦 ∈ (ℝ ↑m 𝐼)) |
10 | | elmapi 8637 |
. . . . . . . . . . 11
⊢ (𝑦 ∈ (ℝ
↑m 𝐼)
→ 𝑦:𝐼⟶ℝ) |
11 | 9, 10 | syl 17 |
. . . . . . . . . 10
⊢ ((𝐼 ∈ Fin ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋)) → 𝑦:𝐼⟶ℝ) |
12 | 11 | ffvelrnda 6961 |
. . . . . . . . 9
⊢ (((𝐼 ∈ Fin ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋)) ∧ 𝑘 ∈ 𝐼) → (𝑦‘𝑘) ∈ ℝ) |
13 | 7, 12 | resubcld 11403 |
. . . . . . . 8
⊢ (((𝐼 ∈ Fin ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋)) ∧ 𝑘 ∈ 𝐼) → ((𝑥‘𝑘) − (𝑦‘𝑘)) ∈ ℝ) |
14 | 13 | resqcld 13965 |
. . . . . . 7
⊢ (((𝐼 ∈ Fin ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋)) ∧ 𝑘 ∈ 𝐼) → (((𝑥‘𝑘) − (𝑦‘𝑘))↑2) ∈ ℝ) |
15 | 1, 14 | fsumrecl 15446 |
. . . . . 6
⊢ ((𝐼 ∈ Fin ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋)) → Σ𝑘 ∈ 𝐼 (((𝑥‘𝑘) − (𝑦‘𝑘))↑2) ∈ ℝ) |
16 | 13 | sqge0d 13966 |
. . . . . . 7
⊢ (((𝐼 ∈ Fin ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋)) ∧ 𝑘 ∈ 𝐼) → 0 ≤ (((𝑥‘𝑘) − (𝑦‘𝑘))↑2)) |
17 | 1, 14, 16 | fsumge0 15507 |
. . . . . 6
⊢ ((𝐼 ∈ Fin ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋)) → 0 ≤ Σ𝑘 ∈ 𝐼 (((𝑥‘𝑘) − (𝑦‘𝑘))↑2)) |
18 | 15, 17 | resqrtcld 15129 |
. . . . 5
⊢ ((𝐼 ∈ Fin ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋)) → (√‘Σ𝑘 ∈ 𝐼 (((𝑥‘𝑘) − (𝑦‘𝑘))↑2)) ∈ ℝ) |
19 | 18 | ralrimivva 3123 |
. . . 4
⊢ (𝐼 ∈ Fin → ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (√‘Σ𝑘 ∈ 𝐼 (((𝑥‘𝑘) − (𝑦‘𝑘))↑2)) ∈ ℝ) |
20 | | eqid 2738 |
. . . . 5
⊢ (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑋 ↦ (√‘Σ𝑘 ∈ 𝐼 (((𝑥‘𝑘) − (𝑦‘𝑘))↑2))) = (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑋 ↦ (√‘Σ𝑘 ∈ 𝐼 (((𝑥‘𝑘) − (𝑦‘𝑘))↑2))) |
21 | 20 | fmpo 7908 |
. . . 4
⊢
(∀𝑥 ∈
𝑋 ∀𝑦 ∈ 𝑋 (√‘Σ𝑘 ∈ 𝐼 (((𝑥‘𝑘) − (𝑦‘𝑘))↑2)) ∈ ℝ ↔ (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑋 ↦ (√‘Σ𝑘 ∈ 𝐼 (((𝑥‘𝑘) − (𝑦‘𝑘))↑2))):(𝑋 × 𝑋)⟶ℝ) |
22 | 19, 21 | sylib 217 |
. . 3
⊢ (𝐼 ∈ Fin → (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑋 ↦ (√‘Σ𝑘 ∈ 𝐼 (((𝑥‘𝑘) − (𝑦‘𝑘))↑2))):(𝑋 × 𝑋)⟶ℝ) |
23 | 3 | rrnval 35985 |
. . . 4
⊢ (𝐼 ∈ Fin →
(ℝn‘𝐼) = (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑋 ↦ (√‘Σ𝑘 ∈ 𝐼 (((𝑥‘𝑘) − (𝑦‘𝑘))↑2)))) |
24 | 23 | feq1d 6585 |
. . 3
⊢ (𝐼 ∈ Fin →
((ℝn‘𝐼):(𝑋 × 𝑋)⟶ℝ ↔ (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑋 ↦ (√‘Σ𝑘 ∈ 𝐼 (((𝑥‘𝑘) − (𝑦‘𝑘))↑2))):(𝑋 × 𝑋)⟶ℝ)) |
25 | 22, 24 | mpbird 256 |
. 2
⊢ (𝐼 ∈ Fin →
(ℝn‘𝐼):(𝑋 × 𝑋)⟶ℝ) |
26 | | sqrt00 14975 |
. . . . . . . 8
⊢
((Σ𝑘 ∈
𝐼 (((𝑥‘𝑘) − (𝑦‘𝑘))↑2) ∈ ℝ ∧ 0 ≤
Σ𝑘 ∈ 𝐼 (((𝑥‘𝑘) − (𝑦‘𝑘))↑2)) →
((√‘Σ𝑘
∈ 𝐼 (((𝑥‘𝑘) − (𝑦‘𝑘))↑2)) = 0 ↔ Σ𝑘 ∈ 𝐼 (((𝑥‘𝑘) − (𝑦‘𝑘))↑2) = 0)) |
27 | 15, 17, 26 | syl2anc 584 |
. . . . . . 7
⊢ ((𝐼 ∈ Fin ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋)) → ((√‘Σ𝑘 ∈ 𝐼 (((𝑥‘𝑘) − (𝑦‘𝑘))↑2)) = 0 ↔ Σ𝑘 ∈ 𝐼 (((𝑥‘𝑘) − (𝑦‘𝑘))↑2) = 0)) |
28 | 1, 14, 16 | fsum00 15510 |
. . . . . . 7
⊢ ((𝐼 ∈ Fin ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋)) → (Σ𝑘 ∈ 𝐼 (((𝑥‘𝑘) − (𝑦‘𝑘))↑2) = 0 ↔ ∀𝑘 ∈ 𝐼 (((𝑥‘𝑘) − (𝑦‘𝑘))↑2) = 0)) |
29 | 27, 28 | bitrd 278 |
. . . . . 6
⊢ ((𝐼 ∈ Fin ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋)) → ((√‘Σ𝑘 ∈ 𝐼 (((𝑥‘𝑘) − (𝑦‘𝑘))↑2)) = 0 ↔ ∀𝑘 ∈ 𝐼 (((𝑥‘𝑘) − (𝑦‘𝑘))↑2) = 0)) |
30 | 13 | recnd 11003 |
. . . . . . . . 9
⊢ (((𝐼 ∈ Fin ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋)) ∧ 𝑘 ∈ 𝐼) → ((𝑥‘𝑘) − (𝑦‘𝑘)) ∈ ℂ) |
31 | | sqeq0 13840 |
. . . . . . . . 9
⊢ (((𝑥‘𝑘) − (𝑦‘𝑘)) ∈ ℂ → ((((𝑥‘𝑘) − (𝑦‘𝑘))↑2) = 0 ↔ ((𝑥‘𝑘) − (𝑦‘𝑘)) = 0)) |
32 | 30, 31 | syl 17 |
. . . . . . . 8
⊢ (((𝐼 ∈ Fin ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋)) ∧ 𝑘 ∈ 𝐼) → ((((𝑥‘𝑘) − (𝑦‘𝑘))↑2) = 0 ↔ ((𝑥‘𝑘) − (𝑦‘𝑘)) = 0)) |
33 | 7 | recnd 11003 |
. . . . . . . . 9
⊢ (((𝐼 ∈ Fin ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋)) ∧ 𝑘 ∈ 𝐼) → (𝑥‘𝑘) ∈ ℂ) |
34 | 12 | recnd 11003 |
. . . . . . . . 9
⊢ (((𝐼 ∈ Fin ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋)) ∧ 𝑘 ∈ 𝐼) → (𝑦‘𝑘) ∈ ℂ) |
35 | 33, 34 | subeq0ad 11342 |
. . . . . . . 8
⊢ (((𝐼 ∈ Fin ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋)) ∧ 𝑘 ∈ 𝐼) → (((𝑥‘𝑘) − (𝑦‘𝑘)) = 0 ↔ (𝑥‘𝑘) = (𝑦‘𝑘))) |
36 | 32, 35 | bitrd 278 |
. . . . . . 7
⊢ (((𝐼 ∈ Fin ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋)) ∧ 𝑘 ∈ 𝐼) → ((((𝑥‘𝑘) − (𝑦‘𝑘))↑2) = 0 ↔ (𝑥‘𝑘) = (𝑦‘𝑘))) |
37 | 36 | ralbidva 3111 |
. . . . . 6
⊢ ((𝐼 ∈ Fin ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋)) → (∀𝑘 ∈ 𝐼 (((𝑥‘𝑘) − (𝑦‘𝑘))↑2) = 0 ↔ ∀𝑘 ∈ 𝐼 (𝑥‘𝑘) = (𝑦‘𝑘))) |
38 | 29, 37 | bitrd 278 |
. . . . 5
⊢ ((𝐼 ∈ Fin ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋)) → ((√‘Σ𝑘 ∈ 𝐼 (((𝑥‘𝑘) − (𝑦‘𝑘))↑2)) = 0 ↔ ∀𝑘 ∈ 𝐼 (𝑥‘𝑘) = (𝑦‘𝑘))) |
39 | 3 | rrnmval 35986 |
. . . . . . 7
⊢ ((𝐼 ∈ Fin ∧ 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋) → (𝑥(ℝn‘𝐼)𝑦) = (√‘Σ𝑘 ∈ 𝐼 (((𝑥‘𝑘) − (𝑦‘𝑘))↑2))) |
40 | 39 | 3expb 1119 |
. . . . . 6
⊢ ((𝐼 ∈ Fin ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋)) → (𝑥(ℝn‘𝐼)𝑦) = (√‘Σ𝑘 ∈ 𝐼 (((𝑥‘𝑘) − (𝑦‘𝑘))↑2))) |
41 | 40 | eqeq1d 2740 |
. . . . 5
⊢ ((𝐼 ∈ Fin ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋)) → ((𝑥(ℝn‘𝐼)𝑦) = 0 ↔ (√‘Σ𝑘 ∈ 𝐼 (((𝑥‘𝑘) − (𝑦‘𝑘))↑2)) = 0)) |
42 | 6 | ffnd 6601 |
. . . . . 6
⊢ ((𝐼 ∈ Fin ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋)) → 𝑥 Fn 𝐼) |
43 | 11 | ffnd 6601 |
. . . . . 6
⊢ ((𝐼 ∈ Fin ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋)) → 𝑦 Fn 𝐼) |
44 | | eqfnfv 6909 |
. . . . . 6
⊢ ((𝑥 Fn 𝐼 ∧ 𝑦 Fn 𝐼) → (𝑥 = 𝑦 ↔ ∀𝑘 ∈ 𝐼 (𝑥‘𝑘) = (𝑦‘𝑘))) |
45 | 42, 43, 44 | syl2anc 584 |
. . . . 5
⊢ ((𝐼 ∈ Fin ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋)) → (𝑥 = 𝑦 ↔ ∀𝑘 ∈ 𝐼 (𝑥‘𝑘) = (𝑦‘𝑘))) |
46 | 38, 41, 45 | 3bitr4d 311 |
. . . 4
⊢ ((𝐼 ∈ Fin ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋)) → ((𝑥(ℝn‘𝐼)𝑦) = 0 ↔ 𝑥 = 𝑦)) |
47 | | simpll 764 |
. . . . . . . 8
⊢ (((𝐼 ∈ Fin ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋)) ∧ 𝑧 ∈ 𝑋) → 𝐼 ∈ Fin) |
48 | 7 | adantlr 712 |
. . . . . . . . 9
⊢ ((((𝐼 ∈ Fin ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋)) ∧ 𝑧 ∈ 𝑋) ∧ 𝑘 ∈ 𝐼) → (𝑥‘𝑘) ∈ ℝ) |
49 | | simpr 485 |
. . . . . . . . . . . 12
⊢ (((𝐼 ∈ Fin ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋)) ∧ 𝑧 ∈ 𝑋) → 𝑧 ∈ 𝑋) |
50 | 49, 3 | eleqtrdi 2849 |
. . . . . . . . . . 11
⊢ (((𝐼 ∈ Fin ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋)) ∧ 𝑧 ∈ 𝑋) → 𝑧 ∈ (ℝ ↑m 𝐼)) |
51 | | elmapi 8637 |
. . . . . . . . . . 11
⊢ (𝑧 ∈ (ℝ
↑m 𝐼)
→ 𝑧:𝐼⟶ℝ) |
52 | 50, 51 | syl 17 |
. . . . . . . . . 10
⊢ (((𝐼 ∈ Fin ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋)) ∧ 𝑧 ∈ 𝑋) → 𝑧:𝐼⟶ℝ) |
53 | 52 | ffvelrnda 6961 |
. . . . . . . . 9
⊢ ((((𝐼 ∈ Fin ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋)) ∧ 𝑧 ∈ 𝑋) ∧ 𝑘 ∈ 𝐼) → (𝑧‘𝑘) ∈ ℝ) |
54 | 48, 53 | resubcld 11403 |
. . . . . . . 8
⊢ ((((𝐼 ∈ Fin ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋)) ∧ 𝑧 ∈ 𝑋) ∧ 𝑘 ∈ 𝐼) → ((𝑥‘𝑘) − (𝑧‘𝑘)) ∈ ℝ) |
55 | 12 | adantlr 712 |
. . . . . . . . 9
⊢ ((((𝐼 ∈ Fin ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋)) ∧ 𝑧 ∈ 𝑋) ∧ 𝑘 ∈ 𝐼) → (𝑦‘𝑘) ∈ ℝ) |
56 | 53, 55 | resubcld 11403 |
. . . . . . . 8
⊢ ((((𝐼 ∈ Fin ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋)) ∧ 𝑧 ∈ 𝑋) ∧ 𝑘 ∈ 𝐼) → ((𝑧‘𝑘) − (𝑦‘𝑘)) ∈ ℝ) |
57 | 47, 54, 56 | trirn 24564 |
. . . . . . 7
⊢ (((𝐼 ∈ Fin ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋)) ∧ 𝑧 ∈ 𝑋) → (√‘Σ𝑘 ∈ 𝐼 ((((𝑥‘𝑘) − (𝑧‘𝑘)) + ((𝑧‘𝑘) − (𝑦‘𝑘)))↑2)) ≤
((√‘Σ𝑘
∈ 𝐼 (((𝑥‘𝑘) − (𝑧‘𝑘))↑2)) + (√‘Σ𝑘 ∈ 𝐼 (((𝑧‘𝑘) − (𝑦‘𝑘))↑2)))) |
58 | 33 | adantlr 712 |
. . . . . . . . . . 11
⊢ ((((𝐼 ∈ Fin ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋)) ∧ 𝑧 ∈ 𝑋) ∧ 𝑘 ∈ 𝐼) → (𝑥‘𝑘) ∈ ℂ) |
59 | 53 | recnd 11003 |
. . . . . . . . . . 11
⊢ ((((𝐼 ∈ Fin ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋)) ∧ 𝑧 ∈ 𝑋) ∧ 𝑘 ∈ 𝐼) → (𝑧‘𝑘) ∈ ℂ) |
60 | 34 | adantlr 712 |
. . . . . . . . . . 11
⊢ ((((𝐼 ∈ Fin ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋)) ∧ 𝑧 ∈ 𝑋) ∧ 𝑘 ∈ 𝐼) → (𝑦‘𝑘) ∈ ℂ) |
61 | 58, 59, 60 | npncand 11356 |
. . . . . . . . . 10
⊢ ((((𝐼 ∈ Fin ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋)) ∧ 𝑧 ∈ 𝑋) ∧ 𝑘 ∈ 𝐼) → (((𝑥‘𝑘) − (𝑧‘𝑘)) + ((𝑧‘𝑘) − (𝑦‘𝑘))) = ((𝑥‘𝑘) − (𝑦‘𝑘))) |
62 | 61 | oveq1d 7290 |
. . . . . . . . 9
⊢ ((((𝐼 ∈ Fin ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋)) ∧ 𝑧 ∈ 𝑋) ∧ 𝑘 ∈ 𝐼) → ((((𝑥‘𝑘) − (𝑧‘𝑘)) + ((𝑧‘𝑘) − (𝑦‘𝑘)))↑2) = (((𝑥‘𝑘) − (𝑦‘𝑘))↑2)) |
63 | 62 | sumeq2dv 15415 |
. . . . . . . 8
⊢ (((𝐼 ∈ Fin ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋)) ∧ 𝑧 ∈ 𝑋) → Σ𝑘 ∈ 𝐼 ((((𝑥‘𝑘) − (𝑧‘𝑘)) + ((𝑧‘𝑘) − (𝑦‘𝑘)))↑2) = Σ𝑘 ∈ 𝐼 (((𝑥‘𝑘) − (𝑦‘𝑘))↑2)) |
64 | 63 | fveq2d 6778 |
. . . . . . 7
⊢ (((𝐼 ∈ Fin ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋)) ∧ 𝑧 ∈ 𝑋) → (√‘Σ𝑘 ∈ 𝐼 ((((𝑥‘𝑘) − (𝑧‘𝑘)) + ((𝑧‘𝑘) − (𝑦‘𝑘)))↑2)) = (√‘Σ𝑘 ∈ 𝐼 (((𝑥‘𝑘) − (𝑦‘𝑘))↑2))) |
65 | | sqsubswap 13837 |
. . . . . . . . . . 11
⊢ (((𝑥‘𝑘) ∈ ℂ ∧ (𝑧‘𝑘) ∈ ℂ) → (((𝑥‘𝑘) − (𝑧‘𝑘))↑2) = (((𝑧‘𝑘) − (𝑥‘𝑘))↑2)) |
66 | 58, 59, 65 | syl2anc 584 |
. . . . . . . . . 10
⊢ ((((𝐼 ∈ Fin ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋)) ∧ 𝑧 ∈ 𝑋) ∧ 𝑘 ∈ 𝐼) → (((𝑥‘𝑘) − (𝑧‘𝑘))↑2) = (((𝑧‘𝑘) − (𝑥‘𝑘))↑2)) |
67 | 66 | sumeq2dv 15415 |
. . . . . . . . 9
⊢ (((𝐼 ∈ Fin ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋)) ∧ 𝑧 ∈ 𝑋) → Σ𝑘 ∈ 𝐼 (((𝑥‘𝑘) − (𝑧‘𝑘))↑2) = Σ𝑘 ∈ 𝐼 (((𝑧‘𝑘) − (𝑥‘𝑘))↑2)) |
68 | 67 | fveq2d 6778 |
. . . . . . . 8
⊢ (((𝐼 ∈ Fin ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋)) ∧ 𝑧 ∈ 𝑋) → (√‘Σ𝑘 ∈ 𝐼 (((𝑥‘𝑘) − (𝑧‘𝑘))↑2)) = (√‘Σ𝑘 ∈ 𝐼 (((𝑧‘𝑘) − (𝑥‘𝑘))↑2))) |
69 | 68 | oveq1d 7290 |
. . . . . . 7
⊢ (((𝐼 ∈ Fin ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋)) ∧ 𝑧 ∈ 𝑋) → ((√‘Σ𝑘 ∈ 𝐼 (((𝑥‘𝑘) − (𝑧‘𝑘))↑2)) + (√‘Σ𝑘 ∈ 𝐼 (((𝑧‘𝑘) − (𝑦‘𝑘))↑2))) = ((√‘Σ𝑘 ∈ 𝐼 (((𝑧‘𝑘) − (𝑥‘𝑘))↑2)) + (√‘Σ𝑘 ∈ 𝐼 (((𝑧‘𝑘) − (𝑦‘𝑘))↑2)))) |
70 | 57, 64, 69 | 3brtr3d 5105 |
. . . . . 6
⊢ (((𝐼 ∈ Fin ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋)) ∧ 𝑧 ∈ 𝑋) → (√‘Σ𝑘 ∈ 𝐼 (((𝑥‘𝑘) − (𝑦‘𝑘))↑2)) ≤ ((√‘Σ𝑘 ∈ 𝐼 (((𝑧‘𝑘) − (𝑥‘𝑘))↑2)) + (√‘Σ𝑘 ∈ 𝐼 (((𝑧‘𝑘) − (𝑦‘𝑘))↑2)))) |
71 | 40 | adantr 481 |
. . . . . 6
⊢ (((𝐼 ∈ Fin ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋)) ∧ 𝑧 ∈ 𝑋) → (𝑥(ℝn‘𝐼)𝑦) = (√‘Σ𝑘 ∈ 𝐼 (((𝑥‘𝑘) − (𝑦‘𝑘))↑2))) |
72 | 3 | rrnmval 35986 |
. . . . . . . . . 10
⊢ ((𝐼 ∈ Fin ∧ 𝑧 ∈ 𝑋 ∧ 𝑥 ∈ 𝑋) → (𝑧(ℝn‘𝐼)𝑥) = (√‘Σ𝑘 ∈ 𝐼 (((𝑧‘𝑘) − (𝑥‘𝑘))↑2))) |
73 | 72 | 3adant3r 1180 |
. . . . . . . . 9
⊢ ((𝐼 ∈ Fin ∧ 𝑧 ∈ 𝑋 ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋)) → (𝑧(ℝn‘𝐼)𝑥) = (√‘Σ𝑘 ∈ 𝐼 (((𝑧‘𝑘) − (𝑥‘𝑘))↑2))) |
74 | 3 | rrnmval 35986 |
. . . . . . . . . 10
⊢ ((𝐼 ∈ Fin ∧ 𝑧 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋) → (𝑧(ℝn‘𝐼)𝑦) = (√‘Σ𝑘 ∈ 𝐼 (((𝑧‘𝑘) − (𝑦‘𝑘))↑2))) |
75 | 74 | 3adant3l 1179 |
. . . . . . . . 9
⊢ ((𝐼 ∈ Fin ∧ 𝑧 ∈ 𝑋 ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋)) → (𝑧(ℝn‘𝐼)𝑦) = (√‘Σ𝑘 ∈ 𝐼 (((𝑧‘𝑘) − (𝑦‘𝑘))↑2))) |
76 | 73, 75 | oveq12d 7293 |
. . . . . . . 8
⊢ ((𝐼 ∈ Fin ∧ 𝑧 ∈ 𝑋 ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋)) → ((𝑧(ℝn‘𝐼)𝑥) + (𝑧(ℝn‘𝐼)𝑦)) = ((√‘Σ𝑘 ∈ 𝐼 (((𝑧‘𝑘) − (𝑥‘𝑘))↑2)) + (√‘Σ𝑘 ∈ 𝐼 (((𝑧‘𝑘) − (𝑦‘𝑘))↑2)))) |
77 | 76 | 3expa 1117 |
. . . . . . 7
⊢ (((𝐼 ∈ Fin ∧ 𝑧 ∈ 𝑋) ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋)) → ((𝑧(ℝn‘𝐼)𝑥) + (𝑧(ℝn‘𝐼)𝑦)) = ((√‘Σ𝑘 ∈ 𝐼 (((𝑧‘𝑘) − (𝑥‘𝑘))↑2)) + (√‘Σ𝑘 ∈ 𝐼 (((𝑧‘𝑘) − (𝑦‘𝑘))↑2)))) |
78 | 77 | an32s 649 |
. . . . . 6
⊢ (((𝐼 ∈ Fin ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋)) ∧ 𝑧 ∈ 𝑋) → ((𝑧(ℝn‘𝐼)𝑥) + (𝑧(ℝn‘𝐼)𝑦)) = ((√‘Σ𝑘 ∈ 𝐼 (((𝑧‘𝑘) − (𝑥‘𝑘))↑2)) + (√‘Σ𝑘 ∈ 𝐼 (((𝑧‘𝑘) − (𝑦‘𝑘))↑2)))) |
79 | 70, 71, 78 | 3brtr4d 5106 |
. . . . 5
⊢ (((𝐼 ∈ Fin ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋)) ∧ 𝑧 ∈ 𝑋) → (𝑥(ℝn‘𝐼)𝑦) ≤ ((𝑧(ℝn‘𝐼)𝑥) + (𝑧(ℝn‘𝐼)𝑦))) |
80 | 79 | ralrimiva 3103 |
. . . 4
⊢ ((𝐼 ∈ Fin ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋)) → ∀𝑧 ∈ 𝑋 (𝑥(ℝn‘𝐼)𝑦) ≤ ((𝑧(ℝn‘𝐼)𝑥) + (𝑧(ℝn‘𝐼)𝑦))) |
81 | 46, 80 | jca 512 |
. . 3
⊢ ((𝐼 ∈ Fin ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋)) → (((𝑥(ℝn‘𝐼)𝑦) = 0 ↔ 𝑥 = 𝑦) ∧ ∀𝑧 ∈ 𝑋 (𝑥(ℝn‘𝐼)𝑦) ≤ ((𝑧(ℝn‘𝐼)𝑥) + (𝑧(ℝn‘𝐼)𝑦)))) |
82 | 81 | ralrimivva 3123 |
. 2
⊢ (𝐼 ∈ Fin → ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (((𝑥(ℝn‘𝐼)𝑦) = 0 ↔ 𝑥 = 𝑦) ∧ ∀𝑧 ∈ 𝑋 (𝑥(ℝn‘𝐼)𝑦) ≤ ((𝑧(ℝn‘𝐼)𝑥) + (𝑧(ℝn‘𝐼)𝑦)))) |
83 | | ovex 7308 |
. . . 4
⊢ (ℝ
↑m 𝐼)
∈ V |
84 | 3, 83 | eqeltri 2835 |
. . 3
⊢ 𝑋 ∈ V |
85 | | ismet 23476 |
. . 3
⊢ (𝑋 ∈ V →
((ℝn‘𝐼) ∈ (Met‘𝑋) ↔
((ℝn‘𝐼):(𝑋 × 𝑋)⟶ℝ ∧ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (((𝑥(ℝn‘𝐼)𝑦) = 0 ↔ 𝑥 = 𝑦) ∧ ∀𝑧 ∈ 𝑋 (𝑥(ℝn‘𝐼)𝑦) ≤ ((𝑧(ℝn‘𝐼)𝑥) + (𝑧(ℝn‘𝐼)𝑦)))))) |
86 | 84, 85 | ax-mp 5 |
. 2
⊢
((ℝn‘𝐼) ∈ (Met‘𝑋) ↔
((ℝn‘𝐼):(𝑋 × 𝑋)⟶ℝ ∧ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (((𝑥(ℝn‘𝐼)𝑦) = 0 ↔ 𝑥 = 𝑦) ∧ ∀𝑧 ∈ 𝑋 (𝑥(ℝn‘𝐼)𝑦) ≤ ((𝑧(ℝn‘𝐼)𝑥) + (𝑧(ℝn‘𝐼)𝑦))))) |
87 | 25, 82, 86 | sylanbrc 583 |
1
⊢ (𝐼 ∈ Fin →
(ℝn‘𝐼) ∈ (Met‘𝑋)) |