Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rrnmet Structured version   Visualization version   GIF version

Theorem rrnmet 37796
Description: Euclidean space is a metric space. (Contributed by Jeff Madsen, 2-Sep-2009.) (Proof shortened by Mario Carneiro, 5-Jun-2014.)
Hypothesis
Ref Expression
rrnval.1 𝑋 = (ℝ ↑m 𝐼)
Assertion
Ref Expression
rrnmet (𝐼 ∈ Fin → (ℝn𝐼) ∈ (Met‘𝑋))

Proof of Theorem rrnmet
Dummy variables 𝑘 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpl 482 . . . . . . 7 ((𝐼 ∈ Fin ∧ (𝑥𝑋𝑦𝑋)) → 𝐼 ∈ Fin)
2 simprl 770 . . . . . . . . . . . 12 ((𝐼 ∈ Fin ∧ (𝑥𝑋𝑦𝑋)) → 𝑥𝑋)
3 rrnval.1 . . . . . . . . . . . 12 𝑋 = (ℝ ↑m 𝐼)
42, 3eleqtrdi 2838 . . . . . . . . . . 11 ((𝐼 ∈ Fin ∧ (𝑥𝑋𝑦𝑋)) → 𝑥 ∈ (ℝ ↑m 𝐼))
5 elmapi 8799 . . . . . . . . . . 11 (𝑥 ∈ (ℝ ↑m 𝐼) → 𝑥:𝐼⟶ℝ)
64, 5syl 17 . . . . . . . . . 10 ((𝐼 ∈ Fin ∧ (𝑥𝑋𝑦𝑋)) → 𝑥:𝐼⟶ℝ)
76ffvelcdmda 7038 . . . . . . . . 9 (((𝐼 ∈ Fin ∧ (𝑥𝑋𝑦𝑋)) ∧ 𝑘𝐼) → (𝑥𝑘) ∈ ℝ)
8 simprr 772 . . . . . . . . . . . 12 ((𝐼 ∈ Fin ∧ (𝑥𝑋𝑦𝑋)) → 𝑦𝑋)
98, 3eleqtrdi 2838 . . . . . . . . . . 11 ((𝐼 ∈ Fin ∧ (𝑥𝑋𝑦𝑋)) → 𝑦 ∈ (ℝ ↑m 𝐼))
10 elmapi 8799 . . . . . . . . . . 11 (𝑦 ∈ (ℝ ↑m 𝐼) → 𝑦:𝐼⟶ℝ)
119, 10syl 17 . . . . . . . . . 10 ((𝐼 ∈ Fin ∧ (𝑥𝑋𝑦𝑋)) → 𝑦:𝐼⟶ℝ)
1211ffvelcdmda 7038 . . . . . . . . 9 (((𝐼 ∈ Fin ∧ (𝑥𝑋𝑦𝑋)) ∧ 𝑘𝐼) → (𝑦𝑘) ∈ ℝ)
137, 12resubcld 11582 . . . . . . . 8 (((𝐼 ∈ Fin ∧ (𝑥𝑋𝑦𝑋)) ∧ 𝑘𝐼) → ((𝑥𝑘) − (𝑦𝑘)) ∈ ℝ)
1413resqcld 14066 . . . . . . 7 (((𝐼 ∈ Fin ∧ (𝑥𝑋𝑦𝑋)) ∧ 𝑘𝐼) → (((𝑥𝑘) − (𝑦𝑘))↑2) ∈ ℝ)
151, 14fsumrecl 15676 . . . . . 6 ((𝐼 ∈ Fin ∧ (𝑥𝑋𝑦𝑋)) → Σ𝑘𝐼 (((𝑥𝑘) − (𝑦𝑘))↑2) ∈ ℝ)
1613sqge0d 14078 . . . . . . 7 (((𝐼 ∈ Fin ∧ (𝑥𝑋𝑦𝑋)) ∧ 𝑘𝐼) → 0 ≤ (((𝑥𝑘) − (𝑦𝑘))↑2))
171, 14, 16fsumge0 15737 . . . . . 6 ((𝐼 ∈ Fin ∧ (𝑥𝑋𝑦𝑋)) → 0 ≤ Σ𝑘𝐼 (((𝑥𝑘) − (𝑦𝑘))↑2))
1815, 17resqrtcld 15360 . . . . 5 ((𝐼 ∈ Fin ∧ (𝑥𝑋𝑦𝑋)) → (√‘Σ𝑘𝐼 (((𝑥𝑘) − (𝑦𝑘))↑2)) ∈ ℝ)
1918ralrimivva 3178 . . . 4 (𝐼 ∈ Fin → ∀𝑥𝑋𝑦𝑋 (√‘Σ𝑘𝐼 (((𝑥𝑘) − (𝑦𝑘))↑2)) ∈ ℝ)
20 eqid 2729 . . . . 5 (𝑥𝑋, 𝑦𝑋 ↦ (√‘Σ𝑘𝐼 (((𝑥𝑘) − (𝑦𝑘))↑2))) = (𝑥𝑋, 𝑦𝑋 ↦ (√‘Σ𝑘𝐼 (((𝑥𝑘) − (𝑦𝑘))↑2)))
2120fmpo 8026 . . . 4 (∀𝑥𝑋𝑦𝑋 (√‘Σ𝑘𝐼 (((𝑥𝑘) − (𝑦𝑘))↑2)) ∈ ℝ ↔ (𝑥𝑋, 𝑦𝑋 ↦ (√‘Σ𝑘𝐼 (((𝑥𝑘) − (𝑦𝑘))↑2))):(𝑋 × 𝑋)⟶ℝ)
2219, 21sylib 218 . . 3 (𝐼 ∈ Fin → (𝑥𝑋, 𝑦𝑋 ↦ (√‘Σ𝑘𝐼 (((𝑥𝑘) − (𝑦𝑘))↑2))):(𝑋 × 𝑋)⟶ℝ)
233rrnval 37794 . . . 4 (𝐼 ∈ Fin → (ℝn𝐼) = (𝑥𝑋, 𝑦𝑋 ↦ (√‘Σ𝑘𝐼 (((𝑥𝑘) − (𝑦𝑘))↑2))))
2423feq1d 6652 . . 3 (𝐼 ∈ Fin → ((ℝn𝐼):(𝑋 × 𝑋)⟶ℝ ↔ (𝑥𝑋, 𝑦𝑋 ↦ (√‘Σ𝑘𝐼 (((𝑥𝑘) − (𝑦𝑘))↑2))):(𝑋 × 𝑋)⟶ℝ))
2522, 24mpbird 257 . 2 (𝐼 ∈ Fin → (ℝn𝐼):(𝑋 × 𝑋)⟶ℝ)
26 sqrt00 15205 . . . . . . . 8 ((Σ𝑘𝐼 (((𝑥𝑘) − (𝑦𝑘))↑2) ∈ ℝ ∧ 0 ≤ Σ𝑘𝐼 (((𝑥𝑘) − (𝑦𝑘))↑2)) → ((√‘Σ𝑘𝐼 (((𝑥𝑘) − (𝑦𝑘))↑2)) = 0 ↔ Σ𝑘𝐼 (((𝑥𝑘) − (𝑦𝑘))↑2) = 0))
2715, 17, 26syl2anc 584 . . . . . . 7 ((𝐼 ∈ Fin ∧ (𝑥𝑋𝑦𝑋)) → ((√‘Σ𝑘𝐼 (((𝑥𝑘) − (𝑦𝑘))↑2)) = 0 ↔ Σ𝑘𝐼 (((𝑥𝑘) − (𝑦𝑘))↑2) = 0))
281, 14, 16fsum00 15740 . . . . . . 7 ((𝐼 ∈ Fin ∧ (𝑥𝑋𝑦𝑋)) → (Σ𝑘𝐼 (((𝑥𝑘) − (𝑦𝑘))↑2) = 0 ↔ ∀𝑘𝐼 (((𝑥𝑘) − (𝑦𝑘))↑2) = 0))
2927, 28bitrd 279 . . . . . 6 ((𝐼 ∈ Fin ∧ (𝑥𝑋𝑦𝑋)) → ((√‘Σ𝑘𝐼 (((𝑥𝑘) − (𝑦𝑘))↑2)) = 0 ↔ ∀𝑘𝐼 (((𝑥𝑘) − (𝑦𝑘))↑2) = 0))
3013recnd 11178 . . . . . . . . 9 (((𝐼 ∈ Fin ∧ (𝑥𝑋𝑦𝑋)) ∧ 𝑘𝐼) → ((𝑥𝑘) − (𝑦𝑘)) ∈ ℂ)
31 sqeq0 14061 . . . . . . . . 9 (((𝑥𝑘) − (𝑦𝑘)) ∈ ℂ → ((((𝑥𝑘) − (𝑦𝑘))↑2) = 0 ↔ ((𝑥𝑘) − (𝑦𝑘)) = 0))
3230, 31syl 17 . . . . . . . 8 (((𝐼 ∈ Fin ∧ (𝑥𝑋𝑦𝑋)) ∧ 𝑘𝐼) → ((((𝑥𝑘) − (𝑦𝑘))↑2) = 0 ↔ ((𝑥𝑘) − (𝑦𝑘)) = 0))
337recnd 11178 . . . . . . . . 9 (((𝐼 ∈ Fin ∧ (𝑥𝑋𝑦𝑋)) ∧ 𝑘𝐼) → (𝑥𝑘) ∈ ℂ)
3412recnd 11178 . . . . . . . . 9 (((𝐼 ∈ Fin ∧ (𝑥𝑋𝑦𝑋)) ∧ 𝑘𝐼) → (𝑦𝑘) ∈ ℂ)
3533, 34subeq0ad 11519 . . . . . . . 8 (((𝐼 ∈ Fin ∧ (𝑥𝑋𝑦𝑋)) ∧ 𝑘𝐼) → (((𝑥𝑘) − (𝑦𝑘)) = 0 ↔ (𝑥𝑘) = (𝑦𝑘)))
3632, 35bitrd 279 . . . . . . 7 (((𝐼 ∈ Fin ∧ (𝑥𝑋𝑦𝑋)) ∧ 𝑘𝐼) → ((((𝑥𝑘) − (𝑦𝑘))↑2) = 0 ↔ (𝑥𝑘) = (𝑦𝑘)))
3736ralbidva 3154 . . . . . 6 ((𝐼 ∈ Fin ∧ (𝑥𝑋𝑦𝑋)) → (∀𝑘𝐼 (((𝑥𝑘) − (𝑦𝑘))↑2) = 0 ↔ ∀𝑘𝐼 (𝑥𝑘) = (𝑦𝑘)))
3829, 37bitrd 279 . . . . 5 ((𝐼 ∈ Fin ∧ (𝑥𝑋𝑦𝑋)) → ((√‘Σ𝑘𝐼 (((𝑥𝑘) − (𝑦𝑘))↑2)) = 0 ↔ ∀𝑘𝐼 (𝑥𝑘) = (𝑦𝑘)))
393rrnmval 37795 . . . . . . 7 ((𝐼 ∈ Fin ∧ 𝑥𝑋𝑦𝑋) → (𝑥(ℝn𝐼)𝑦) = (√‘Σ𝑘𝐼 (((𝑥𝑘) − (𝑦𝑘))↑2)))
40393expb 1120 . . . . . 6 ((𝐼 ∈ Fin ∧ (𝑥𝑋𝑦𝑋)) → (𝑥(ℝn𝐼)𝑦) = (√‘Σ𝑘𝐼 (((𝑥𝑘) − (𝑦𝑘))↑2)))
4140eqeq1d 2731 . . . . 5 ((𝐼 ∈ Fin ∧ (𝑥𝑋𝑦𝑋)) → ((𝑥(ℝn𝐼)𝑦) = 0 ↔ (√‘Σ𝑘𝐼 (((𝑥𝑘) − (𝑦𝑘))↑2)) = 0))
426ffnd 6671 . . . . . 6 ((𝐼 ∈ Fin ∧ (𝑥𝑋𝑦𝑋)) → 𝑥 Fn 𝐼)
4311ffnd 6671 . . . . . 6 ((𝐼 ∈ Fin ∧ (𝑥𝑋𝑦𝑋)) → 𝑦 Fn 𝐼)
44 eqfnfv 6985 . . . . . 6 ((𝑥 Fn 𝐼𝑦 Fn 𝐼) → (𝑥 = 𝑦 ↔ ∀𝑘𝐼 (𝑥𝑘) = (𝑦𝑘)))
4542, 43, 44syl2anc 584 . . . . 5 ((𝐼 ∈ Fin ∧ (𝑥𝑋𝑦𝑋)) → (𝑥 = 𝑦 ↔ ∀𝑘𝐼 (𝑥𝑘) = (𝑦𝑘)))
4638, 41, 453bitr4d 311 . . . 4 ((𝐼 ∈ Fin ∧ (𝑥𝑋𝑦𝑋)) → ((𝑥(ℝn𝐼)𝑦) = 0 ↔ 𝑥 = 𝑦))
47 simpll 766 . . . . . . . 8 (((𝐼 ∈ Fin ∧ (𝑥𝑋𝑦𝑋)) ∧ 𝑧𝑋) → 𝐼 ∈ Fin)
487adantlr 715 . . . . . . . . 9 ((((𝐼 ∈ Fin ∧ (𝑥𝑋𝑦𝑋)) ∧ 𝑧𝑋) ∧ 𝑘𝐼) → (𝑥𝑘) ∈ ℝ)
49 simpr 484 . . . . . . . . . . . 12 (((𝐼 ∈ Fin ∧ (𝑥𝑋𝑦𝑋)) ∧ 𝑧𝑋) → 𝑧𝑋)
5049, 3eleqtrdi 2838 . . . . . . . . . . 11 (((𝐼 ∈ Fin ∧ (𝑥𝑋𝑦𝑋)) ∧ 𝑧𝑋) → 𝑧 ∈ (ℝ ↑m 𝐼))
51 elmapi 8799 . . . . . . . . . . 11 (𝑧 ∈ (ℝ ↑m 𝐼) → 𝑧:𝐼⟶ℝ)
5250, 51syl 17 . . . . . . . . . 10 (((𝐼 ∈ Fin ∧ (𝑥𝑋𝑦𝑋)) ∧ 𝑧𝑋) → 𝑧:𝐼⟶ℝ)
5352ffvelcdmda 7038 . . . . . . . . 9 ((((𝐼 ∈ Fin ∧ (𝑥𝑋𝑦𝑋)) ∧ 𝑧𝑋) ∧ 𝑘𝐼) → (𝑧𝑘) ∈ ℝ)
5448, 53resubcld 11582 . . . . . . . 8 ((((𝐼 ∈ Fin ∧ (𝑥𝑋𝑦𝑋)) ∧ 𝑧𝑋) ∧ 𝑘𝐼) → ((𝑥𝑘) − (𝑧𝑘)) ∈ ℝ)
5512adantlr 715 . . . . . . . . 9 ((((𝐼 ∈ Fin ∧ (𝑥𝑋𝑦𝑋)) ∧ 𝑧𝑋) ∧ 𝑘𝐼) → (𝑦𝑘) ∈ ℝ)
5653, 55resubcld 11582 . . . . . . . 8 ((((𝐼 ∈ Fin ∧ (𝑥𝑋𝑦𝑋)) ∧ 𝑧𝑋) ∧ 𝑘𝐼) → ((𝑧𝑘) − (𝑦𝑘)) ∈ ℝ)
5747, 54, 56trirn 25276 . . . . . . 7 (((𝐼 ∈ Fin ∧ (𝑥𝑋𝑦𝑋)) ∧ 𝑧𝑋) → (√‘Σ𝑘𝐼 ((((𝑥𝑘) − (𝑧𝑘)) + ((𝑧𝑘) − (𝑦𝑘)))↑2)) ≤ ((√‘Σ𝑘𝐼 (((𝑥𝑘) − (𝑧𝑘))↑2)) + (√‘Σ𝑘𝐼 (((𝑧𝑘) − (𝑦𝑘))↑2))))
5833adantlr 715 . . . . . . . . . . 11 ((((𝐼 ∈ Fin ∧ (𝑥𝑋𝑦𝑋)) ∧ 𝑧𝑋) ∧ 𝑘𝐼) → (𝑥𝑘) ∈ ℂ)
5953recnd 11178 . . . . . . . . . . 11 ((((𝐼 ∈ Fin ∧ (𝑥𝑋𝑦𝑋)) ∧ 𝑧𝑋) ∧ 𝑘𝐼) → (𝑧𝑘) ∈ ℂ)
6034adantlr 715 . . . . . . . . . . 11 ((((𝐼 ∈ Fin ∧ (𝑥𝑋𝑦𝑋)) ∧ 𝑧𝑋) ∧ 𝑘𝐼) → (𝑦𝑘) ∈ ℂ)
6158, 59, 60npncand 11533 . . . . . . . . . 10 ((((𝐼 ∈ Fin ∧ (𝑥𝑋𝑦𝑋)) ∧ 𝑧𝑋) ∧ 𝑘𝐼) → (((𝑥𝑘) − (𝑧𝑘)) + ((𝑧𝑘) − (𝑦𝑘))) = ((𝑥𝑘) − (𝑦𝑘)))
6261oveq1d 7384 . . . . . . . . 9 ((((𝐼 ∈ Fin ∧ (𝑥𝑋𝑦𝑋)) ∧ 𝑧𝑋) ∧ 𝑘𝐼) → ((((𝑥𝑘) − (𝑧𝑘)) + ((𝑧𝑘) − (𝑦𝑘)))↑2) = (((𝑥𝑘) − (𝑦𝑘))↑2))
6362sumeq2dv 15644 . . . . . . . 8 (((𝐼 ∈ Fin ∧ (𝑥𝑋𝑦𝑋)) ∧ 𝑧𝑋) → Σ𝑘𝐼 ((((𝑥𝑘) − (𝑧𝑘)) + ((𝑧𝑘) − (𝑦𝑘)))↑2) = Σ𝑘𝐼 (((𝑥𝑘) − (𝑦𝑘))↑2))
6463fveq2d 6844 . . . . . . 7 (((𝐼 ∈ Fin ∧ (𝑥𝑋𝑦𝑋)) ∧ 𝑧𝑋) → (√‘Σ𝑘𝐼 ((((𝑥𝑘) − (𝑧𝑘)) + ((𝑧𝑘) − (𝑦𝑘)))↑2)) = (√‘Σ𝑘𝐼 (((𝑥𝑘) − (𝑦𝑘))↑2)))
65 sqsubswap 14058 . . . . . . . . . . 11 (((𝑥𝑘) ∈ ℂ ∧ (𝑧𝑘) ∈ ℂ) → (((𝑥𝑘) − (𝑧𝑘))↑2) = (((𝑧𝑘) − (𝑥𝑘))↑2))
6658, 59, 65syl2anc 584 . . . . . . . . . 10 ((((𝐼 ∈ Fin ∧ (𝑥𝑋𝑦𝑋)) ∧ 𝑧𝑋) ∧ 𝑘𝐼) → (((𝑥𝑘) − (𝑧𝑘))↑2) = (((𝑧𝑘) − (𝑥𝑘))↑2))
6766sumeq2dv 15644 . . . . . . . . 9 (((𝐼 ∈ Fin ∧ (𝑥𝑋𝑦𝑋)) ∧ 𝑧𝑋) → Σ𝑘𝐼 (((𝑥𝑘) − (𝑧𝑘))↑2) = Σ𝑘𝐼 (((𝑧𝑘) − (𝑥𝑘))↑2))
6867fveq2d 6844 . . . . . . . 8 (((𝐼 ∈ Fin ∧ (𝑥𝑋𝑦𝑋)) ∧ 𝑧𝑋) → (√‘Σ𝑘𝐼 (((𝑥𝑘) − (𝑧𝑘))↑2)) = (√‘Σ𝑘𝐼 (((𝑧𝑘) − (𝑥𝑘))↑2)))
6968oveq1d 7384 . . . . . . 7 (((𝐼 ∈ Fin ∧ (𝑥𝑋𝑦𝑋)) ∧ 𝑧𝑋) → ((√‘Σ𝑘𝐼 (((𝑥𝑘) − (𝑧𝑘))↑2)) + (√‘Σ𝑘𝐼 (((𝑧𝑘) − (𝑦𝑘))↑2))) = ((√‘Σ𝑘𝐼 (((𝑧𝑘) − (𝑥𝑘))↑2)) + (√‘Σ𝑘𝐼 (((𝑧𝑘) − (𝑦𝑘))↑2))))
7057, 64, 693brtr3d 5133 . . . . . 6 (((𝐼 ∈ Fin ∧ (𝑥𝑋𝑦𝑋)) ∧ 𝑧𝑋) → (√‘Σ𝑘𝐼 (((𝑥𝑘) − (𝑦𝑘))↑2)) ≤ ((√‘Σ𝑘𝐼 (((𝑧𝑘) − (𝑥𝑘))↑2)) + (√‘Σ𝑘𝐼 (((𝑧𝑘) − (𝑦𝑘))↑2))))
7140adantr 480 . . . . . 6 (((𝐼 ∈ Fin ∧ (𝑥𝑋𝑦𝑋)) ∧ 𝑧𝑋) → (𝑥(ℝn𝐼)𝑦) = (√‘Σ𝑘𝐼 (((𝑥𝑘) − (𝑦𝑘))↑2)))
723rrnmval 37795 . . . . . . . . . 10 ((𝐼 ∈ Fin ∧ 𝑧𝑋𝑥𝑋) → (𝑧(ℝn𝐼)𝑥) = (√‘Σ𝑘𝐼 (((𝑧𝑘) − (𝑥𝑘))↑2)))
73723adant3r 1182 . . . . . . . . 9 ((𝐼 ∈ Fin ∧ 𝑧𝑋 ∧ (𝑥𝑋𝑦𝑋)) → (𝑧(ℝn𝐼)𝑥) = (√‘Σ𝑘𝐼 (((𝑧𝑘) − (𝑥𝑘))↑2)))
743rrnmval 37795 . . . . . . . . . 10 ((𝐼 ∈ Fin ∧ 𝑧𝑋𝑦𝑋) → (𝑧(ℝn𝐼)𝑦) = (√‘Σ𝑘𝐼 (((𝑧𝑘) − (𝑦𝑘))↑2)))
75743adant3l 1181 . . . . . . . . 9 ((𝐼 ∈ Fin ∧ 𝑧𝑋 ∧ (𝑥𝑋𝑦𝑋)) → (𝑧(ℝn𝐼)𝑦) = (√‘Σ𝑘𝐼 (((𝑧𝑘) − (𝑦𝑘))↑2)))
7673, 75oveq12d 7387 . . . . . . . 8 ((𝐼 ∈ Fin ∧ 𝑧𝑋 ∧ (𝑥𝑋𝑦𝑋)) → ((𝑧(ℝn𝐼)𝑥) + (𝑧(ℝn𝐼)𝑦)) = ((√‘Σ𝑘𝐼 (((𝑧𝑘) − (𝑥𝑘))↑2)) + (√‘Σ𝑘𝐼 (((𝑧𝑘) − (𝑦𝑘))↑2))))
77763expa 1118 . . . . . . 7 (((𝐼 ∈ Fin ∧ 𝑧𝑋) ∧ (𝑥𝑋𝑦𝑋)) → ((𝑧(ℝn𝐼)𝑥) + (𝑧(ℝn𝐼)𝑦)) = ((√‘Σ𝑘𝐼 (((𝑧𝑘) − (𝑥𝑘))↑2)) + (√‘Σ𝑘𝐼 (((𝑧𝑘) − (𝑦𝑘))↑2))))
7877an32s 652 . . . . . 6 (((𝐼 ∈ Fin ∧ (𝑥𝑋𝑦𝑋)) ∧ 𝑧𝑋) → ((𝑧(ℝn𝐼)𝑥) + (𝑧(ℝn𝐼)𝑦)) = ((√‘Σ𝑘𝐼 (((𝑧𝑘) − (𝑥𝑘))↑2)) + (√‘Σ𝑘𝐼 (((𝑧𝑘) − (𝑦𝑘))↑2))))
7970, 71, 783brtr4d 5134 . . . . 5 (((𝐼 ∈ Fin ∧ (𝑥𝑋𝑦𝑋)) ∧ 𝑧𝑋) → (𝑥(ℝn𝐼)𝑦) ≤ ((𝑧(ℝn𝐼)𝑥) + (𝑧(ℝn𝐼)𝑦)))
8079ralrimiva 3125 . . . 4 ((𝐼 ∈ Fin ∧ (𝑥𝑋𝑦𝑋)) → ∀𝑧𝑋 (𝑥(ℝn𝐼)𝑦) ≤ ((𝑧(ℝn𝐼)𝑥) + (𝑧(ℝn𝐼)𝑦)))
8146, 80jca 511 . . 3 ((𝐼 ∈ Fin ∧ (𝑥𝑋𝑦𝑋)) → (((𝑥(ℝn𝐼)𝑦) = 0 ↔ 𝑥 = 𝑦) ∧ ∀𝑧𝑋 (𝑥(ℝn𝐼)𝑦) ≤ ((𝑧(ℝn𝐼)𝑥) + (𝑧(ℝn𝐼)𝑦))))
8281ralrimivva 3178 . 2 (𝐼 ∈ Fin → ∀𝑥𝑋𝑦𝑋 (((𝑥(ℝn𝐼)𝑦) = 0 ↔ 𝑥 = 𝑦) ∧ ∀𝑧𝑋 (𝑥(ℝn𝐼)𝑦) ≤ ((𝑧(ℝn𝐼)𝑥) + (𝑧(ℝn𝐼)𝑦))))
83 ovex 7402 . . . 4 (ℝ ↑m 𝐼) ∈ V
843, 83eqeltri 2824 . . 3 𝑋 ∈ V
85 ismet 24187 . . 3 (𝑋 ∈ V → ((ℝn𝐼) ∈ (Met‘𝑋) ↔ ((ℝn𝐼):(𝑋 × 𝑋)⟶ℝ ∧ ∀𝑥𝑋𝑦𝑋 (((𝑥(ℝn𝐼)𝑦) = 0 ↔ 𝑥 = 𝑦) ∧ ∀𝑧𝑋 (𝑥(ℝn𝐼)𝑦) ≤ ((𝑧(ℝn𝐼)𝑥) + (𝑧(ℝn𝐼)𝑦))))))
8684, 85ax-mp 5 . 2 ((ℝn𝐼) ∈ (Met‘𝑋) ↔ ((ℝn𝐼):(𝑋 × 𝑋)⟶ℝ ∧ ∀𝑥𝑋𝑦𝑋 (((𝑥(ℝn𝐼)𝑦) = 0 ↔ 𝑥 = 𝑦) ∧ ∀𝑧𝑋 (𝑥(ℝn𝐼)𝑦) ≤ ((𝑧(ℝn𝐼)𝑥) + (𝑧(ℝn𝐼)𝑦)))))
8725, 82, 86sylanbrc 583 1 (𝐼 ∈ Fin → (ℝn𝐼) ∈ (Met‘𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wral 3044  Vcvv 3444   class class class wbr 5102   × cxp 5629   Fn wfn 6494  wf 6495  cfv 6499  (class class class)co 7369  cmpo 7371  m cmap 8776  Fincfn 8895  cc 11042  cr 11043  0cc0 11044   + caddc 11047  cle 11185  cmin 11381  2c2 12217  cexp 14002  csqrt 15175  Σcsu 15628  Metcmet 21226  ncrrn 37792
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-inf2 9570  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121  ax-pre-sup 11122
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-int 4907  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-se 5585  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-isom 6508  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-om 7823  df-1st 7947  df-2nd 7948  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-1o 8411  df-er 8648  df-map 8778  df-en 8896  df-dom 8897  df-sdom 8898  df-fin 8899  df-sup 9369  df-oi 9439  df-card 9868  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-div 11812  df-nn 12163  df-2 12225  df-3 12226  df-4 12227  df-n0 12419  df-z 12506  df-uz 12770  df-rp 12928  df-ico 13288  df-fz 13445  df-fzo 13592  df-seq 13943  df-exp 14003  df-hash 14272  df-cj 15041  df-re 15042  df-im 15043  df-sqrt 15177  df-abs 15178  df-clim 15430  df-sum 15629  df-met 21234  df-rrn 37793
This theorem is referenced by:  rrncmslem  37799  rrncms  37800  rrnequiv  37802  rrntotbnd  37803  rrnheibor  37804  ismrer1  37805  reheibor  37806
  Copyright terms: Public domain W3C validator