Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rrnmet Structured version   Visualization version   GIF version

Theorem rrnmet 37789
Description: Euclidean space is a metric space. (Contributed by Jeff Madsen, 2-Sep-2009.) (Proof shortened by Mario Carneiro, 5-Jun-2014.)
Hypothesis
Ref Expression
rrnval.1 𝑋 = (ℝ ↑m 𝐼)
Assertion
Ref Expression
rrnmet (𝐼 ∈ Fin → (ℝn𝐼) ∈ (Met‘𝑋))

Proof of Theorem rrnmet
Dummy variables 𝑘 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpl 482 . . . . . . 7 ((𝐼 ∈ Fin ∧ (𝑥𝑋𝑦𝑋)) → 𝐼 ∈ Fin)
2 simprl 770 . . . . . . . . . . . 12 ((𝐼 ∈ Fin ∧ (𝑥𝑋𝑦𝑋)) → 𝑥𝑋)
3 rrnval.1 . . . . . . . . . . . 12 𝑋 = (ℝ ↑m 𝐼)
42, 3eleqtrdi 2854 . . . . . . . . . . 11 ((𝐼 ∈ Fin ∧ (𝑥𝑋𝑦𝑋)) → 𝑥 ∈ (ℝ ↑m 𝐼))
5 elmapi 8907 . . . . . . . . . . 11 (𝑥 ∈ (ℝ ↑m 𝐼) → 𝑥:𝐼⟶ℝ)
64, 5syl 17 . . . . . . . . . 10 ((𝐼 ∈ Fin ∧ (𝑥𝑋𝑦𝑋)) → 𝑥:𝐼⟶ℝ)
76ffvelcdmda 7118 . . . . . . . . 9 (((𝐼 ∈ Fin ∧ (𝑥𝑋𝑦𝑋)) ∧ 𝑘𝐼) → (𝑥𝑘) ∈ ℝ)
8 simprr 772 . . . . . . . . . . . 12 ((𝐼 ∈ Fin ∧ (𝑥𝑋𝑦𝑋)) → 𝑦𝑋)
98, 3eleqtrdi 2854 . . . . . . . . . . 11 ((𝐼 ∈ Fin ∧ (𝑥𝑋𝑦𝑋)) → 𝑦 ∈ (ℝ ↑m 𝐼))
10 elmapi 8907 . . . . . . . . . . 11 (𝑦 ∈ (ℝ ↑m 𝐼) → 𝑦:𝐼⟶ℝ)
119, 10syl 17 . . . . . . . . . 10 ((𝐼 ∈ Fin ∧ (𝑥𝑋𝑦𝑋)) → 𝑦:𝐼⟶ℝ)
1211ffvelcdmda 7118 . . . . . . . . 9 (((𝐼 ∈ Fin ∧ (𝑥𝑋𝑦𝑋)) ∧ 𝑘𝐼) → (𝑦𝑘) ∈ ℝ)
137, 12resubcld 11718 . . . . . . . 8 (((𝐼 ∈ Fin ∧ (𝑥𝑋𝑦𝑋)) ∧ 𝑘𝐼) → ((𝑥𝑘) − (𝑦𝑘)) ∈ ℝ)
1413resqcld 14175 . . . . . . 7 (((𝐼 ∈ Fin ∧ (𝑥𝑋𝑦𝑋)) ∧ 𝑘𝐼) → (((𝑥𝑘) − (𝑦𝑘))↑2) ∈ ℝ)
151, 14fsumrecl 15782 . . . . . 6 ((𝐼 ∈ Fin ∧ (𝑥𝑋𝑦𝑋)) → Σ𝑘𝐼 (((𝑥𝑘) − (𝑦𝑘))↑2) ∈ ℝ)
1613sqge0d 14187 . . . . . . 7 (((𝐼 ∈ Fin ∧ (𝑥𝑋𝑦𝑋)) ∧ 𝑘𝐼) → 0 ≤ (((𝑥𝑘) − (𝑦𝑘))↑2))
171, 14, 16fsumge0 15843 . . . . . 6 ((𝐼 ∈ Fin ∧ (𝑥𝑋𝑦𝑋)) → 0 ≤ Σ𝑘𝐼 (((𝑥𝑘) − (𝑦𝑘))↑2))
1815, 17resqrtcld 15466 . . . . 5 ((𝐼 ∈ Fin ∧ (𝑥𝑋𝑦𝑋)) → (√‘Σ𝑘𝐼 (((𝑥𝑘) − (𝑦𝑘))↑2)) ∈ ℝ)
1918ralrimivva 3208 . . . 4 (𝐼 ∈ Fin → ∀𝑥𝑋𝑦𝑋 (√‘Σ𝑘𝐼 (((𝑥𝑘) − (𝑦𝑘))↑2)) ∈ ℝ)
20 eqid 2740 . . . . 5 (𝑥𝑋, 𝑦𝑋 ↦ (√‘Σ𝑘𝐼 (((𝑥𝑘) − (𝑦𝑘))↑2))) = (𝑥𝑋, 𝑦𝑋 ↦ (√‘Σ𝑘𝐼 (((𝑥𝑘) − (𝑦𝑘))↑2)))
2120fmpo 8109 . . . 4 (∀𝑥𝑋𝑦𝑋 (√‘Σ𝑘𝐼 (((𝑥𝑘) − (𝑦𝑘))↑2)) ∈ ℝ ↔ (𝑥𝑋, 𝑦𝑋 ↦ (√‘Σ𝑘𝐼 (((𝑥𝑘) − (𝑦𝑘))↑2))):(𝑋 × 𝑋)⟶ℝ)
2219, 21sylib 218 . . 3 (𝐼 ∈ Fin → (𝑥𝑋, 𝑦𝑋 ↦ (√‘Σ𝑘𝐼 (((𝑥𝑘) − (𝑦𝑘))↑2))):(𝑋 × 𝑋)⟶ℝ)
233rrnval 37787 . . . 4 (𝐼 ∈ Fin → (ℝn𝐼) = (𝑥𝑋, 𝑦𝑋 ↦ (√‘Σ𝑘𝐼 (((𝑥𝑘) − (𝑦𝑘))↑2))))
2423feq1d 6732 . . 3 (𝐼 ∈ Fin → ((ℝn𝐼):(𝑋 × 𝑋)⟶ℝ ↔ (𝑥𝑋, 𝑦𝑋 ↦ (√‘Σ𝑘𝐼 (((𝑥𝑘) − (𝑦𝑘))↑2))):(𝑋 × 𝑋)⟶ℝ))
2522, 24mpbird 257 . 2 (𝐼 ∈ Fin → (ℝn𝐼):(𝑋 × 𝑋)⟶ℝ)
26 sqrt00 15312 . . . . . . . 8 ((Σ𝑘𝐼 (((𝑥𝑘) − (𝑦𝑘))↑2) ∈ ℝ ∧ 0 ≤ Σ𝑘𝐼 (((𝑥𝑘) − (𝑦𝑘))↑2)) → ((√‘Σ𝑘𝐼 (((𝑥𝑘) − (𝑦𝑘))↑2)) = 0 ↔ Σ𝑘𝐼 (((𝑥𝑘) − (𝑦𝑘))↑2) = 0))
2715, 17, 26syl2anc 583 . . . . . . 7 ((𝐼 ∈ Fin ∧ (𝑥𝑋𝑦𝑋)) → ((√‘Σ𝑘𝐼 (((𝑥𝑘) − (𝑦𝑘))↑2)) = 0 ↔ Σ𝑘𝐼 (((𝑥𝑘) − (𝑦𝑘))↑2) = 0))
281, 14, 16fsum00 15846 . . . . . . 7 ((𝐼 ∈ Fin ∧ (𝑥𝑋𝑦𝑋)) → (Σ𝑘𝐼 (((𝑥𝑘) − (𝑦𝑘))↑2) = 0 ↔ ∀𝑘𝐼 (((𝑥𝑘) − (𝑦𝑘))↑2) = 0))
2927, 28bitrd 279 . . . . . 6 ((𝐼 ∈ Fin ∧ (𝑥𝑋𝑦𝑋)) → ((√‘Σ𝑘𝐼 (((𝑥𝑘) − (𝑦𝑘))↑2)) = 0 ↔ ∀𝑘𝐼 (((𝑥𝑘) − (𝑦𝑘))↑2) = 0))
3013recnd 11318 . . . . . . . . 9 (((𝐼 ∈ Fin ∧ (𝑥𝑋𝑦𝑋)) ∧ 𝑘𝐼) → ((𝑥𝑘) − (𝑦𝑘)) ∈ ℂ)
31 sqeq0 14170 . . . . . . . . 9 (((𝑥𝑘) − (𝑦𝑘)) ∈ ℂ → ((((𝑥𝑘) − (𝑦𝑘))↑2) = 0 ↔ ((𝑥𝑘) − (𝑦𝑘)) = 0))
3230, 31syl 17 . . . . . . . 8 (((𝐼 ∈ Fin ∧ (𝑥𝑋𝑦𝑋)) ∧ 𝑘𝐼) → ((((𝑥𝑘) − (𝑦𝑘))↑2) = 0 ↔ ((𝑥𝑘) − (𝑦𝑘)) = 0))
337recnd 11318 . . . . . . . . 9 (((𝐼 ∈ Fin ∧ (𝑥𝑋𝑦𝑋)) ∧ 𝑘𝐼) → (𝑥𝑘) ∈ ℂ)
3412recnd 11318 . . . . . . . . 9 (((𝐼 ∈ Fin ∧ (𝑥𝑋𝑦𝑋)) ∧ 𝑘𝐼) → (𝑦𝑘) ∈ ℂ)
3533, 34subeq0ad 11657 . . . . . . . 8 (((𝐼 ∈ Fin ∧ (𝑥𝑋𝑦𝑋)) ∧ 𝑘𝐼) → (((𝑥𝑘) − (𝑦𝑘)) = 0 ↔ (𝑥𝑘) = (𝑦𝑘)))
3632, 35bitrd 279 . . . . . . 7 (((𝐼 ∈ Fin ∧ (𝑥𝑋𝑦𝑋)) ∧ 𝑘𝐼) → ((((𝑥𝑘) − (𝑦𝑘))↑2) = 0 ↔ (𝑥𝑘) = (𝑦𝑘)))
3736ralbidva 3182 . . . . . 6 ((𝐼 ∈ Fin ∧ (𝑥𝑋𝑦𝑋)) → (∀𝑘𝐼 (((𝑥𝑘) − (𝑦𝑘))↑2) = 0 ↔ ∀𝑘𝐼 (𝑥𝑘) = (𝑦𝑘)))
3829, 37bitrd 279 . . . . 5 ((𝐼 ∈ Fin ∧ (𝑥𝑋𝑦𝑋)) → ((√‘Σ𝑘𝐼 (((𝑥𝑘) − (𝑦𝑘))↑2)) = 0 ↔ ∀𝑘𝐼 (𝑥𝑘) = (𝑦𝑘)))
393rrnmval 37788 . . . . . . 7 ((𝐼 ∈ Fin ∧ 𝑥𝑋𝑦𝑋) → (𝑥(ℝn𝐼)𝑦) = (√‘Σ𝑘𝐼 (((𝑥𝑘) − (𝑦𝑘))↑2)))
40393expb 1120 . . . . . 6 ((𝐼 ∈ Fin ∧ (𝑥𝑋𝑦𝑋)) → (𝑥(ℝn𝐼)𝑦) = (√‘Σ𝑘𝐼 (((𝑥𝑘) − (𝑦𝑘))↑2)))
4140eqeq1d 2742 . . . . 5 ((𝐼 ∈ Fin ∧ (𝑥𝑋𝑦𝑋)) → ((𝑥(ℝn𝐼)𝑦) = 0 ↔ (√‘Σ𝑘𝐼 (((𝑥𝑘) − (𝑦𝑘))↑2)) = 0))
426ffnd 6748 . . . . . 6 ((𝐼 ∈ Fin ∧ (𝑥𝑋𝑦𝑋)) → 𝑥 Fn 𝐼)
4311ffnd 6748 . . . . . 6 ((𝐼 ∈ Fin ∧ (𝑥𝑋𝑦𝑋)) → 𝑦 Fn 𝐼)
44 eqfnfv 7064 . . . . . 6 ((𝑥 Fn 𝐼𝑦 Fn 𝐼) → (𝑥 = 𝑦 ↔ ∀𝑘𝐼 (𝑥𝑘) = (𝑦𝑘)))
4542, 43, 44syl2anc 583 . . . . 5 ((𝐼 ∈ Fin ∧ (𝑥𝑋𝑦𝑋)) → (𝑥 = 𝑦 ↔ ∀𝑘𝐼 (𝑥𝑘) = (𝑦𝑘)))
4638, 41, 453bitr4d 311 . . . 4 ((𝐼 ∈ Fin ∧ (𝑥𝑋𝑦𝑋)) → ((𝑥(ℝn𝐼)𝑦) = 0 ↔ 𝑥 = 𝑦))
47 simpll 766 . . . . . . . 8 (((𝐼 ∈ Fin ∧ (𝑥𝑋𝑦𝑋)) ∧ 𝑧𝑋) → 𝐼 ∈ Fin)
487adantlr 714 . . . . . . . . 9 ((((𝐼 ∈ Fin ∧ (𝑥𝑋𝑦𝑋)) ∧ 𝑧𝑋) ∧ 𝑘𝐼) → (𝑥𝑘) ∈ ℝ)
49 simpr 484 . . . . . . . . . . . 12 (((𝐼 ∈ Fin ∧ (𝑥𝑋𝑦𝑋)) ∧ 𝑧𝑋) → 𝑧𝑋)
5049, 3eleqtrdi 2854 . . . . . . . . . . 11 (((𝐼 ∈ Fin ∧ (𝑥𝑋𝑦𝑋)) ∧ 𝑧𝑋) → 𝑧 ∈ (ℝ ↑m 𝐼))
51 elmapi 8907 . . . . . . . . . . 11 (𝑧 ∈ (ℝ ↑m 𝐼) → 𝑧:𝐼⟶ℝ)
5250, 51syl 17 . . . . . . . . . 10 (((𝐼 ∈ Fin ∧ (𝑥𝑋𝑦𝑋)) ∧ 𝑧𝑋) → 𝑧:𝐼⟶ℝ)
5352ffvelcdmda 7118 . . . . . . . . 9 ((((𝐼 ∈ Fin ∧ (𝑥𝑋𝑦𝑋)) ∧ 𝑧𝑋) ∧ 𝑘𝐼) → (𝑧𝑘) ∈ ℝ)
5448, 53resubcld 11718 . . . . . . . 8 ((((𝐼 ∈ Fin ∧ (𝑥𝑋𝑦𝑋)) ∧ 𝑧𝑋) ∧ 𝑘𝐼) → ((𝑥𝑘) − (𝑧𝑘)) ∈ ℝ)
5512adantlr 714 . . . . . . . . 9 ((((𝐼 ∈ Fin ∧ (𝑥𝑋𝑦𝑋)) ∧ 𝑧𝑋) ∧ 𝑘𝐼) → (𝑦𝑘) ∈ ℝ)
5653, 55resubcld 11718 . . . . . . . 8 ((((𝐼 ∈ Fin ∧ (𝑥𝑋𝑦𝑋)) ∧ 𝑧𝑋) ∧ 𝑘𝐼) → ((𝑧𝑘) − (𝑦𝑘)) ∈ ℝ)
5747, 54, 56trirn 25453 . . . . . . 7 (((𝐼 ∈ Fin ∧ (𝑥𝑋𝑦𝑋)) ∧ 𝑧𝑋) → (√‘Σ𝑘𝐼 ((((𝑥𝑘) − (𝑧𝑘)) + ((𝑧𝑘) − (𝑦𝑘)))↑2)) ≤ ((√‘Σ𝑘𝐼 (((𝑥𝑘) − (𝑧𝑘))↑2)) + (√‘Σ𝑘𝐼 (((𝑧𝑘) − (𝑦𝑘))↑2))))
5833adantlr 714 . . . . . . . . . . 11 ((((𝐼 ∈ Fin ∧ (𝑥𝑋𝑦𝑋)) ∧ 𝑧𝑋) ∧ 𝑘𝐼) → (𝑥𝑘) ∈ ℂ)
5953recnd 11318 . . . . . . . . . . 11 ((((𝐼 ∈ Fin ∧ (𝑥𝑋𝑦𝑋)) ∧ 𝑧𝑋) ∧ 𝑘𝐼) → (𝑧𝑘) ∈ ℂ)
6034adantlr 714 . . . . . . . . . . 11 ((((𝐼 ∈ Fin ∧ (𝑥𝑋𝑦𝑋)) ∧ 𝑧𝑋) ∧ 𝑘𝐼) → (𝑦𝑘) ∈ ℂ)
6158, 59, 60npncand 11671 . . . . . . . . . 10 ((((𝐼 ∈ Fin ∧ (𝑥𝑋𝑦𝑋)) ∧ 𝑧𝑋) ∧ 𝑘𝐼) → (((𝑥𝑘) − (𝑧𝑘)) + ((𝑧𝑘) − (𝑦𝑘))) = ((𝑥𝑘) − (𝑦𝑘)))
6261oveq1d 7463 . . . . . . . . 9 ((((𝐼 ∈ Fin ∧ (𝑥𝑋𝑦𝑋)) ∧ 𝑧𝑋) ∧ 𝑘𝐼) → ((((𝑥𝑘) − (𝑧𝑘)) + ((𝑧𝑘) − (𝑦𝑘)))↑2) = (((𝑥𝑘) − (𝑦𝑘))↑2))
6362sumeq2dv 15750 . . . . . . . 8 (((𝐼 ∈ Fin ∧ (𝑥𝑋𝑦𝑋)) ∧ 𝑧𝑋) → Σ𝑘𝐼 ((((𝑥𝑘) − (𝑧𝑘)) + ((𝑧𝑘) − (𝑦𝑘)))↑2) = Σ𝑘𝐼 (((𝑥𝑘) − (𝑦𝑘))↑2))
6463fveq2d 6924 . . . . . . 7 (((𝐼 ∈ Fin ∧ (𝑥𝑋𝑦𝑋)) ∧ 𝑧𝑋) → (√‘Σ𝑘𝐼 ((((𝑥𝑘) − (𝑧𝑘)) + ((𝑧𝑘) − (𝑦𝑘)))↑2)) = (√‘Σ𝑘𝐼 (((𝑥𝑘) − (𝑦𝑘))↑2)))
65 sqsubswap 14167 . . . . . . . . . . 11 (((𝑥𝑘) ∈ ℂ ∧ (𝑧𝑘) ∈ ℂ) → (((𝑥𝑘) − (𝑧𝑘))↑2) = (((𝑧𝑘) − (𝑥𝑘))↑2))
6658, 59, 65syl2anc 583 . . . . . . . . . 10 ((((𝐼 ∈ Fin ∧ (𝑥𝑋𝑦𝑋)) ∧ 𝑧𝑋) ∧ 𝑘𝐼) → (((𝑥𝑘) − (𝑧𝑘))↑2) = (((𝑧𝑘) − (𝑥𝑘))↑2))
6766sumeq2dv 15750 . . . . . . . . 9 (((𝐼 ∈ Fin ∧ (𝑥𝑋𝑦𝑋)) ∧ 𝑧𝑋) → Σ𝑘𝐼 (((𝑥𝑘) − (𝑧𝑘))↑2) = Σ𝑘𝐼 (((𝑧𝑘) − (𝑥𝑘))↑2))
6867fveq2d 6924 . . . . . . . 8 (((𝐼 ∈ Fin ∧ (𝑥𝑋𝑦𝑋)) ∧ 𝑧𝑋) → (√‘Σ𝑘𝐼 (((𝑥𝑘) − (𝑧𝑘))↑2)) = (√‘Σ𝑘𝐼 (((𝑧𝑘) − (𝑥𝑘))↑2)))
6968oveq1d 7463 . . . . . . 7 (((𝐼 ∈ Fin ∧ (𝑥𝑋𝑦𝑋)) ∧ 𝑧𝑋) → ((√‘Σ𝑘𝐼 (((𝑥𝑘) − (𝑧𝑘))↑2)) + (√‘Σ𝑘𝐼 (((𝑧𝑘) − (𝑦𝑘))↑2))) = ((√‘Σ𝑘𝐼 (((𝑧𝑘) − (𝑥𝑘))↑2)) + (√‘Σ𝑘𝐼 (((𝑧𝑘) − (𝑦𝑘))↑2))))
7057, 64, 693brtr3d 5197 . . . . . 6 (((𝐼 ∈ Fin ∧ (𝑥𝑋𝑦𝑋)) ∧ 𝑧𝑋) → (√‘Σ𝑘𝐼 (((𝑥𝑘) − (𝑦𝑘))↑2)) ≤ ((√‘Σ𝑘𝐼 (((𝑧𝑘) − (𝑥𝑘))↑2)) + (√‘Σ𝑘𝐼 (((𝑧𝑘) − (𝑦𝑘))↑2))))
7140adantr 480 . . . . . 6 (((𝐼 ∈ Fin ∧ (𝑥𝑋𝑦𝑋)) ∧ 𝑧𝑋) → (𝑥(ℝn𝐼)𝑦) = (√‘Σ𝑘𝐼 (((𝑥𝑘) − (𝑦𝑘))↑2)))
723rrnmval 37788 . . . . . . . . . 10 ((𝐼 ∈ Fin ∧ 𝑧𝑋𝑥𝑋) → (𝑧(ℝn𝐼)𝑥) = (√‘Σ𝑘𝐼 (((𝑧𝑘) − (𝑥𝑘))↑2)))
73723adant3r 1181 . . . . . . . . 9 ((𝐼 ∈ Fin ∧ 𝑧𝑋 ∧ (𝑥𝑋𝑦𝑋)) → (𝑧(ℝn𝐼)𝑥) = (√‘Σ𝑘𝐼 (((𝑧𝑘) − (𝑥𝑘))↑2)))
743rrnmval 37788 . . . . . . . . . 10 ((𝐼 ∈ Fin ∧ 𝑧𝑋𝑦𝑋) → (𝑧(ℝn𝐼)𝑦) = (√‘Σ𝑘𝐼 (((𝑧𝑘) − (𝑦𝑘))↑2)))
75743adant3l 1180 . . . . . . . . 9 ((𝐼 ∈ Fin ∧ 𝑧𝑋 ∧ (𝑥𝑋𝑦𝑋)) → (𝑧(ℝn𝐼)𝑦) = (√‘Σ𝑘𝐼 (((𝑧𝑘) − (𝑦𝑘))↑2)))
7673, 75oveq12d 7466 . . . . . . . 8 ((𝐼 ∈ Fin ∧ 𝑧𝑋 ∧ (𝑥𝑋𝑦𝑋)) → ((𝑧(ℝn𝐼)𝑥) + (𝑧(ℝn𝐼)𝑦)) = ((√‘Σ𝑘𝐼 (((𝑧𝑘) − (𝑥𝑘))↑2)) + (√‘Σ𝑘𝐼 (((𝑧𝑘) − (𝑦𝑘))↑2))))
77763expa 1118 . . . . . . 7 (((𝐼 ∈ Fin ∧ 𝑧𝑋) ∧ (𝑥𝑋𝑦𝑋)) → ((𝑧(ℝn𝐼)𝑥) + (𝑧(ℝn𝐼)𝑦)) = ((√‘Σ𝑘𝐼 (((𝑧𝑘) − (𝑥𝑘))↑2)) + (√‘Σ𝑘𝐼 (((𝑧𝑘) − (𝑦𝑘))↑2))))
7877an32s 651 . . . . . 6 (((𝐼 ∈ Fin ∧ (𝑥𝑋𝑦𝑋)) ∧ 𝑧𝑋) → ((𝑧(ℝn𝐼)𝑥) + (𝑧(ℝn𝐼)𝑦)) = ((√‘Σ𝑘𝐼 (((𝑧𝑘) − (𝑥𝑘))↑2)) + (√‘Σ𝑘𝐼 (((𝑧𝑘) − (𝑦𝑘))↑2))))
7970, 71, 783brtr4d 5198 . . . . 5 (((𝐼 ∈ Fin ∧ (𝑥𝑋𝑦𝑋)) ∧ 𝑧𝑋) → (𝑥(ℝn𝐼)𝑦) ≤ ((𝑧(ℝn𝐼)𝑥) + (𝑧(ℝn𝐼)𝑦)))
8079ralrimiva 3152 . . . 4 ((𝐼 ∈ Fin ∧ (𝑥𝑋𝑦𝑋)) → ∀𝑧𝑋 (𝑥(ℝn𝐼)𝑦) ≤ ((𝑧(ℝn𝐼)𝑥) + (𝑧(ℝn𝐼)𝑦)))
8146, 80jca 511 . . 3 ((𝐼 ∈ Fin ∧ (𝑥𝑋𝑦𝑋)) → (((𝑥(ℝn𝐼)𝑦) = 0 ↔ 𝑥 = 𝑦) ∧ ∀𝑧𝑋 (𝑥(ℝn𝐼)𝑦) ≤ ((𝑧(ℝn𝐼)𝑥) + (𝑧(ℝn𝐼)𝑦))))
8281ralrimivva 3208 . 2 (𝐼 ∈ Fin → ∀𝑥𝑋𝑦𝑋 (((𝑥(ℝn𝐼)𝑦) = 0 ↔ 𝑥 = 𝑦) ∧ ∀𝑧𝑋 (𝑥(ℝn𝐼)𝑦) ≤ ((𝑧(ℝn𝐼)𝑥) + (𝑧(ℝn𝐼)𝑦))))
83 ovex 7481 . . . 4 (ℝ ↑m 𝐼) ∈ V
843, 83eqeltri 2840 . . 3 𝑋 ∈ V
85 ismet 24354 . . 3 (𝑋 ∈ V → ((ℝn𝐼) ∈ (Met‘𝑋) ↔ ((ℝn𝐼):(𝑋 × 𝑋)⟶ℝ ∧ ∀𝑥𝑋𝑦𝑋 (((𝑥(ℝn𝐼)𝑦) = 0 ↔ 𝑥 = 𝑦) ∧ ∀𝑧𝑋 (𝑥(ℝn𝐼)𝑦) ≤ ((𝑧(ℝn𝐼)𝑥) + (𝑧(ℝn𝐼)𝑦))))))
8684, 85ax-mp 5 . 2 ((ℝn𝐼) ∈ (Met‘𝑋) ↔ ((ℝn𝐼):(𝑋 × 𝑋)⟶ℝ ∧ ∀𝑥𝑋𝑦𝑋 (((𝑥(ℝn𝐼)𝑦) = 0 ↔ 𝑥 = 𝑦) ∧ ∀𝑧𝑋 (𝑥(ℝn𝐼)𝑦) ≤ ((𝑧(ℝn𝐼)𝑥) + (𝑧(ℝn𝐼)𝑦)))))
8725, 82, 86sylanbrc 582 1 (𝐼 ∈ Fin → (ℝn𝐼) ∈ (Met‘𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1087   = wceq 1537  wcel 2108  wral 3067  Vcvv 3488   class class class wbr 5166   × cxp 5698   Fn wfn 6568  wf 6569  cfv 6573  (class class class)co 7448  cmpo 7450  m cmap 8884  Fincfn 9003  cc 11182  cr 11183  0cc0 11184   + caddc 11187  cle 11325  cmin 11520  2c2 12348  cexp 14112  csqrt 15282  Σcsu 15734  Metcmet 21373  ncrrn 37785
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-inf2 9710  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261  ax-pre-sup 11262
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-se 5653  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-isom 6582  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1st 8030  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-er 8763  df-map 8886  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-sup 9511  df-oi 9579  df-card 10008  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-div 11948  df-nn 12294  df-2 12356  df-3 12357  df-4 12358  df-n0 12554  df-z 12640  df-uz 12904  df-rp 13058  df-ico 13413  df-fz 13568  df-fzo 13712  df-seq 14053  df-exp 14113  df-hash 14380  df-cj 15148  df-re 15149  df-im 15150  df-sqrt 15284  df-abs 15285  df-clim 15534  df-sum 15735  df-met 21381  df-rrn 37786
This theorem is referenced by:  rrncmslem  37792  rrncms  37793  rrnequiv  37795  rrntotbnd  37796  rrnheibor  37797  ismrer1  37798  reheibor  37799
  Copyright terms: Public domain W3C validator