Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dicvaddcl Structured version   Visualization version   GIF version

Theorem dicvaddcl 39200
Description: Membership in value of the partial isomorphism C is closed under vector sum. (Contributed by NM, 16-Feb-2014.)
Hypotheses
Ref Expression
dicvaddcl.l = (le‘𝐾)
dicvaddcl.a 𝐴 = (Atoms‘𝐾)
dicvaddcl.h 𝐻 = (LHyp‘𝐾)
dicvaddcl.u 𝑈 = ((DVecH‘𝐾)‘𝑊)
dicvaddcl.i 𝐼 = ((DIsoC‘𝐾)‘𝑊)
dicvaddcl.p + = (+g𝑈)
Assertion
Ref Expression
dicvaddcl (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑋 ∈ (𝐼𝑄) ∧ 𝑌 ∈ (𝐼𝑄))) → (𝑋 + 𝑌) ∈ (𝐼𝑄))

Proof of Theorem dicvaddcl
Dummy variables 𝑔 𝑠 𝑡 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simp1 1135 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑋 ∈ (𝐼𝑄) ∧ 𝑌 ∈ (𝐼𝑄))) → (𝐾 ∈ HL ∧ 𝑊𝐻))
2 dicvaddcl.l . . . . . . 7 = (le‘𝐾)
3 dicvaddcl.a . . . . . . 7 𝐴 = (Atoms‘𝐾)
4 dicvaddcl.h . . . . . . 7 𝐻 = (LHyp‘𝐾)
5 dicvaddcl.i . . . . . . 7 𝐼 = ((DIsoC‘𝐾)‘𝑊)
6 dicvaddcl.u . . . . . . 7 𝑈 = ((DVecH‘𝐾)‘𝑊)
7 eqid 2740 . . . . . . 7 (Base‘𝑈) = (Base‘𝑈)
82, 3, 4, 5, 6, 7dicssdvh 39196 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) → (𝐼𝑄) ⊆ (Base‘𝑈))
9 eqid 2740 . . . . . . . . 9 ((LTrn‘𝐾)‘𝑊) = ((LTrn‘𝐾)‘𝑊)
10 eqid 2740 . . . . . . . . 9 ((TEndo‘𝐾)‘𝑊) = ((TEndo‘𝐾)‘𝑊)
114, 9, 10, 6, 7dvhvbase 39097 . . . . . . . 8 ((𝐾 ∈ HL ∧ 𝑊𝐻) → (Base‘𝑈) = (((LTrn‘𝐾)‘𝑊) × ((TEndo‘𝐾)‘𝑊)))
1211eqcomd 2746 . . . . . . 7 ((𝐾 ∈ HL ∧ 𝑊𝐻) → (((LTrn‘𝐾)‘𝑊) × ((TEndo‘𝐾)‘𝑊)) = (Base‘𝑈))
1312adantr 481 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) → (((LTrn‘𝐾)‘𝑊) × ((TEndo‘𝐾)‘𝑊)) = (Base‘𝑈))
148, 13sseqtrrd 3967 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) → (𝐼𝑄) ⊆ (((LTrn‘𝐾)‘𝑊) × ((TEndo‘𝐾)‘𝑊)))
15143adant3 1131 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑋 ∈ (𝐼𝑄) ∧ 𝑌 ∈ (𝐼𝑄))) → (𝐼𝑄) ⊆ (((LTrn‘𝐾)‘𝑊) × ((TEndo‘𝐾)‘𝑊)))
16 simp3l 1200 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑋 ∈ (𝐼𝑄) ∧ 𝑌 ∈ (𝐼𝑄))) → 𝑋 ∈ (𝐼𝑄))
1715, 16sseldd 3927 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑋 ∈ (𝐼𝑄) ∧ 𝑌 ∈ (𝐼𝑄))) → 𝑋 ∈ (((LTrn‘𝐾)‘𝑊) × ((TEndo‘𝐾)‘𝑊)))
18 simp3r 1201 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑋 ∈ (𝐼𝑄) ∧ 𝑌 ∈ (𝐼𝑄))) → 𝑌 ∈ (𝐼𝑄))
1915, 18sseldd 3927 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑋 ∈ (𝐼𝑄) ∧ 𝑌 ∈ (𝐼𝑄))) → 𝑌 ∈ (((LTrn‘𝐾)‘𝑊) × ((TEndo‘𝐾)‘𝑊)))
20 eqid 2740 . . . 4 (Scalar‘𝑈) = (Scalar‘𝑈)
21 dicvaddcl.p . . . 4 + = (+g𝑈)
22 eqid 2740 . . . 4 (+g‘(Scalar‘𝑈)) = (+g‘(Scalar‘𝑈))
234, 9, 10, 6, 20, 21, 22dvhvadd 39102 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋 ∈ (((LTrn‘𝐾)‘𝑊) × ((TEndo‘𝐾)‘𝑊)) ∧ 𝑌 ∈ (((LTrn‘𝐾)‘𝑊) × ((TEndo‘𝐾)‘𝑊)))) → (𝑋 + 𝑌) = ⟨((1st𝑋) ∘ (1st𝑌)), ((2nd𝑋)(+g‘(Scalar‘𝑈))(2nd𝑌))⟩)
241, 17, 19, 23syl12anc 834 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑋 ∈ (𝐼𝑄) ∧ 𝑌 ∈ (𝐼𝑄))) → (𝑋 + 𝑌) = ⟨((1st𝑋) ∘ (1st𝑌)), ((2nd𝑋)(+g‘(Scalar‘𝑈))(2nd𝑌))⟩)
252, 3, 4, 10, 5dicelval2nd 39199 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝑋 ∈ (𝐼𝑄)) → (2nd𝑋) ∈ ((TEndo‘𝐾)‘𝑊))
26253adant3r 1180 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑋 ∈ (𝐼𝑄) ∧ 𝑌 ∈ (𝐼𝑄))) → (2nd𝑋) ∈ ((TEndo‘𝐾)‘𝑊))
272, 3, 4, 10, 5dicelval2nd 39199 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝑌 ∈ (𝐼𝑄)) → (2nd𝑌) ∈ ((TEndo‘𝐾)‘𝑊))
28273adant3l 1179 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑋 ∈ (𝐼𝑄) ∧ 𝑌 ∈ (𝐼𝑄))) → (2nd𝑌) ∈ ((TEndo‘𝐾)‘𝑊))
29 eqid 2740 . . . . . . . 8 (oc‘𝐾) = (oc‘𝐾)
302, 29, 3, 4lhpocnel 38028 . . . . . . 7 ((𝐾 ∈ HL ∧ 𝑊𝐻) → (((oc‘𝐾)‘𝑊) ∈ 𝐴 ∧ ¬ ((oc‘𝐾)‘𝑊) 𝑊))
31303ad2ant1 1132 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑋 ∈ (𝐼𝑄) ∧ 𝑌 ∈ (𝐼𝑄))) → (((oc‘𝐾)‘𝑊) ∈ 𝐴 ∧ ¬ ((oc‘𝐾)‘𝑊) 𝑊))
32 simp2 1136 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑋 ∈ (𝐼𝑄) ∧ 𝑌 ∈ (𝐼𝑄))) → (𝑄𝐴 ∧ ¬ 𝑄 𝑊))
33 eqid 2740 . . . . . . 7 (𝑔 ∈ ((LTrn‘𝐾)‘𝑊)(𝑔‘((oc‘𝐾)‘𝑊)) = 𝑄) = (𝑔 ∈ ((LTrn‘𝐾)‘𝑊)(𝑔‘((oc‘𝐾)‘𝑊)) = 𝑄)
342, 3, 4, 9, 33ltrniotacl 38589 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (((oc‘𝐾)‘𝑊) ∈ 𝐴 ∧ ¬ ((oc‘𝐾)‘𝑊) 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) → (𝑔 ∈ ((LTrn‘𝐾)‘𝑊)(𝑔‘((oc‘𝐾)‘𝑊)) = 𝑄) ∈ ((LTrn‘𝐾)‘𝑊))
351, 31, 32, 34syl3anc 1370 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑋 ∈ (𝐼𝑄) ∧ 𝑌 ∈ (𝐼𝑄))) → (𝑔 ∈ ((LTrn‘𝐾)‘𝑊)(𝑔‘((oc‘𝐾)‘𝑊)) = 𝑄) ∈ ((LTrn‘𝐾)‘𝑊))
36 eqid 2740 . . . . . 6 (𝑠 ∈ ((TEndo‘𝐾)‘𝑊), 𝑡 ∈ ((TEndo‘𝐾)‘𝑊) ↦ ( ∈ ((LTrn‘𝐾)‘𝑊) ↦ ((𝑠) ∘ (𝑡)))) = (𝑠 ∈ ((TEndo‘𝐾)‘𝑊), 𝑡 ∈ ((TEndo‘𝐾)‘𝑊) ↦ ( ∈ ((LTrn‘𝐾)‘𝑊) ↦ ((𝑠) ∘ (𝑡))))
379, 36tendospdi2 39032 . . . . 5 (((2nd𝑋) ∈ ((TEndo‘𝐾)‘𝑊) ∧ (2nd𝑌) ∈ ((TEndo‘𝐾)‘𝑊) ∧ (𝑔 ∈ ((LTrn‘𝐾)‘𝑊)(𝑔‘((oc‘𝐾)‘𝑊)) = 𝑄) ∈ ((LTrn‘𝐾)‘𝑊)) → (((2nd𝑋)(𝑠 ∈ ((TEndo‘𝐾)‘𝑊), 𝑡 ∈ ((TEndo‘𝐾)‘𝑊) ↦ ( ∈ ((LTrn‘𝐾)‘𝑊) ↦ ((𝑠) ∘ (𝑡))))(2nd𝑌))‘(𝑔 ∈ ((LTrn‘𝐾)‘𝑊)(𝑔‘((oc‘𝐾)‘𝑊)) = 𝑄)) = (((2nd𝑋)‘(𝑔 ∈ ((LTrn‘𝐾)‘𝑊)(𝑔‘((oc‘𝐾)‘𝑊)) = 𝑄)) ∘ ((2nd𝑌)‘(𝑔 ∈ ((LTrn‘𝐾)‘𝑊)(𝑔‘((oc‘𝐾)‘𝑊)) = 𝑄))))
3826, 28, 35, 37syl3anc 1370 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑋 ∈ (𝐼𝑄) ∧ 𝑌 ∈ (𝐼𝑄))) → (((2nd𝑋)(𝑠 ∈ ((TEndo‘𝐾)‘𝑊), 𝑡 ∈ ((TEndo‘𝐾)‘𝑊) ↦ ( ∈ ((LTrn‘𝐾)‘𝑊) ↦ ((𝑠) ∘ (𝑡))))(2nd𝑌))‘(𝑔 ∈ ((LTrn‘𝐾)‘𝑊)(𝑔‘((oc‘𝐾)‘𝑊)) = 𝑄)) = (((2nd𝑋)‘(𝑔 ∈ ((LTrn‘𝐾)‘𝑊)(𝑔‘((oc‘𝐾)‘𝑊)) = 𝑄)) ∘ ((2nd𝑌)‘(𝑔 ∈ ((LTrn‘𝐾)‘𝑊)(𝑔‘((oc‘𝐾)‘𝑊)) = 𝑄))))
394, 9, 10, 6, 20, 36, 22dvhfplusr 39094 . . . . . . 7 ((𝐾 ∈ HL ∧ 𝑊𝐻) → (+g‘(Scalar‘𝑈)) = (𝑠 ∈ ((TEndo‘𝐾)‘𝑊), 𝑡 ∈ ((TEndo‘𝐾)‘𝑊) ↦ ( ∈ ((LTrn‘𝐾)‘𝑊) ↦ ((𝑠) ∘ (𝑡)))))
40393ad2ant1 1132 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑋 ∈ (𝐼𝑄) ∧ 𝑌 ∈ (𝐼𝑄))) → (+g‘(Scalar‘𝑈)) = (𝑠 ∈ ((TEndo‘𝐾)‘𝑊), 𝑡 ∈ ((TEndo‘𝐾)‘𝑊) ↦ ( ∈ ((LTrn‘𝐾)‘𝑊) ↦ ((𝑠) ∘ (𝑡)))))
4140oveqd 7288 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑋 ∈ (𝐼𝑄) ∧ 𝑌 ∈ (𝐼𝑄))) → ((2nd𝑋)(+g‘(Scalar‘𝑈))(2nd𝑌)) = ((2nd𝑋)(𝑠 ∈ ((TEndo‘𝐾)‘𝑊), 𝑡 ∈ ((TEndo‘𝐾)‘𝑊) ↦ ( ∈ ((LTrn‘𝐾)‘𝑊) ↦ ((𝑠) ∘ (𝑡))))(2nd𝑌)))
4241fveq1d 6773 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑋 ∈ (𝐼𝑄) ∧ 𝑌 ∈ (𝐼𝑄))) → (((2nd𝑋)(+g‘(Scalar‘𝑈))(2nd𝑌))‘(𝑔 ∈ ((LTrn‘𝐾)‘𝑊)(𝑔‘((oc‘𝐾)‘𝑊)) = 𝑄)) = (((2nd𝑋)(𝑠 ∈ ((TEndo‘𝐾)‘𝑊), 𝑡 ∈ ((TEndo‘𝐾)‘𝑊) ↦ ( ∈ ((LTrn‘𝐾)‘𝑊) ↦ ((𝑠) ∘ (𝑡))))(2nd𝑌))‘(𝑔 ∈ ((LTrn‘𝐾)‘𝑊)(𝑔‘((oc‘𝐾)‘𝑊)) = 𝑄)))
43 eqid 2740 . . . . . . 7 ((oc‘𝐾)‘𝑊) = ((oc‘𝐾)‘𝑊)
442, 3, 4, 43, 9, 5dicelval1sta 39197 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝑋 ∈ (𝐼𝑄)) → (1st𝑋) = ((2nd𝑋)‘(𝑔 ∈ ((LTrn‘𝐾)‘𝑊)(𝑔‘((oc‘𝐾)‘𝑊)) = 𝑄)))
45443adant3r 1180 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑋 ∈ (𝐼𝑄) ∧ 𝑌 ∈ (𝐼𝑄))) → (1st𝑋) = ((2nd𝑋)‘(𝑔 ∈ ((LTrn‘𝐾)‘𝑊)(𝑔‘((oc‘𝐾)‘𝑊)) = 𝑄)))
462, 3, 4, 43, 9, 5dicelval1sta 39197 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝑌 ∈ (𝐼𝑄)) → (1st𝑌) = ((2nd𝑌)‘(𝑔 ∈ ((LTrn‘𝐾)‘𝑊)(𝑔‘((oc‘𝐾)‘𝑊)) = 𝑄)))
47463adant3l 1179 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑋 ∈ (𝐼𝑄) ∧ 𝑌 ∈ (𝐼𝑄))) → (1st𝑌) = ((2nd𝑌)‘(𝑔 ∈ ((LTrn‘𝐾)‘𝑊)(𝑔‘((oc‘𝐾)‘𝑊)) = 𝑄)))
4845, 47coeq12d 5772 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑋 ∈ (𝐼𝑄) ∧ 𝑌 ∈ (𝐼𝑄))) → ((1st𝑋) ∘ (1st𝑌)) = (((2nd𝑋)‘(𝑔 ∈ ((LTrn‘𝐾)‘𝑊)(𝑔‘((oc‘𝐾)‘𝑊)) = 𝑄)) ∘ ((2nd𝑌)‘(𝑔 ∈ ((LTrn‘𝐾)‘𝑊)(𝑔‘((oc‘𝐾)‘𝑊)) = 𝑄))))
4938, 42, 483eqtr4rd 2791 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑋 ∈ (𝐼𝑄) ∧ 𝑌 ∈ (𝐼𝑄))) → ((1st𝑋) ∘ (1st𝑌)) = (((2nd𝑋)(+g‘(Scalar‘𝑈))(2nd𝑌))‘(𝑔 ∈ ((LTrn‘𝐾)‘𝑊)(𝑔‘((oc‘𝐾)‘𝑊)) = 𝑄)))
504, 9, 10, 36tendoplcl 38791 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (2nd𝑋) ∈ ((TEndo‘𝐾)‘𝑊) ∧ (2nd𝑌) ∈ ((TEndo‘𝐾)‘𝑊)) → ((2nd𝑋)(𝑠 ∈ ((TEndo‘𝐾)‘𝑊), 𝑡 ∈ ((TEndo‘𝐾)‘𝑊) ↦ ( ∈ ((LTrn‘𝐾)‘𝑊) ↦ ((𝑠) ∘ (𝑡))))(2nd𝑌)) ∈ ((TEndo‘𝐾)‘𝑊))
511, 26, 28, 50syl3anc 1370 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑋 ∈ (𝐼𝑄) ∧ 𝑌 ∈ (𝐼𝑄))) → ((2nd𝑋)(𝑠 ∈ ((TEndo‘𝐾)‘𝑊), 𝑡 ∈ ((TEndo‘𝐾)‘𝑊) ↦ ( ∈ ((LTrn‘𝐾)‘𝑊) ↦ ((𝑠) ∘ (𝑡))))(2nd𝑌)) ∈ ((TEndo‘𝐾)‘𝑊))
5241, 51eqeltrd 2841 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑋 ∈ (𝐼𝑄) ∧ 𝑌 ∈ (𝐼𝑄))) → ((2nd𝑋)(+g‘(Scalar‘𝑈))(2nd𝑌)) ∈ ((TEndo‘𝐾)‘𝑊))
53 fvex 6784 . . . . . 6 (1st𝑋) ∈ V
54 fvex 6784 . . . . . 6 (1st𝑌) ∈ V
5553, 54coex 7771 . . . . 5 ((1st𝑋) ∘ (1st𝑌)) ∈ V
56 ovex 7304 . . . . 5 ((2nd𝑋)(+g‘(Scalar‘𝑈))(2nd𝑌)) ∈ V
572, 3, 4, 43, 9, 10, 5, 55, 56dicopelval 39187 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) → (⟨((1st𝑋) ∘ (1st𝑌)), ((2nd𝑋)(+g‘(Scalar‘𝑈))(2nd𝑌))⟩ ∈ (𝐼𝑄) ↔ (((1st𝑋) ∘ (1st𝑌)) = (((2nd𝑋)(+g‘(Scalar‘𝑈))(2nd𝑌))‘(𝑔 ∈ ((LTrn‘𝐾)‘𝑊)(𝑔‘((oc‘𝐾)‘𝑊)) = 𝑄)) ∧ ((2nd𝑋)(+g‘(Scalar‘𝑈))(2nd𝑌)) ∈ ((TEndo‘𝐾)‘𝑊))))
58573adant3 1131 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑋 ∈ (𝐼𝑄) ∧ 𝑌 ∈ (𝐼𝑄))) → (⟨((1st𝑋) ∘ (1st𝑌)), ((2nd𝑋)(+g‘(Scalar‘𝑈))(2nd𝑌))⟩ ∈ (𝐼𝑄) ↔ (((1st𝑋) ∘ (1st𝑌)) = (((2nd𝑋)(+g‘(Scalar‘𝑈))(2nd𝑌))‘(𝑔 ∈ ((LTrn‘𝐾)‘𝑊)(𝑔‘((oc‘𝐾)‘𝑊)) = 𝑄)) ∧ ((2nd𝑋)(+g‘(Scalar‘𝑈))(2nd𝑌)) ∈ ((TEndo‘𝐾)‘𝑊))))
5949, 52, 58mpbir2and 710 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑋 ∈ (𝐼𝑄) ∧ 𝑌 ∈ (𝐼𝑄))) → ⟨((1st𝑋) ∘ (1st𝑌)), ((2nd𝑋)(+g‘(Scalar‘𝑈))(2nd𝑌))⟩ ∈ (𝐼𝑄))
6024, 59eqeltrd 2841 1 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑋 ∈ (𝐼𝑄) ∧ 𝑌 ∈ (𝐼𝑄))) → (𝑋 + 𝑌) ∈ (𝐼𝑄))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396  w3a 1086   = wceq 1542  wcel 2110  wss 3892  cop 4573   class class class wbr 5079  cmpt 5162   × cxp 5588  ccom 5594  cfv 6432  crio 7227  (class class class)co 7271  cmpo 7273  1st c1st 7822  2nd c2nd 7823  Basecbs 16910  +gcplusg 16960  Scalarcsca 16963  lecple 16967  occoc 16968  Atomscatm 37273  HLchlt 37360  LHypclh 37994  LTrncltrn 38111  TEndoctendo 38762  DVecHcdvh 39088  DIsoCcdic 39182
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2015  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2711  ax-rep 5214  ax-sep 5227  ax-nul 5234  ax-pow 5292  ax-pr 5356  ax-un 7582  ax-cnex 10928  ax-resscn 10929  ax-1cn 10930  ax-icn 10931  ax-addcl 10932  ax-addrcl 10933  ax-mulcl 10934  ax-mulrcl 10935  ax-mulcom 10936  ax-addass 10937  ax-mulass 10938  ax-distr 10939  ax-i2m1 10940  ax-1ne0 10941  ax-1rid 10942  ax-rnegex 10943  ax-rrecex 10944  ax-cnre 10945  ax-pre-lttri 10946  ax-pre-lttrn 10947  ax-pre-ltadd 10948  ax-pre-mulgt0 10949  ax-riotaBAD 36963
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2072  df-mo 2542  df-eu 2571  df-clab 2718  df-cleq 2732  df-clel 2818  df-nfc 2891  df-ne 2946  df-nel 3052  df-ral 3071  df-rex 3072  df-reu 3073  df-rmo 3074  df-rab 3075  df-v 3433  df-sbc 3721  df-csb 3838  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-pss 3911  df-nul 4263  df-if 4466  df-pw 4541  df-sn 4568  df-pr 4570  df-tp 4572  df-op 4574  df-uni 4846  df-iun 4932  df-iin 4933  df-br 5080  df-opab 5142  df-mpt 5163  df-tr 5197  df-id 5490  df-eprel 5496  df-po 5504  df-so 5505  df-fr 5545  df-we 5547  df-xp 5596  df-rel 5597  df-cnv 5598  df-co 5599  df-dm 5600  df-rn 5601  df-res 5602  df-ima 5603  df-pred 6201  df-ord 6268  df-on 6269  df-lim 6270  df-suc 6271  df-iota 6390  df-fun 6434  df-fn 6435  df-f 6436  df-f1 6437  df-fo 6438  df-f1o 6439  df-fv 6440  df-riota 7228  df-ov 7274  df-oprab 7275  df-mpo 7276  df-om 7707  df-1st 7824  df-2nd 7825  df-undef 8080  df-frecs 8088  df-wrecs 8119  df-recs 8193  df-rdg 8232  df-1o 8288  df-er 8481  df-map 8600  df-en 8717  df-dom 8718  df-sdom 8719  df-fin 8720  df-pnf 11012  df-mnf 11013  df-xr 11014  df-ltxr 11015  df-le 11016  df-sub 11207  df-neg 11208  df-nn 11974  df-2 12036  df-3 12037  df-4 12038  df-5 12039  df-6 12040  df-n0 12234  df-z 12320  df-uz 12582  df-fz 13239  df-struct 16846  df-slot 16881  df-ndx 16893  df-base 16911  df-plusg 16973  df-mulr 16974  df-sca 16976  df-vsca 16977  df-proset 18011  df-poset 18029  df-plt 18046  df-lub 18062  df-glb 18063  df-join 18064  df-meet 18065  df-p0 18141  df-p1 18142  df-lat 18148  df-clat 18215  df-oposet 37186  df-ol 37188  df-oml 37189  df-covers 37276  df-ats 37277  df-atl 37308  df-cvlat 37332  df-hlat 37361  df-llines 37508  df-lplanes 37509  df-lvols 37510  df-lines 37511  df-psubsp 37513  df-pmap 37514  df-padd 37806  df-lhyp 37998  df-laut 37999  df-ldil 38114  df-ltrn 38115  df-trl 38169  df-tendo 38765  df-edring 38767  df-dvech 39089  df-dic 39183
This theorem is referenced by:  diclss  39203
  Copyright terms: Public domain W3C validator