Step | Hyp | Ref
| Expression |
1 | | simp1 1135 |
. . 3
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑋 ∈ (𝐼‘𝑄) ∧ 𝑌 ∈ (𝐼‘𝑄))) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
2 | | dicvaddcl.l |
. . . . . . 7
⊢ ≤ =
(le‘𝐾) |
3 | | dicvaddcl.a |
. . . . . . 7
⊢ 𝐴 = (Atoms‘𝐾) |
4 | | dicvaddcl.h |
. . . . . . 7
⊢ 𝐻 = (LHyp‘𝐾) |
5 | | dicvaddcl.i |
. . . . . . 7
⊢ 𝐼 = ((DIsoC‘𝐾)‘𝑊) |
6 | | dicvaddcl.u |
. . . . . . 7
⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) |
7 | | eqid 2740 |
. . . . . . 7
⊢
(Base‘𝑈) =
(Base‘𝑈) |
8 | 2, 3, 4, 5, 6, 7 | dicssdvh 39196 |
. . . . . 6
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) → (𝐼‘𝑄) ⊆ (Base‘𝑈)) |
9 | | eqid 2740 |
. . . . . . . . 9
⊢
((LTrn‘𝐾)‘𝑊) = ((LTrn‘𝐾)‘𝑊) |
10 | | eqid 2740 |
. . . . . . . . 9
⊢
((TEndo‘𝐾)‘𝑊) = ((TEndo‘𝐾)‘𝑊) |
11 | 4, 9, 10, 6, 7 | dvhvbase 39097 |
. . . . . . . 8
⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → (Base‘𝑈) = (((LTrn‘𝐾)‘𝑊) × ((TEndo‘𝐾)‘𝑊))) |
12 | 11 | eqcomd 2746 |
. . . . . . 7
⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → (((LTrn‘𝐾)‘𝑊) × ((TEndo‘𝐾)‘𝑊)) = (Base‘𝑈)) |
13 | 12 | adantr 481 |
. . . . . 6
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) → (((LTrn‘𝐾)‘𝑊) × ((TEndo‘𝐾)‘𝑊)) = (Base‘𝑈)) |
14 | 8, 13 | sseqtrrd 3967 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) → (𝐼‘𝑄) ⊆ (((LTrn‘𝐾)‘𝑊) × ((TEndo‘𝐾)‘𝑊))) |
15 | 14 | 3adant3 1131 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑋 ∈ (𝐼‘𝑄) ∧ 𝑌 ∈ (𝐼‘𝑄))) → (𝐼‘𝑄) ⊆ (((LTrn‘𝐾)‘𝑊) × ((TEndo‘𝐾)‘𝑊))) |
16 | | simp3l 1200 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑋 ∈ (𝐼‘𝑄) ∧ 𝑌 ∈ (𝐼‘𝑄))) → 𝑋 ∈ (𝐼‘𝑄)) |
17 | 15, 16 | sseldd 3927 |
. . 3
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑋 ∈ (𝐼‘𝑄) ∧ 𝑌 ∈ (𝐼‘𝑄))) → 𝑋 ∈ (((LTrn‘𝐾)‘𝑊) × ((TEndo‘𝐾)‘𝑊))) |
18 | | simp3r 1201 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑋 ∈ (𝐼‘𝑄) ∧ 𝑌 ∈ (𝐼‘𝑄))) → 𝑌 ∈ (𝐼‘𝑄)) |
19 | 15, 18 | sseldd 3927 |
. . 3
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑋 ∈ (𝐼‘𝑄) ∧ 𝑌 ∈ (𝐼‘𝑄))) → 𝑌 ∈ (((LTrn‘𝐾)‘𝑊) × ((TEndo‘𝐾)‘𝑊))) |
20 | | eqid 2740 |
. . . 4
⊢
(Scalar‘𝑈) =
(Scalar‘𝑈) |
21 | | dicvaddcl.p |
. . . 4
⊢ + =
(+g‘𝑈) |
22 | | eqid 2740 |
. . . 4
⊢
(+g‘(Scalar‘𝑈)) =
(+g‘(Scalar‘𝑈)) |
23 | 4, 9, 10, 6, 20, 21, 22 | dvhvadd 39102 |
. . 3
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ (((LTrn‘𝐾)‘𝑊) × ((TEndo‘𝐾)‘𝑊)) ∧ 𝑌 ∈ (((LTrn‘𝐾)‘𝑊) × ((TEndo‘𝐾)‘𝑊)))) → (𝑋 + 𝑌) = 〈((1st ‘𝑋) ∘ (1st
‘𝑌)),
((2nd ‘𝑋)(+g‘(Scalar‘𝑈))(2nd ‘𝑌))〉) |
24 | 1, 17, 19, 23 | syl12anc 834 |
. 2
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑋 ∈ (𝐼‘𝑄) ∧ 𝑌 ∈ (𝐼‘𝑄))) → (𝑋 + 𝑌) = 〈((1st ‘𝑋) ∘ (1st
‘𝑌)),
((2nd ‘𝑋)(+g‘(Scalar‘𝑈))(2nd ‘𝑌))〉) |
25 | 2, 3, 4, 10, 5 | dicelval2nd 39199 |
. . . . . 6
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ 𝑋 ∈ (𝐼‘𝑄)) → (2nd ‘𝑋) ∈ ((TEndo‘𝐾)‘𝑊)) |
26 | 25 | 3adant3r 1180 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑋 ∈ (𝐼‘𝑄) ∧ 𝑌 ∈ (𝐼‘𝑄))) → (2nd ‘𝑋) ∈ ((TEndo‘𝐾)‘𝑊)) |
27 | 2, 3, 4, 10, 5 | dicelval2nd 39199 |
. . . . . 6
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ 𝑌 ∈ (𝐼‘𝑄)) → (2nd ‘𝑌) ∈ ((TEndo‘𝐾)‘𝑊)) |
28 | 27 | 3adant3l 1179 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑋 ∈ (𝐼‘𝑄) ∧ 𝑌 ∈ (𝐼‘𝑄))) → (2nd ‘𝑌) ∈ ((TEndo‘𝐾)‘𝑊)) |
29 | | eqid 2740 |
. . . . . . . 8
⊢
(oc‘𝐾) =
(oc‘𝐾) |
30 | 2, 29, 3, 4 | lhpocnel 38028 |
. . . . . . 7
⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → (((oc‘𝐾)‘𝑊) ∈ 𝐴 ∧ ¬ ((oc‘𝐾)‘𝑊) ≤ 𝑊)) |
31 | 30 | 3ad2ant1 1132 |
. . . . . 6
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑋 ∈ (𝐼‘𝑄) ∧ 𝑌 ∈ (𝐼‘𝑄))) → (((oc‘𝐾)‘𝑊) ∈ 𝐴 ∧ ¬ ((oc‘𝐾)‘𝑊) ≤ 𝑊)) |
32 | | simp2 1136 |
. . . . . 6
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑋 ∈ (𝐼‘𝑄) ∧ 𝑌 ∈ (𝐼‘𝑄))) → (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) |
33 | | eqid 2740 |
. . . . . . 7
⊢
(℩𝑔
∈ ((LTrn‘𝐾)‘𝑊)(𝑔‘((oc‘𝐾)‘𝑊)) = 𝑄) = (℩𝑔 ∈ ((LTrn‘𝐾)‘𝑊)(𝑔‘((oc‘𝐾)‘𝑊)) = 𝑄) |
34 | 2, 3, 4, 9, 33 | ltrniotacl 38589 |
. . . . . 6
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (((oc‘𝐾)‘𝑊) ∈ 𝐴 ∧ ¬ ((oc‘𝐾)‘𝑊) ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) → (℩𝑔 ∈ ((LTrn‘𝐾)‘𝑊)(𝑔‘((oc‘𝐾)‘𝑊)) = 𝑄) ∈ ((LTrn‘𝐾)‘𝑊)) |
35 | 1, 31, 32, 34 | syl3anc 1370 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑋 ∈ (𝐼‘𝑄) ∧ 𝑌 ∈ (𝐼‘𝑄))) → (℩𝑔 ∈ ((LTrn‘𝐾)‘𝑊)(𝑔‘((oc‘𝐾)‘𝑊)) = 𝑄) ∈ ((LTrn‘𝐾)‘𝑊)) |
36 | | eqid 2740 |
. . . . . 6
⊢ (𝑠 ∈ ((TEndo‘𝐾)‘𝑊), 𝑡 ∈ ((TEndo‘𝐾)‘𝑊) ↦ (ℎ ∈ ((LTrn‘𝐾)‘𝑊) ↦ ((𝑠‘ℎ) ∘ (𝑡‘ℎ)))) = (𝑠 ∈ ((TEndo‘𝐾)‘𝑊), 𝑡 ∈ ((TEndo‘𝐾)‘𝑊) ↦ (ℎ ∈ ((LTrn‘𝐾)‘𝑊) ↦ ((𝑠‘ℎ) ∘ (𝑡‘ℎ)))) |
37 | 9, 36 | tendospdi2 39032 |
. . . . 5
⊢
(((2nd ‘𝑋) ∈ ((TEndo‘𝐾)‘𝑊) ∧ (2nd ‘𝑌) ∈ ((TEndo‘𝐾)‘𝑊) ∧ (℩𝑔 ∈ ((LTrn‘𝐾)‘𝑊)(𝑔‘((oc‘𝐾)‘𝑊)) = 𝑄) ∈ ((LTrn‘𝐾)‘𝑊)) → (((2nd ‘𝑋)(𝑠 ∈ ((TEndo‘𝐾)‘𝑊), 𝑡 ∈ ((TEndo‘𝐾)‘𝑊) ↦ (ℎ ∈ ((LTrn‘𝐾)‘𝑊) ↦ ((𝑠‘ℎ) ∘ (𝑡‘ℎ))))(2nd ‘𝑌))‘(℩𝑔 ∈ ((LTrn‘𝐾)‘𝑊)(𝑔‘((oc‘𝐾)‘𝑊)) = 𝑄)) = (((2nd ‘𝑋)‘(℩𝑔 ∈ ((LTrn‘𝐾)‘𝑊)(𝑔‘((oc‘𝐾)‘𝑊)) = 𝑄)) ∘ ((2nd ‘𝑌)‘(℩𝑔 ∈ ((LTrn‘𝐾)‘𝑊)(𝑔‘((oc‘𝐾)‘𝑊)) = 𝑄)))) |
38 | 26, 28, 35, 37 | syl3anc 1370 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑋 ∈ (𝐼‘𝑄) ∧ 𝑌 ∈ (𝐼‘𝑄))) → (((2nd ‘𝑋)(𝑠 ∈ ((TEndo‘𝐾)‘𝑊), 𝑡 ∈ ((TEndo‘𝐾)‘𝑊) ↦ (ℎ ∈ ((LTrn‘𝐾)‘𝑊) ↦ ((𝑠‘ℎ) ∘ (𝑡‘ℎ))))(2nd ‘𝑌))‘(℩𝑔 ∈ ((LTrn‘𝐾)‘𝑊)(𝑔‘((oc‘𝐾)‘𝑊)) = 𝑄)) = (((2nd ‘𝑋)‘(℩𝑔 ∈ ((LTrn‘𝐾)‘𝑊)(𝑔‘((oc‘𝐾)‘𝑊)) = 𝑄)) ∘ ((2nd ‘𝑌)‘(℩𝑔 ∈ ((LTrn‘𝐾)‘𝑊)(𝑔‘((oc‘𝐾)‘𝑊)) = 𝑄)))) |
39 | 4, 9, 10, 6, 20, 36, 22 | dvhfplusr 39094 |
. . . . . . 7
⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) →
(+g‘(Scalar‘𝑈)) = (𝑠 ∈ ((TEndo‘𝐾)‘𝑊), 𝑡 ∈ ((TEndo‘𝐾)‘𝑊) ↦ (ℎ ∈ ((LTrn‘𝐾)‘𝑊) ↦ ((𝑠‘ℎ) ∘ (𝑡‘ℎ))))) |
40 | 39 | 3ad2ant1 1132 |
. . . . . 6
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑋 ∈ (𝐼‘𝑄) ∧ 𝑌 ∈ (𝐼‘𝑄))) →
(+g‘(Scalar‘𝑈)) = (𝑠 ∈ ((TEndo‘𝐾)‘𝑊), 𝑡 ∈ ((TEndo‘𝐾)‘𝑊) ↦ (ℎ ∈ ((LTrn‘𝐾)‘𝑊) ↦ ((𝑠‘ℎ) ∘ (𝑡‘ℎ))))) |
41 | 40 | oveqd 7288 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑋 ∈ (𝐼‘𝑄) ∧ 𝑌 ∈ (𝐼‘𝑄))) → ((2nd ‘𝑋)(+g‘(Scalar‘𝑈))(2nd ‘𝑌)) = ((2nd
‘𝑋)(𝑠 ∈ ((TEndo‘𝐾)‘𝑊), 𝑡 ∈ ((TEndo‘𝐾)‘𝑊) ↦ (ℎ ∈ ((LTrn‘𝐾)‘𝑊) ↦ ((𝑠‘ℎ) ∘ (𝑡‘ℎ))))(2nd ‘𝑌))) |
42 | 41 | fveq1d 6773 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑋 ∈ (𝐼‘𝑄) ∧ 𝑌 ∈ (𝐼‘𝑄))) → (((2nd ‘𝑋)(+g‘(Scalar‘𝑈))(2nd ‘𝑌))‘(℩𝑔 ∈ ((LTrn‘𝐾)‘𝑊)(𝑔‘((oc‘𝐾)‘𝑊)) = 𝑄)) = (((2nd ‘𝑋)(𝑠 ∈ ((TEndo‘𝐾)‘𝑊), 𝑡 ∈ ((TEndo‘𝐾)‘𝑊) ↦ (ℎ ∈ ((LTrn‘𝐾)‘𝑊) ↦ ((𝑠‘ℎ) ∘ (𝑡‘ℎ))))(2nd ‘𝑌))‘(℩𝑔 ∈ ((LTrn‘𝐾)‘𝑊)(𝑔‘((oc‘𝐾)‘𝑊)) = 𝑄))) |
43 | | eqid 2740 |
. . . . . . 7
⊢
((oc‘𝐾)‘𝑊) = ((oc‘𝐾)‘𝑊) |
44 | 2, 3, 4, 43, 9, 5 | dicelval1sta 39197 |
. . . . . 6
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ 𝑋 ∈ (𝐼‘𝑄)) → (1st ‘𝑋) = ((2nd
‘𝑋)‘(℩𝑔 ∈ ((LTrn‘𝐾)‘𝑊)(𝑔‘((oc‘𝐾)‘𝑊)) = 𝑄))) |
45 | 44 | 3adant3r 1180 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑋 ∈ (𝐼‘𝑄) ∧ 𝑌 ∈ (𝐼‘𝑄))) → (1st ‘𝑋) = ((2nd
‘𝑋)‘(℩𝑔 ∈ ((LTrn‘𝐾)‘𝑊)(𝑔‘((oc‘𝐾)‘𝑊)) = 𝑄))) |
46 | 2, 3, 4, 43, 9, 5 | dicelval1sta 39197 |
. . . . . 6
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ 𝑌 ∈ (𝐼‘𝑄)) → (1st ‘𝑌) = ((2nd
‘𝑌)‘(℩𝑔 ∈ ((LTrn‘𝐾)‘𝑊)(𝑔‘((oc‘𝐾)‘𝑊)) = 𝑄))) |
47 | 46 | 3adant3l 1179 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑋 ∈ (𝐼‘𝑄) ∧ 𝑌 ∈ (𝐼‘𝑄))) → (1st ‘𝑌) = ((2nd
‘𝑌)‘(℩𝑔 ∈ ((LTrn‘𝐾)‘𝑊)(𝑔‘((oc‘𝐾)‘𝑊)) = 𝑄))) |
48 | 45, 47 | coeq12d 5772 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑋 ∈ (𝐼‘𝑄) ∧ 𝑌 ∈ (𝐼‘𝑄))) → ((1st ‘𝑋) ∘ (1st
‘𝑌)) =
(((2nd ‘𝑋)‘(℩𝑔 ∈ ((LTrn‘𝐾)‘𝑊)(𝑔‘((oc‘𝐾)‘𝑊)) = 𝑄)) ∘ ((2nd ‘𝑌)‘(℩𝑔 ∈ ((LTrn‘𝐾)‘𝑊)(𝑔‘((oc‘𝐾)‘𝑊)) = 𝑄)))) |
49 | 38, 42, 48 | 3eqtr4rd 2791 |
. . 3
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑋 ∈ (𝐼‘𝑄) ∧ 𝑌 ∈ (𝐼‘𝑄))) → ((1st ‘𝑋) ∘ (1st
‘𝑌)) =
(((2nd ‘𝑋)(+g‘(Scalar‘𝑈))(2nd ‘𝑌))‘(℩𝑔 ∈ ((LTrn‘𝐾)‘𝑊)(𝑔‘((oc‘𝐾)‘𝑊)) = 𝑄))) |
50 | 4, 9, 10, 36 | tendoplcl 38791 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (2nd ‘𝑋) ∈ ((TEndo‘𝐾)‘𝑊) ∧ (2nd ‘𝑌) ∈ ((TEndo‘𝐾)‘𝑊)) → ((2nd ‘𝑋)(𝑠 ∈ ((TEndo‘𝐾)‘𝑊), 𝑡 ∈ ((TEndo‘𝐾)‘𝑊) ↦ (ℎ ∈ ((LTrn‘𝐾)‘𝑊) ↦ ((𝑠‘ℎ) ∘ (𝑡‘ℎ))))(2nd ‘𝑌)) ∈ ((TEndo‘𝐾)‘𝑊)) |
51 | 1, 26, 28, 50 | syl3anc 1370 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑋 ∈ (𝐼‘𝑄) ∧ 𝑌 ∈ (𝐼‘𝑄))) → ((2nd ‘𝑋)(𝑠 ∈ ((TEndo‘𝐾)‘𝑊), 𝑡 ∈ ((TEndo‘𝐾)‘𝑊) ↦ (ℎ ∈ ((LTrn‘𝐾)‘𝑊) ↦ ((𝑠‘ℎ) ∘ (𝑡‘ℎ))))(2nd ‘𝑌)) ∈ ((TEndo‘𝐾)‘𝑊)) |
52 | 41, 51 | eqeltrd 2841 |
. . 3
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑋 ∈ (𝐼‘𝑄) ∧ 𝑌 ∈ (𝐼‘𝑄))) → ((2nd ‘𝑋)(+g‘(Scalar‘𝑈))(2nd ‘𝑌)) ∈ ((TEndo‘𝐾)‘𝑊)) |
53 | | fvex 6784 |
. . . . . 6
⊢
(1st ‘𝑋) ∈ V |
54 | | fvex 6784 |
. . . . . 6
⊢
(1st ‘𝑌) ∈ V |
55 | 53, 54 | coex 7771 |
. . . . 5
⊢
((1st ‘𝑋) ∘ (1st ‘𝑌)) ∈ V |
56 | | ovex 7304 |
. . . . 5
⊢
((2nd ‘𝑋)(+g‘(Scalar‘𝑈))(2nd ‘𝑌)) ∈ V |
57 | 2, 3, 4, 43, 9, 10, 5, 55, 56 | dicopelval 39187 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) → (〈((1st
‘𝑋) ∘
(1st ‘𝑌)),
((2nd ‘𝑋)(+g‘(Scalar‘𝑈))(2nd ‘𝑌))〉 ∈ (𝐼‘𝑄) ↔ (((1st ‘𝑋) ∘ (1st
‘𝑌)) =
(((2nd ‘𝑋)(+g‘(Scalar‘𝑈))(2nd ‘𝑌))‘(℩𝑔 ∈ ((LTrn‘𝐾)‘𝑊)(𝑔‘((oc‘𝐾)‘𝑊)) = 𝑄)) ∧ ((2nd ‘𝑋)(+g‘(Scalar‘𝑈))(2nd ‘𝑌)) ∈ ((TEndo‘𝐾)‘𝑊)))) |
58 | 57 | 3adant3 1131 |
. . 3
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑋 ∈ (𝐼‘𝑄) ∧ 𝑌 ∈ (𝐼‘𝑄))) → (〈((1st
‘𝑋) ∘
(1st ‘𝑌)),
((2nd ‘𝑋)(+g‘(Scalar‘𝑈))(2nd ‘𝑌))〉 ∈ (𝐼‘𝑄) ↔ (((1st ‘𝑋) ∘ (1st
‘𝑌)) =
(((2nd ‘𝑋)(+g‘(Scalar‘𝑈))(2nd ‘𝑌))‘(℩𝑔 ∈ ((LTrn‘𝐾)‘𝑊)(𝑔‘((oc‘𝐾)‘𝑊)) = 𝑄)) ∧ ((2nd ‘𝑋)(+g‘(Scalar‘𝑈))(2nd ‘𝑌)) ∈ ((TEndo‘𝐾)‘𝑊)))) |
59 | 49, 52, 58 | mpbir2and 710 |
. 2
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑋 ∈ (𝐼‘𝑄) ∧ 𝑌 ∈ (𝐼‘𝑄))) → 〈((1st
‘𝑋) ∘
(1st ‘𝑌)),
((2nd ‘𝑋)(+g‘(Scalar‘𝑈))(2nd ‘𝑌))〉 ∈ (𝐼‘𝑄)) |
60 | 24, 59 | eqeltrd 2841 |
1
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑋 ∈ (𝐼‘𝑄) ∧ 𝑌 ∈ (𝐼‘𝑄))) → (𝑋 + 𝑌) ∈ (𝐼‘𝑄)) |