Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dicvaddcl Structured version   Visualization version   GIF version

Theorem dicvaddcl 40364
Description: Membership in value of the partial isomorphism C is closed under vector sum. (Contributed by NM, 16-Feb-2014.)
Hypotheses
Ref Expression
dicvaddcl.l ≀ = (leβ€˜πΎ)
dicvaddcl.a 𝐴 = (Atomsβ€˜πΎ)
dicvaddcl.h 𝐻 = (LHypβ€˜πΎ)
dicvaddcl.u π‘ˆ = ((DVecHβ€˜πΎ)β€˜π‘Š)
dicvaddcl.i 𝐼 = ((DIsoCβ€˜πΎ)β€˜π‘Š)
dicvaddcl.p + = (+gβ€˜π‘ˆ)
Assertion
Ref Expression
dicvaddcl (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ (𝑋 ∈ (πΌβ€˜π‘„) ∧ π‘Œ ∈ (πΌβ€˜π‘„))) β†’ (𝑋 + π‘Œ) ∈ (πΌβ€˜π‘„))

Proof of Theorem dicvaddcl
Dummy variables 𝑔 β„Ž 𝑠 𝑑 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simp1 1134 . . 3 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ (𝑋 ∈ (πΌβ€˜π‘„) ∧ π‘Œ ∈ (πΌβ€˜π‘„))) β†’ (𝐾 ∈ HL ∧ π‘Š ∈ 𝐻))
2 dicvaddcl.l . . . . . . 7 ≀ = (leβ€˜πΎ)
3 dicvaddcl.a . . . . . . 7 𝐴 = (Atomsβ€˜πΎ)
4 dicvaddcl.h . . . . . . 7 𝐻 = (LHypβ€˜πΎ)
5 dicvaddcl.i . . . . . . 7 𝐼 = ((DIsoCβ€˜πΎ)β€˜π‘Š)
6 dicvaddcl.u . . . . . . 7 π‘ˆ = ((DVecHβ€˜πΎ)β€˜π‘Š)
7 eqid 2730 . . . . . . 7 (Baseβ€˜π‘ˆ) = (Baseβ€˜π‘ˆ)
82, 3, 4, 5, 6, 7dicssdvh 40360 . . . . . 6 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) β†’ (πΌβ€˜π‘„) βŠ† (Baseβ€˜π‘ˆ))
9 eqid 2730 . . . . . . . . 9 ((LTrnβ€˜πΎ)β€˜π‘Š) = ((LTrnβ€˜πΎ)β€˜π‘Š)
10 eqid 2730 . . . . . . . . 9 ((TEndoβ€˜πΎ)β€˜π‘Š) = ((TEndoβ€˜πΎ)β€˜π‘Š)
114, 9, 10, 6, 7dvhvbase 40261 . . . . . . . 8 ((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) β†’ (Baseβ€˜π‘ˆ) = (((LTrnβ€˜πΎ)β€˜π‘Š) Γ— ((TEndoβ€˜πΎ)β€˜π‘Š)))
1211eqcomd 2736 . . . . . . 7 ((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) β†’ (((LTrnβ€˜πΎ)β€˜π‘Š) Γ— ((TEndoβ€˜πΎ)β€˜π‘Š)) = (Baseβ€˜π‘ˆ))
1312adantr 479 . . . . . 6 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) β†’ (((LTrnβ€˜πΎ)β€˜π‘Š) Γ— ((TEndoβ€˜πΎ)β€˜π‘Š)) = (Baseβ€˜π‘ˆ))
148, 13sseqtrrd 4022 . . . . 5 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) β†’ (πΌβ€˜π‘„) βŠ† (((LTrnβ€˜πΎ)β€˜π‘Š) Γ— ((TEndoβ€˜πΎ)β€˜π‘Š)))
15143adant3 1130 . . . 4 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ (𝑋 ∈ (πΌβ€˜π‘„) ∧ π‘Œ ∈ (πΌβ€˜π‘„))) β†’ (πΌβ€˜π‘„) βŠ† (((LTrnβ€˜πΎ)β€˜π‘Š) Γ— ((TEndoβ€˜πΎ)β€˜π‘Š)))
16 simp3l 1199 . . . 4 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ (𝑋 ∈ (πΌβ€˜π‘„) ∧ π‘Œ ∈ (πΌβ€˜π‘„))) β†’ 𝑋 ∈ (πΌβ€˜π‘„))
1715, 16sseldd 3982 . . 3 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ (𝑋 ∈ (πΌβ€˜π‘„) ∧ π‘Œ ∈ (πΌβ€˜π‘„))) β†’ 𝑋 ∈ (((LTrnβ€˜πΎ)β€˜π‘Š) Γ— ((TEndoβ€˜πΎ)β€˜π‘Š)))
18 simp3r 1200 . . . 4 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ (𝑋 ∈ (πΌβ€˜π‘„) ∧ π‘Œ ∈ (πΌβ€˜π‘„))) β†’ π‘Œ ∈ (πΌβ€˜π‘„))
1915, 18sseldd 3982 . . 3 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ (𝑋 ∈ (πΌβ€˜π‘„) ∧ π‘Œ ∈ (πΌβ€˜π‘„))) β†’ π‘Œ ∈ (((LTrnβ€˜πΎ)β€˜π‘Š) Γ— ((TEndoβ€˜πΎ)β€˜π‘Š)))
20 eqid 2730 . . . 4 (Scalarβ€˜π‘ˆ) = (Scalarβ€˜π‘ˆ)
21 dicvaddcl.p . . . 4 + = (+gβ€˜π‘ˆ)
22 eqid 2730 . . . 4 (+gβ€˜(Scalarβ€˜π‘ˆ)) = (+gβ€˜(Scalarβ€˜π‘ˆ))
234, 9, 10, 6, 20, 21, 22dvhvadd 40266 . . 3 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑋 ∈ (((LTrnβ€˜πΎ)β€˜π‘Š) Γ— ((TEndoβ€˜πΎ)β€˜π‘Š)) ∧ π‘Œ ∈ (((LTrnβ€˜πΎ)β€˜π‘Š) Γ— ((TEndoβ€˜πΎ)β€˜π‘Š)))) β†’ (𝑋 + π‘Œ) = ⟨((1st β€˜π‘‹) ∘ (1st β€˜π‘Œ)), ((2nd β€˜π‘‹)(+gβ€˜(Scalarβ€˜π‘ˆ))(2nd β€˜π‘Œ))⟩)
241, 17, 19, 23syl12anc 833 . 2 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ (𝑋 ∈ (πΌβ€˜π‘„) ∧ π‘Œ ∈ (πΌβ€˜π‘„))) β†’ (𝑋 + π‘Œ) = ⟨((1st β€˜π‘‹) ∘ (1st β€˜π‘Œ)), ((2nd β€˜π‘‹)(+gβ€˜(Scalarβ€˜π‘ˆ))(2nd β€˜π‘Œ))⟩)
252, 3, 4, 10, 5dicelval2nd 40363 . . . . . 6 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ 𝑋 ∈ (πΌβ€˜π‘„)) β†’ (2nd β€˜π‘‹) ∈ ((TEndoβ€˜πΎ)β€˜π‘Š))
26253adant3r 1179 . . . . 5 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ (𝑋 ∈ (πΌβ€˜π‘„) ∧ π‘Œ ∈ (πΌβ€˜π‘„))) β†’ (2nd β€˜π‘‹) ∈ ((TEndoβ€˜πΎ)β€˜π‘Š))
272, 3, 4, 10, 5dicelval2nd 40363 . . . . . 6 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ π‘Œ ∈ (πΌβ€˜π‘„)) β†’ (2nd β€˜π‘Œ) ∈ ((TEndoβ€˜πΎ)β€˜π‘Š))
28273adant3l 1178 . . . . 5 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ (𝑋 ∈ (πΌβ€˜π‘„) ∧ π‘Œ ∈ (πΌβ€˜π‘„))) β†’ (2nd β€˜π‘Œ) ∈ ((TEndoβ€˜πΎ)β€˜π‘Š))
29 eqid 2730 . . . . . . . 8 (ocβ€˜πΎ) = (ocβ€˜πΎ)
302, 29, 3, 4lhpocnel 39192 . . . . . . 7 ((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) β†’ (((ocβ€˜πΎ)β€˜π‘Š) ∈ 𝐴 ∧ Β¬ ((ocβ€˜πΎ)β€˜π‘Š) ≀ π‘Š))
31303ad2ant1 1131 . . . . . 6 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ (𝑋 ∈ (πΌβ€˜π‘„) ∧ π‘Œ ∈ (πΌβ€˜π‘„))) β†’ (((ocβ€˜πΎ)β€˜π‘Š) ∈ 𝐴 ∧ Β¬ ((ocβ€˜πΎ)β€˜π‘Š) ≀ π‘Š))
32 simp2 1135 . . . . . 6 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ (𝑋 ∈ (πΌβ€˜π‘„) ∧ π‘Œ ∈ (πΌβ€˜π‘„))) β†’ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š))
33 eqid 2730 . . . . . . 7 (℩𝑔 ∈ ((LTrnβ€˜πΎ)β€˜π‘Š)(π‘”β€˜((ocβ€˜πΎ)β€˜π‘Š)) = 𝑄) = (℩𝑔 ∈ ((LTrnβ€˜πΎ)β€˜π‘Š)(π‘”β€˜((ocβ€˜πΎ)β€˜π‘Š)) = 𝑄)
342, 3, 4, 9, 33ltrniotacl 39753 . . . . . 6 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (((ocβ€˜πΎ)β€˜π‘Š) ∈ 𝐴 ∧ Β¬ ((ocβ€˜πΎ)β€˜π‘Š) ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) β†’ (℩𝑔 ∈ ((LTrnβ€˜πΎ)β€˜π‘Š)(π‘”β€˜((ocβ€˜πΎ)β€˜π‘Š)) = 𝑄) ∈ ((LTrnβ€˜πΎ)β€˜π‘Š))
351, 31, 32, 34syl3anc 1369 . . . . 5 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ (𝑋 ∈ (πΌβ€˜π‘„) ∧ π‘Œ ∈ (πΌβ€˜π‘„))) β†’ (℩𝑔 ∈ ((LTrnβ€˜πΎ)β€˜π‘Š)(π‘”β€˜((ocβ€˜πΎ)β€˜π‘Š)) = 𝑄) ∈ ((LTrnβ€˜πΎ)β€˜π‘Š))
36 eqid 2730 . . . . . 6 (𝑠 ∈ ((TEndoβ€˜πΎ)β€˜π‘Š), 𝑑 ∈ ((TEndoβ€˜πΎ)β€˜π‘Š) ↦ (β„Ž ∈ ((LTrnβ€˜πΎ)β€˜π‘Š) ↦ ((π‘ β€˜β„Ž) ∘ (π‘‘β€˜β„Ž)))) = (𝑠 ∈ ((TEndoβ€˜πΎ)β€˜π‘Š), 𝑑 ∈ ((TEndoβ€˜πΎ)β€˜π‘Š) ↦ (β„Ž ∈ ((LTrnβ€˜πΎ)β€˜π‘Š) ↦ ((π‘ β€˜β„Ž) ∘ (π‘‘β€˜β„Ž))))
379, 36tendospdi2 40196 . . . . 5 (((2nd β€˜π‘‹) ∈ ((TEndoβ€˜πΎ)β€˜π‘Š) ∧ (2nd β€˜π‘Œ) ∈ ((TEndoβ€˜πΎ)β€˜π‘Š) ∧ (℩𝑔 ∈ ((LTrnβ€˜πΎ)β€˜π‘Š)(π‘”β€˜((ocβ€˜πΎ)β€˜π‘Š)) = 𝑄) ∈ ((LTrnβ€˜πΎ)β€˜π‘Š)) β†’ (((2nd β€˜π‘‹)(𝑠 ∈ ((TEndoβ€˜πΎ)β€˜π‘Š), 𝑑 ∈ ((TEndoβ€˜πΎ)β€˜π‘Š) ↦ (β„Ž ∈ ((LTrnβ€˜πΎ)β€˜π‘Š) ↦ ((π‘ β€˜β„Ž) ∘ (π‘‘β€˜β„Ž))))(2nd β€˜π‘Œ))β€˜(℩𝑔 ∈ ((LTrnβ€˜πΎ)β€˜π‘Š)(π‘”β€˜((ocβ€˜πΎ)β€˜π‘Š)) = 𝑄)) = (((2nd β€˜π‘‹)β€˜(℩𝑔 ∈ ((LTrnβ€˜πΎ)β€˜π‘Š)(π‘”β€˜((ocβ€˜πΎ)β€˜π‘Š)) = 𝑄)) ∘ ((2nd β€˜π‘Œ)β€˜(℩𝑔 ∈ ((LTrnβ€˜πΎ)β€˜π‘Š)(π‘”β€˜((ocβ€˜πΎ)β€˜π‘Š)) = 𝑄))))
3826, 28, 35, 37syl3anc 1369 . . . 4 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ (𝑋 ∈ (πΌβ€˜π‘„) ∧ π‘Œ ∈ (πΌβ€˜π‘„))) β†’ (((2nd β€˜π‘‹)(𝑠 ∈ ((TEndoβ€˜πΎ)β€˜π‘Š), 𝑑 ∈ ((TEndoβ€˜πΎ)β€˜π‘Š) ↦ (β„Ž ∈ ((LTrnβ€˜πΎ)β€˜π‘Š) ↦ ((π‘ β€˜β„Ž) ∘ (π‘‘β€˜β„Ž))))(2nd β€˜π‘Œ))β€˜(℩𝑔 ∈ ((LTrnβ€˜πΎ)β€˜π‘Š)(π‘”β€˜((ocβ€˜πΎ)β€˜π‘Š)) = 𝑄)) = (((2nd β€˜π‘‹)β€˜(℩𝑔 ∈ ((LTrnβ€˜πΎ)β€˜π‘Š)(π‘”β€˜((ocβ€˜πΎ)β€˜π‘Š)) = 𝑄)) ∘ ((2nd β€˜π‘Œ)β€˜(℩𝑔 ∈ ((LTrnβ€˜πΎ)β€˜π‘Š)(π‘”β€˜((ocβ€˜πΎ)β€˜π‘Š)) = 𝑄))))
394, 9, 10, 6, 20, 36, 22dvhfplusr 40258 . . . . . . 7 ((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) β†’ (+gβ€˜(Scalarβ€˜π‘ˆ)) = (𝑠 ∈ ((TEndoβ€˜πΎ)β€˜π‘Š), 𝑑 ∈ ((TEndoβ€˜πΎ)β€˜π‘Š) ↦ (β„Ž ∈ ((LTrnβ€˜πΎ)β€˜π‘Š) ↦ ((π‘ β€˜β„Ž) ∘ (π‘‘β€˜β„Ž)))))
40393ad2ant1 1131 . . . . . 6 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ (𝑋 ∈ (πΌβ€˜π‘„) ∧ π‘Œ ∈ (πΌβ€˜π‘„))) β†’ (+gβ€˜(Scalarβ€˜π‘ˆ)) = (𝑠 ∈ ((TEndoβ€˜πΎ)β€˜π‘Š), 𝑑 ∈ ((TEndoβ€˜πΎ)β€˜π‘Š) ↦ (β„Ž ∈ ((LTrnβ€˜πΎ)β€˜π‘Š) ↦ ((π‘ β€˜β„Ž) ∘ (π‘‘β€˜β„Ž)))))
4140oveqd 7428 . . . . 5 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ (𝑋 ∈ (πΌβ€˜π‘„) ∧ π‘Œ ∈ (πΌβ€˜π‘„))) β†’ ((2nd β€˜π‘‹)(+gβ€˜(Scalarβ€˜π‘ˆ))(2nd β€˜π‘Œ)) = ((2nd β€˜π‘‹)(𝑠 ∈ ((TEndoβ€˜πΎ)β€˜π‘Š), 𝑑 ∈ ((TEndoβ€˜πΎ)β€˜π‘Š) ↦ (β„Ž ∈ ((LTrnβ€˜πΎ)β€˜π‘Š) ↦ ((π‘ β€˜β„Ž) ∘ (π‘‘β€˜β„Ž))))(2nd β€˜π‘Œ)))
4241fveq1d 6892 . . . 4 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ (𝑋 ∈ (πΌβ€˜π‘„) ∧ π‘Œ ∈ (πΌβ€˜π‘„))) β†’ (((2nd β€˜π‘‹)(+gβ€˜(Scalarβ€˜π‘ˆ))(2nd β€˜π‘Œ))β€˜(℩𝑔 ∈ ((LTrnβ€˜πΎ)β€˜π‘Š)(π‘”β€˜((ocβ€˜πΎ)β€˜π‘Š)) = 𝑄)) = (((2nd β€˜π‘‹)(𝑠 ∈ ((TEndoβ€˜πΎ)β€˜π‘Š), 𝑑 ∈ ((TEndoβ€˜πΎ)β€˜π‘Š) ↦ (β„Ž ∈ ((LTrnβ€˜πΎ)β€˜π‘Š) ↦ ((π‘ β€˜β„Ž) ∘ (π‘‘β€˜β„Ž))))(2nd β€˜π‘Œ))β€˜(℩𝑔 ∈ ((LTrnβ€˜πΎ)β€˜π‘Š)(π‘”β€˜((ocβ€˜πΎ)β€˜π‘Š)) = 𝑄)))
43 eqid 2730 . . . . . . 7 ((ocβ€˜πΎ)β€˜π‘Š) = ((ocβ€˜πΎ)β€˜π‘Š)
442, 3, 4, 43, 9, 5dicelval1sta 40361 . . . . . 6 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ 𝑋 ∈ (πΌβ€˜π‘„)) β†’ (1st β€˜π‘‹) = ((2nd β€˜π‘‹)β€˜(℩𝑔 ∈ ((LTrnβ€˜πΎ)β€˜π‘Š)(π‘”β€˜((ocβ€˜πΎ)β€˜π‘Š)) = 𝑄)))
45443adant3r 1179 . . . . 5 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ (𝑋 ∈ (πΌβ€˜π‘„) ∧ π‘Œ ∈ (πΌβ€˜π‘„))) β†’ (1st β€˜π‘‹) = ((2nd β€˜π‘‹)β€˜(℩𝑔 ∈ ((LTrnβ€˜πΎ)β€˜π‘Š)(π‘”β€˜((ocβ€˜πΎ)β€˜π‘Š)) = 𝑄)))
462, 3, 4, 43, 9, 5dicelval1sta 40361 . . . . . 6 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ π‘Œ ∈ (πΌβ€˜π‘„)) β†’ (1st β€˜π‘Œ) = ((2nd β€˜π‘Œ)β€˜(℩𝑔 ∈ ((LTrnβ€˜πΎ)β€˜π‘Š)(π‘”β€˜((ocβ€˜πΎ)β€˜π‘Š)) = 𝑄)))
47463adant3l 1178 . . . . 5 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ (𝑋 ∈ (πΌβ€˜π‘„) ∧ π‘Œ ∈ (πΌβ€˜π‘„))) β†’ (1st β€˜π‘Œ) = ((2nd β€˜π‘Œ)β€˜(℩𝑔 ∈ ((LTrnβ€˜πΎ)β€˜π‘Š)(π‘”β€˜((ocβ€˜πΎ)β€˜π‘Š)) = 𝑄)))
4845, 47coeq12d 5863 . . . 4 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ (𝑋 ∈ (πΌβ€˜π‘„) ∧ π‘Œ ∈ (πΌβ€˜π‘„))) β†’ ((1st β€˜π‘‹) ∘ (1st β€˜π‘Œ)) = (((2nd β€˜π‘‹)β€˜(℩𝑔 ∈ ((LTrnβ€˜πΎ)β€˜π‘Š)(π‘”β€˜((ocβ€˜πΎ)β€˜π‘Š)) = 𝑄)) ∘ ((2nd β€˜π‘Œ)β€˜(℩𝑔 ∈ ((LTrnβ€˜πΎ)β€˜π‘Š)(π‘”β€˜((ocβ€˜πΎ)β€˜π‘Š)) = 𝑄))))
4938, 42, 483eqtr4rd 2781 . . 3 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ (𝑋 ∈ (πΌβ€˜π‘„) ∧ π‘Œ ∈ (πΌβ€˜π‘„))) β†’ ((1st β€˜π‘‹) ∘ (1st β€˜π‘Œ)) = (((2nd β€˜π‘‹)(+gβ€˜(Scalarβ€˜π‘ˆ))(2nd β€˜π‘Œ))β€˜(℩𝑔 ∈ ((LTrnβ€˜πΎ)β€˜π‘Š)(π‘”β€˜((ocβ€˜πΎ)β€˜π‘Š)) = 𝑄)))
504, 9, 10, 36tendoplcl 39955 . . . . 5 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (2nd β€˜π‘‹) ∈ ((TEndoβ€˜πΎ)β€˜π‘Š) ∧ (2nd β€˜π‘Œ) ∈ ((TEndoβ€˜πΎ)β€˜π‘Š)) β†’ ((2nd β€˜π‘‹)(𝑠 ∈ ((TEndoβ€˜πΎ)β€˜π‘Š), 𝑑 ∈ ((TEndoβ€˜πΎ)β€˜π‘Š) ↦ (β„Ž ∈ ((LTrnβ€˜πΎ)β€˜π‘Š) ↦ ((π‘ β€˜β„Ž) ∘ (π‘‘β€˜β„Ž))))(2nd β€˜π‘Œ)) ∈ ((TEndoβ€˜πΎ)β€˜π‘Š))
511, 26, 28, 50syl3anc 1369 . . . 4 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ (𝑋 ∈ (πΌβ€˜π‘„) ∧ π‘Œ ∈ (πΌβ€˜π‘„))) β†’ ((2nd β€˜π‘‹)(𝑠 ∈ ((TEndoβ€˜πΎ)β€˜π‘Š), 𝑑 ∈ ((TEndoβ€˜πΎ)β€˜π‘Š) ↦ (β„Ž ∈ ((LTrnβ€˜πΎ)β€˜π‘Š) ↦ ((π‘ β€˜β„Ž) ∘ (π‘‘β€˜β„Ž))))(2nd β€˜π‘Œ)) ∈ ((TEndoβ€˜πΎ)β€˜π‘Š))
5241, 51eqeltrd 2831 . . 3 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ (𝑋 ∈ (πΌβ€˜π‘„) ∧ π‘Œ ∈ (πΌβ€˜π‘„))) β†’ ((2nd β€˜π‘‹)(+gβ€˜(Scalarβ€˜π‘ˆ))(2nd β€˜π‘Œ)) ∈ ((TEndoβ€˜πΎ)β€˜π‘Š))
53 fvex 6903 . . . . . 6 (1st β€˜π‘‹) ∈ V
54 fvex 6903 . . . . . 6 (1st β€˜π‘Œ) ∈ V
5553, 54coex 7923 . . . . 5 ((1st β€˜π‘‹) ∘ (1st β€˜π‘Œ)) ∈ V
56 ovex 7444 . . . . 5 ((2nd β€˜π‘‹)(+gβ€˜(Scalarβ€˜π‘ˆ))(2nd β€˜π‘Œ)) ∈ V
572, 3, 4, 43, 9, 10, 5, 55, 56dicopelval 40351 . . . 4 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) β†’ (⟨((1st β€˜π‘‹) ∘ (1st β€˜π‘Œ)), ((2nd β€˜π‘‹)(+gβ€˜(Scalarβ€˜π‘ˆ))(2nd β€˜π‘Œ))⟩ ∈ (πΌβ€˜π‘„) ↔ (((1st β€˜π‘‹) ∘ (1st β€˜π‘Œ)) = (((2nd β€˜π‘‹)(+gβ€˜(Scalarβ€˜π‘ˆ))(2nd β€˜π‘Œ))β€˜(℩𝑔 ∈ ((LTrnβ€˜πΎ)β€˜π‘Š)(π‘”β€˜((ocβ€˜πΎ)β€˜π‘Š)) = 𝑄)) ∧ ((2nd β€˜π‘‹)(+gβ€˜(Scalarβ€˜π‘ˆ))(2nd β€˜π‘Œ)) ∈ ((TEndoβ€˜πΎ)β€˜π‘Š))))
58573adant3 1130 . . 3 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ (𝑋 ∈ (πΌβ€˜π‘„) ∧ π‘Œ ∈ (πΌβ€˜π‘„))) β†’ (⟨((1st β€˜π‘‹) ∘ (1st β€˜π‘Œ)), ((2nd β€˜π‘‹)(+gβ€˜(Scalarβ€˜π‘ˆ))(2nd β€˜π‘Œ))⟩ ∈ (πΌβ€˜π‘„) ↔ (((1st β€˜π‘‹) ∘ (1st β€˜π‘Œ)) = (((2nd β€˜π‘‹)(+gβ€˜(Scalarβ€˜π‘ˆ))(2nd β€˜π‘Œ))β€˜(℩𝑔 ∈ ((LTrnβ€˜πΎ)β€˜π‘Š)(π‘”β€˜((ocβ€˜πΎ)β€˜π‘Š)) = 𝑄)) ∧ ((2nd β€˜π‘‹)(+gβ€˜(Scalarβ€˜π‘ˆ))(2nd β€˜π‘Œ)) ∈ ((TEndoβ€˜πΎ)β€˜π‘Š))))
5949, 52, 58mpbir2and 709 . 2 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ (𝑋 ∈ (πΌβ€˜π‘„) ∧ π‘Œ ∈ (πΌβ€˜π‘„))) β†’ ⟨((1st β€˜π‘‹) ∘ (1st β€˜π‘Œ)), ((2nd β€˜π‘‹)(+gβ€˜(Scalarβ€˜π‘ˆ))(2nd β€˜π‘Œ))⟩ ∈ (πΌβ€˜π‘„))
6024, 59eqeltrd 2831 1 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ (𝑋 ∈ (πΌβ€˜π‘„) ∧ π‘Œ ∈ (πΌβ€˜π‘„))) β†’ (𝑋 + π‘Œ) ∈ (πΌβ€˜π‘„))
Colors of variables: wff setvar class
Syntax hints:  Β¬ wn 3   β†’ wi 4   ↔ wb 205   ∧ wa 394   ∧ w3a 1085   = wceq 1539   ∈ wcel 2104   βŠ† wss 3947  βŸ¨cop 4633   class class class wbr 5147   ↦ cmpt 5230   Γ— cxp 5673   ∘ ccom 5679  β€˜cfv 6542  β„©crio 7366  (class class class)co 7411   ∈ cmpo 7413  1st c1st 7975  2nd c2nd 7976  Basecbs 17148  +gcplusg 17201  Scalarcsca 17204  lecple 17208  occoc 17209  Atomscatm 38436  HLchlt 38523  LHypclh 39158  LTrncltrn 39275  TEndoctendo 39926  DVecHcdvh 40252  DIsoCcdic 40346
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-11 2152  ax-12 2169  ax-ext 2701  ax-rep 5284  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7727  ax-cnex 11168  ax-resscn 11169  ax-1cn 11170  ax-icn 11171  ax-addcl 11172  ax-addrcl 11173  ax-mulcl 11174  ax-mulrcl 11175  ax-mulcom 11176  ax-addass 11177  ax-mulass 11178  ax-distr 11179  ax-i2m1 11180  ax-1ne0 11181  ax-1rid 11182  ax-rnegex 11183  ax-rrecex 11184  ax-cnre 11185  ax-pre-lttri 11186  ax-pre-lttrn 11187  ax-pre-ltadd 11188  ax-pre-mulgt0 11189  ax-riotaBAD 38126
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2532  df-eu 2561  df-clab 2708  df-cleq 2722  df-clel 2808  df-nfc 2883  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3374  df-reu 3375  df-rab 3431  df-v 3474  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-tp 4632  df-op 4634  df-uni 4908  df-iun 4998  df-iin 4999  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5573  df-eprel 5579  df-po 5587  df-so 5588  df-fr 5630  df-we 5632  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-pred 6299  df-ord 6366  df-on 6367  df-lim 6368  df-suc 6369  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-riota 7367  df-ov 7414  df-oprab 7415  df-mpo 7416  df-om 7858  df-1st 7977  df-2nd 7978  df-undef 8260  df-frecs 8268  df-wrecs 8299  df-recs 8373  df-rdg 8412  df-1o 8468  df-er 8705  df-map 8824  df-en 8942  df-dom 8943  df-sdom 8944  df-fin 8945  df-pnf 11254  df-mnf 11255  df-xr 11256  df-ltxr 11257  df-le 11258  df-sub 11450  df-neg 11451  df-nn 12217  df-2 12279  df-3 12280  df-4 12281  df-5 12282  df-6 12283  df-n0 12477  df-z 12563  df-uz 12827  df-fz 13489  df-struct 17084  df-slot 17119  df-ndx 17131  df-base 17149  df-plusg 17214  df-mulr 17215  df-sca 17217  df-vsca 17218  df-proset 18252  df-poset 18270  df-plt 18287  df-lub 18303  df-glb 18304  df-join 18305  df-meet 18306  df-p0 18382  df-p1 18383  df-lat 18389  df-clat 18456  df-oposet 38349  df-ol 38351  df-oml 38352  df-covers 38439  df-ats 38440  df-atl 38471  df-cvlat 38495  df-hlat 38524  df-llines 38672  df-lplanes 38673  df-lvols 38674  df-lines 38675  df-psubsp 38677  df-pmap 38678  df-padd 38970  df-lhyp 39162  df-laut 39163  df-ldil 39278  df-ltrn 39279  df-trl 39333  df-tendo 39929  df-edring 39931  df-dvech 40253  df-dic 40347
This theorem is referenced by:  diclss  40367
  Copyright terms: Public domain W3C validator