Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dicvaddcl Structured version   Visualization version   GIF version

Theorem dicvaddcl 41184
Description: Membership in value of the partial isomorphism C is closed under vector sum. (Contributed by NM, 16-Feb-2014.)
Hypotheses
Ref Expression
dicvaddcl.l = (le‘𝐾)
dicvaddcl.a 𝐴 = (Atoms‘𝐾)
dicvaddcl.h 𝐻 = (LHyp‘𝐾)
dicvaddcl.u 𝑈 = ((DVecH‘𝐾)‘𝑊)
dicvaddcl.i 𝐼 = ((DIsoC‘𝐾)‘𝑊)
dicvaddcl.p + = (+g𝑈)
Assertion
Ref Expression
dicvaddcl (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑋 ∈ (𝐼𝑄) ∧ 𝑌 ∈ (𝐼𝑄))) → (𝑋 + 𝑌) ∈ (𝐼𝑄))

Proof of Theorem dicvaddcl
Dummy variables 𝑔 𝑠 𝑡 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simp1 1136 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑋 ∈ (𝐼𝑄) ∧ 𝑌 ∈ (𝐼𝑄))) → (𝐾 ∈ HL ∧ 𝑊𝐻))
2 dicvaddcl.l . . . . . . 7 = (le‘𝐾)
3 dicvaddcl.a . . . . . . 7 𝐴 = (Atoms‘𝐾)
4 dicvaddcl.h . . . . . . 7 𝐻 = (LHyp‘𝐾)
5 dicvaddcl.i . . . . . . 7 𝐼 = ((DIsoC‘𝐾)‘𝑊)
6 dicvaddcl.u . . . . . . 7 𝑈 = ((DVecH‘𝐾)‘𝑊)
7 eqid 2729 . . . . . . 7 (Base‘𝑈) = (Base‘𝑈)
82, 3, 4, 5, 6, 7dicssdvh 41180 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) → (𝐼𝑄) ⊆ (Base‘𝑈))
9 eqid 2729 . . . . . . . . 9 ((LTrn‘𝐾)‘𝑊) = ((LTrn‘𝐾)‘𝑊)
10 eqid 2729 . . . . . . . . 9 ((TEndo‘𝐾)‘𝑊) = ((TEndo‘𝐾)‘𝑊)
114, 9, 10, 6, 7dvhvbase 41081 . . . . . . . 8 ((𝐾 ∈ HL ∧ 𝑊𝐻) → (Base‘𝑈) = (((LTrn‘𝐾)‘𝑊) × ((TEndo‘𝐾)‘𝑊)))
1211eqcomd 2735 . . . . . . 7 ((𝐾 ∈ HL ∧ 𝑊𝐻) → (((LTrn‘𝐾)‘𝑊) × ((TEndo‘𝐾)‘𝑊)) = (Base‘𝑈))
1312adantr 480 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) → (((LTrn‘𝐾)‘𝑊) × ((TEndo‘𝐾)‘𝑊)) = (Base‘𝑈))
148, 13sseqtrrd 3984 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) → (𝐼𝑄) ⊆ (((LTrn‘𝐾)‘𝑊) × ((TEndo‘𝐾)‘𝑊)))
15143adant3 1132 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑋 ∈ (𝐼𝑄) ∧ 𝑌 ∈ (𝐼𝑄))) → (𝐼𝑄) ⊆ (((LTrn‘𝐾)‘𝑊) × ((TEndo‘𝐾)‘𝑊)))
16 simp3l 1202 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑋 ∈ (𝐼𝑄) ∧ 𝑌 ∈ (𝐼𝑄))) → 𝑋 ∈ (𝐼𝑄))
1715, 16sseldd 3947 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑋 ∈ (𝐼𝑄) ∧ 𝑌 ∈ (𝐼𝑄))) → 𝑋 ∈ (((LTrn‘𝐾)‘𝑊) × ((TEndo‘𝐾)‘𝑊)))
18 simp3r 1203 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑋 ∈ (𝐼𝑄) ∧ 𝑌 ∈ (𝐼𝑄))) → 𝑌 ∈ (𝐼𝑄))
1915, 18sseldd 3947 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑋 ∈ (𝐼𝑄) ∧ 𝑌 ∈ (𝐼𝑄))) → 𝑌 ∈ (((LTrn‘𝐾)‘𝑊) × ((TEndo‘𝐾)‘𝑊)))
20 eqid 2729 . . . 4 (Scalar‘𝑈) = (Scalar‘𝑈)
21 dicvaddcl.p . . . 4 + = (+g𝑈)
22 eqid 2729 . . . 4 (+g‘(Scalar‘𝑈)) = (+g‘(Scalar‘𝑈))
234, 9, 10, 6, 20, 21, 22dvhvadd 41086 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋 ∈ (((LTrn‘𝐾)‘𝑊) × ((TEndo‘𝐾)‘𝑊)) ∧ 𝑌 ∈ (((LTrn‘𝐾)‘𝑊) × ((TEndo‘𝐾)‘𝑊)))) → (𝑋 + 𝑌) = ⟨((1st𝑋) ∘ (1st𝑌)), ((2nd𝑋)(+g‘(Scalar‘𝑈))(2nd𝑌))⟩)
241, 17, 19, 23syl12anc 836 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑋 ∈ (𝐼𝑄) ∧ 𝑌 ∈ (𝐼𝑄))) → (𝑋 + 𝑌) = ⟨((1st𝑋) ∘ (1st𝑌)), ((2nd𝑋)(+g‘(Scalar‘𝑈))(2nd𝑌))⟩)
252, 3, 4, 10, 5dicelval2nd 41183 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝑋 ∈ (𝐼𝑄)) → (2nd𝑋) ∈ ((TEndo‘𝐾)‘𝑊))
26253adant3r 1182 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑋 ∈ (𝐼𝑄) ∧ 𝑌 ∈ (𝐼𝑄))) → (2nd𝑋) ∈ ((TEndo‘𝐾)‘𝑊))
272, 3, 4, 10, 5dicelval2nd 41183 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝑌 ∈ (𝐼𝑄)) → (2nd𝑌) ∈ ((TEndo‘𝐾)‘𝑊))
28273adant3l 1181 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑋 ∈ (𝐼𝑄) ∧ 𝑌 ∈ (𝐼𝑄))) → (2nd𝑌) ∈ ((TEndo‘𝐾)‘𝑊))
29 eqid 2729 . . . . . . . 8 (oc‘𝐾) = (oc‘𝐾)
302, 29, 3, 4lhpocnel 40012 . . . . . . 7 ((𝐾 ∈ HL ∧ 𝑊𝐻) → (((oc‘𝐾)‘𝑊) ∈ 𝐴 ∧ ¬ ((oc‘𝐾)‘𝑊) 𝑊))
31303ad2ant1 1133 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑋 ∈ (𝐼𝑄) ∧ 𝑌 ∈ (𝐼𝑄))) → (((oc‘𝐾)‘𝑊) ∈ 𝐴 ∧ ¬ ((oc‘𝐾)‘𝑊) 𝑊))
32 simp2 1137 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑋 ∈ (𝐼𝑄) ∧ 𝑌 ∈ (𝐼𝑄))) → (𝑄𝐴 ∧ ¬ 𝑄 𝑊))
33 eqid 2729 . . . . . . 7 (𝑔 ∈ ((LTrn‘𝐾)‘𝑊)(𝑔‘((oc‘𝐾)‘𝑊)) = 𝑄) = (𝑔 ∈ ((LTrn‘𝐾)‘𝑊)(𝑔‘((oc‘𝐾)‘𝑊)) = 𝑄)
342, 3, 4, 9, 33ltrniotacl 40573 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (((oc‘𝐾)‘𝑊) ∈ 𝐴 ∧ ¬ ((oc‘𝐾)‘𝑊) 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) → (𝑔 ∈ ((LTrn‘𝐾)‘𝑊)(𝑔‘((oc‘𝐾)‘𝑊)) = 𝑄) ∈ ((LTrn‘𝐾)‘𝑊))
351, 31, 32, 34syl3anc 1373 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑋 ∈ (𝐼𝑄) ∧ 𝑌 ∈ (𝐼𝑄))) → (𝑔 ∈ ((LTrn‘𝐾)‘𝑊)(𝑔‘((oc‘𝐾)‘𝑊)) = 𝑄) ∈ ((LTrn‘𝐾)‘𝑊))
36 eqid 2729 . . . . . 6 (𝑠 ∈ ((TEndo‘𝐾)‘𝑊), 𝑡 ∈ ((TEndo‘𝐾)‘𝑊) ↦ ( ∈ ((LTrn‘𝐾)‘𝑊) ↦ ((𝑠) ∘ (𝑡)))) = (𝑠 ∈ ((TEndo‘𝐾)‘𝑊), 𝑡 ∈ ((TEndo‘𝐾)‘𝑊) ↦ ( ∈ ((LTrn‘𝐾)‘𝑊) ↦ ((𝑠) ∘ (𝑡))))
379, 36tendospdi2 41016 . . . . 5 (((2nd𝑋) ∈ ((TEndo‘𝐾)‘𝑊) ∧ (2nd𝑌) ∈ ((TEndo‘𝐾)‘𝑊) ∧ (𝑔 ∈ ((LTrn‘𝐾)‘𝑊)(𝑔‘((oc‘𝐾)‘𝑊)) = 𝑄) ∈ ((LTrn‘𝐾)‘𝑊)) → (((2nd𝑋)(𝑠 ∈ ((TEndo‘𝐾)‘𝑊), 𝑡 ∈ ((TEndo‘𝐾)‘𝑊) ↦ ( ∈ ((LTrn‘𝐾)‘𝑊) ↦ ((𝑠) ∘ (𝑡))))(2nd𝑌))‘(𝑔 ∈ ((LTrn‘𝐾)‘𝑊)(𝑔‘((oc‘𝐾)‘𝑊)) = 𝑄)) = (((2nd𝑋)‘(𝑔 ∈ ((LTrn‘𝐾)‘𝑊)(𝑔‘((oc‘𝐾)‘𝑊)) = 𝑄)) ∘ ((2nd𝑌)‘(𝑔 ∈ ((LTrn‘𝐾)‘𝑊)(𝑔‘((oc‘𝐾)‘𝑊)) = 𝑄))))
3826, 28, 35, 37syl3anc 1373 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑋 ∈ (𝐼𝑄) ∧ 𝑌 ∈ (𝐼𝑄))) → (((2nd𝑋)(𝑠 ∈ ((TEndo‘𝐾)‘𝑊), 𝑡 ∈ ((TEndo‘𝐾)‘𝑊) ↦ ( ∈ ((LTrn‘𝐾)‘𝑊) ↦ ((𝑠) ∘ (𝑡))))(2nd𝑌))‘(𝑔 ∈ ((LTrn‘𝐾)‘𝑊)(𝑔‘((oc‘𝐾)‘𝑊)) = 𝑄)) = (((2nd𝑋)‘(𝑔 ∈ ((LTrn‘𝐾)‘𝑊)(𝑔‘((oc‘𝐾)‘𝑊)) = 𝑄)) ∘ ((2nd𝑌)‘(𝑔 ∈ ((LTrn‘𝐾)‘𝑊)(𝑔‘((oc‘𝐾)‘𝑊)) = 𝑄))))
394, 9, 10, 6, 20, 36, 22dvhfplusr 41078 . . . . . . 7 ((𝐾 ∈ HL ∧ 𝑊𝐻) → (+g‘(Scalar‘𝑈)) = (𝑠 ∈ ((TEndo‘𝐾)‘𝑊), 𝑡 ∈ ((TEndo‘𝐾)‘𝑊) ↦ ( ∈ ((LTrn‘𝐾)‘𝑊) ↦ ((𝑠) ∘ (𝑡)))))
40393ad2ant1 1133 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑋 ∈ (𝐼𝑄) ∧ 𝑌 ∈ (𝐼𝑄))) → (+g‘(Scalar‘𝑈)) = (𝑠 ∈ ((TEndo‘𝐾)‘𝑊), 𝑡 ∈ ((TEndo‘𝐾)‘𝑊) ↦ ( ∈ ((LTrn‘𝐾)‘𝑊) ↦ ((𝑠) ∘ (𝑡)))))
4140oveqd 7404 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑋 ∈ (𝐼𝑄) ∧ 𝑌 ∈ (𝐼𝑄))) → ((2nd𝑋)(+g‘(Scalar‘𝑈))(2nd𝑌)) = ((2nd𝑋)(𝑠 ∈ ((TEndo‘𝐾)‘𝑊), 𝑡 ∈ ((TEndo‘𝐾)‘𝑊) ↦ ( ∈ ((LTrn‘𝐾)‘𝑊) ↦ ((𝑠) ∘ (𝑡))))(2nd𝑌)))
4241fveq1d 6860 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑋 ∈ (𝐼𝑄) ∧ 𝑌 ∈ (𝐼𝑄))) → (((2nd𝑋)(+g‘(Scalar‘𝑈))(2nd𝑌))‘(𝑔 ∈ ((LTrn‘𝐾)‘𝑊)(𝑔‘((oc‘𝐾)‘𝑊)) = 𝑄)) = (((2nd𝑋)(𝑠 ∈ ((TEndo‘𝐾)‘𝑊), 𝑡 ∈ ((TEndo‘𝐾)‘𝑊) ↦ ( ∈ ((LTrn‘𝐾)‘𝑊) ↦ ((𝑠) ∘ (𝑡))))(2nd𝑌))‘(𝑔 ∈ ((LTrn‘𝐾)‘𝑊)(𝑔‘((oc‘𝐾)‘𝑊)) = 𝑄)))
43 eqid 2729 . . . . . . 7 ((oc‘𝐾)‘𝑊) = ((oc‘𝐾)‘𝑊)
442, 3, 4, 43, 9, 5dicelval1sta 41181 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝑋 ∈ (𝐼𝑄)) → (1st𝑋) = ((2nd𝑋)‘(𝑔 ∈ ((LTrn‘𝐾)‘𝑊)(𝑔‘((oc‘𝐾)‘𝑊)) = 𝑄)))
45443adant3r 1182 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑋 ∈ (𝐼𝑄) ∧ 𝑌 ∈ (𝐼𝑄))) → (1st𝑋) = ((2nd𝑋)‘(𝑔 ∈ ((LTrn‘𝐾)‘𝑊)(𝑔‘((oc‘𝐾)‘𝑊)) = 𝑄)))
462, 3, 4, 43, 9, 5dicelval1sta 41181 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝑌 ∈ (𝐼𝑄)) → (1st𝑌) = ((2nd𝑌)‘(𝑔 ∈ ((LTrn‘𝐾)‘𝑊)(𝑔‘((oc‘𝐾)‘𝑊)) = 𝑄)))
47463adant3l 1181 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑋 ∈ (𝐼𝑄) ∧ 𝑌 ∈ (𝐼𝑄))) → (1st𝑌) = ((2nd𝑌)‘(𝑔 ∈ ((LTrn‘𝐾)‘𝑊)(𝑔‘((oc‘𝐾)‘𝑊)) = 𝑄)))
4845, 47coeq12d 5828 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑋 ∈ (𝐼𝑄) ∧ 𝑌 ∈ (𝐼𝑄))) → ((1st𝑋) ∘ (1st𝑌)) = (((2nd𝑋)‘(𝑔 ∈ ((LTrn‘𝐾)‘𝑊)(𝑔‘((oc‘𝐾)‘𝑊)) = 𝑄)) ∘ ((2nd𝑌)‘(𝑔 ∈ ((LTrn‘𝐾)‘𝑊)(𝑔‘((oc‘𝐾)‘𝑊)) = 𝑄))))
4938, 42, 483eqtr4rd 2775 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑋 ∈ (𝐼𝑄) ∧ 𝑌 ∈ (𝐼𝑄))) → ((1st𝑋) ∘ (1st𝑌)) = (((2nd𝑋)(+g‘(Scalar‘𝑈))(2nd𝑌))‘(𝑔 ∈ ((LTrn‘𝐾)‘𝑊)(𝑔‘((oc‘𝐾)‘𝑊)) = 𝑄)))
504, 9, 10, 36tendoplcl 40775 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (2nd𝑋) ∈ ((TEndo‘𝐾)‘𝑊) ∧ (2nd𝑌) ∈ ((TEndo‘𝐾)‘𝑊)) → ((2nd𝑋)(𝑠 ∈ ((TEndo‘𝐾)‘𝑊), 𝑡 ∈ ((TEndo‘𝐾)‘𝑊) ↦ ( ∈ ((LTrn‘𝐾)‘𝑊) ↦ ((𝑠) ∘ (𝑡))))(2nd𝑌)) ∈ ((TEndo‘𝐾)‘𝑊))
511, 26, 28, 50syl3anc 1373 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑋 ∈ (𝐼𝑄) ∧ 𝑌 ∈ (𝐼𝑄))) → ((2nd𝑋)(𝑠 ∈ ((TEndo‘𝐾)‘𝑊), 𝑡 ∈ ((TEndo‘𝐾)‘𝑊) ↦ ( ∈ ((LTrn‘𝐾)‘𝑊) ↦ ((𝑠) ∘ (𝑡))))(2nd𝑌)) ∈ ((TEndo‘𝐾)‘𝑊))
5241, 51eqeltrd 2828 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑋 ∈ (𝐼𝑄) ∧ 𝑌 ∈ (𝐼𝑄))) → ((2nd𝑋)(+g‘(Scalar‘𝑈))(2nd𝑌)) ∈ ((TEndo‘𝐾)‘𝑊))
53 fvex 6871 . . . . . 6 (1st𝑋) ∈ V
54 fvex 6871 . . . . . 6 (1st𝑌) ∈ V
5553, 54coex 7906 . . . . 5 ((1st𝑋) ∘ (1st𝑌)) ∈ V
56 ovex 7420 . . . . 5 ((2nd𝑋)(+g‘(Scalar‘𝑈))(2nd𝑌)) ∈ V
572, 3, 4, 43, 9, 10, 5, 55, 56dicopelval 41171 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) → (⟨((1st𝑋) ∘ (1st𝑌)), ((2nd𝑋)(+g‘(Scalar‘𝑈))(2nd𝑌))⟩ ∈ (𝐼𝑄) ↔ (((1st𝑋) ∘ (1st𝑌)) = (((2nd𝑋)(+g‘(Scalar‘𝑈))(2nd𝑌))‘(𝑔 ∈ ((LTrn‘𝐾)‘𝑊)(𝑔‘((oc‘𝐾)‘𝑊)) = 𝑄)) ∧ ((2nd𝑋)(+g‘(Scalar‘𝑈))(2nd𝑌)) ∈ ((TEndo‘𝐾)‘𝑊))))
58573adant3 1132 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑋 ∈ (𝐼𝑄) ∧ 𝑌 ∈ (𝐼𝑄))) → (⟨((1st𝑋) ∘ (1st𝑌)), ((2nd𝑋)(+g‘(Scalar‘𝑈))(2nd𝑌))⟩ ∈ (𝐼𝑄) ↔ (((1st𝑋) ∘ (1st𝑌)) = (((2nd𝑋)(+g‘(Scalar‘𝑈))(2nd𝑌))‘(𝑔 ∈ ((LTrn‘𝐾)‘𝑊)(𝑔‘((oc‘𝐾)‘𝑊)) = 𝑄)) ∧ ((2nd𝑋)(+g‘(Scalar‘𝑈))(2nd𝑌)) ∈ ((TEndo‘𝐾)‘𝑊))))
5949, 52, 58mpbir2and 713 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑋 ∈ (𝐼𝑄) ∧ 𝑌 ∈ (𝐼𝑄))) → ⟨((1st𝑋) ∘ (1st𝑌)), ((2nd𝑋)(+g‘(Scalar‘𝑈))(2nd𝑌))⟩ ∈ (𝐼𝑄))
6024, 59eqeltrd 2828 1 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑋 ∈ (𝐼𝑄) ∧ 𝑌 ∈ (𝐼𝑄))) → (𝑋 + 𝑌) ∈ (𝐼𝑄))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wss 3914  cop 4595   class class class wbr 5107  cmpt 5188   × cxp 5636  ccom 5642  cfv 6511  crio 7343  (class class class)co 7387  cmpo 7389  1st c1st 7966  2nd c2nd 7967  Basecbs 17179  +gcplusg 17220  Scalarcsca 17223  lecple 17227  occoc 17228  Atomscatm 39256  HLchlt 39343  LHypclh 39978  LTrncltrn 40095  TEndoctendo 40746  DVecHcdvh 41072  DIsoCcdic 41166
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145  ax-riotaBAD 38946
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-tp 4594  df-op 4596  df-uni 4872  df-iun 4957  df-iin 4958  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-1st 7968  df-2nd 7969  df-undef 8252  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-er 8671  df-map 8801  df-en 8919  df-dom 8920  df-sdom 8921  df-fin 8922  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-nn 12187  df-2 12249  df-3 12250  df-4 12251  df-5 12252  df-6 12253  df-n0 12443  df-z 12530  df-uz 12794  df-fz 13469  df-struct 17117  df-slot 17152  df-ndx 17164  df-base 17180  df-plusg 17233  df-mulr 17234  df-sca 17236  df-vsca 17237  df-proset 18255  df-poset 18274  df-plt 18289  df-lub 18305  df-glb 18306  df-join 18307  df-meet 18308  df-p0 18384  df-p1 18385  df-lat 18391  df-clat 18458  df-oposet 39169  df-ol 39171  df-oml 39172  df-covers 39259  df-ats 39260  df-atl 39291  df-cvlat 39315  df-hlat 39344  df-llines 39492  df-lplanes 39493  df-lvols 39494  df-lines 39495  df-psubsp 39497  df-pmap 39498  df-padd 39790  df-lhyp 39982  df-laut 39983  df-ldil 40098  df-ltrn 40099  df-trl 40153  df-tendo 40749  df-edring 40751  df-dvech 41073  df-dic 41167
This theorem is referenced by:  diclss  41187
  Copyright terms: Public domain W3C validator