Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dicvaddcl Structured version   Visualization version   GIF version

Theorem dicvaddcl 41169
Description: Membership in value of the partial isomorphism C is closed under vector sum. (Contributed by NM, 16-Feb-2014.)
Hypotheses
Ref Expression
dicvaddcl.l = (le‘𝐾)
dicvaddcl.a 𝐴 = (Atoms‘𝐾)
dicvaddcl.h 𝐻 = (LHyp‘𝐾)
dicvaddcl.u 𝑈 = ((DVecH‘𝐾)‘𝑊)
dicvaddcl.i 𝐼 = ((DIsoC‘𝐾)‘𝑊)
dicvaddcl.p + = (+g𝑈)
Assertion
Ref Expression
dicvaddcl (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑋 ∈ (𝐼𝑄) ∧ 𝑌 ∈ (𝐼𝑄))) → (𝑋 + 𝑌) ∈ (𝐼𝑄))

Proof of Theorem dicvaddcl
Dummy variables 𝑔 𝑠 𝑡 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simp1 1136 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑋 ∈ (𝐼𝑄) ∧ 𝑌 ∈ (𝐼𝑄))) → (𝐾 ∈ HL ∧ 𝑊𝐻))
2 dicvaddcl.l . . . . . . 7 = (le‘𝐾)
3 dicvaddcl.a . . . . . . 7 𝐴 = (Atoms‘𝐾)
4 dicvaddcl.h . . . . . . 7 𝐻 = (LHyp‘𝐾)
5 dicvaddcl.i . . . . . . 7 𝐼 = ((DIsoC‘𝐾)‘𝑊)
6 dicvaddcl.u . . . . . . 7 𝑈 = ((DVecH‘𝐾)‘𝑊)
7 eqid 2729 . . . . . . 7 (Base‘𝑈) = (Base‘𝑈)
82, 3, 4, 5, 6, 7dicssdvh 41165 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) → (𝐼𝑄) ⊆ (Base‘𝑈))
9 eqid 2729 . . . . . . . . 9 ((LTrn‘𝐾)‘𝑊) = ((LTrn‘𝐾)‘𝑊)
10 eqid 2729 . . . . . . . . 9 ((TEndo‘𝐾)‘𝑊) = ((TEndo‘𝐾)‘𝑊)
114, 9, 10, 6, 7dvhvbase 41066 . . . . . . . 8 ((𝐾 ∈ HL ∧ 𝑊𝐻) → (Base‘𝑈) = (((LTrn‘𝐾)‘𝑊) × ((TEndo‘𝐾)‘𝑊)))
1211eqcomd 2735 . . . . . . 7 ((𝐾 ∈ HL ∧ 𝑊𝐻) → (((LTrn‘𝐾)‘𝑊) × ((TEndo‘𝐾)‘𝑊)) = (Base‘𝑈))
1312adantr 480 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) → (((LTrn‘𝐾)‘𝑊) × ((TEndo‘𝐾)‘𝑊)) = (Base‘𝑈))
148, 13sseqtrrd 3973 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) → (𝐼𝑄) ⊆ (((LTrn‘𝐾)‘𝑊) × ((TEndo‘𝐾)‘𝑊)))
15143adant3 1132 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑋 ∈ (𝐼𝑄) ∧ 𝑌 ∈ (𝐼𝑄))) → (𝐼𝑄) ⊆ (((LTrn‘𝐾)‘𝑊) × ((TEndo‘𝐾)‘𝑊)))
16 simp3l 1202 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑋 ∈ (𝐼𝑄) ∧ 𝑌 ∈ (𝐼𝑄))) → 𝑋 ∈ (𝐼𝑄))
1715, 16sseldd 3936 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑋 ∈ (𝐼𝑄) ∧ 𝑌 ∈ (𝐼𝑄))) → 𝑋 ∈ (((LTrn‘𝐾)‘𝑊) × ((TEndo‘𝐾)‘𝑊)))
18 simp3r 1203 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑋 ∈ (𝐼𝑄) ∧ 𝑌 ∈ (𝐼𝑄))) → 𝑌 ∈ (𝐼𝑄))
1915, 18sseldd 3936 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑋 ∈ (𝐼𝑄) ∧ 𝑌 ∈ (𝐼𝑄))) → 𝑌 ∈ (((LTrn‘𝐾)‘𝑊) × ((TEndo‘𝐾)‘𝑊)))
20 eqid 2729 . . . 4 (Scalar‘𝑈) = (Scalar‘𝑈)
21 dicvaddcl.p . . . 4 + = (+g𝑈)
22 eqid 2729 . . . 4 (+g‘(Scalar‘𝑈)) = (+g‘(Scalar‘𝑈))
234, 9, 10, 6, 20, 21, 22dvhvadd 41071 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋 ∈ (((LTrn‘𝐾)‘𝑊) × ((TEndo‘𝐾)‘𝑊)) ∧ 𝑌 ∈ (((LTrn‘𝐾)‘𝑊) × ((TEndo‘𝐾)‘𝑊)))) → (𝑋 + 𝑌) = ⟨((1st𝑋) ∘ (1st𝑌)), ((2nd𝑋)(+g‘(Scalar‘𝑈))(2nd𝑌))⟩)
241, 17, 19, 23syl12anc 836 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑋 ∈ (𝐼𝑄) ∧ 𝑌 ∈ (𝐼𝑄))) → (𝑋 + 𝑌) = ⟨((1st𝑋) ∘ (1st𝑌)), ((2nd𝑋)(+g‘(Scalar‘𝑈))(2nd𝑌))⟩)
252, 3, 4, 10, 5dicelval2nd 41168 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝑋 ∈ (𝐼𝑄)) → (2nd𝑋) ∈ ((TEndo‘𝐾)‘𝑊))
26253adant3r 1182 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑋 ∈ (𝐼𝑄) ∧ 𝑌 ∈ (𝐼𝑄))) → (2nd𝑋) ∈ ((TEndo‘𝐾)‘𝑊))
272, 3, 4, 10, 5dicelval2nd 41168 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝑌 ∈ (𝐼𝑄)) → (2nd𝑌) ∈ ((TEndo‘𝐾)‘𝑊))
28273adant3l 1181 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑋 ∈ (𝐼𝑄) ∧ 𝑌 ∈ (𝐼𝑄))) → (2nd𝑌) ∈ ((TEndo‘𝐾)‘𝑊))
29 eqid 2729 . . . . . . . 8 (oc‘𝐾) = (oc‘𝐾)
302, 29, 3, 4lhpocnel 39997 . . . . . . 7 ((𝐾 ∈ HL ∧ 𝑊𝐻) → (((oc‘𝐾)‘𝑊) ∈ 𝐴 ∧ ¬ ((oc‘𝐾)‘𝑊) 𝑊))
31303ad2ant1 1133 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑋 ∈ (𝐼𝑄) ∧ 𝑌 ∈ (𝐼𝑄))) → (((oc‘𝐾)‘𝑊) ∈ 𝐴 ∧ ¬ ((oc‘𝐾)‘𝑊) 𝑊))
32 simp2 1137 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑋 ∈ (𝐼𝑄) ∧ 𝑌 ∈ (𝐼𝑄))) → (𝑄𝐴 ∧ ¬ 𝑄 𝑊))
33 eqid 2729 . . . . . . 7 (𝑔 ∈ ((LTrn‘𝐾)‘𝑊)(𝑔‘((oc‘𝐾)‘𝑊)) = 𝑄) = (𝑔 ∈ ((LTrn‘𝐾)‘𝑊)(𝑔‘((oc‘𝐾)‘𝑊)) = 𝑄)
342, 3, 4, 9, 33ltrniotacl 40558 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (((oc‘𝐾)‘𝑊) ∈ 𝐴 ∧ ¬ ((oc‘𝐾)‘𝑊) 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) → (𝑔 ∈ ((LTrn‘𝐾)‘𝑊)(𝑔‘((oc‘𝐾)‘𝑊)) = 𝑄) ∈ ((LTrn‘𝐾)‘𝑊))
351, 31, 32, 34syl3anc 1373 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑋 ∈ (𝐼𝑄) ∧ 𝑌 ∈ (𝐼𝑄))) → (𝑔 ∈ ((LTrn‘𝐾)‘𝑊)(𝑔‘((oc‘𝐾)‘𝑊)) = 𝑄) ∈ ((LTrn‘𝐾)‘𝑊))
36 eqid 2729 . . . . . 6 (𝑠 ∈ ((TEndo‘𝐾)‘𝑊), 𝑡 ∈ ((TEndo‘𝐾)‘𝑊) ↦ ( ∈ ((LTrn‘𝐾)‘𝑊) ↦ ((𝑠) ∘ (𝑡)))) = (𝑠 ∈ ((TEndo‘𝐾)‘𝑊), 𝑡 ∈ ((TEndo‘𝐾)‘𝑊) ↦ ( ∈ ((LTrn‘𝐾)‘𝑊) ↦ ((𝑠) ∘ (𝑡))))
379, 36tendospdi2 41001 . . . . 5 (((2nd𝑋) ∈ ((TEndo‘𝐾)‘𝑊) ∧ (2nd𝑌) ∈ ((TEndo‘𝐾)‘𝑊) ∧ (𝑔 ∈ ((LTrn‘𝐾)‘𝑊)(𝑔‘((oc‘𝐾)‘𝑊)) = 𝑄) ∈ ((LTrn‘𝐾)‘𝑊)) → (((2nd𝑋)(𝑠 ∈ ((TEndo‘𝐾)‘𝑊), 𝑡 ∈ ((TEndo‘𝐾)‘𝑊) ↦ ( ∈ ((LTrn‘𝐾)‘𝑊) ↦ ((𝑠) ∘ (𝑡))))(2nd𝑌))‘(𝑔 ∈ ((LTrn‘𝐾)‘𝑊)(𝑔‘((oc‘𝐾)‘𝑊)) = 𝑄)) = (((2nd𝑋)‘(𝑔 ∈ ((LTrn‘𝐾)‘𝑊)(𝑔‘((oc‘𝐾)‘𝑊)) = 𝑄)) ∘ ((2nd𝑌)‘(𝑔 ∈ ((LTrn‘𝐾)‘𝑊)(𝑔‘((oc‘𝐾)‘𝑊)) = 𝑄))))
3826, 28, 35, 37syl3anc 1373 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑋 ∈ (𝐼𝑄) ∧ 𝑌 ∈ (𝐼𝑄))) → (((2nd𝑋)(𝑠 ∈ ((TEndo‘𝐾)‘𝑊), 𝑡 ∈ ((TEndo‘𝐾)‘𝑊) ↦ ( ∈ ((LTrn‘𝐾)‘𝑊) ↦ ((𝑠) ∘ (𝑡))))(2nd𝑌))‘(𝑔 ∈ ((LTrn‘𝐾)‘𝑊)(𝑔‘((oc‘𝐾)‘𝑊)) = 𝑄)) = (((2nd𝑋)‘(𝑔 ∈ ((LTrn‘𝐾)‘𝑊)(𝑔‘((oc‘𝐾)‘𝑊)) = 𝑄)) ∘ ((2nd𝑌)‘(𝑔 ∈ ((LTrn‘𝐾)‘𝑊)(𝑔‘((oc‘𝐾)‘𝑊)) = 𝑄))))
394, 9, 10, 6, 20, 36, 22dvhfplusr 41063 . . . . . . 7 ((𝐾 ∈ HL ∧ 𝑊𝐻) → (+g‘(Scalar‘𝑈)) = (𝑠 ∈ ((TEndo‘𝐾)‘𝑊), 𝑡 ∈ ((TEndo‘𝐾)‘𝑊) ↦ ( ∈ ((LTrn‘𝐾)‘𝑊) ↦ ((𝑠) ∘ (𝑡)))))
40393ad2ant1 1133 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑋 ∈ (𝐼𝑄) ∧ 𝑌 ∈ (𝐼𝑄))) → (+g‘(Scalar‘𝑈)) = (𝑠 ∈ ((TEndo‘𝐾)‘𝑊), 𝑡 ∈ ((TEndo‘𝐾)‘𝑊) ↦ ( ∈ ((LTrn‘𝐾)‘𝑊) ↦ ((𝑠) ∘ (𝑡)))))
4140oveqd 7366 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑋 ∈ (𝐼𝑄) ∧ 𝑌 ∈ (𝐼𝑄))) → ((2nd𝑋)(+g‘(Scalar‘𝑈))(2nd𝑌)) = ((2nd𝑋)(𝑠 ∈ ((TEndo‘𝐾)‘𝑊), 𝑡 ∈ ((TEndo‘𝐾)‘𝑊) ↦ ( ∈ ((LTrn‘𝐾)‘𝑊) ↦ ((𝑠) ∘ (𝑡))))(2nd𝑌)))
4241fveq1d 6824 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑋 ∈ (𝐼𝑄) ∧ 𝑌 ∈ (𝐼𝑄))) → (((2nd𝑋)(+g‘(Scalar‘𝑈))(2nd𝑌))‘(𝑔 ∈ ((LTrn‘𝐾)‘𝑊)(𝑔‘((oc‘𝐾)‘𝑊)) = 𝑄)) = (((2nd𝑋)(𝑠 ∈ ((TEndo‘𝐾)‘𝑊), 𝑡 ∈ ((TEndo‘𝐾)‘𝑊) ↦ ( ∈ ((LTrn‘𝐾)‘𝑊) ↦ ((𝑠) ∘ (𝑡))))(2nd𝑌))‘(𝑔 ∈ ((LTrn‘𝐾)‘𝑊)(𝑔‘((oc‘𝐾)‘𝑊)) = 𝑄)))
43 eqid 2729 . . . . . . 7 ((oc‘𝐾)‘𝑊) = ((oc‘𝐾)‘𝑊)
442, 3, 4, 43, 9, 5dicelval1sta 41166 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝑋 ∈ (𝐼𝑄)) → (1st𝑋) = ((2nd𝑋)‘(𝑔 ∈ ((LTrn‘𝐾)‘𝑊)(𝑔‘((oc‘𝐾)‘𝑊)) = 𝑄)))
45443adant3r 1182 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑋 ∈ (𝐼𝑄) ∧ 𝑌 ∈ (𝐼𝑄))) → (1st𝑋) = ((2nd𝑋)‘(𝑔 ∈ ((LTrn‘𝐾)‘𝑊)(𝑔‘((oc‘𝐾)‘𝑊)) = 𝑄)))
462, 3, 4, 43, 9, 5dicelval1sta 41166 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝑌 ∈ (𝐼𝑄)) → (1st𝑌) = ((2nd𝑌)‘(𝑔 ∈ ((LTrn‘𝐾)‘𝑊)(𝑔‘((oc‘𝐾)‘𝑊)) = 𝑄)))
47463adant3l 1181 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑋 ∈ (𝐼𝑄) ∧ 𝑌 ∈ (𝐼𝑄))) → (1st𝑌) = ((2nd𝑌)‘(𝑔 ∈ ((LTrn‘𝐾)‘𝑊)(𝑔‘((oc‘𝐾)‘𝑊)) = 𝑄)))
4845, 47coeq12d 5807 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑋 ∈ (𝐼𝑄) ∧ 𝑌 ∈ (𝐼𝑄))) → ((1st𝑋) ∘ (1st𝑌)) = (((2nd𝑋)‘(𝑔 ∈ ((LTrn‘𝐾)‘𝑊)(𝑔‘((oc‘𝐾)‘𝑊)) = 𝑄)) ∘ ((2nd𝑌)‘(𝑔 ∈ ((LTrn‘𝐾)‘𝑊)(𝑔‘((oc‘𝐾)‘𝑊)) = 𝑄))))
4938, 42, 483eqtr4rd 2775 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑋 ∈ (𝐼𝑄) ∧ 𝑌 ∈ (𝐼𝑄))) → ((1st𝑋) ∘ (1st𝑌)) = (((2nd𝑋)(+g‘(Scalar‘𝑈))(2nd𝑌))‘(𝑔 ∈ ((LTrn‘𝐾)‘𝑊)(𝑔‘((oc‘𝐾)‘𝑊)) = 𝑄)))
504, 9, 10, 36tendoplcl 40760 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (2nd𝑋) ∈ ((TEndo‘𝐾)‘𝑊) ∧ (2nd𝑌) ∈ ((TEndo‘𝐾)‘𝑊)) → ((2nd𝑋)(𝑠 ∈ ((TEndo‘𝐾)‘𝑊), 𝑡 ∈ ((TEndo‘𝐾)‘𝑊) ↦ ( ∈ ((LTrn‘𝐾)‘𝑊) ↦ ((𝑠) ∘ (𝑡))))(2nd𝑌)) ∈ ((TEndo‘𝐾)‘𝑊))
511, 26, 28, 50syl3anc 1373 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑋 ∈ (𝐼𝑄) ∧ 𝑌 ∈ (𝐼𝑄))) → ((2nd𝑋)(𝑠 ∈ ((TEndo‘𝐾)‘𝑊), 𝑡 ∈ ((TEndo‘𝐾)‘𝑊) ↦ ( ∈ ((LTrn‘𝐾)‘𝑊) ↦ ((𝑠) ∘ (𝑡))))(2nd𝑌)) ∈ ((TEndo‘𝐾)‘𝑊))
5241, 51eqeltrd 2828 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑋 ∈ (𝐼𝑄) ∧ 𝑌 ∈ (𝐼𝑄))) → ((2nd𝑋)(+g‘(Scalar‘𝑈))(2nd𝑌)) ∈ ((TEndo‘𝐾)‘𝑊))
53 fvex 6835 . . . . . 6 (1st𝑋) ∈ V
54 fvex 6835 . . . . . 6 (1st𝑌) ∈ V
5553, 54coex 7863 . . . . 5 ((1st𝑋) ∘ (1st𝑌)) ∈ V
56 ovex 7382 . . . . 5 ((2nd𝑋)(+g‘(Scalar‘𝑈))(2nd𝑌)) ∈ V
572, 3, 4, 43, 9, 10, 5, 55, 56dicopelval 41156 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) → (⟨((1st𝑋) ∘ (1st𝑌)), ((2nd𝑋)(+g‘(Scalar‘𝑈))(2nd𝑌))⟩ ∈ (𝐼𝑄) ↔ (((1st𝑋) ∘ (1st𝑌)) = (((2nd𝑋)(+g‘(Scalar‘𝑈))(2nd𝑌))‘(𝑔 ∈ ((LTrn‘𝐾)‘𝑊)(𝑔‘((oc‘𝐾)‘𝑊)) = 𝑄)) ∧ ((2nd𝑋)(+g‘(Scalar‘𝑈))(2nd𝑌)) ∈ ((TEndo‘𝐾)‘𝑊))))
58573adant3 1132 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑋 ∈ (𝐼𝑄) ∧ 𝑌 ∈ (𝐼𝑄))) → (⟨((1st𝑋) ∘ (1st𝑌)), ((2nd𝑋)(+g‘(Scalar‘𝑈))(2nd𝑌))⟩ ∈ (𝐼𝑄) ↔ (((1st𝑋) ∘ (1st𝑌)) = (((2nd𝑋)(+g‘(Scalar‘𝑈))(2nd𝑌))‘(𝑔 ∈ ((LTrn‘𝐾)‘𝑊)(𝑔‘((oc‘𝐾)‘𝑊)) = 𝑄)) ∧ ((2nd𝑋)(+g‘(Scalar‘𝑈))(2nd𝑌)) ∈ ((TEndo‘𝐾)‘𝑊))))
5949, 52, 58mpbir2and 713 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑋 ∈ (𝐼𝑄) ∧ 𝑌 ∈ (𝐼𝑄))) → ⟨((1st𝑋) ∘ (1st𝑌)), ((2nd𝑋)(+g‘(Scalar‘𝑈))(2nd𝑌))⟩ ∈ (𝐼𝑄))
6024, 59eqeltrd 2828 1 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑋 ∈ (𝐼𝑄) ∧ 𝑌 ∈ (𝐼𝑄))) → (𝑋 + 𝑌) ∈ (𝐼𝑄))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wss 3903  cop 4583   class class class wbr 5092  cmpt 5173   × cxp 5617  ccom 5623  cfv 6482  crio 7305  (class class class)co 7349  cmpo 7351  1st c1st 7922  2nd c2nd 7923  Basecbs 17120  +gcplusg 17161  Scalarcsca 17164  lecple 17168  occoc 17169  Atomscatm 39242  HLchlt 39329  LHypclh 39963  LTrncltrn 40080  TEndoctendo 40731  DVecHcdvh 41057  DIsoCcdic 41151
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-cnex 11065  ax-resscn 11066  ax-1cn 11067  ax-icn 11068  ax-addcl 11069  ax-addrcl 11070  ax-mulcl 11071  ax-mulrcl 11072  ax-mulcom 11073  ax-addass 11074  ax-mulass 11075  ax-distr 11076  ax-i2m1 11077  ax-1ne0 11078  ax-1rid 11079  ax-rnegex 11080  ax-rrecex 11081  ax-cnre 11082  ax-pre-lttri 11083  ax-pre-lttrn 11084  ax-pre-ltadd 11085  ax-pre-mulgt0 11086  ax-riotaBAD 38932
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3343  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-tp 4582  df-op 4584  df-uni 4859  df-iun 4943  df-iin 4944  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-riota 7306  df-ov 7352  df-oprab 7353  df-mpo 7354  df-om 7800  df-1st 7924  df-2nd 7925  df-undef 8206  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-rdg 8332  df-1o 8388  df-er 8625  df-map 8755  df-en 8873  df-dom 8874  df-sdom 8875  df-fin 8876  df-pnf 11151  df-mnf 11152  df-xr 11153  df-ltxr 11154  df-le 11155  df-sub 11349  df-neg 11350  df-nn 12129  df-2 12191  df-3 12192  df-4 12193  df-5 12194  df-6 12195  df-n0 12385  df-z 12472  df-uz 12736  df-fz 13411  df-struct 17058  df-slot 17093  df-ndx 17105  df-base 17121  df-plusg 17174  df-mulr 17175  df-sca 17177  df-vsca 17178  df-proset 18200  df-poset 18219  df-plt 18234  df-lub 18250  df-glb 18251  df-join 18252  df-meet 18253  df-p0 18329  df-p1 18330  df-lat 18338  df-clat 18405  df-oposet 39155  df-ol 39157  df-oml 39158  df-covers 39245  df-ats 39246  df-atl 39277  df-cvlat 39301  df-hlat 39330  df-llines 39477  df-lplanes 39478  df-lvols 39479  df-lines 39480  df-psubsp 39482  df-pmap 39483  df-padd 39775  df-lhyp 39967  df-laut 39968  df-ldil 40083  df-ltrn 40084  df-trl 40138  df-tendo 40734  df-edring 40736  df-dvech 41058  df-dic 41152
This theorem is referenced by:  diclss  41172
  Copyright terms: Public domain W3C validator