Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdleme5 Structured version   Visualization version   GIF version

Theorem cdleme5 39099
Description: Part of proof of Lemma E in [Crawley] p. 113. 𝐺 represents fs(r). We show r ∨ fs(r)) = p ∨ q at the top of p. 114. (Contributed by NM, 7-Jun-2012.)
Hypotheses
Ref Expression
cdleme4.l ≀ = (leβ€˜πΎ)
cdleme4.j ∨ = (joinβ€˜πΎ)
cdleme4.m ∧ = (meetβ€˜πΎ)
cdleme4.a 𝐴 = (Atomsβ€˜πΎ)
cdleme4.h 𝐻 = (LHypβ€˜πΎ)
cdleme4.u π‘ˆ = ((𝑃 ∨ 𝑄) ∧ π‘Š)
cdleme4.f 𝐹 = ((𝑆 ∨ π‘ˆ) ∧ (𝑄 ∨ ((𝑃 ∨ 𝑆) ∧ π‘Š)))
cdleme4.g 𝐺 = ((𝑃 ∨ 𝑄) ∧ (𝐹 ∨ ((𝑅 ∨ 𝑆) ∧ π‘Š)))
Assertion
Ref Expression
cdleme5 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ (𝑅 ∈ 𝐴 ∧ Β¬ 𝑅 ≀ π‘Š)) ∧ ((𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š) ∧ 𝑅 ≀ (𝑃 ∨ 𝑄))) β†’ (𝑅 ∨ 𝐺) = (𝑃 ∨ 𝑄))

Proof of Theorem cdleme5
StepHypRef Expression
1 cdleme4.g . . 3 𝐺 = ((𝑃 ∨ 𝑄) ∧ (𝐹 ∨ ((𝑅 ∨ 𝑆) ∧ π‘Š)))
21oveq2i 7416 . 2 (𝑅 ∨ 𝐺) = (𝑅 ∨ ((𝑃 ∨ 𝑄) ∧ (𝐹 ∨ ((𝑅 ∨ 𝑆) ∧ π‘Š))))
3 simp1l 1197 . . . 4 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ (𝑅 ∈ 𝐴 ∧ Β¬ 𝑅 ≀ π‘Š)) ∧ ((𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š) ∧ 𝑅 ≀ (𝑃 ∨ 𝑄))) β†’ 𝐾 ∈ HL)
4 simp23l 1294 . . . 4 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ (𝑅 ∈ 𝐴 ∧ Β¬ 𝑅 ≀ π‘Š)) ∧ ((𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š) ∧ 𝑅 ≀ (𝑃 ∨ 𝑄))) β†’ 𝑅 ∈ 𝐴)
5 simp21 1206 . . . . 5 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ (𝑅 ∈ 𝐴 ∧ Β¬ 𝑅 ≀ π‘Š)) ∧ ((𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š) ∧ 𝑅 ≀ (𝑃 ∨ 𝑄))) β†’ 𝑃 ∈ 𝐴)
6 simp22 1207 . . . . 5 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ (𝑅 ∈ 𝐴 ∧ Β¬ 𝑅 ≀ π‘Š)) ∧ ((𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š) ∧ 𝑅 ≀ (𝑃 ∨ 𝑄))) β†’ 𝑄 ∈ 𝐴)
7 eqid 2732 . . . . . 6 (Baseβ€˜πΎ) = (Baseβ€˜πΎ)
8 cdleme4.j . . . . . 6 ∨ = (joinβ€˜πΎ)
9 cdleme4.a . . . . . 6 𝐴 = (Atomsβ€˜πΎ)
107, 8, 9hlatjcl 38225 . . . . 5 ((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) β†’ (𝑃 ∨ 𝑄) ∈ (Baseβ€˜πΎ))
113, 5, 6, 10syl3anc 1371 . . . 4 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ (𝑅 ∈ 𝐴 ∧ Β¬ 𝑅 ≀ π‘Š)) ∧ ((𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š) ∧ 𝑅 ≀ (𝑃 ∨ 𝑄))) β†’ (𝑃 ∨ 𝑄) ∈ (Baseβ€˜πΎ))
123hllatd 38222 . . . . 5 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ (𝑅 ∈ 𝐴 ∧ Β¬ 𝑅 ≀ π‘Š)) ∧ ((𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š) ∧ 𝑅 ≀ (𝑃 ∨ 𝑄))) β†’ 𝐾 ∈ Lat)
13 simp1 1136 . . . . . 6 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ (𝑅 ∈ 𝐴 ∧ Β¬ 𝑅 ≀ π‘Š)) ∧ ((𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š) ∧ 𝑅 ≀ (𝑃 ∨ 𝑄))) β†’ (𝐾 ∈ HL ∧ π‘Š ∈ 𝐻))
14 simp3ll 1244 . . . . . 6 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ (𝑅 ∈ 𝐴 ∧ Β¬ 𝑅 ≀ π‘Š)) ∧ ((𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š) ∧ 𝑅 ≀ (𝑃 ∨ 𝑄))) β†’ 𝑆 ∈ 𝐴)
15 cdleme4.l . . . . . . 7 ≀ = (leβ€˜πΎ)
16 cdleme4.m . . . . . . 7 ∧ = (meetβ€˜πΎ)
17 cdleme4.h . . . . . . 7 𝐻 = (LHypβ€˜πΎ)
18 cdleme4.u . . . . . . 7 π‘ˆ = ((𝑃 ∨ 𝑄) ∧ π‘Š)
19 cdleme4.f . . . . . . 7 𝐹 = ((𝑆 ∨ π‘ˆ) ∧ (𝑄 ∨ ((𝑃 ∨ 𝑆) ∧ π‘Š)))
2015, 8, 16, 9, 17, 18, 19, 7cdleme1b 39085 . . . . . 6 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴)) β†’ 𝐹 ∈ (Baseβ€˜πΎ))
2113, 5, 6, 14, 20syl13anc 1372 . . . . 5 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ (𝑅 ∈ 𝐴 ∧ Β¬ 𝑅 ≀ π‘Š)) ∧ ((𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š) ∧ 𝑅 ≀ (𝑃 ∨ 𝑄))) β†’ 𝐹 ∈ (Baseβ€˜πΎ))
227, 8, 9hlatjcl 38225 . . . . . . 7 ((𝐾 ∈ HL ∧ 𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴) β†’ (𝑅 ∨ 𝑆) ∈ (Baseβ€˜πΎ))
233, 4, 14, 22syl3anc 1371 . . . . . 6 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ (𝑅 ∈ 𝐴 ∧ Β¬ 𝑅 ≀ π‘Š)) ∧ ((𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š) ∧ 𝑅 ≀ (𝑃 ∨ 𝑄))) β†’ (𝑅 ∨ 𝑆) ∈ (Baseβ€˜πΎ))
24 simp1r 1198 . . . . . . 7 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ (𝑅 ∈ 𝐴 ∧ Β¬ 𝑅 ≀ π‘Š)) ∧ ((𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š) ∧ 𝑅 ≀ (𝑃 ∨ 𝑄))) β†’ π‘Š ∈ 𝐻)
257, 17lhpbase 38857 . . . . . . 7 (π‘Š ∈ 𝐻 β†’ π‘Š ∈ (Baseβ€˜πΎ))
2624, 25syl 17 . . . . . 6 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ (𝑅 ∈ 𝐴 ∧ Β¬ 𝑅 ≀ π‘Š)) ∧ ((𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š) ∧ 𝑅 ≀ (𝑃 ∨ 𝑄))) β†’ π‘Š ∈ (Baseβ€˜πΎ))
277, 16latmcl 18389 . . . . . 6 ((𝐾 ∈ Lat ∧ (𝑅 ∨ 𝑆) ∈ (Baseβ€˜πΎ) ∧ π‘Š ∈ (Baseβ€˜πΎ)) β†’ ((𝑅 ∨ 𝑆) ∧ π‘Š) ∈ (Baseβ€˜πΎ))
2812, 23, 26, 27syl3anc 1371 . . . . 5 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ (𝑅 ∈ 𝐴 ∧ Β¬ 𝑅 ≀ π‘Š)) ∧ ((𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š) ∧ 𝑅 ≀ (𝑃 ∨ 𝑄))) β†’ ((𝑅 ∨ 𝑆) ∧ π‘Š) ∈ (Baseβ€˜πΎ))
297, 8latjcl 18388 . . . . 5 ((𝐾 ∈ Lat ∧ 𝐹 ∈ (Baseβ€˜πΎ) ∧ ((𝑅 ∨ 𝑆) ∧ π‘Š) ∈ (Baseβ€˜πΎ)) β†’ (𝐹 ∨ ((𝑅 ∨ 𝑆) ∧ π‘Š)) ∈ (Baseβ€˜πΎ))
3012, 21, 28, 29syl3anc 1371 . . . 4 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ (𝑅 ∈ 𝐴 ∧ Β¬ 𝑅 ≀ π‘Š)) ∧ ((𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š) ∧ 𝑅 ≀ (𝑃 ∨ 𝑄))) β†’ (𝐹 ∨ ((𝑅 ∨ 𝑆) ∧ π‘Š)) ∈ (Baseβ€˜πΎ))
31 simp3r 1202 . . . 4 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ (𝑅 ∈ 𝐴 ∧ Β¬ 𝑅 ≀ π‘Š)) ∧ ((𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š) ∧ 𝑅 ≀ (𝑃 ∨ 𝑄))) β†’ 𝑅 ≀ (𝑃 ∨ 𝑄))
327, 15, 8, 16, 9atmod3i1 38723 . . . 4 ((𝐾 ∈ HL ∧ (𝑅 ∈ 𝐴 ∧ (𝑃 ∨ 𝑄) ∈ (Baseβ€˜πΎ) ∧ (𝐹 ∨ ((𝑅 ∨ 𝑆) ∧ π‘Š)) ∈ (Baseβ€˜πΎ)) ∧ 𝑅 ≀ (𝑃 ∨ 𝑄)) β†’ (𝑅 ∨ ((𝑃 ∨ 𝑄) ∧ (𝐹 ∨ ((𝑅 ∨ 𝑆) ∧ π‘Š)))) = ((𝑃 ∨ 𝑄) ∧ (𝑅 ∨ (𝐹 ∨ ((𝑅 ∨ 𝑆) ∧ π‘Š)))))
333, 4, 11, 30, 31, 32syl131anc 1383 . . 3 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ (𝑅 ∈ 𝐴 ∧ Β¬ 𝑅 ≀ π‘Š)) ∧ ((𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š) ∧ 𝑅 ≀ (𝑃 ∨ 𝑄))) β†’ (𝑅 ∨ ((𝑃 ∨ 𝑄) ∧ (𝐹 ∨ ((𝑅 ∨ 𝑆) ∧ π‘Š)))) = ((𝑃 ∨ 𝑄) ∧ (𝑅 ∨ (𝐹 ∨ ((𝑅 ∨ 𝑆) ∧ π‘Š)))))
347, 9atbase 38147 . . . . . . 7 (𝑆 ∈ 𝐴 β†’ 𝑆 ∈ (Baseβ€˜πΎ))
3514, 34syl 17 . . . . . 6 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ (𝑅 ∈ 𝐴 ∧ Β¬ 𝑅 ≀ π‘Š)) ∧ ((𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š) ∧ 𝑅 ≀ (𝑃 ∨ 𝑄))) β†’ 𝑆 ∈ (Baseβ€˜πΎ))
367, 15, 8latlej2 18398 . . . . . 6 ((𝐾 ∈ Lat ∧ 𝑆 ∈ (Baseβ€˜πΎ) ∧ (𝑃 ∨ 𝑄) ∈ (Baseβ€˜πΎ)) β†’ (𝑃 ∨ 𝑄) ≀ (𝑆 ∨ (𝑃 ∨ 𝑄)))
3712, 35, 11, 36syl3anc 1371 . . . . 5 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ (𝑅 ∈ 𝐴 ∧ Β¬ 𝑅 ≀ π‘Š)) ∧ ((𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š) ∧ 𝑅 ≀ (𝑃 ∨ 𝑄))) β†’ (𝑃 ∨ 𝑄) ≀ (𝑆 ∨ (𝑃 ∨ 𝑄)))
387, 9atbase 38147 . . . . . . . . 9 (𝑅 ∈ 𝐴 β†’ 𝑅 ∈ (Baseβ€˜πΎ))
394, 38syl 17 . . . . . . . 8 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ (𝑅 ∈ 𝐴 ∧ Β¬ 𝑅 ≀ π‘Š)) ∧ ((𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š) ∧ 𝑅 ≀ (𝑃 ∨ 𝑄))) β†’ 𝑅 ∈ (Baseβ€˜πΎ))
407, 8latj12 18433 . . . . . . . 8 ((𝐾 ∈ Lat ∧ (𝑅 ∈ (Baseβ€˜πΎ) ∧ 𝐹 ∈ (Baseβ€˜πΎ) ∧ 𝑆 ∈ (Baseβ€˜πΎ))) β†’ (𝑅 ∨ (𝐹 ∨ 𝑆)) = (𝐹 ∨ (𝑅 ∨ 𝑆)))
4112, 39, 21, 35, 40syl13anc 1372 . . . . . . 7 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ (𝑅 ∈ 𝐴 ∧ Β¬ 𝑅 ≀ π‘Š)) ∧ ((𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š) ∧ 𝑅 ≀ (𝑃 ∨ 𝑄))) β†’ (𝑅 ∨ (𝐹 ∨ 𝑆)) = (𝐹 ∨ (𝑅 ∨ 𝑆)))
4215, 8, 16, 9, 17, 18, 7cdleme0aa 39069 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) β†’ π‘ˆ ∈ (Baseβ€˜πΎ))
4313, 5, 6, 42syl3anc 1371 . . . . . . . . 9 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ (𝑅 ∈ 𝐴 ∧ Β¬ 𝑅 ≀ π‘Š)) ∧ ((𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š) ∧ 𝑅 ≀ (𝑃 ∨ 𝑄))) β†’ π‘ˆ ∈ (Baseβ€˜πΎ))
447, 8latj12 18433 . . . . . . . . 9 ((𝐾 ∈ Lat ∧ (𝑆 ∈ (Baseβ€˜πΎ) ∧ 𝑅 ∈ (Baseβ€˜πΎ) ∧ π‘ˆ ∈ (Baseβ€˜πΎ))) β†’ (𝑆 ∨ (𝑅 ∨ π‘ˆ)) = (𝑅 ∨ (𝑆 ∨ π‘ˆ)))
4512, 35, 39, 43, 44syl13anc 1372 . . . . . . . 8 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ (𝑅 ∈ 𝐴 ∧ Β¬ 𝑅 ≀ π‘Š)) ∧ ((𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š) ∧ 𝑅 ≀ (𝑃 ∨ 𝑄))) β†’ (𝑆 ∨ (𝑅 ∨ π‘ˆ)) = (𝑅 ∨ (𝑆 ∨ π‘ˆ)))
4615, 8, 16, 9, 17, 18cdleme4 39097 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ (𝑅 ∈ 𝐴 ∧ Β¬ 𝑅 ≀ π‘Š)) ∧ 𝑅 ≀ (𝑃 ∨ 𝑄)) β†’ (𝑃 ∨ 𝑄) = (𝑅 ∨ π‘ˆ))
47463adant3l 1180 . . . . . . . . 9 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ (𝑅 ∈ 𝐴 ∧ Β¬ 𝑅 ≀ π‘Š)) ∧ ((𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š) ∧ 𝑅 ≀ (𝑃 ∨ 𝑄))) β†’ (𝑃 ∨ 𝑄) = (𝑅 ∨ π‘ˆ))
4847oveq2d 7421 . . . . . . . 8 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ (𝑅 ∈ 𝐴 ∧ Β¬ 𝑅 ≀ π‘Š)) ∧ ((𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š) ∧ 𝑅 ≀ (𝑃 ∨ 𝑄))) β†’ (𝑆 ∨ (𝑃 ∨ 𝑄)) = (𝑆 ∨ (𝑅 ∨ π‘ˆ)))
497, 8latjcom 18396 . . . . . . . . . . 11 ((𝐾 ∈ Lat ∧ 𝐹 ∈ (Baseβ€˜πΎ) ∧ 𝑆 ∈ (Baseβ€˜πΎ)) β†’ (𝐹 ∨ 𝑆) = (𝑆 ∨ 𝐹))
5012, 21, 35, 49syl3anc 1371 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ (𝑅 ∈ 𝐴 ∧ Β¬ 𝑅 ≀ π‘Š)) ∧ ((𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š) ∧ 𝑅 ≀ (𝑃 ∨ 𝑄))) β†’ (𝐹 ∨ 𝑆) = (𝑆 ∨ 𝐹))
51 simp3l 1201 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ (𝑅 ∈ 𝐴 ∧ Β¬ 𝑅 ≀ π‘Š)) ∧ ((𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š) ∧ 𝑅 ≀ (𝑃 ∨ 𝑄))) β†’ (𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š))
5215, 8, 16, 9, 17, 18, 19cdleme1 39086 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ (𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š))) β†’ (𝑆 ∨ 𝐹) = (𝑆 ∨ π‘ˆ))
5313, 5, 6, 51, 52syl13anc 1372 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ (𝑅 ∈ 𝐴 ∧ Β¬ 𝑅 ≀ π‘Š)) ∧ ((𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š) ∧ 𝑅 ≀ (𝑃 ∨ 𝑄))) β†’ (𝑆 ∨ 𝐹) = (𝑆 ∨ π‘ˆ))
5450, 53eqtrd 2772 . . . . . . . . 9 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ (𝑅 ∈ 𝐴 ∧ Β¬ 𝑅 ≀ π‘Š)) ∧ ((𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š) ∧ 𝑅 ≀ (𝑃 ∨ 𝑄))) β†’ (𝐹 ∨ 𝑆) = (𝑆 ∨ π‘ˆ))
5554oveq2d 7421 . . . . . . . 8 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ (𝑅 ∈ 𝐴 ∧ Β¬ 𝑅 ≀ π‘Š)) ∧ ((𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š) ∧ 𝑅 ≀ (𝑃 ∨ 𝑄))) β†’ (𝑅 ∨ (𝐹 ∨ 𝑆)) = (𝑅 ∨ (𝑆 ∨ π‘ˆ)))
5645, 48, 553eqtr4d 2782 . . . . . . 7 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ (𝑅 ∈ 𝐴 ∧ Β¬ 𝑅 ≀ π‘Š)) ∧ ((𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š) ∧ 𝑅 ≀ (𝑃 ∨ 𝑄))) β†’ (𝑆 ∨ (𝑃 ∨ 𝑄)) = (𝑅 ∨ (𝐹 ∨ 𝑆)))
5715, 8, 9hlatlej1 38233 . . . . . . . . . . 11 ((𝐾 ∈ HL ∧ 𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴) β†’ 𝑅 ≀ (𝑅 ∨ 𝑆))
583, 4, 14, 57syl3anc 1371 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ (𝑅 ∈ 𝐴 ∧ Β¬ 𝑅 ≀ π‘Š)) ∧ ((𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š) ∧ 𝑅 ≀ (𝑃 ∨ 𝑄))) β†’ 𝑅 ≀ (𝑅 ∨ 𝑆))
597, 15, 8, 16, 9atmod3i1 38723 . . . . . . . . . 10 ((𝐾 ∈ HL ∧ (𝑅 ∈ 𝐴 ∧ (𝑅 ∨ 𝑆) ∈ (Baseβ€˜πΎ) ∧ π‘Š ∈ (Baseβ€˜πΎ)) ∧ 𝑅 ≀ (𝑅 ∨ 𝑆)) β†’ (𝑅 ∨ ((𝑅 ∨ 𝑆) ∧ π‘Š)) = ((𝑅 ∨ 𝑆) ∧ (𝑅 ∨ π‘Š)))
603, 4, 23, 26, 58, 59syl131anc 1383 . . . . . . . . 9 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ (𝑅 ∈ 𝐴 ∧ Β¬ 𝑅 ≀ π‘Š)) ∧ ((𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š) ∧ 𝑅 ≀ (𝑃 ∨ 𝑄))) β†’ (𝑅 ∨ ((𝑅 ∨ 𝑆) ∧ π‘Š)) = ((𝑅 ∨ 𝑆) ∧ (𝑅 ∨ π‘Š)))
61 simp23r 1295 . . . . . . . . . . . 12 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ (𝑅 ∈ 𝐴 ∧ Β¬ 𝑅 ≀ π‘Š)) ∧ ((𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š) ∧ 𝑅 ≀ (𝑃 ∨ 𝑄))) β†’ Β¬ 𝑅 ≀ π‘Š)
62 eqid 2732 . . . . . . . . . . . . 13 (1.β€˜πΎ) = (1.β€˜πΎ)
6315, 8, 62, 9, 17lhpjat2 38880 . . . . . . . . . . . 12 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑅 ∈ 𝐴 ∧ Β¬ 𝑅 ≀ π‘Š)) β†’ (𝑅 ∨ π‘Š) = (1.β€˜πΎ))
6413, 4, 61, 63syl12anc 835 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ (𝑅 ∈ 𝐴 ∧ Β¬ 𝑅 ≀ π‘Š)) ∧ ((𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š) ∧ 𝑅 ≀ (𝑃 ∨ 𝑄))) β†’ (𝑅 ∨ π‘Š) = (1.β€˜πΎ))
6564oveq2d 7421 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ (𝑅 ∈ 𝐴 ∧ Β¬ 𝑅 ≀ π‘Š)) ∧ ((𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š) ∧ 𝑅 ≀ (𝑃 ∨ 𝑄))) β†’ ((𝑅 ∨ 𝑆) ∧ (𝑅 ∨ π‘Š)) = ((𝑅 ∨ 𝑆) ∧ (1.β€˜πΎ)))
66 hlol 38219 . . . . . . . . . . . 12 (𝐾 ∈ HL β†’ 𝐾 ∈ OL)
673, 66syl 17 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ (𝑅 ∈ 𝐴 ∧ Β¬ 𝑅 ≀ π‘Š)) ∧ ((𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š) ∧ 𝑅 ≀ (𝑃 ∨ 𝑄))) β†’ 𝐾 ∈ OL)
687, 16, 62olm11 38085 . . . . . . . . . . 11 ((𝐾 ∈ OL ∧ (𝑅 ∨ 𝑆) ∈ (Baseβ€˜πΎ)) β†’ ((𝑅 ∨ 𝑆) ∧ (1.β€˜πΎ)) = (𝑅 ∨ 𝑆))
6967, 23, 68syl2anc 584 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ (𝑅 ∈ 𝐴 ∧ Β¬ 𝑅 ≀ π‘Š)) ∧ ((𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š) ∧ 𝑅 ≀ (𝑃 ∨ 𝑄))) β†’ ((𝑅 ∨ 𝑆) ∧ (1.β€˜πΎ)) = (𝑅 ∨ 𝑆))
7065, 69eqtrd 2772 . . . . . . . . 9 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ (𝑅 ∈ 𝐴 ∧ Β¬ 𝑅 ≀ π‘Š)) ∧ ((𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š) ∧ 𝑅 ≀ (𝑃 ∨ 𝑄))) β†’ ((𝑅 ∨ 𝑆) ∧ (𝑅 ∨ π‘Š)) = (𝑅 ∨ 𝑆))
7160, 70eqtrd 2772 . . . . . . . 8 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ (𝑅 ∈ 𝐴 ∧ Β¬ 𝑅 ≀ π‘Š)) ∧ ((𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š) ∧ 𝑅 ≀ (𝑃 ∨ 𝑄))) β†’ (𝑅 ∨ ((𝑅 ∨ 𝑆) ∧ π‘Š)) = (𝑅 ∨ 𝑆))
7271oveq2d 7421 . . . . . . 7 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ (𝑅 ∈ 𝐴 ∧ Β¬ 𝑅 ≀ π‘Š)) ∧ ((𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š) ∧ 𝑅 ≀ (𝑃 ∨ 𝑄))) β†’ (𝐹 ∨ (𝑅 ∨ ((𝑅 ∨ 𝑆) ∧ π‘Š))) = (𝐹 ∨ (𝑅 ∨ 𝑆)))
7341, 56, 723eqtr4d 2782 . . . . . 6 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ (𝑅 ∈ 𝐴 ∧ Β¬ 𝑅 ≀ π‘Š)) ∧ ((𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š) ∧ 𝑅 ≀ (𝑃 ∨ 𝑄))) β†’ (𝑆 ∨ (𝑃 ∨ 𝑄)) = (𝐹 ∨ (𝑅 ∨ ((𝑅 ∨ 𝑆) ∧ π‘Š))))
747, 8latj12 18433 . . . . . . 7 ((𝐾 ∈ Lat ∧ (𝐹 ∈ (Baseβ€˜πΎ) ∧ 𝑅 ∈ (Baseβ€˜πΎ) ∧ ((𝑅 ∨ 𝑆) ∧ π‘Š) ∈ (Baseβ€˜πΎ))) β†’ (𝐹 ∨ (𝑅 ∨ ((𝑅 ∨ 𝑆) ∧ π‘Š))) = (𝑅 ∨ (𝐹 ∨ ((𝑅 ∨ 𝑆) ∧ π‘Š))))
7512, 21, 39, 28, 74syl13anc 1372 . . . . . 6 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ (𝑅 ∈ 𝐴 ∧ Β¬ 𝑅 ≀ π‘Š)) ∧ ((𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š) ∧ 𝑅 ≀ (𝑃 ∨ 𝑄))) β†’ (𝐹 ∨ (𝑅 ∨ ((𝑅 ∨ 𝑆) ∧ π‘Š))) = (𝑅 ∨ (𝐹 ∨ ((𝑅 ∨ 𝑆) ∧ π‘Š))))
7673, 75eqtrd 2772 . . . . 5 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ (𝑅 ∈ 𝐴 ∧ Β¬ 𝑅 ≀ π‘Š)) ∧ ((𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š) ∧ 𝑅 ≀ (𝑃 ∨ 𝑄))) β†’ (𝑆 ∨ (𝑃 ∨ 𝑄)) = (𝑅 ∨ (𝐹 ∨ ((𝑅 ∨ 𝑆) ∧ π‘Š))))
7737, 76breqtrd 5173 . . . 4 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ (𝑅 ∈ 𝐴 ∧ Β¬ 𝑅 ≀ π‘Š)) ∧ ((𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š) ∧ 𝑅 ≀ (𝑃 ∨ 𝑄))) β†’ (𝑃 ∨ 𝑄) ≀ (𝑅 ∨ (𝐹 ∨ ((𝑅 ∨ 𝑆) ∧ π‘Š))))
787, 8latjcl 18388 . . . . . 6 ((𝐾 ∈ Lat ∧ 𝑅 ∈ (Baseβ€˜πΎ) ∧ (𝐹 ∨ ((𝑅 ∨ 𝑆) ∧ π‘Š)) ∈ (Baseβ€˜πΎ)) β†’ (𝑅 ∨ (𝐹 ∨ ((𝑅 ∨ 𝑆) ∧ π‘Š))) ∈ (Baseβ€˜πΎ))
7912, 39, 30, 78syl3anc 1371 . . . . 5 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ (𝑅 ∈ 𝐴 ∧ Β¬ 𝑅 ≀ π‘Š)) ∧ ((𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š) ∧ 𝑅 ≀ (𝑃 ∨ 𝑄))) β†’ (𝑅 ∨ (𝐹 ∨ ((𝑅 ∨ 𝑆) ∧ π‘Š))) ∈ (Baseβ€˜πΎ))
807, 15, 16latleeqm1 18416 . . . . 5 ((𝐾 ∈ Lat ∧ (𝑃 ∨ 𝑄) ∈ (Baseβ€˜πΎ) ∧ (𝑅 ∨ (𝐹 ∨ ((𝑅 ∨ 𝑆) ∧ π‘Š))) ∈ (Baseβ€˜πΎ)) β†’ ((𝑃 ∨ 𝑄) ≀ (𝑅 ∨ (𝐹 ∨ ((𝑅 ∨ 𝑆) ∧ π‘Š))) ↔ ((𝑃 ∨ 𝑄) ∧ (𝑅 ∨ (𝐹 ∨ ((𝑅 ∨ 𝑆) ∧ π‘Š)))) = (𝑃 ∨ 𝑄)))
8112, 11, 79, 80syl3anc 1371 . . . 4 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ (𝑅 ∈ 𝐴 ∧ Β¬ 𝑅 ≀ π‘Š)) ∧ ((𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š) ∧ 𝑅 ≀ (𝑃 ∨ 𝑄))) β†’ ((𝑃 ∨ 𝑄) ≀ (𝑅 ∨ (𝐹 ∨ ((𝑅 ∨ 𝑆) ∧ π‘Š))) ↔ ((𝑃 ∨ 𝑄) ∧ (𝑅 ∨ (𝐹 ∨ ((𝑅 ∨ 𝑆) ∧ π‘Š)))) = (𝑃 ∨ 𝑄)))
8277, 81mpbid 231 . . 3 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ (𝑅 ∈ 𝐴 ∧ Β¬ 𝑅 ≀ π‘Š)) ∧ ((𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š) ∧ 𝑅 ≀ (𝑃 ∨ 𝑄))) β†’ ((𝑃 ∨ 𝑄) ∧ (𝑅 ∨ (𝐹 ∨ ((𝑅 ∨ 𝑆) ∧ π‘Š)))) = (𝑃 ∨ 𝑄))
8333, 82eqtrd 2772 . 2 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ (𝑅 ∈ 𝐴 ∧ Β¬ 𝑅 ≀ π‘Š)) ∧ ((𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š) ∧ 𝑅 ≀ (𝑃 ∨ 𝑄))) β†’ (𝑅 ∨ ((𝑃 ∨ 𝑄) ∧ (𝐹 ∨ ((𝑅 ∨ 𝑆) ∧ π‘Š)))) = (𝑃 ∨ 𝑄))
842, 83eqtrid 2784 1 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ (𝑅 ∈ 𝐴 ∧ Β¬ 𝑅 ≀ π‘Š)) ∧ ((𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š) ∧ 𝑅 ≀ (𝑃 ∨ 𝑄))) β†’ (𝑅 ∨ 𝐺) = (𝑃 ∨ 𝑄))
Colors of variables: wff setvar class
Syntax hints:  Β¬ wn 3   β†’ wi 4   ↔ wb 205   ∧ wa 396   ∧ w3a 1087   = wceq 1541   ∈ wcel 2106   class class class wbr 5147  β€˜cfv 6540  (class class class)co 7405  Basecbs 17140  lecple 17200  joincjn 18260  meetcmee 18261  1.cp1 18373  Latclat 18380  OLcol 38032  Atomscatm 38121  HLchlt 38208  LHypclh 38843
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5284  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7721
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-rmo 3376  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-iun 4998  df-iin 4999  df-br 5148  df-opab 5210  df-mpt 5231  df-id 5573  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-riota 7361  df-ov 7408  df-oprab 7409  df-mpo 7410  df-1st 7971  df-2nd 7972  df-proset 18244  df-poset 18262  df-plt 18279  df-lub 18295  df-glb 18296  df-join 18297  df-meet 18298  df-p0 18374  df-p1 18375  df-lat 18381  df-clat 18448  df-oposet 38034  df-ol 38036  df-oml 38037  df-covers 38124  df-ats 38125  df-atl 38156  df-cvlat 38180  df-hlat 38209  df-psubsp 38362  df-pmap 38363  df-padd 38655  df-lhyp 38847
This theorem is referenced by:  cdleme6  39100  cdleme7e  39106  cdleme18b  39151  cdleme50trn2a  39409
  Copyright terms: Public domain W3C validator