Proof of Theorem cdleme5
Step | Hyp | Ref
| Expression |
1 | | cdleme4.g |
. . 3
⊢ 𝐺 = ((𝑃 ∨ 𝑄) ∧ (𝐹 ∨ ((𝑅 ∨ 𝑆) ∧ 𝑊))) |
2 | 1 | oveq2i 7266 |
. 2
⊢ (𝑅 ∨ 𝐺) = (𝑅 ∨ ((𝑃 ∨ 𝑄) ∧ (𝐹 ∨ ((𝑅 ∨ 𝑆) ∧ 𝑊)))) |
3 | | simp1l 1195 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) ∧ ((𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊) ∧ 𝑅 ≤ (𝑃 ∨ 𝑄))) → 𝐾 ∈ HL) |
4 | | simp23l 1292 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) ∧ ((𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊) ∧ 𝑅 ≤ (𝑃 ∨ 𝑄))) → 𝑅 ∈ 𝐴) |
5 | | simp21 1204 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) ∧ ((𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊) ∧ 𝑅 ≤ (𝑃 ∨ 𝑄))) → 𝑃 ∈ 𝐴) |
6 | | simp22 1205 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) ∧ ((𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊) ∧ 𝑅 ≤ (𝑃 ∨ 𝑄))) → 𝑄 ∈ 𝐴) |
7 | | eqid 2738 |
. . . . . 6
⊢
(Base‘𝐾) =
(Base‘𝐾) |
8 | | cdleme4.j |
. . . . . 6
⊢ ∨ =
(join‘𝐾) |
9 | | cdleme4.a |
. . . . . 6
⊢ 𝐴 = (Atoms‘𝐾) |
10 | 7, 8, 9 | hlatjcl 37308 |
. . . . 5
⊢ ((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) → (𝑃 ∨ 𝑄) ∈ (Base‘𝐾)) |
11 | 3, 5, 6, 10 | syl3anc 1369 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) ∧ ((𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊) ∧ 𝑅 ≤ (𝑃 ∨ 𝑄))) → (𝑃 ∨ 𝑄) ∈ (Base‘𝐾)) |
12 | 3 | hllatd 37305 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) ∧ ((𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊) ∧ 𝑅 ≤ (𝑃 ∨ 𝑄))) → 𝐾 ∈ Lat) |
13 | | simp1 1134 |
. . . . . 6
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) ∧ ((𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊) ∧ 𝑅 ≤ (𝑃 ∨ 𝑄))) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
14 | | simp3ll 1242 |
. . . . . 6
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) ∧ ((𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊) ∧ 𝑅 ≤ (𝑃 ∨ 𝑄))) → 𝑆 ∈ 𝐴) |
15 | | cdleme4.l |
. . . . . . 7
⊢ ≤ =
(le‘𝐾) |
16 | | cdleme4.m |
. . . . . . 7
⊢ ∧ =
(meet‘𝐾) |
17 | | cdleme4.h |
. . . . . . 7
⊢ 𝐻 = (LHyp‘𝐾) |
18 | | cdleme4.u |
. . . . . . 7
⊢ 𝑈 = ((𝑃 ∨ 𝑄) ∧ 𝑊) |
19 | | cdleme4.f |
. . . . . . 7
⊢ 𝐹 = ((𝑆 ∨ 𝑈) ∧ (𝑄 ∨ ((𝑃 ∨ 𝑆) ∧ 𝑊))) |
20 | 15, 8, 16, 9, 17, 18, 19, 7 | cdleme1b 38167 |
. . . . . 6
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴)) → 𝐹 ∈ (Base‘𝐾)) |
21 | 13, 5, 6, 14, 20 | syl13anc 1370 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) ∧ ((𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊) ∧ 𝑅 ≤ (𝑃 ∨ 𝑄))) → 𝐹 ∈ (Base‘𝐾)) |
22 | 7, 8, 9 | hlatjcl 37308 |
. . . . . . 7
⊢ ((𝐾 ∈ HL ∧ 𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴) → (𝑅 ∨ 𝑆) ∈ (Base‘𝐾)) |
23 | 3, 4, 14, 22 | syl3anc 1369 |
. . . . . 6
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) ∧ ((𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊) ∧ 𝑅 ≤ (𝑃 ∨ 𝑄))) → (𝑅 ∨ 𝑆) ∈ (Base‘𝐾)) |
24 | | simp1r 1196 |
. . . . . . 7
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) ∧ ((𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊) ∧ 𝑅 ≤ (𝑃 ∨ 𝑄))) → 𝑊 ∈ 𝐻) |
25 | 7, 17 | lhpbase 37939 |
. . . . . . 7
⊢ (𝑊 ∈ 𝐻 → 𝑊 ∈ (Base‘𝐾)) |
26 | 24, 25 | syl 17 |
. . . . . 6
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) ∧ ((𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊) ∧ 𝑅 ≤ (𝑃 ∨ 𝑄))) → 𝑊 ∈ (Base‘𝐾)) |
27 | 7, 16 | latmcl 18073 |
. . . . . 6
⊢ ((𝐾 ∈ Lat ∧ (𝑅 ∨ 𝑆) ∈ (Base‘𝐾) ∧ 𝑊 ∈ (Base‘𝐾)) → ((𝑅 ∨ 𝑆) ∧ 𝑊) ∈ (Base‘𝐾)) |
28 | 12, 23, 26, 27 | syl3anc 1369 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) ∧ ((𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊) ∧ 𝑅 ≤ (𝑃 ∨ 𝑄))) → ((𝑅 ∨ 𝑆) ∧ 𝑊) ∈ (Base‘𝐾)) |
29 | 7, 8 | latjcl 18072 |
. . . . 5
⊢ ((𝐾 ∈ Lat ∧ 𝐹 ∈ (Base‘𝐾) ∧ ((𝑅 ∨ 𝑆) ∧ 𝑊) ∈ (Base‘𝐾)) → (𝐹 ∨ ((𝑅 ∨ 𝑆) ∧ 𝑊)) ∈ (Base‘𝐾)) |
30 | 12, 21, 28, 29 | syl3anc 1369 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) ∧ ((𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊) ∧ 𝑅 ≤ (𝑃 ∨ 𝑄))) → (𝐹 ∨ ((𝑅 ∨ 𝑆) ∧ 𝑊)) ∈ (Base‘𝐾)) |
31 | | simp3r 1200 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) ∧ ((𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊) ∧ 𝑅 ≤ (𝑃 ∨ 𝑄))) → 𝑅 ≤ (𝑃 ∨ 𝑄)) |
32 | 7, 15, 8, 16, 9 | atmod3i1 37805 |
. . . 4
⊢ ((𝐾 ∈ HL ∧ (𝑅 ∈ 𝐴 ∧ (𝑃 ∨ 𝑄) ∈ (Base‘𝐾) ∧ (𝐹 ∨ ((𝑅 ∨ 𝑆) ∧ 𝑊)) ∈ (Base‘𝐾)) ∧ 𝑅 ≤ (𝑃 ∨ 𝑄)) → (𝑅 ∨ ((𝑃 ∨ 𝑄) ∧ (𝐹 ∨ ((𝑅 ∨ 𝑆) ∧ 𝑊)))) = ((𝑃 ∨ 𝑄) ∧ (𝑅 ∨ (𝐹 ∨ ((𝑅 ∨ 𝑆) ∧ 𝑊))))) |
33 | 3, 4, 11, 30, 31, 32 | syl131anc 1381 |
. . 3
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) ∧ ((𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊) ∧ 𝑅 ≤ (𝑃 ∨ 𝑄))) → (𝑅 ∨ ((𝑃 ∨ 𝑄) ∧ (𝐹 ∨ ((𝑅 ∨ 𝑆) ∧ 𝑊)))) = ((𝑃 ∨ 𝑄) ∧ (𝑅 ∨ (𝐹 ∨ ((𝑅 ∨ 𝑆) ∧ 𝑊))))) |
34 | 7, 9 | atbase 37230 |
. . . . . . 7
⊢ (𝑆 ∈ 𝐴 → 𝑆 ∈ (Base‘𝐾)) |
35 | 14, 34 | syl 17 |
. . . . . 6
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) ∧ ((𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊) ∧ 𝑅 ≤ (𝑃 ∨ 𝑄))) → 𝑆 ∈ (Base‘𝐾)) |
36 | 7, 15, 8 | latlej2 18082 |
. . . . . 6
⊢ ((𝐾 ∈ Lat ∧ 𝑆 ∈ (Base‘𝐾) ∧ (𝑃 ∨ 𝑄) ∈ (Base‘𝐾)) → (𝑃 ∨ 𝑄) ≤ (𝑆 ∨ (𝑃 ∨ 𝑄))) |
37 | 12, 35, 11, 36 | syl3anc 1369 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) ∧ ((𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊) ∧ 𝑅 ≤ (𝑃 ∨ 𝑄))) → (𝑃 ∨ 𝑄) ≤ (𝑆 ∨ (𝑃 ∨ 𝑄))) |
38 | 7, 9 | atbase 37230 |
. . . . . . . . 9
⊢ (𝑅 ∈ 𝐴 → 𝑅 ∈ (Base‘𝐾)) |
39 | 4, 38 | syl 17 |
. . . . . . . 8
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) ∧ ((𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊) ∧ 𝑅 ≤ (𝑃 ∨ 𝑄))) → 𝑅 ∈ (Base‘𝐾)) |
40 | 7, 8 | latj12 18117 |
. . . . . . . 8
⊢ ((𝐾 ∈ Lat ∧ (𝑅 ∈ (Base‘𝐾) ∧ 𝐹 ∈ (Base‘𝐾) ∧ 𝑆 ∈ (Base‘𝐾))) → (𝑅 ∨ (𝐹 ∨ 𝑆)) = (𝐹 ∨ (𝑅 ∨ 𝑆))) |
41 | 12, 39, 21, 35, 40 | syl13anc 1370 |
. . . . . . 7
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) ∧ ((𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊) ∧ 𝑅 ≤ (𝑃 ∨ 𝑄))) → (𝑅 ∨ (𝐹 ∨ 𝑆)) = (𝐹 ∨ (𝑅 ∨ 𝑆))) |
42 | 15, 8, 16, 9, 17, 18, 7 | cdleme0aa 38151 |
. . . . . . . . . 10
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) → 𝑈 ∈ (Base‘𝐾)) |
43 | 13, 5, 6, 42 | syl3anc 1369 |
. . . . . . . . 9
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) ∧ ((𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊) ∧ 𝑅 ≤ (𝑃 ∨ 𝑄))) → 𝑈 ∈ (Base‘𝐾)) |
44 | 7, 8 | latj12 18117 |
. . . . . . . . 9
⊢ ((𝐾 ∈ Lat ∧ (𝑆 ∈ (Base‘𝐾) ∧ 𝑅 ∈ (Base‘𝐾) ∧ 𝑈 ∈ (Base‘𝐾))) → (𝑆 ∨ (𝑅 ∨ 𝑈)) = (𝑅 ∨ (𝑆 ∨ 𝑈))) |
45 | 12, 35, 39, 43, 44 | syl13anc 1370 |
. . . . . . . 8
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) ∧ ((𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊) ∧ 𝑅 ≤ (𝑃 ∨ 𝑄))) → (𝑆 ∨ (𝑅 ∨ 𝑈)) = (𝑅 ∨ (𝑆 ∨ 𝑈))) |
46 | 15, 8, 16, 9, 17, 18 | cdleme4 38179 |
. . . . . . . . . 10
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) ∧ 𝑅 ≤ (𝑃 ∨ 𝑄)) → (𝑃 ∨ 𝑄) = (𝑅 ∨ 𝑈)) |
47 | 46 | 3adant3l 1178 |
. . . . . . . . 9
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) ∧ ((𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊) ∧ 𝑅 ≤ (𝑃 ∨ 𝑄))) → (𝑃 ∨ 𝑄) = (𝑅 ∨ 𝑈)) |
48 | 47 | oveq2d 7271 |
. . . . . . . 8
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) ∧ ((𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊) ∧ 𝑅 ≤ (𝑃 ∨ 𝑄))) → (𝑆 ∨ (𝑃 ∨ 𝑄)) = (𝑆 ∨ (𝑅 ∨ 𝑈))) |
49 | 7, 8 | latjcom 18080 |
. . . . . . . . . . 11
⊢ ((𝐾 ∈ Lat ∧ 𝐹 ∈ (Base‘𝐾) ∧ 𝑆 ∈ (Base‘𝐾)) → (𝐹 ∨ 𝑆) = (𝑆 ∨ 𝐹)) |
50 | 12, 21, 35, 49 | syl3anc 1369 |
. . . . . . . . . 10
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) ∧ ((𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊) ∧ 𝑅 ≤ (𝑃 ∨ 𝑄))) → (𝐹 ∨ 𝑆) = (𝑆 ∨ 𝐹)) |
51 | | simp3l 1199 |
. . . . . . . . . . 11
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) ∧ ((𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊) ∧ 𝑅 ≤ (𝑃 ∨ 𝑄))) → (𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊)) |
52 | 15, 8, 16, 9, 17, 18, 19 | cdleme1 38168 |
. . . . . . . . . . 11
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ (𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊))) → (𝑆 ∨ 𝐹) = (𝑆 ∨ 𝑈)) |
53 | 13, 5, 6, 51, 52 | syl13anc 1370 |
. . . . . . . . . 10
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) ∧ ((𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊) ∧ 𝑅 ≤ (𝑃 ∨ 𝑄))) → (𝑆 ∨ 𝐹) = (𝑆 ∨ 𝑈)) |
54 | 50, 53 | eqtrd 2778 |
. . . . . . . . 9
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) ∧ ((𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊) ∧ 𝑅 ≤ (𝑃 ∨ 𝑄))) → (𝐹 ∨ 𝑆) = (𝑆 ∨ 𝑈)) |
55 | 54 | oveq2d 7271 |
. . . . . . . 8
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) ∧ ((𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊) ∧ 𝑅 ≤ (𝑃 ∨ 𝑄))) → (𝑅 ∨ (𝐹 ∨ 𝑆)) = (𝑅 ∨ (𝑆 ∨ 𝑈))) |
56 | 45, 48, 55 | 3eqtr4d 2788 |
. . . . . . 7
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) ∧ ((𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊) ∧ 𝑅 ≤ (𝑃 ∨ 𝑄))) → (𝑆 ∨ (𝑃 ∨ 𝑄)) = (𝑅 ∨ (𝐹 ∨ 𝑆))) |
57 | 15, 8, 9 | hlatlej1 37316 |
. . . . . . . . . . 11
⊢ ((𝐾 ∈ HL ∧ 𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴) → 𝑅 ≤ (𝑅 ∨ 𝑆)) |
58 | 3, 4, 14, 57 | syl3anc 1369 |
. . . . . . . . . 10
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) ∧ ((𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊) ∧ 𝑅 ≤ (𝑃 ∨ 𝑄))) → 𝑅 ≤ (𝑅 ∨ 𝑆)) |
59 | 7, 15, 8, 16, 9 | atmod3i1 37805 |
. . . . . . . . . 10
⊢ ((𝐾 ∈ HL ∧ (𝑅 ∈ 𝐴 ∧ (𝑅 ∨ 𝑆) ∈ (Base‘𝐾) ∧ 𝑊 ∈ (Base‘𝐾)) ∧ 𝑅 ≤ (𝑅 ∨ 𝑆)) → (𝑅 ∨ ((𝑅 ∨ 𝑆) ∧ 𝑊)) = ((𝑅 ∨ 𝑆) ∧ (𝑅 ∨ 𝑊))) |
60 | 3, 4, 23, 26, 58, 59 | syl131anc 1381 |
. . . . . . . . 9
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) ∧ ((𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊) ∧ 𝑅 ≤ (𝑃 ∨ 𝑄))) → (𝑅 ∨ ((𝑅 ∨ 𝑆) ∧ 𝑊)) = ((𝑅 ∨ 𝑆) ∧ (𝑅 ∨ 𝑊))) |
61 | | simp23r 1293 |
. . . . . . . . . . . 12
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) ∧ ((𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊) ∧ 𝑅 ≤ (𝑃 ∨ 𝑄))) → ¬ 𝑅 ≤ 𝑊) |
62 | | eqid 2738 |
. . . . . . . . . . . . 13
⊢
(1.‘𝐾) =
(1.‘𝐾) |
63 | 15, 8, 62, 9, 17 | lhpjat2 37962 |
. . . . . . . . . . . 12
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) → (𝑅 ∨ 𝑊) = (1.‘𝐾)) |
64 | 13, 4, 61, 63 | syl12anc 833 |
. . . . . . . . . . 11
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) ∧ ((𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊) ∧ 𝑅 ≤ (𝑃 ∨ 𝑄))) → (𝑅 ∨ 𝑊) = (1.‘𝐾)) |
65 | 64 | oveq2d 7271 |
. . . . . . . . . 10
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) ∧ ((𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊) ∧ 𝑅 ≤ (𝑃 ∨ 𝑄))) → ((𝑅 ∨ 𝑆) ∧ (𝑅 ∨ 𝑊)) = ((𝑅 ∨ 𝑆) ∧ (1.‘𝐾))) |
66 | | hlol 37302 |
. . . . . . . . . . . 12
⊢ (𝐾 ∈ HL → 𝐾 ∈ OL) |
67 | 3, 66 | syl 17 |
. . . . . . . . . . 11
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) ∧ ((𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊) ∧ 𝑅 ≤ (𝑃 ∨ 𝑄))) → 𝐾 ∈ OL) |
68 | 7, 16, 62 | olm11 37168 |
. . . . . . . . . . 11
⊢ ((𝐾 ∈ OL ∧ (𝑅 ∨ 𝑆) ∈ (Base‘𝐾)) → ((𝑅 ∨ 𝑆) ∧ (1.‘𝐾)) = (𝑅 ∨ 𝑆)) |
69 | 67, 23, 68 | syl2anc 583 |
. . . . . . . . . 10
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) ∧ ((𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊) ∧ 𝑅 ≤ (𝑃 ∨ 𝑄))) → ((𝑅 ∨ 𝑆) ∧ (1.‘𝐾)) = (𝑅 ∨ 𝑆)) |
70 | 65, 69 | eqtrd 2778 |
. . . . . . . . 9
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) ∧ ((𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊) ∧ 𝑅 ≤ (𝑃 ∨ 𝑄))) → ((𝑅 ∨ 𝑆) ∧ (𝑅 ∨ 𝑊)) = (𝑅 ∨ 𝑆)) |
71 | 60, 70 | eqtrd 2778 |
. . . . . . . 8
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) ∧ ((𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊) ∧ 𝑅 ≤ (𝑃 ∨ 𝑄))) → (𝑅 ∨ ((𝑅 ∨ 𝑆) ∧ 𝑊)) = (𝑅 ∨ 𝑆)) |
72 | 71 | oveq2d 7271 |
. . . . . . 7
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) ∧ ((𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊) ∧ 𝑅 ≤ (𝑃 ∨ 𝑄))) → (𝐹 ∨ (𝑅 ∨ ((𝑅 ∨ 𝑆) ∧ 𝑊))) = (𝐹 ∨ (𝑅 ∨ 𝑆))) |
73 | 41, 56, 72 | 3eqtr4d 2788 |
. . . . . 6
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) ∧ ((𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊) ∧ 𝑅 ≤ (𝑃 ∨ 𝑄))) → (𝑆 ∨ (𝑃 ∨ 𝑄)) = (𝐹 ∨ (𝑅 ∨ ((𝑅 ∨ 𝑆) ∧ 𝑊)))) |
74 | 7, 8 | latj12 18117 |
. . . . . . 7
⊢ ((𝐾 ∈ Lat ∧ (𝐹 ∈ (Base‘𝐾) ∧ 𝑅 ∈ (Base‘𝐾) ∧ ((𝑅 ∨ 𝑆) ∧ 𝑊) ∈ (Base‘𝐾))) → (𝐹 ∨ (𝑅 ∨ ((𝑅 ∨ 𝑆) ∧ 𝑊))) = (𝑅 ∨ (𝐹 ∨ ((𝑅 ∨ 𝑆) ∧ 𝑊)))) |
75 | 12, 21, 39, 28, 74 | syl13anc 1370 |
. . . . . 6
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) ∧ ((𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊) ∧ 𝑅 ≤ (𝑃 ∨ 𝑄))) → (𝐹 ∨ (𝑅 ∨ ((𝑅 ∨ 𝑆) ∧ 𝑊))) = (𝑅 ∨ (𝐹 ∨ ((𝑅 ∨ 𝑆) ∧ 𝑊)))) |
76 | 73, 75 | eqtrd 2778 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) ∧ ((𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊) ∧ 𝑅 ≤ (𝑃 ∨ 𝑄))) → (𝑆 ∨ (𝑃 ∨ 𝑄)) = (𝑅 ∨ (𝐹 ∨ ((𝑅 ∨ 𝑆) ∧ 𝑊)))) |
77 | 37, 76 | breqtrd 5096 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) ∧ ((𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊) ∧ 𝑅 ≤ (𝑃 ∨ 𝑄))) → (𝑃 ∨ 𝑄) ≤ (𝑅 ∨ (𝐹 ∨ ((𝑅 ∨ 𝑆) ∧ 𝑊)))) |
78 | 7, 8 | latjcl 18072 |
. . . . . 6
⊢ ((𝐾 ∈ Lat ∧ 𝑅 ∈ (Base‘𝐾) ∧ (𝐹 ∨ ((𝑅 ∨ 𝑆) ∧ 𝑊)) ∈ (Base‘𝐾)) → (𝑅 ∨ (𝐹 ∨ ((𝑅 ∨ 𝑆) ∧ 𝑊))) ∈ (Base‘𝐾)) |
79 | 12, 39, 30, 78 | syl3anc 1369 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) ∧ ((𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊) ∧ 𝑅 ≤ (𝑃 ∨ 𝑄))) → (𝑅 ∨ (𝐹 ∨ ((𝑅 ∨ 𝑆) ∧ 𝑊))) ∈ (Base‘𝐾)) |
80 | 7, 15, 16 | latleeqm1 18100 |
. . . . 5
⊢ ((𝐾 ∈ Lat ∧ (𝑃 ∨ 𝑄) ∈ (Base‘𝐾) ∧ (𝑅 ∨ (𝐹 ∨ ((𝑅 ∨ 𝑆) ∧ 𝑊))) ∈ (Base‘𝐾)) → ((𝑃 ∨ 𝑄) ≤ (𝑅 ∨ (𝐹 ∨ ((𝑅 ∨ 𝑆) ∧ 𝑊))) ↔ ((𝑃 ∨ 𝑄) ∧ (𝑅 ∨ (𝐹 ∨ ((𝑅 ∨ 𝑆) ∧ 𝑊)))) = (𝑃 ∨ 𝑄))) |
81 | 12, 11, 79, 80 | syl3anc 1369 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) ∧ ((𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊) ∧ 𝑅 ≤ (𝑃 ∨ 𝑄))) → ((𝑃 ∨ 𝑄) ≤ (𝑅 ∨ (𝐹 ∨ ((𝑅 ∨ 𝑆) ∧ 𝑊))) ↔ ((𝑃 ∨ 𝑄) ∧ (𝑅 ∨ (𝐹 ∨ ((𝑅 ∨ 𝑆) ∧ 𝑊)))) = (𝑃 ∨ 𝑄))) |
82 | 77, 81 | mpbid 231 |
. . 3
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) ∧ ((𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊) ∧ 𝑅 ≤ (𝑃 ∨ 𝑄))) → ((𝑃 ∨ 𝑄) ∧ (𝑅 ∨ (𝐹 ∨ ((𝑅 ∨ 𝑆) ∧ 𝑊)))) = (𝑃 ∨ 𝑄)) |
83 | 33, 82 | eqtrd 2778 |
. 2
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) ∧ ((𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊) ∧ 𝑅 ≤ (𝑃 ∨ 𝑄))) → (𝑅 ∨ ((𝑃 ∨ 𝑄) ∧ (𝐹 ∨ ((𝑅 ∨ 𝑆) ∧ 𝑊)))) = (𝑃 ∨ 𝑄)) |
84 | 2, 83 | syl5eq 2791 |
1
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) ∧ ((𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊) ∧ 𝑅 ≤ (𝑃 ∨ 𝑄))) → (𝑅 ∨ 𝐺) = (𝑃 ∨ 𝑄)) |