Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdleme5 Structured version   Visualization version   GIF version

Theorem cdleme5 36026
Description: Part of proof of Lemma E in [Crawley] p. 113. 𝐺 represents fs(r). We show r fs(r)) = p q at the top of p. 114. (Contributed by NM, 7-Jun-2012.)
Hypotheses
Ref Expression
cdleme4.l = (le‘𝐾)
cdleme4.j = (join‘𝐾)
cdleme4.m = (meet‘𝐾)
cdleme4.a 𝐴 = (Atoms‘𝐾)
cdleme4.h 𝐻 = (LHyp‘𝐾)
cdleme4.u 𝑈 = ((𝑃 𝑄) 𝑊)
cdleme4.f 𝐹 = ((𝑆 𝑈) (𝑄 ((𝑃 𝑆) 𝑊)))
cdleme4.g 𝐺 = ((𝑃 𝑄) (𝐹 ((𝑅 𝑆) 𝑊)))
Assertion
Ref Expression
cdleme5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑄𝐴 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ 𝑅 (𝑃 𝑄))) → (𝑅 𝐺) = (𝑃 𝑄))

Proof of Theorem cdleme5
StepHypRef Expression
1 cdleme4.g . . 3 𝐺 = ((𝑃 𝑄) (𝐹 ((𝑅 𝑆) 𝑊)))
21oveq2i 6892 . 2 (𝑅 𝐺) = (𝑅 ((𝑃 𝑄) (𝐹 ((𝑅 𝑆) 𝑊))))
3 simp1l 1247 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑄𝐴 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ 𝑅 (𝑃 𝑄))) → 𝐾 ∈ HL)
4 simp23l 1386 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑄𝐴 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ 𝑅 (𝑃 𝑄))) → 𝑅𝐴)
5 simp21 1256 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑄𝐴 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ 𝑅 (𝑃 𝑄))) → 𝑃𝐴)
6 simp22 1257 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑄𝐴 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ 𝑅 (𝑃 𝑄))) → 𝑄𝐴)
7 eqid 2817 . . . . . 6 (Base‘𝐾) = (Base‘𝐾)
8 cdleme4.j . . . . . 6 = (join‘𝐾)
9 cdleme4.a . . . . . 6 𝐴 = (Atoms‘𝐾)
107, 8, 9hlatjcl 35153 . . . . 5 ((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) → (𝑃 𝑄) ∈ (Base‘𝐾))
113, 5, 6, 10syl3anc 1483 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑄𝐴 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ 𝑅 (𝑃 𝑄))) → (𝑃 𝑄) ∈ (Base‘𝐾))
123hllatd 35150 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑄𝐴 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ 𝑅 (𝑃 𝑄))) → 𝐾 ∈ Lat)
13 simp1 1159 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑄𝐴 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ 𝑅 (𝑃 𝑄))) → (𝐾 ∈ HL ∧ 𝑊𝐻))
14 simp3ll 1318 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑄𝐴 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ 𝑅 (𝑃 𝑄))) → 𝑆𝐴)
15 cdleme4.l . . . . . . 7 = (le‘𝐾)
16 cdleme4.m . . . . . . 7 = (meet‘𝐾)
17 cdleme4.h . . . . . . 7 𝐻 = (LHyp‘𝐾)
18 cdleme4.u . . . . . . 7 𝑈 = ((𝑃 𝑄) 𝑊)
19 cdleme4.f . . . . . . 7 𝐹 = ((𝑆 𝑈) (𝑄 ((𝑃 𝑆) 𝑊)))
2015, 8, 16, 9, 17, 18, 19, 7cdleme1b 36012 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑄𝐴𝑆𝐴)) → 𝐹 ∈ (Base‘𝐾))
2113, 5, 6, 14, 20syl13anc 1484 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑄𝐴 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ 𝑅 (𝑃 𝑄))) → 𝐹 ∈ (Base‘𝐾))
227, 8, 9hlatjcl 35153 . . . . . . 7 ((𝐾 ∈ HL ∧ 𝑅𝐴𝑆𝐴) → (𝑅 𝑆) ∈ (Base‘𝐾))
233, 4, 14, 22syl3anc 1483 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑄𝐴 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ 𝑅 (𝑃 𝑄))) → (𝑅 𝑆) ∈ (Base‘𝐾))
24 simp1r 1248 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑄𝐴 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ 𝑅 (𝑃 𝑄))) → 𝑊𝐻)
257, 17lhpbase 35784 . . . . . . 7 (𝑊𝐻𝑊 ∈ (Base‘𝐾))
2624, 25syl 17 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑄𝐴 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ 𝑅 (𝑃 𝑄))) → 𝑊 ∈ (Base‘𝐾))
277, 16latmcl 17264 . . . . . 6 ((𝐾 ∈ Lat ∧ (𝑅 𝑆) ∈ (Base‘𝐾) ∧ 𝑊 ∈ (Base‘𝐾)) → ((𝑅 𝑆) 𝑊) ∈ (Base‘𝐾))
2812, 23, 26, 27syl3anc 1483 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑄𝐴 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ 𝑅 (𝑃 𝑄))) → ((𝑅 𝑆) 𝑊) ∈ (Base‘𝐾))
297, 8latjcl 17263 . . . . 5 ((𝐾 ∈ Lat ∧ 𝐹 ∈ (Base‘𝐾) ∧ ((𝑅 𝑆) 𝑊) ∈ (Base‘𝐾)) → (𝐹 ((𝑅 𝑆) 𝑊)) ∈ (Base‘𝐾))
3012, 21, 28, 29syl3anc 1483 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑄𝐴 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ 𝑅 (𝑃 𝑄))) → (𝐹 ((𝑅 𝑆) 𝑊)) ∈ (Base‘𝐾))
31 simp3r 1252 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑄𝐴 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ 𝑅 (𝑃 𝑄))) → 𝑅 (𝑃 𝑄))
327, 15, 8, 16, 9atmod3i1 35650 . . . 4 ((𝐾 ∈ HL ∧ (𝑅𝐴 ∧ (𝑃 𝑄) ∈ (Base‘𝐾) ∧ (𝐹 ((𝑅 𝑆) 𝑊)) ∈ (Base‘𝐾)) ∧ 𝑅 (𝑃 𝑄)) → (𝑅 ((𝑃 𝑄) (𝐹 ((𝑅 𝑆) 𝑊)))) = ((𝑃 𝑄) (𝑅 (𝐹 ((𝑅 𝑆) 𝑊)))))
333, 4, 11, 30, 31, 32syl131anc 1495 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑄𝐴 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ 𝑅 (𝑃 𝑄))) → (𝑅 ((𝑃 𝑄) (𝐹 ((𝑅 𝑆) 𝑊)))) = ((𝑃 𝑄) (𝑅 (𝐹 ((𝑅 𝑆) 𝑊)))))
347, 9atbase 35075 . . . . . . 7 (𝑆𝐴𝑆 ∈ (Base‘𝐾))
3514, 34syl 17 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑄𝐴 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ 𝑅 (𝑃 𝑄))) → 𝑆 ∈ (Base‘𝐾))
367, 15, 8latlej2 17273 . . . . . 6 ((𝐾 ∈ Lat ∧ 𝑆 ∈ (Base‘𝐾) ∧ (𝑃 𝑄) ∈ (Base‘𝐾)) → (𝑃 𝑄) (𝑆 (𝑃 𝑄)))
3712, 35, 11, 36syl3anc 1483 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑄𝐴 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ 𝑅 (𝑃 𝑄))) → (𝑃 𝑄) (𝑆 (𝑃 𝑄)))
387, 9atbase 35075 . . . . . . . . 9 (𝑅𝐴𝑅 ∈ (Base‘𝐾))
394, 38syl 17 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑄𝐴 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ 𝑅 (𝑃 𝑄))) → 𝑅 ∈ (Base‘𝐾))
407, 8latj12 17308 . . . . . . . 8 ((𝐾 ∈ Lat ∧ (𝑅 ∈ (Base‘𝐾) ∧ 𝐹 ∈ (Base‘𝐾) ∧ 𝑆 ∈ (Base‘𝐾))) → (𝑅 (𝐹 𝑆)) = (𝐹 (𝑅 𝑆)))
4112, 39, 21, 35, 40syl13anc 1484 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑄𝐴 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ 𝑅 (𝑃 𝑄))) → (𝑅 (𝐹 𝑆)) = (𝐹 (𝑅 𝑆)))
4215, 8, 16, 9, 17, 18, 7cdleme0aa 35996 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑃𝐴𝑄𝐴) → 𝑈 ∈ (Base‘𝐾))
4313, 5, 6, 42syl3anc 1483 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑄𝐴 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ 𝑅 (𝑃 𝑄))) → 𝑈 ∈ (Base‘𝐾))
447, 8latj12 17308 . . . . . . . . 9 ((𝐾 ∈ Lat ∧ (𝑆 ∈ (Base‘𝐾) ∧ 𝑅 ∈ (Base‘𝐾) ∧ 𝑈 ∈ (Base‘𝐾))) → (𝑆 (𝑅 𝑈)) = (𝑅 (𝑆 𝑈)))
4512, 35, 39, 43, 44syl13anc 1484 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑄𝐴 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ 𝑅 (𝑃 𝑄))) → (𝑆 (𝑅 𝑈)) = (𝑅 (𝑆 𝑈)))
4615, 8, 16, 9, 17, 18cdleme4 36024 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑄𝐴 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ 𝑅 (𝑃 𝑄)) → (𝑃 𝑄) = (𝑅 𝑈))
47463adant3l 1222 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑄𝐴 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ 𝑅 (𝑃 𝑄))) → (𝑃 𝑄) = (𝑅 𝑈))
4847oveq2d 6897 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑄𝐴 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ 𝑅 (𝑃 𝑄))) → (𝑆 (𝑃 𝑄)) = (𝑆 (𝑅 𝑈)))
497, 8latjcom 17271 . . . . . . . . . . 11 ((𝐾 ∈ Lat ∧ 𝐹 ∈ (Base‘𝐾) ∧ 𝑆 ∈ (Base‘𝐾)) → (𝐹 𝑆) = (𝑆 𝐹))
5012, 21, 35, 49syl3anc 1483 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑄𝐴 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ 𝑅 (𝑃 𝑄))) → (𝐹 𝑆) = (𝑆 𝐹))
51 simp3l 1251 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑄𝐴 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ 𝑅 (𝑃 𝑄))) → (𝑆𝐴 ∧ ¬ 𝑆 𝑊))
5215, 8, 16, 9, 17, 18, 19cdleme1 36013 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑄𝐴 ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊))) → (𝑆 𝐹) = (𝑆 𝑈))
5313, 5, 6, 51, 52syl13anc 1484 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑄𝐴 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ 𝑅 (𝑃 𝑄))) → (𝑆 𝐹) = (𝑆 𝑈))
5450, 53eqtrd 2851 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑄𝐴 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ 𝑅 (𝑃 𝑄))) → (𝐹 𝑆) = (𝑆 𝑈))
5554oveq2d 6897 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑄𝐴 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ 𝑅 (𝑃 𝑄))) → (𝑅 (𝐹 𝑆)) = (𝑅 (𝑆 𝑈)))
5645, 48, 553eqtr4d 2861 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑄𝐴 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ 𝑅 (𝑃 𝑄))) → (𝑆 (𝑃 𝑄)) = (𝑅 (𝐹 𝑆)))
5715, 8, 9hlatlej1 35161 . . . . . . . . . . 11 ((𝐾 ∈ HL ∧ 𝑅𝐴𝑆𝐴) → 𝑅 (𝑅 𝑆))
583, 4, 14, 57syl3anc 1483 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑄𝐴 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ 𝑅 (𝑃 𝑄))) → 𝑅 (𝑅 𝑆))
597, 15, 8, 16, 9atmod3i1 35650 . . . . . . . . . 10 ((𝐾 ∈ HL ∧ (𝑅𝐴 ∧ (𝑅 𝑆) ∈ (Base‘𝐾) ∧ 𝑊 ∈ (Base‘𝐾)) ∧ 𝑅 (𝑅 𝑆)) → (𝑅 ((𝑅 𝑆) 𝑊)) = ((𝑅 𝑆) (𝑅 𝑊)))
603, 4, 23, 26, 58, 59syl131anc 1495 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑄𝐴 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ 𝑅 (𝑃 𝑄))) → (𝑅 ((𝑅 𝑆) 𝑊)) = ((𝑅 𝑆) (𝑅 𝑊)))
61 simp23r 1387 . . . . . . . . . . . 12 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑄𝐴 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ 𝑅 (𝑃 𝑄))) → ¬ 𝑅 𝑊)
62 eqid 2817 . . . . . . . . . . . . 13 (1.‘𝐾) = (1.‘𝐾)
6315, 8, 62, 9, 17lhpjat2 35807 . . . . . . . . . . . 12 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) → (𝑅 𝑊) = (1.‘𝐾))
6413, 4, 61, 63syl12anc 856 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑄𝐴 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ 𝑅 (𝑃 𝑄))) → (𝑅 𝑊) = (1.‘𝐾))
6564oveq2d 6897 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑄𝐴 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ 𝑅 (𝑃 𝑄))) → ((𝑅 𝑆) (𝑅 𝑊)) = ((𝑅 𝑆) (1.‘𝐾)))
66 hlol 35147 . . . . . . . . . . . 12 (𝐾 ∈ HL → 𝐾 ∈ OL)
673, 66syl 17 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑄𝐴 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ 𝑅 (𝑃 𝑄))) → 𝐾 ∈ OL)
687, 16, 62olm11 35013 . . . . . . . . . . 11 ((𝐾 ∈ OL ∧ (𝑅 𝑆) ∈ (Base‘𝐾)) → ((𝑅 𝑆) (1.‘𝐾)) = (𝑅 𝑆))
6967, 23, 68syl2anc 575 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑄𝐴 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ 𝑅 (𝑃 𝑄))) → ((𝑅 𝑆) (1.‘𝐾)) = (𝑅 𝑆))
7065, 69eqtrd 2851 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑄𝐴 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ 𝑅 (𝑃 𝑄))) → ((𝑅 𝑆) (𝑅 𝑊)) = (𝑅 𝑆))
7160, 70eqtrd 2851 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑄𝐴 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ 𝑅 (𝑃 𝑄))) → (𝑅 ((𝑅 𝑆) 𝑊)) = (𝑅 𝑆))
7271oveq2d 6897 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑄𝐴 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ 𝑅 (𝑃 𝑄))) → (𝐹 (𝑅 ((𝑅 𝑆) 𝑊))) = (𝐹 (𝑅 𝑆)))
7341, 56, 723eqtr4d 2861 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑄𝐴 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ 𝑅 (𝑃 𝑄))) → (𝑆 (𝑃 𝑄)) = (𝐹 (𝑅 ((𝑅 𝑆) 𝑊))))
747, 8latj12 17308 . . . . . . 7 ((𝐾 ∈ Lat ∧ (𝐹 ∈ (Base‘𝐾) ∧ 𝑅 ∈ (Base‘𝐾) ∧ ((𝑅 𝑆) 𝑊) ∈ (Base‘𝐾))) → (𝐹 (𝑅 ((𝑅 𝑆) 𝑊))) = (𝑅 (𝐹 ((𝑅 𝑆) 𝑊))))
7512, 21, 39, 28, 74syl13anc 1484 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑄𝐴 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ 𝑅 (𝑃 𝑄))) → (𝐹 (𝑅 ((𝑅 𝑆) 𝑊))) = (𝑅 (𝐹 ((𝑅 𝑆) 𝑊))))
7673, 75eqtrd 2851 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑄𝐴 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ 𝑅 (𝑃 𝑄))) → (𝑆 (𝑃 𝑄)) = (𝑅 (𝐹 ((𝑅 𝑆) 𝑊))))
7737, 76breqtrd 4881 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑄𝐴 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ 𝑅 (𝑃 𝑄))) → (𝑃 𝑄) (𝑅 (𝐹 ((𝑅 𝑆) 𝑊))))
787, 8latjcl 17263 . . . . . 6 ((𝐾 ∈ Lat ∧ 𝑅 ∈ (Base‘𝐾) ∧ (𝐹 ((𝑅 𝑆) 𝑊)) ∈ (Base‘𝐾)) → (𝑅 (𝐹 ((𝑅 𝑆) 𝑊))) ∈ (Base‘𝐾))
7912, 39, 30, 78syl3anc 1483 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑄𝐴 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ 𝑅 (𝑃 𝑄))) → (𝑅 (𝐹 ((𝑅 𝑆) 𝑊))) ∈ (Base‘𝐾))
807, 15, 16latleeqm1 17291 . . . . 5 ((𝐾 ∈ Lat ∧ (𝑃 𝑄) ∈ (Base‘𝐾) ∧ (𝑅 (𝐹 ((𝑅 𝑆) 𝑊))) ∈ (Base‘𝐾)) → ((𝑃 𝑄) (𝑅 (𝐹 ((𝑅 𝑆) 𝑊))) ↔ ((𝑃 𝑄) (𝑅 (𝐹 ((𝑅 𝑆) 𝑊)))) = (𝑃 𝑄)))
8112, 11, 79, 80syl3anc 1483 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑄𝐴 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ 𝑅 (𝑃 𝑄))) → ((𝑃 𝑄) (𝑅 (𝐹 ((𝑅 𝑆) 𝑊))) ↔ ((𝑃 𝑄) (𝑅 (𝐹 ((𝑅 𝑆) 𝑊)))) = (𝑃 𝑄)))
8277, 81mpbid 223 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑄𝐴 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ 𝑅 (𝑃 𝑄))) → ((𝑃 𝑄) (𝑅 (𝐹 ((𝑅 𝑆) 𝑊)))) = (𝑃 𝑄))
8333, 82eqtrd 2851 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑄𝐴 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ 𝑅 (𝑃 𝑄))) → (𝑅 ((𝑃 𝑄) (𝐹 ((𝑅 𝑆) 𝑊)))) = (𝑃 𝑄))
842, 83syl5eq 2863 1 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑄𝐴 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ 𝑅 (𝑃 𝑄))) → (𝑅 𝐺) = (𝑃 𝑄))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 197  wa 384  w3a 1100   = wceq 1637  wcel 2157   class class class wbr 4855  cfv 6108  (class class class)co 6881  Basecbs 16075  lecple 16167  joincjn 17156  meetcmee 17157  1.cp1 17250  Latclat 17257  OLcol 34960  Atomscatm 35049  HLchlt 35136  LHypclh 35770
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1877  ax-4 1894  ax-5 2001  ax-6 2069  ax-7 2105  ax-8 2159  ax-9 2166  ax-10 2186  ax-11 2202  ax-12 2215  ax-13 2422  ax-ext 2795  ax-rep 4975  ax-sep 4986  ax-nul 4994  ax-pow 5046  ax-pr 5107  ax-un 7186
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 866  df-3an 1102  df-tru 1641  df-ex 1860  df-nf 1864  df-sb 2062  df-mo 2635  df-eu 2642  df-clab 2804  df-cleq 2810  df-clel 2813  df-nfc 2948  df-ne 2990  df-ral 3112  df-rex 3113  df-reu 3114  df-rab 3116  df-v 3404  df-sbc 3645  df-csb 3740  df-dif 3783  df-un 3785  df-in 3787  df-ss 3794  df-nul 4128  df-if 4291  df-pw 4364  df-sn 4382  df-pr 4384  df-op 4388  df-uni 4642  df-iun 4725  df-iin 4726  df-br 4856  df-opab 4918  df-mpt 4935  df-id 5230  df-xp 5328  df-rel 5329  df-cnv 5330  df-co 5331  df-dm 5332  df-rn 5333  df-res 5334  df-ima 5335  df-iota 6071  df-fun 6110  df-fn 6111  df-f 6112  df-f1 6113  df-fo 6114  df-f1o 6115  df-fv 6116  df-riota 6842  df-ov 6884  df-oprab 6885  df-mpt2 6886  df-1st 7405  df-2nd 7406  df-proset 17140  df-poset 17158  df-plt 17170  df-lub 17186  df-glb 17187  df-join 17188  df-meet 17189  df-p0 17251  df-p1 17252  df-lat 17258  df-clat 17320  df-oposet 34962  df-ol 34964  df-oml 34965  df-covers 35052  df-ats 35053  df-atl 35084  df-cvlat 35108  df-hlat 35137  df-psubsp 35289  df-pmap 35290  df-padd 35582  df-lhyp 35774
This theorem is referenced by:  cdleme6  36027  cdleme7e  36033  cdleme18b  36078  cdleme50trn2a  36336
  Copyright terms: Public domain W3C validator