Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdleme5 Structured version   Visualization version   GIF version

Theorem cdleme5 39623
Description: Part of proof of Lemma E in [Crawley] p. 113. 𝐺 represents fs(r). We show r ∨ fs(r)) = p ∨ q at the top of p. 114. (Contributed by NM, 7-Jun-2012.)
Hypotheses
Ref Expression
cdleme4.l ≀ = (leβ€˜πΎ)
cdleme4.j ∨ = (joinβ€˜πΎ)
cdleme4.m ∧ = (meetβ€˜πΎ)
cdleme4.a 𝐴 = (Atomsβ€˜πΎ)
cdleme4.h 𝐻 = (LHypβ€˜πΎ)
cdleme4.u π‘ˆ = ((𝑃 ∨ 𝑄) ∧ π‘Š)
cdleme4.f 𝐹 = ((𝑆 ∨ π‘ˆ) ∧ (𝑄 ∨ ((𝑃 ∨ 𝑆) ∧ π‘Š)))
cdleme4.g 𝐺 = ((𝑃 ∨ 𝑄) ∧ (𝐹 ∨ ((𝑅 ∨ 𝑆) ∧ π‘Š)))
Assertion
Ref Expression
cdleme5 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ (𝑅 ∈ 𝐴 ∧ Β¬ 𝑅 ≀ π‘Š)) ∧ ((𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š) ∧ 𝑅 ≀ (𝑃 ∨ 𝑄))) β†’ (𝑅 ∨ 𝐺) = (𝑃 ∨ 𝑄))

Proof of Theorem cdleme5
StepHypRef Expression
1 cdleme4.g . . 3 𝐺 = ((𝑃 ∨ 𝑄) ∧ (𝐹 ∨ ((𝑅 ∨ 𝑆) ∧ π‘Š)))
21oveq2i 7415 . 2 (𝑅 ∨ 𝐺) = (𝑅 ∨ ((𝑃 ∨ 𝑄) ∧ (𝐹 ∨ ((𝑅 ∨ 𝑆) ∧ π‘Š))))
3 simp1l 1194 . . . 4 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ (𝑅 ∈ 𝐴 ∧ Β¬ 𝑅 ≀ π‘Š)) ∧ ((𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š) ∧ 𝑅 ≀ (𝑃 ∨ 𝑄))) β†’ 𝐾 ∈ HL)
4 simp23l 1291 . . . 4 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ (𝑅 ∈ 𝐴 ∧ Β¬ 𝑅 ≀ π‘Š)) ∧ ((𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š) ∧ 𝑅 ≀ (𝑃 ∨ 𝑄))) β†’ 𝑅 ∈ 𝐴)
5 simp21 1203 . . . . 5 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ (𝑅 ∈ 𝐴 ∧ Β¬ 𝑅 ≀ π‘Š)) ∧ ((𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š) ∧ 𝑅 ≀ (𝑃 ∨ 𝑄))) β†’ 𝑃 ∈ 𝐴)
6 simp22 1204 . . . . 5 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ (𝑅 ∈ 𝐴 ∧ Β¬ 𝑅 ≀ π‘Š)) ∧ ((𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š) ∧ 𝑅 ≀ (𝑃 ∨ 𝑄))) β†’ 𝑄 ∈ 𝐴)
7 eqid 2726 . . . . . 6 (Baseβ€˜πΎ) = (Baseβ€˜πΎ)
8 cdleme4.j . . . . . 6 ∨ = (joinβ€˜πΎ)
9 cdleme4.a . . . . . 6 𝐴 = (Atomsβ€˜πΎ)
107, 8, 9hlatjcl 38749 . . . . 5 ((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) β†’ (𝑃 ∨ 𝑄) ∈ (Baseβ€˜πΎ))
113, 5, 6, 10syl3anc 1368 . . . 4 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ (𝑅 ∈ 𝐴 ∧ Β¬ 𝑅 ≀ π‘Š)) ∧ ((𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š) ∧ 𝑅 ≀ (𝑃 ∨ 𝑄))) β†’ (𝑃 ∨ 𝑄) ∈ (Baseβ€˜πΎ))
123hllatd 38746 . . . . 5 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ (𝑅 ∈ 𝐴 ∧ Β¬ 𝑅 ≀ π‘Š)) ∧ ((𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š) ∧ 𝑅 ≀ (𝑃 ∨ 𝑄))) β†’ 𝐾 ∈ Lat)
13 simp1 1133 . . . . . 6 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ (𝑅 ∈ 𝐴 ∧ Β¬ 𝑅 ≀ π‘Š)) ∧ ((𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š) ∧ 𝑅 ≀ (𝑃 ∨ 𝑄))) β†’ (𝐾 ∈ HL ∧ π‘Š ∈ 𝐻))
14 simp3ll 1241 . . . . . 6 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ (𝑅 ∈ 𝐴 ∧ Β¬ 𝑅 ≀ π‘Š)) ∧ ((𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š) ∧ 𝑅 ≀ (𝑃 ∨ 𝑄))) β†’ 𝑆 ∈ 𝐴)
15 cdleme4.l . . . . . . 7 ≀ = (leβ€˜πΎ)
16 cdleme4.m . . . . . . 7 ∧ = (meetβ€˜πΎ)
17 cdleme4.h . . . . . . 7 𝐻 = (LHypβ€˜πΎ)
18 cdleme4.u . . . . . . 7 π‘ˆ = ((𝑃 ∨ 𝑄) ∧ π‘Š)
19 cdleme4.f . . . . . . 7 𝐹 = ((𝑆 ∨ π‘ˆ) ∧ (𝑄 ∨ ((𝑃 ∨ 𝑆) ∧ π‘Š)))
2015, 8, 16, 9, 17, 18, 19, 7cdleme1b 39609 . . . . . 6 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴)) β†’ 𝐹 ∈ (Baseβ€˜πΎ))
2113, 5, 6, 14, 20syl13anc 1369 . . . . 5 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ (𝑅 ∈ 𝐴 ∧ Β¬ 𝑅 ≀ π‘Š)) ∧ ((𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š) ∧ 𝑅 ≀ (𝑃 ∨ 𝑄))) β†’ 𝐹 ∈ (Baseβ€˜πΎ))
227, 8, 9hlatjcl 38749 . . . . . . 7 ((𝐾 ∈ HL ∧ 𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴) β†’ (𝑅 ∨ 𝑆) ∈ (Baseβ€˜πΎ))
233, 4, 14, 22syl3anc 1368 . . . . . 6 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ (𝑅 ∈ 𝐴 ∧ Β¬ 𝑅 ≀ π‘Š)) ∧ ((𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š) ∧ 𝑅 ≀ (𝑃 ∨ 𝑄))) β†’ (𝑅 ∨ 𝑆) ∈ (Baseβ€˜πΎ))
24 simp1r 1195 . . . . . . 7 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ (𝑅 ∈ 𝐴 ∧ Β¬ 𝑅 ≀ π‘Š)) ∧ ((𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š) ∧ 𝑅 ≀ (𝑃 ∨ 𝑄))) β†’ π‘Š ∈ 𝐻)
257, 17lhpbase 39381 . . . . . . 7 (π‘Š ∈ 𝐻 β†’ π‘Š ∈ (Baseβ€˜πΎ))
2624, 25syl 17 . . . . . 6 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ (𝑅 ∈ 𝐴 ∧ Β¬ 𝑅 ≀ π‘Š)) ∧ ((𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š) ∧ 𝑅 ≀ (𝑃 ∨ 𝑄))) β†’ π‘Š ∈ (Baseβ€˜πΎ))
277, 16latmcl 18402 . . . . . 6 ((𝐾 ∈ Lat ∧ (𝑅 ∨ 𝑆) ∈ (Baseβ€˜πΎ) ∧ π‘Š ∈ (Baseβ€˜πΎ)) β†’ ((𝑅 ∨ 𝑆) ∧ π‘Š) ∈ (Baseβ€˜πΎ))
2812, 23, 26, 27syl3anc 1368 . . . . 5 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ (𝑅 ∈ 𝐴 ∧ Β¬ 𝑅 ≀ π‘Š)) ∧ ((𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š) ∧ 𝑅 ≀ (𝑃 ∨ 𝑄))) β†’ ((𝑅 ∨ 𝑆) ∧ π‘Š) ∈ (Baseβ€˜πΎ))
297, 8latjcl 18401 . . . . 5 ((𝐾 ∈ Lat ∧ 𝐹 ∈ (Baseβ€˜πΎ) ∧ ((𝑅 ∨ 𝑆) ∧ π‘Š) ∈ (Baseβ€˜πΎ)) β†’ (𝐹 ∨ ((𝑅 ∨ 𝑆) ∧ π‘Š)) ∈ (Baseβ€˜πΎ))
3012, 21, 28, 29syl3anc 1368 . . . 4 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ (𝑅 ∈ 𝐴 ∧ Β¬ 𝑅 ≀ π‘Š)) ∧ ((𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š) ∧ 𝑅 ≀ (𝑃 ∨ 𝑄))) β†’ (𝐹 ∨ ((𝑅 ∨ 𝑆) ∧ π‘Š)) ∈ (Baseβ€˜πΎ))
31 simp3r 1199 . . . 4 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ (𝑅 ∈ 𝐴 ∧ Β¬ 𝑅 ≀ π‘Š)) ∧ ((𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š) ∧ 𝑅 ≀ (𝑃 ∨ 𝑄))) β†’ 𝑅 ≀ (𝑃 ∨ 𝑄))
327, 15, 8, 16, 9atmod3i1 39247 . . . 4 ((𝐾 ∈ HL ∧ (𝑅 ∈ 𝐴 ∧ (𝑃 ∨ 𝑄) ∈ (Baseβ€˜πΎ) ∧ (𝐹 ∨ ((𝑅 ∨ 𝑆) ∧ π‘Š)) ∈ (Baseβ€˜πΎ)) ∧ 𝑅 ≀ (𝑃 ∨ 𝑄)) β†’ (𝑅 ∨ ((𝑃 ∨ 𝑄) ∧ (𝐹 ∨ ((𝑅 ∨ 𝑆) ∧ π‘Š)))) = ((𝑃 ∨ 𝑄) ∧ (𝑅 ∨ (𝐹 ∨ ((𝑅 ∨ 𝑆) ∧ π‘Š)))))
333, 4, 11, 30, 31, 32syl131anc 1380 . . 3 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ (𝑅 ∈ 𝐴 ∧ Β¬ 𝑅 ≀ π‘Š)) ∧ ((𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š) ∧ 𝑅 ≀ (𝑃 ∨ 𝑄))) β†’ (𝑅 ∨ ((𝑃 ∨ 𝑄) ∧ (𝐹 ∨ ((𝑅 ∨ 𝑆) ∧ π‘Š)))) = ((𝑃 ∨ 𝑄) ∧ (𝑅 ∨ (𝐹 ∨ ((𝑅 ∨ 𝑆) ∧ π‘Š)))))
347, 9atbase 38671 . . . . . . 7 (𝑆 ∈ 𝐴 β†’ 𝑆 ∈ (Baseβ€˜πΎ))
3514, 34syl 17 . . . . . 6 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ (𝑅 ∈ 𝐴 ∧ Β¬ 𝑅 ≀ π‘Š)) ∧ ((𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š) ∧ 𝑅 ≀ (𝑃 ∨ 𝑄))) β†’ 𝑆 ∈ (Baseβ€˜πΎ))
367, 15, 8latlej2 18411 . . . . . 6 ((𝐾 ∈ Lat ∧ 𝑆 ∈ (Baseβ€˜πΎ) ∧ (𝑃 ∨ 𝑄) ∈ (Baseβ€˜πΎ)) β†’ (𝑃 ∨ 𝑄) ≀ (𝑆 ∨ (𝑃 ∨ 𝑄)))
3712, 35, 11, 36syl3anc 1368 . . . . 5 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ (𝑅 ∈ 𝐴 ∧ Β¬ 𝑅 ≀ π‘Š)) ∧ ((𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š) ∧ 𝑅 ≀ (𝑃 ∨ 𝑄))) β†’ (𝑃 ∨ 𝑄) ≀ (𝑆 ∨ (𝑃 ∨ 𝑄)))
387, 9atbase 38671 . . . . . . . . 9 (𝑅 ∈ 𝐴 β†’ 𝑅 ∈ (Baseβ€˜πΎ))
394, 38syl 17 . . . . . . . 8 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ (𝑅 ∈ 𝐴 ∧ Β¬ 𝑅 ≀ π‘Š)) ∧ ((𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š) ∧ 𝑅 ≀ (𝑃 ∨ 𝑄))) β†’ 𝑅 ∈ (Baseβ€˜πΎ))
407, 8latj12 18446 . . . . . . . 8 ((𝐾 ∈ Lat ∧ (𝑅 ∈ (Baseβ€˜πΎ) ∧ 𝐹 ∈ (Baseβ€˜πΎ) ∧ 𝑆 ∈ (Baseβ€˜πΎ))) β†’ (𝑅 ∨ (𝐹 ∨ 𝑆)) = (𝐹 ∨ (𝑅 ∨ 𝑆)))
4112, 39, 21, 35, 40syl13anc 1369 . . . . . . 7 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ (𝑅 ∈ 𝐴 ∧ Β¬ 𝑅 ≀ π‘Š)) ∧ ((𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š) ∧ 𝑅 ≀ (𝑃 ∨ 𝑄))) β†’ (𝑅 ∨ (𝐹 ∨ 𝑆)) = (𝐹 ∨ (𝑅 ∨ 𝑆)))
4215, 8, 16, 9, 17, 18, 7cdleme0aa 39593 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) β†’ π‘ˆ ∈ (Baseβ€˜πΎ))
4313, 5, 6, 42syl3anc 1368 . . . . . . . . 9 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ (𝑅 ∈ 𝐴 ∧ Β¬ 𝑅 ≀ π‘Š)) ∧ ((𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š) ∧ 𝑅 ≀ (𝑃 ∨ 𝑄))) β†’ π‘ˆ ∈ (Baseβ€˜πΎ))
447, 8latj12 18446 . . . . . . . . 9 ((𝐾 ∈ Lat ∧ (𝑆 ∈ (Baseβ€˜πΎ) ∧ 𝑅 ∈ (Baseβ€˜πΎ) ∧ π‘ˆ ∈ (Baseβ€˜πΎ))) β†’ (𝑆 ∨ (𝑅 ∨ π‘ˆ)) = (𝑅 ∨ (𝑆 ∨ π‘ˆ)))
4512, 35, 39, 43, 44syl13anc 1369 . . . . . . . 8 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ (𝑅 ∈ 𝐴 ∧ Β¬ 𝑅 ≀ π‘Š)) ∧ ((𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š) ∧ 𝑅 ≀ (𝑃 ∨ 𝑄))) β†’ (𝑆 ∨ (𝑅 ∨ π‘ˆ)) = (𝑅 ∨ (𝑆 ∨ π‘ˆ)))
4615, 8, 16, 9, 17, 18cdleme4 39621 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ (𝑅 ∈ 𝐴 ∧ Β¬ 𝑅 ≀ π‘Š)) ∧ 𝑅 ≀ (𝑃 ∨ 𝑄)) β†’ (𝑃 ∨ 𝑄) = (𝑅 ∨ π‘ˆ))
47463adant3l 1177 . . . . . . . . 9 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ (𝑅 ∈ 𝐴 ∧ Β¬ 𝑅 ≀ π‘Š)) ∧ ((𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š) ∧ 𝑅 ≀ (𝑃 ∨ 𝑄))) β†’ (𝑃 ∨ 𝑄) = (𝑅 ∨ π‘ˆ))
4847oveq2d 7420 . . . . . . . 8 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ (𝑅 ∈ 𝐴 ∧ Β¬ 𝑅 ≀ π‘Š)) ∧ ((𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š) ∧ 𝑅 ≀ (𝑃 ∨ 𝑄))) β†’ (𝑆 ∨ (𝑃 ∨ 𝑄)) = (𝑆 ∨ (𝑅 ∨ π‘ˆ)))
497, 8latjcom 18409 . . . . . . . . . . 11 ((𝐾 ∈ Lat ∧ 𝐹 ∈ (Baseβ€˜πΎ) ∧ 𝑆 ∈ (Baseβ€˜πΎ)) β†’ (𝐹 ∨ 𝑆) = (𝑆 ∨ 𝐹))
5012, 21, 35, 49syl3anc 1368 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ (𝑅 ∈ 𝐴 ∧ Β¬ 𝑅 ≀ π‘Š)) ∧ ((𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š) ∧ 𝑅 ≀ (𝑃 ∨ 𝑄))) β†’ (𝐹 ∨ 𝑆) = (𝑆 ∨ 𝐹))
51 simp3l 1198 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ (𝑅 ∈ 𝐴 ∧ Β¬ 𝑅 ≀ π‘Š)) ∧ ((𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š) ∧ 𝑅 ≀ (𝑃 ∨ 𝑄))) β†’ (𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š))
5215, 8, 16, 9, 17, 18, 19cdleme1 39610 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ (𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š))) β†’ (𝑆 ∨ 𝐹) = (𝑆 ∨ π‘ˆ))
5313, 5, 6, 51, 52syl13anc 1369 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ (𝑅 ∈ 𝐴 ∧ Β¬ 𝑅 ≀ π‘Š)) ∧ ((𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š) ∧ 𝑅 ≀ (𝑃 ∨ 𝑄))) β†’ (𝑆 ∨ 𝐹) = (𝑆 ∨ π‘ˆ))
5450, 53eqtrd 2766 . . . . . . . . 9 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ (𝑅 ∈ 𝐴 ∧ Β¬ 𝑅 ≀ π‘Š)) ∧ ((𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š) ∧ 𝑅 ≀ (𝑃 ∨ 𝑄))) β†’ (𝐹 ∨ 𝑆) = (𝑆 ∨ π‘ˆ))
5554oveq2d 7420 . . . . . . . 8 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ (𝑅 ∈ 𝐴 ∧ Β¬ 𝑅 ≀ π‘Š)) ∧ ((𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š) ∧ 𝑅 ≀ (𝑃 ∨ 𝑄))) β†’ (𝑅 ∨ (𝐹 ∨ 𝑆)) = (𝑅 ∨ (𝑆 ∨ π‘ˆ)))
5645, 48, 553eqtr4d 2776 . . . . . . 7 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ (𝑅 ∈ 𝐴 ∧ Β¬ 𝑅 ≀ π‘Š)) ∧ ((𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š) ∧ 𝑅 ≀ (𝑃 ∨ 𝑄))) β†’ (𝑆 ∨ (𝑃 ∨ 𝑄)) = (𝑅 ∨ (𝐹 ∨ 𝑆)))
5715, 8, 9hlatlej1 38757 . . . . . . . . . . 11 ((𝐾 ∈ HL ∧ 𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴) β†’ 𝑅 ≀ (𝑅 ∨ 𝑆))
583, 4, 14, 57syl3anc 1368 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ (𝑅 ∈ 𝐴 ∧ Β¬ 𝑅 ≀ π‘Š)) ∧ ((𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š) ∧ 𝑅 ≀ (𝑃 ∨ 𝑄))) β†’ 𝑅 ≀ (𝑅 ∨ 𝑆))
597, 15, 8, 16, 9atmod3i1 39247 . . . . . . . . . 10 ((𝐾 ∈ HL ∧ (𝑅 ∈ 𝐴 ∧ (𝑅 ∨ 𝑆) ∈ (Baseβ€˜πΎ) ∧ π‘Š ∈ (Baseβ€˜πΎ)) ∧ 𝑅 ≀ (𝑅 ∨ 𝑆)) β†’ (𝑅 ∨ ((𝑅 ∨ 𝑆) ∧ π‘Š)) = ((𝑅 ∨ 𝑆) ∧ (𝑅 ∨ π‘Š)))
603, 4, 23, 26, 58, 59syl131anc 1380 . . . . . . . . 9 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ (𝑅 ∈ 𝐴 ∧ Β¬ 𝑅 ≀ π‘Š)) ∧ ((𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š) ∧ 𝑅 ≀ (𝑃 ∨ 𝑄))) β†’ (𝑅 ∨ ((𝑅 ∨ 𝑆) ∧ π‘Š)) = ((𝑅 ∨ 𝑆) ∧ (𝑅 ∨ π‘Š)))
61 simp23r 1292 . . . . . . . . . . . 12 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ (𝑅 ∈ 𝐴 ∧ Β¬ 𝑅 ≀ π‘Š)) ∧ ((𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š) ∧ 𝑅 ≀ (𝑃 ∨ 𝑄))) β†’ Β¬ 𝑅 ≀ π‘Š)
62 eqid 2726 . . . . . . . . . . . . 13 (1.β€˜πΎ) = (1.β€˜πΎ)
6315, 8, 62, 9, 17lhpjat2 39404 . . . . . . . . . . . 12 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑅 ∈ 𝐴 ∧ Β¬ 𝑅 ≀ π‘Š)) β†’ (𝑅 ∨ π‘Š) = (1.β€˜πΎ))
6413, 4, 61, 63syl12anc 834 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ (𝑅 ∈ 𝐴 ∧ Β¬ 𝑅 ≀ π‘Š)) ∧ ((𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š) ∧ 𝑅 ≀ (𝑃 ∨ 𝑄))) β†’ (𝑅 ∨ π‘Š) = (1.β€˜πΎ))
6564oveq2d 7420 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ (𝑅 ∈ 𝐴 ∧ Β¬ 𝑅 ≀ π‘Š)) ∧ ((𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š) ∧ 𝑅 ≀ (𝑃 ∨ 𝑄))) β†’ ((𝑅 ∨ 𝑆) ∧ (𝑅 ∨ π‘Š)) = ((𝑅 ∨ 𝑆) ∧ (1.β€˜πΎ)))
66 hlol 38743 . . . . . . . . . . . 12 (𝐾 ∈ HL β†’ 𝐾 ∈ OL)
673, 66syl 17 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ (𝑅 ∈ 𝐴 ∧ Β¬ 𝑅 ≀ π‘Š)) ∧ ((𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š) ∧ 𝑅 ≀ (𝑃 ∨ 𝑄))) β†’ 𝐾 ∈ OL)
687, 16, 62olm11 38609 . . . . . . . . . . 11 ((𝐾 ∈ OL ∧ (𝑅 ∨ 𝑆) ∈ (Baseβ€˜πΎ)) β†’ ((𝑅 ∨ 𝑆) ∧ (1.β€˜πΎ)) = (𝑅 ∨ 𝑆))
6967, 23, 68syl2anc 583 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ (𝑅 ∈ 𝐴 ∧ Β¬ 𝑅 ≀ π‘Š)) ∧ ((𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š) ∧ 𝑅 ≀ (𝑃 ∨ 𝑄))) β†’ ((𝑅 ∨ 𝑆) ∧ (1.β€˜πΎ)) = (𝑅 ∨ 𝑆))
7065, 69eqtrd 2766 . . . . . . . . 9 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ (𝑅 ∈ 𝐴 ∧ Β¬ 𝑅 ≀ π‘Š)) ∧ ((𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š) ∧ 𝑅 ≀ (𝑃 ∨ 𝑄))) β†’ ((𝑅 ∨ 𝑆) ∧ (𝑅 ∨ π‘Š)) = (𝑅 ∨ 𝑆))
7160, 70eqtrd 2766 . . . . . . . 8 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ (𝑅 ∈ 𝐴 ∧ Β¬ 𝑅 ≀ π‘Š)) ∧ ((𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š) ∧ 𝑅 ≀ (𝑃 ∨ 𝑄))) β†’ (𝑅 ∨ ((𝑅 ∨ 𝑆) ∧ π‘Š)) = (𝑅 ∨ 𝑆))
7271oveq2d 7420 . . . . . . 7 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ (𝑅 ∈ 𝐴 ∧ Β¬ 𝑅 ≀ π‘Š)) ∧ ((𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š) ∧ 𝑅 ≀ (𝑃 ∨ 𝑄))) β†’ (𝐹 ∨ (𝑅 ∨ ((𝑅 ∨ 𝑆) ∧ π‘Š))) = (𝐹 ∨ (𝑅 ∨ 𝑆)))
7341, 56, 723eqtr4d 2776 . . . . . 6 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ (𝑅 ∈ 𝐴 ∧ Β¬ 𝑅 ≀ π‘Š)) ∧ ((𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š) ∧ 𝑅 ≀ (𝑃 ∨ 𝑄))) β†’ (𝑆 ∨ (𝑃 ∨ 𝑄)) = (𝐹 ∨ (𝑅 ∨ ((𝑅 ∨ 𝑆) ∧ π‘Š))))
747, 8latj12 18446 . . . . . . 7 ((𝐾 ∈ Lat ∧ (𝐹 ∈ (Baseβ€˜πΎ) ∧ 𝑅 ∈ (Baseβ€˜πΎ) ∧ ((𝑅 ∨ 𝑆) ∧ π‘Š) ∈ (Baseβ€˜πΎ))) β†’ (𝐹 ∨ (𝑅 ∨ ((𝑅 ∨ 𝑆) ∧ π‘Š))) = (𝑅 ∨ (𝐹 ∨ ((𝑅 ∨ 𝑆) ∧ π‘Š))))
7512, 21, 39, 28, 74syl13anc 1369 . . . . . 6 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ (𝑅 ∈ 𝐴 ∧ Β¬ 𝑅 ≀ π‘Š)) ∧ ((𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š) ∧ 𝑅 ≀ (𝑃 ∨ 𝑄))) β†’ (𝐹 ∨ (𝑅 ∨ ((𝑅 ∨ 𝑆) ∧ π‘Š))) = (𝑅 ∨ (𝐹 ∨ ((𝑅 ∨ 𝑆) ∧ π‘Š))))
7673, 75eqtrd 2766 . . . . 5 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ (𝑅 ∈ 𝐴 ∧ Β¬ 𝑅 ≀ π‘Š)) ∧ ((𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š) ∧ 𝑅 ≀ (𝑃 ∨ 𝑄))) β†’ (𝑆 ∨ (𝑃 ∨ 𝑄)) = (𝑅 ∨ (𝐹 ∨ ((𝑅 ∨ 𝑆) ∧ π‘Š))))
7737, 76breqtrd 5167 . . . 4 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ (𝑅 ∈ 𝐴 ∧ Β¬ 𝑅 ≀ π‘Š)) ∧ ((𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š) ∧ 𝑅 ≀ (𝑃 ∨ 𝑄))) β†’ (𝑃 ∨ 𝑄) ≀ (𝑅 ∨ (𝐹 ∨ ((𝑅 ∨ 𝑆) ∧ π‘Š))))
787, 8latjcl 18401 . . . . . 6 ((𝐾 ∈ Lat ∧ 𝑅 ∈ (Baseβ€˜πΎ) ∧ (𝐹 ∨ ((𝑅 ∨ 𝑆) ∧ π‘Š)) ∈ (Baseβ€˜πΎ)) β†’ (𝑅 ∨ (𝐹 ∨ ((𝑅 ∨ 𝑆) ∧ π‘Š))) ∈ (Baseβ€˜πΎ))
7912, 39, 30, 78syl3anc 1368 . . . . 5 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ (𝑅 ∈ 𝐴 ∧ Β¬ 𝑅 ≀ π‘Š)) ∧ ((𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š) ∧ 𝑅 ≀ (𝑃 ∨ 𝑄))) β†’ (𝑅 ∨ (𝐹 ∨ ((𝑅 ∨ 𝑆) ∧ π‘Š))) ∈ (Baseβ€˜πΎ))
807, 15, 16latleeqm1 18429 . . . . 5 ((𝐾 ∈ Lat ∧ (𝑃 ∨ 𝑄) ∈ (Baseβ€˜πΎ) ∧ (𝑅 ∨ (𝐹 ∨ ((𝑅 ∨ 𝑆) ∧ π‘Š))) ∈ (Baseβ€˜πΎ)) β†’ ((𝑃 ∨ 𝑄) ≀ (𝑅 ∨ (𝐹 ∨ ((𝑅 ∨ 𝑆) ∧ π‘Š))) ↔ ((𝑃 ∨ 𝑄) ∧ (𝑅 ∨ (𝐹 ∨ ((𝑅 ∨ 𝑆) ∧ π‘Š)))) = (𝑃 ∨ 𝑄)))
8112, 11, 79, 80syl3anc 1368 . . . 4 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ (𝑅 ∈ 𝐴 ∧ Β¬ 𝑅 ≀ π‘Š)) ∧ ((𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š) ∧ 𝑅 ≀ (𝑃 ∨ 𝑄))) β†’ ((𝑃 ∨ 𝑄) ≀ (𝑅 ∨ (𝐹 ∨ ((𝑅 ∨ 𝑆) ∧ π‘Š))) ↔ ((𝑃 ∨ 𝑄) ∧ (𝑅 ∨ (𝐹 ∨ ((𝑅 ∨ 𝑆) ∧ π‘Š)))) = (𝑃 ∨ 𝑄)))
8277, 81mpbid 231 . . 3 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ (𝑅 ∈ 𝐴 ∧ Β¬ 𝑅 ≀ π‘Š)) ∧ ((𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š) ∧ 𝑅 ≀ (𝑃 ∨ 𝑄))) β†’ ((𝑃 ∨ 𝑄) ∧ (𝑅 ∨ (𝐹 ∨ ((𝑅 ∨ 𝑆) ∧ π‘Š)))) = (𝑃 ∨ 𝑄))
8333, 82eqtrd 2766 . 2 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ (𝑅 ∈ 𝐴 ∧ Β¬ 𝑅 ≀ π‘Š)) ∧ ((𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š) ∧ 𝑅 ≀ (𝑃 ∨ 𝑄))) β†’ (𝑅 ∨ ((𝑃 ∨ 𝑄) ∧ (𝐹 ∨ ((𝑅 ∨ 𝑆) ∧ π‘Š)))) = (𝑃 ∨ 𝑄))
842, 83eqtrid 2778 1 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ (𝑅 ∈ 𝐴 ∧ Β¬ 𝑅 ≀ π‘Š)) ∧ ((𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š) ∧ 𝑅 ≀ (𝑃 ∨ 𝑄))) β†’ (𝑅 ∨ 𝐺) = (𝑃 ∨ 𝑄))
Colors of variables: wff setvar class
Syntax hints:  Β¬ wn 3   β†’ wi 4   ↔ wb 205   ∧ wa 395   ∧ w3a 1084   = wceq 1533   ∈ wcel 2098   class class class wbr 5141  β€˜cfv 6536  (class class class)co 7404  Basecbs 17150  lecple 17210  joincjn 18273  meetcmee 18274  1.cp1 18386  Latclat 18393  OLcol 38556  Atomscatm 38645  HLchlt 38732  LHypclh 39367
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2697  ax-rep 5278  ax-sep 5292  ax-nul 5299  ax-pow 5356  ax-pr 5420  ax-un 7721
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2704  df-cleq 2718  df-clel 2804  df-nfc 2879  df-ne 2935  df-ral 3056  df-rex 3065  df-rmo 3370  df-reu 3371  df-rab 3427  df-v 3470  df-sbc 3773  df-csb 3889  df-dif 3946  df-un 3948  df-in 3950  df-ss 3960  df-nul 4318  df-if 4524  df-pw 4599  df-sn 4624  df-pr 4626  df-op 4630  df-uni 4903  df-iun 4992  df-iin 4993  df-br 5142  df-opab 5204  df-mpt 5225  df-id 5567  df-xp 5675  df-rel 5676  df-cnv 5677  df-co 5678  df-dm 5679  df-rn 5680  df-res 5681  df-ima 5682  df-iota 6488  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-riota 7360  df-ov 7407  df-oprab 7408  df-mpo 7409  df-1st 7971  df-2nd 7972  df-proset 18257  df-poset 18275  df-plt 18292  df-lub 18308  df-glb 18309  df-join 18310  df-meet 18311  df-p0 18387  df-p1 18388  df-lat 18394  df-clat 18461  df-oposet 38558  df-ol 38560  df-oml 38561  df-covers 38648  df-ats 38649  df-atl 38680  df-cvlat 38704  df-hlat 38733  df-psubsp 38886  df-pmap 38887  df-padd 39179  df-lhyp 39371
This theorem is referenced by:  cdleme6  39624  cdleme7e  39630  cdleme18b  39675  cdleme50trn2a  39933
  Copyright terms: Public domain W3C validator