Proof of Theorem cdlemg10c
| Step | Hyp | Ref
| Expression |
| 1 | | simp1 1137 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇)) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
| 2 | | simp3l 1202 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇)) → 𝐹 ∈ 𝑇) |
| 3 | | cdlemg8.l |
. . . . 5
⊢ ≤ =
(le‘𝐾) |
| 4 | | cdlemg8.h |
. . . . 5
⊢ 𝐻 = (LHyp‘𝐾) |
| 5 | | cdlemg8.t |
. . . . 5
⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) |
| 6 | | cdlemg10.r |
. . . . 5
⊢ 𝑅 = ((trL‘𝐾)‘𝑊) |
| 7 | 3, 4, 5, 6 | trlle 40186 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇) → (𝑅‘𝐹) ≤ 𝑊) |
| 8 | 1, 2, 7 | syl2anc 584 |
. . 3
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇)) → (𝑅‘𝐹) ≤ 𝑊) |
| 9 | 8 | biantrud 531 |
. 2
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇)) → ((𝑅‘𝐹) ≤ ((𝐺‘𝑃) ∨ (𝐺‘𝑄)) ↔ ((𝑅‘𝐹) ≤ ((𝐺‘𝑃) ∨ (𝐺‘𝑄)) ∧ (𝑅‘𝐹) ≤ 𝑊))) |
| 10 | | simp1l 1198 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇)) → 𝐾 ∈ HL) |
| 11 | 10 | hllatd 39365 |
. . 3
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇)) → 𝐾 ∈ Lat) |
| 12 | | eqid 2737 |
. . . . 5
⊢
(Base‘𝐾) =
(Base‘𝐾) |
| 13 | 12, 4, 5, 6 | trlcl 40166 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇) → (𝑅‘𝐹) ∈ (Base‘𝐾)) |
| 14 | 1, 2, 13 | syl2anc 584 |
. . 3
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇)) → (𝑅‘𝐹) ∈ (Base‘𝐾)) |
| 15 | | simp3r 1203 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇)) → 𝐺 ∈ 𝑇) |
| 16 | | simp2ll 1241 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇)) → 𝑃 ∈ 𝐴) |
| 17 | | cdlemg8.a |
. . . . . 6
⊢ 𝐴 = (Atoms‘𝐾) |
| 18 | 3, 17, 4, 5 | ltrnat 40142 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐺 ∈ 𝑇 ∧ 𝑃 ∈ 𝐴) → (𝐺‘𝑃) ∈ 𝐴) |
| 19 | 1, 15, 16, 18 | syl3anc 1373 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇)) → (𝐺‘𝑃) ∈ 𝐴) |
| 20 | | simp2rl 1243 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇)) → 𝑄 ∈ 𝐴) |
| 21 | 3, 17, 4, 5 | ltrnat 40142 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐺 ∈ 𝑇 ∧ 𝑄 ∈ 𝐴) → (𝐺‘𝑄) ∈ 𝐴) |
| 22 | 1, 15, 20, 21 | syl3anc 1373 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇)) → (𝐺‘𝑄) ∈ 𝐴) |
| 23 | | cdlemg8.j |
. . . . 5
⊢ ∨ =
(join‘𝐾) |
| 24 | 12, 23, 17 | hlatjcl 39368 |
. . . 4
⊢ ((𝐾 ∈ HL ∧ (𝐺‘𝑃) ∈ 𝐴 ∧ (𝐺‘𝑄) ∈ 𝐴) → ((𝐺‘𝑃) ∨ (𝐺‘𝑄)) ∈ (Base‘𝐾)) |
| 25 | 10, 19, 22, 24 | syl3anc 1373 |
. . 3
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇)) → ((𝐺‘𝑃) ∨ (𝐺‘𝑄)) ∈ (Base‘𝐾)) |
| 26 | | simp1r 1199 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇)) → 𝑊 ∈ 𝐻) |
| 27 | 12, 4 | lhpbase 40000 |
. . . 4
⊢ (𝑊 ∈ 𝐻 → 𝑊 ∈ (Base‘𝐾)) |
| 28 | 26, 27 | syl 17 |
. . 3
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇)) → 𝑊 ∈ (Base‘𝐾)) |
| 29 | | cdlemg8.m |
. . . 4
⊢ ∧ =
(meet‘𝐾) |
| 30 | 12, 3, 29 | latlem12 18511 |
. . 3
⊢ ((𝐾 ∈ Lat ∧ ((𝑅‘𝐹) ∈ (Base‘𝐾) ∧ ((𝐺‘𝑃) ∨ (𝐺‘𝑄)) ∈ (Base‘𝐾) ∧ 𝑊 ∈ (Base‘𝐾))) → (((𝑅‘𝐹) ≤ ((𝐺‘𝑃) ∨ (𝐺‘𝑄)) ∧ (𝑅‘𝐹) ≤ 𝑊) ↔ (𝑅‘𝐹) ≤ (((𝐺‘𝑃) ∨ (𝐺‘𝑄)) ∧ 𝑊))) |
| 31 | 11, 14, 25, 28, 30 | syl13anc 1374 |
. 2
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇)) → (((𝑅‘𝐹) ≤ ((𝐺‘𝑃) ∨ (𝐺‘𝑄)) ∧ (𝑅‘𝐹) ≤ 𝑊) ↔ (𝑅‘𝐹) ≤ (((𝐺‘𝑃) ∨ (𝐺‘𝑄)) ∧ 𝑊))) |
| 32 | 12, 23, 17 | hlatjcl 39368 |
. . . . 5
⊢ ((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) → (𝑃 ∨ 𝑄) ∈ (Base‘𝐾)) |
| 33 | 10, 16, 20, 32 | syl3anc 1373 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇)) → (𝑃 ∨ 𝑄) ∈ (Base‘𝐾)) |
| 34 | 12, 3, 29 | latlem12 18511 |
. . . 4
⊢ ((𝐾 ∈ Lat ∧ ((𝑅‘𝐹) ∈ (Base‘𝐾) ∧ (𝑃 ∨ 𝑄) ∈ (Base‘𝐾) ∧ 𝑊 ∈ (Base‘𝐾))) → (((𝑅‘𝐹) ≤ (𝑃 ∨ 𝑄) ∧ (𝑅‘𝐹) ≤ 𝑊) ↔ (𝑅‘𝐹) ≤ ((𝑃 ∨ 𝑄) ∧ 𝑊))) |
| 35 | 11, 14, 33, 28, 34 | syl13anc 1374 |
. . 3
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇)) → (((𝑅‘𝐹) ≤ (𝑃 ∨ 𝑄) ∧ (𝑅‘𝐹) ≤ 𝑊) ↔ (𝑅‘𝐹) ≤ ((𝑃 ∨ 𝑄) ∧ 𝑊))) |
| 36 | 8 | biantrud 531 |
. . 3
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇)) → ((𝑅‘𝐹) ≤ (𝑃 ∨ 𝑄) ↔ ((𝑅‘𝐹) ≤ (𝑃 ∨ 𝑄) ∧ (𝑅‘𝐹) ≤ 𝑊))) |
| 37 | 3, 23, 29, 17, 4, 5 | cdlemg10b 40637 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ 𝐺 ∈ 𝑇) → (((𝐺‘𝑃) ∨ (𝐺‘𝑄)) ∧ 𝑊) = ((𝑃 ∨ 𝑄) ∧ 𝑊)) |
| 38 | 37 | 3adant3l 1181 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇)) → (((𝐺‘𝑃) ∨ (𝐺‘𝑄)) ∧ 𝑊) = ((𝑃 ∨ 𝑄) ∧ 𝑊)) |
| 39 | 38 | breq2d 5155 |
. . 3
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇)) → ((𝑅‘𝐹) ≤ (((𝐺‘𝑃) ∨ (𝐺‘𝑄)) ∧ 𝑊) ↔ (𝑅‘𝐹) ≤ ((𝑃 ∨ 𝑄) ∧ 𝑊))) |
| 40 | 35, 36, 39 | 3bitr4rd 312 |
. 2
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇)) → ((𝑅‘𝐹) ≤ (((𝐺‘𝑃) ∨ (𝐺‘𝑄)) ∧ 𝑊) ↔ (𝑅‘𝐹) ≤ (𝑃 ∨ 𝑄))) |
| 41 | 9, 31, 40 | 3bitrd 305 |
1
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇)) → ((𝑅‘𝐹) ≤ ((𝐺‘𝑃) ∨ (𝐺‘𝑄)) ↔ (𝑅‘𝐹) ≤ (𝑃 ∨ 𝑄))) |