Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ovnhoilem2 Structured version   Visualization version   GIF version

Theorem ovnhoilem2 46600
Description: The Lebesgue outer measure of a multidimensional half-open interval is less than or equal to the product of its length in each dimension. Second part of the proof of Proposition 115D (b) of [Fremlin1] p. 30. (Contributed by Glauco Siliprandi, 21-Nov-2020.)
Hypotheses
Ref Expression
ovnhoilem2.x (𝜑𝑋 ∈ Fin)
ovnhoilem2.n (𝜑𝑋 ≠ ∅)
ovnhoilem2.a (𝜑𝐴:𝑋⟶ℝ)
ovnhoilem2.b (𝜑𝐵:𝑋⟶ℝ)
ovnhoilem2.i 𝐼 = X𝑘𝑋 ((𝐴𝑘)[,)(𝐵𝑘))
ovnhoilem2.l 𝐿 = (𝑥 ∈ Fin ↦ (𝑎 ∈ (ℝ ↑m 𝑥), 𝑏 ∈ (ℝ ↑m 𝑥) ↦ if(𝑥 = ∅, 0, ∏𝑘𝑥 (vol‘((𝑎𝑘)[,)(𝑏𝑘))))))
ovnhoilem2.m 𝑀 = {𝑧 ∈ ℝ* ∣ ∃𝑖 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ)(𝐼 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝑖𝑗))‘𝑘) ∧ 𝑧 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ (𝑖𝑗))‘𝑘)))))}
ovnhoilem2.f 𝐹 = (𝑖 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ) ↦ (𝑛 ∈ ℕ ↦ (𝑙𝑋 ↦ (1st ‘((𝑖𝑛)‘𝑙)))))
ovnhoilem2.s 𝑆 = (𝑖 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ) ↦ (𝑛 ∈ ℕ ↦ (𝑙𝑋 ↦ (2nd ‘((𝑖𝑛)‘𝑙)))))
Assertion
Ref Expression
ovnhoilem2 (𝜑 → (𝐴(𝐿𝑋)𝐵) ≤ ((voln*‘𝑋)‘𝐼))
Distinct variable groups:   𝐴,𝑎,𝑏,𝑖,𝑘,𝑧   𝐵,𝑎,𝑏,𝑖,𝑘,𝑧   𝑘,𝐹,𝑛   𝐼,𝑎,𝑏,𝑖,𝑛,𝑥,𝑧   𝐿,𝑎,𝑏,𝑖,𝑛,𝑥,𝑧   𝑖,𝑀,𝑧   𝑆,𝑘,𝑛   𝑋,𝑎,𝑏,𝑖,𝑗,𝑘,𝑙,𝑛   𝑥,𝑋,𝑧,𝑗,𝑘   𝜑,𝑎,𝑏,𝑖,𝑘,𝑙,𝑛   𝜑,𝑥,𝑧
Allowed substitution hints:   𝜑(𝑗)   𝐴(𝑥,𝑗,𝑛,𝑙)   𝐵(𝑥,𝑗,𝑛,𝑙)   𝑆(𝑥,𝑧,𝑖,𝑗,𝑎,𝑏,𝑙)   𝐹(𝑥,𝑧,𝑖,𝑗,𝑎,𝑏,𝑙)   𝐼(𝑗,𝑘,𝑙)   𝐿(𝑗,𝑘,𝑙)   𝑀(𝑥,𝑗,𝑘,𝑛,𝑎,𝑏,𝑙)

Proof of Theorem ovnhoilem2
StepHypRef Expression
1 ovnhoilem2.m . . . . . . . . . 10 𝑀 = {𝑧 ∈ ℝ* ∣ ∃𝑖 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ)(𝐼 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝑖𝑗))‘𝑘) ∧ 𝑧 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ (𝑖𝑗))‘𝑘)))))}
21eleq2i 2820 . . . . . . . . 9 (𝑧𝑀𝑧 ∈ {𝑧 ∈ ℝ* ∣ ∃𝑖 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ)(𝐼 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝑖𝑗))‘𝑘) ∧ 𝑧 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ (𝑖𝑗))‘𝑘)))))})
3 rabid 3427 . . . . . . . . 9 (𝑧 ∈ {𝑧 ∈ ℝ* ∣ ∃𝑖 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ)(𝐼 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝑖𝑗))‘𝑘) ∧ 𝑧 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ (𝑖𝑗))‘𝑘)))))} ↔ (𝑧 ∈ ℝ* ∧ ∃𝑖 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ)(𝐼 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝑖𝑗))‘𝑘) ∧ 𝑧 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ (𝑖𝑗))‘𝑘)))))))
42, 3bitri 275 . . . . . . . 8 (𝑧𝑀 ↔ (𝑧 ∈ ℝ* ∧ ∃𝑖 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ)(𝐼 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝑖𝑗))‘𝑘) ∧ 𝑧 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ (𝑖𝑗))‘𝑘)))))))
54biimpi 216 . . . . . . 7 (𝑧𝑀 → (𝑧 ∈ ℝ* ∧ ∃𝑖 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ)(𝐼 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝑖𝑗))‘𝑘) ∧ 𝑧 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ (𝑖𝑗))‘𝑘)))))))
65simprd 495 . . . . . 6 (𝑧𝑀 → ∃𝑖 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ)(𝐼 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝑖𝑗))‘𝑘) ∧ 𝑧 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ (𝑖𝑗))‘𝑘))))))
76adantl 481 . . . . 5 ((𝜑𝑧𝑀) → ∃𝑖 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ)(𝐼 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝑖𝑗))‘𝑘) ∧ 𝑧 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ (𝑖𝑗))‘𝑘))))))
8 ovnhoilem2.l . . . . . . . . . 10 𝐿 = (𝑥 ∈ Fin ↦ (𝑎 ∈ (ℝ ↑m 𝑥), 𝑏 ∈ (ℝ ↑m 𝑥) ↦ if(𝑥 = ∅, 0, ∏𝑘𝑥 (vol‘((𝑎𝑘)[,)(𝑏𝑘))))))
9 ovnhoilem2.x . . . . . . . . . . 11 (𝜑𝑋 ∈ Fin)
1093ad2ant1 1133 . . . . . . . . . 10 ((𝜑𝑖 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ) ∧ (𝐼 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝑖𝑗))‘𝑘) ∧ 𝑧 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ (𝑖𝑗))‘𝑘)))))) → 𝑋 ∈ Fin)
11 ovnhoilem2.a . . . . . . . . . . 11 (𝜑𝐴:𝑋⟶ℝ)
12113ad2ant1 1133 . . . . . . . . . 10 ((𝜑𝑖 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ) ∧ (𝐼 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝑖𝑗))‘𝑘) ∧ 𝑧 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ (𝑖𝑗))‘𝑘)))))) → 𝐴:𝑋⟶ℝ)
13 ovnhoilem2.b . . . . . . . . . . 11 (𝜑𝐵:𝑋⟶ℝ)
14133ad2ant1 1133 . . . . . . . . . 10 ((𝜑𝑖 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ) ∧ (𝐼 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝑖𝑗))‘𝑘) ∧ 𝑧 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ (𝑖𝑗))‘𝑘)))))) → 𝐵:𝑋⟶ℝ)
15 elmapi 8822 . . . . . . . . . . . . . . . . . . 19 (𝑖 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ) → 𝑖:ℕ⟶((ℝ × ℝ) ↑m 𝑋))
1615ffvelcdmda 7056 . . . . . . . . . . . . . . . . . 18 ((𝑖 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ) ∧ 𝑛 ∈ ℕ) → (𝑖𝑛) ∈ ((ℝ × ℝ) ↑m 𝑋))
17 elmapi 8822 . . . . . . . . . . . . . . . . . 18 ((𝑖𝑛) ∈ ((ℝ × ℝ) ↑m 𝑋) → (𝑖𝑛):𝑋⟶(ℝ × ℝ))
1816, 17syl 17 . . . . . . . . . . . . . . . . 17 ((𝑖 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ) ∧ 𝑛 ∈ ℕ) → (𝑖𝑛):𝑋⟶(ℝ × ℝ))
1918ffvelcdmda 7056 . . . . . . . . . . . . . . . 16 (((𝑖 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ) ∧ 𝑛 ∈ ℕ) ∧ 𝑙𝑋) → ((𝑖𝑛)‘𝑙) ∈ (ℝ × ℝ))
20 xp1st 8000 . . . . . . . . . . . . . . . 16 (((𝑖𝑛)‘𝑙) ∈ (ℝ × ℝ) → (1st ‘((𝑖𝑛)‘𝑙)) ∈ ℝ)
2119, 20syl 17 . . . . . . . . . . . . . . 15 (((𝑖 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ) ∧ 𝑛 ∈ ℕ) ∧ 𝑙𝑋) → (1st ‘((𝑖𝑛)‘𝑙)) ∈ ℝ)
2221fmpttd 7087 . . . . . . . . . . . . . 14 ((𝑖 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ) ∧ 𝑛 ∈ ℕ) → (𝑙𝑋 ↦ (1st ‘((𝑖𝑛)‘𝑙))):𝑋⟶ℝ)
23 reex 11159 . . . . . . . . . . . . . . . 16 ℝ ∈ V
2423a1i 11 . . . . . . . . . . . . . . 15 ((𝑖 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ) ∧ 𝑛 ∈ ℕ) → ℝ ∈ V)
25 1nn 12197 . . . . . . . . . . . . . . . . . . 19 1 ∈ ℕ
2625a1i 11 . . . . . . . . . . . . . . . . . 18 (𝑖 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ) → 1 ∈ ℕ)
2715, 26ffvelcdmd 7057 . . . . . . . . . . . . . . . . 17 (𝑖 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ) → (𝑖‘1) ∈ ((ℝ × ℝ) ↑m 𝑋))
28 elmapex 8821 . . . . . . . . . . . . . . . . . 18 ((𝑖‘1) ∈ ((ℝ × ℝ) ↑m 𝑋) → ((ℝ × ℝ) ∈ V ∧ 𝑋 ∈ V))
2928simprd 495 . . . . . . . . . . . . . . . . 17 ((𝑖‘1) ∈ ((ℝ × ℝ) ↑m 𝑋) → 𝑋 ∈ V)
3027, 29syl 17 . . . . . . . . . . . . . . . 16 (𝑖 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ) → 𝑋 ∈ V)
3130adantr 480 . . . . . . . . . . . . . . 15 ((𝑖 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ) ∧ 𝑛 ∈ ℕ) → 𝑋 ∈ V)
32 elmapg 8812 . . . . . . . . . . . . . . 15 ((ℝ ∈ V ∧ 𝑋 ∈ V) → ((𝑙𝑋 ↦ (1st ‘((𝑖𝑛)‘𝑙))) ∈ (ℝ ↑m 𝑋) ↔ (𝑙𝑋 ↦ (1st ‘((𝑖𝑛)‘𝑙))):𝑋⟶ℝ))
3324, 31, 32syl2anc 584 . . . . . . . . . . . . . 14 ((𝑖 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ) ∧ 𝑛 ∈ ℕ) → ((𝑙𝑋 ↦ (1st ‘((𝑖𝑛)‘𝑙))) ∈ (ℝ ↑m 𝑋) ↔ (𝑙𝑋 ↦ (1st ‘((𝑖𝑛)‘𝑙))):𝑋⟶ℝ))
3422, 33mpbird 257 . . . . . . . . . . . . 13 ((𝑖 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ) ∧ 𝑛 ∈ ℕ) → (𝑙𝑋 ↦ (1st ‘((𝑖𝑛)‘𝑙))) ∈ (ℝ ↑m 𝑋))
3534fmpttd 7087 . . . . . . . . . . . 12 (𝑖 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ) → (𝑛 ∈ ℕ ↦ (𝑙𝑋 ↦ (1st ‘((𝑖𝑛)‘𝑙)))):ℕ⟶(ℝ ↑m 𝑋))
36 id 22 . . . . . . . . . . . . . 14 (𝑖 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ) → 𝑖 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ))
37 nnex 12192 . . . . . . . . . . . . . . . 16 ℕ ∈ V
3837mptex 7197 . . . . . . . . . . . . . . 15 (𝑛 ∈ ℕ ↦ (𝑙𝑋 ↦ (1st ‘((𝑖𝑛)‘𝑙)))) ∈ V
3938a1i 11 . . . . . . . . . . . . . 14 (𝑖 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ) → (𝑛 ∈ ℕ ↦ (𝑙𝑋 ↦ (1st ‘((𝑖𝑛)‘𝑙)))) ∈ V)
40 ovnhoilem2.f . . . . . . . . . . . . . . 15 𝐹 = (𝑖 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ) ↦ (𝑛 ∈ ℕ ↦ (𝑙𝑋 ↦ (1st ‘((𝑖𝑛)‘𝑙)))))
4140fvmpt2 6979 . . . . . . . . . . . . . 14 ((𝑖 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ) ∧ (𝑛 ∈ ℕ ↦ (𝑙𝑋 ↦ (1st ‘((𝑖𝑛)‘𝑙)))) ∈ V) → (𝐹𝑖) = (𝑛 ∈ ℕ ↦ (𝑙𝑋 ↦ (1st ‘((𝑖𝑛)‘𝑙)))))
4236, 39, 41syl2anc 584 . . . . . . . . . . . . 13 (𝑖 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ) → (𝐹𝑖) = (𝑛 ∈ ℕ ↦ (𝑙𝑋 ↦ (1st ‘((𝑖𝑛)‘𝑙)))))
4342feq1d 6670 . . . . . . . . . . . 12 (𝑖 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ) → ((𝐹𝑖):ℕ⟶(ℝ ↑m 𝑋) ↔ (𝑛 ∈ ℕ ↦ (𝑙𝑋 ↦ (1st ‘((𝑖𝑛)‘𝑙)))):ℕ⟶(ℝ ↑m 𝑋)))
4435, 43mpbird 257 . . . . . . . . . . 11 (𝑖 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ) → (𝐹𝑖):ℕ⟶(ℝ ↑m 𝑋))
45443ad2ant2 1134 . . . . . . . . . 10 ((𝜑𝑖 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ) ∧ (𝐼 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝑖𝑗))‘𝑘) ∧ 𝑧 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ (𝑖𝑗))‘𝑘)))))) → (𝐹𝑖):ℕ⟶(ℝ ↑m 𝑋))
46 xp2nd 8001 . . . . . . . . . . . . . . . 16 (((𝑖𝑛)‘𝑙) ∈ (ℝ × ℝ) → (2nd ‘((𝑖𝑛)‘𝑙)) ∈ ℝ)
4719, 46syl 17 . . . . . . . . . . . . . . 15 (((𝑖 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ) ∧ 𝑛 ∈ ℕ) ∧ 𝑙𝑋) → (2nd ‘((𝑖𝑛)‘𝑙)) ∈ ℝ)
4847fmpttd 7087 . . . . . . . . . . . . . 14 ((𝑖 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ) ∧ 𝑛 ∈ ℕ) → (𝑙𝑋 ↦ (2nd ‘((𝑖𝑛)‘𝑙))):𝑋⟶ℝ)
49 elmapg 8812 . . . . . . . . . . . . . . 15 ((ℝ ∈ V ∧ 𝑋 ∈ V) → ((𝑙𝑋 ↦ (2nd ‘((𝑖𝑛)‘𝑙))) ∈ (ℝ ↑m 𝑋) ↔ (𝑙𝑋 ↦ (2nd ‘((𝑖𝑛)‘𝑙))):𝑋⟶ℝ))
5024, 31, 49syl2anc 584 . . . . . . . . . . . . . 14 ((𝑖 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ) ∧ 𝑛 ∈ ℕ) → ((𝑙𝑋 ↦ (2nd ‘((𝑖𝑛)‘𝑙))) ∈ (ℝ ↑m 𝑋) ↔ (𝑙𝑋 ↦ (2nd ‘((𝑖𝑛)‘𝑙))):𝑋⟶ℝ))
5148, 50mpbird 257 . . . . . . . . . . . . 13 ((𝑖 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ) ∧ 𝑛 ∈ ℕ) → (𝑙𝑋 ↦ (2nd ‘((𝑖𝑛)‘𝑙))) ∈ (ℝ ↑m 𝑋))
5251fmpttd 7087 . . . . . . . . . . . 12 (𝑖 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ) → (𝑛 ∈ ℕ ↦ (𝑙𝑋 ↦ (2nd ‘((𝑖𝑛)‘𝑙)))):ℕ⟶(ℝ ↑m 𝑋))
5337mptex 7197 . . . . . . . . . . . . . . 15 (𝑛 ∈ ℕ ↦ (𝑙𝑋 ↦ (2nd ‘((𝑖𝑛)‘𝑙)))) ∈ V
5453a1i 11 . . . . . . . . . . . . . 14 (𝑖 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ) → (𝑛 ∈ ℕ ↦ (𝑙𝑋 ↦ (2nd ‘((𝑖𝑛)‘𝑙)))) ∈ V)
55 ovnhoilem2.s . . . . . . . . . . . . . . 15 𝑆 = (𝑖 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ) ↦ (𝑛 ∈ ℕ ↦ (𝑙𝑋 ↦ (2nd ‘((𝑖𝑛)‘𝑙)))))
5655fvmpt2 6979 . . . . . . . . . . . . . 14 ((𝑖 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ) ∧ (𝑛 ∈ ℕ ↦ (𝑙𝑋 ↦ (2nd ‘((𝑖𝑛)‘𝑙)))) ∈ V) → (𝑆𝑖) = (𝑛 ∈ ℕ ↦ (𝑙𝑋 ↦ (2nd ‘((𝑖𝑛)‘𝑙)))))
5736, 54, 56syl2anc 584 . . . . . . . . . . . . 13 (𝑖 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ) → (𝑆𝑖) = (𝑛 ∈ ℕ ↦ (𝑙𝑋 ↦ (2nd ‘((𝑖𝑛)‘𝑙)))))
5857feq1d 6670 . . . . . . . . . . . 12 (𝑖 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ) → ((𝑆𝑖):ℕ⟶(ℝ ↑m 𝑋) ↔ (𝑛 ∈ ℕ ↦ (𝑙𝑋 ↦ (2nd ‘((𝑖𝑛)‘𝑙)))):ℕ⟶(ℝ ↑m 𝑋)))
5952, 58mpbird 257 . . . . . . . . . . 11 (𝑖 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ) → (𝑆𝑖):ℕ⟶(ℝ ↑m 𝑋))
60593ad2ant2 1134 . . . . . . . . . 10 ((𝜑𝑖 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ) ∧ (𝐼 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝑖𝑗))‘𝑘) ∧ 𝑧 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ (𝑖𝑗))‘𝑘)))))) → (𝑆𝑖):ℕ⟶(ℝ ↑m 𝑋))
61 simp3 1138 . . . . . . . . . . . 12 ((𝜑𝑖 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ) ∧ 𝐼 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝑖𝑗))‘𝑘)) → 𝐼 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝑖𝑗))‘𝑘))
62 ovnhoilem2.i . . . . . . . . . . . . . 14 𝐼 = X𝑘𝑋 ((𝐴𝑘)[,)(𝐵𝑘))
6362a1i 11 . . . . . . . . . . . . 13 ((𝜑𝑖 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ) ∧ 𝐼 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝑖𝑗))‘𝑘)) → 𝐼 = X𝑘𝑋 ((𝐴𝑘)[,)(𝐵𝑘)))
64 fveq2 6858 . . . . . . . . . . . . . . . . . . . . . 22 (𝑗 = 𝑛 → (𝑖𝑗) = (𝑖𝑛))
6564fveq1d 6860 . . . . . . . . . . . . . . . . . . . . 21 (𝑗 = 𝑛 → ((𝑖𝑗)‘𝑘) = ((𝑖𝑛)‘𝑘))
6665fveq2d 6862 . . . . . . . . . . . . . . . . . . . 20 (𝑗 = 𝑛 → (1st ‘((𝑖𝑗)‘𝑘)) = (1st ‘((𝑖𝑛)‘𝑘)))
6765fveq2d 6862 . . . . . . . . . . . . . . . . . . . 20 (𝑗 = 𝑛 → (2nd ‘((𝑖𝑗)‘𝑘)) = (2nd ‘((𝑖𝑛)‘𝑘)))
6866, 67oveq12d 7405 . . . . . . . . . . . . . . . . . . 19 (𝑗 = 𝑛 → ((1st ‘((𝑖𝑗)‘𝑘))[,)(2nd ‘((𝑖𝑗)‘𝑘))) = ((1st ‘((𝑖𝑛)‘𝑘))[,)(2nd ‘((𝑖𝑛)‘𝑘))))
6968ixpeq2dv 8886 . . . . . . . . . . . . . . . . . 18 (𝑗 = 𝑛X𝑘𝑋 ((1st ‘((𝑖𝑗)‘𝑘))[,)(2nd ‘((𝑖𝑗)‘𝑘))) = X𝑘𝑋 ((1st ‘((𝑖𝑛)‘𝑘))[,)(2nd ‘((𝑖𝑛)‘𝑘))))
7069cbviunv 5004 . . . . . . . . . . . . . . . . 17 𝑗 ∈ ℕ X𝑘𝑋 ((1st ‘((𝑖𝑗)‘𝑘))[,)(2nd ‘((𝑖𝑗)‘𝑘))) = 𝑛 ∈ ℕ X𝑘𝑋 ((1st ‘((𝑖𝑛)‘𝑘))[,)(2nd ‘((𝑖𝑛)‘𝑘)))
7170a1i 11 . . . . . . . . . . . . . . . 16 (𝑖 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ) → 𝑗 ∈ ℕ X𝑘𝑋 ((1st ‘((𝑖𝑗)‘𝑘))[,)(2nd ‘((𝑖𝑗)‘𝑘))) = 𝑛 ∈ ℕ X𝑘𝑋 ((1st ‘((𝑖𝑛)‘𝑘))[,)(2nd ‘((𝑖𝑛)‘𝑘))))
7215ffvelcdmda 7056 . . . . . . . . . . . . . . . . . . . . 21 ((𝑖 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ) ∧ 𝑗 ∈ ℕ) → (𝑖𝑗) ∈ ((ℝ × ℝ) ↑m 𝑋))
73 elmapi 8822 . . . . . . . . . . . . . . . . . . . . 21 ((𝑖𝑗) ∈ ((ℝ × ℝ) ↑m 𝑋) → (𝑖𝑗):𝑋⟶(ℝ × ℝ))
7472, 73syl 17 . . . . . . . . . . . . . . . . . . . 20 ((𝑖 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ) ∧ 𝑗 ∈ ℕ) → (𝑖𝑗):𝑋⟶(ℝ × ℝ))
7574adantr 480 . . . . . . . . . . . . . . . . . . 19 (((𝑖 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ) ∧ 𝑗 ∈ ℕ) ∧ 𝑘𝑋) → (𝑖𝑗):𝑋⟶(ℝ × ℝ))
76 simpr 484 . . . . . . . . . . . . . . . . . . 19 (((𝑖 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ) ∧ 𝑗 ∈ ℕ) ∧ 𝑘𝑋) → 𝑘𝑋)
7775, 76fvovco 45187 . . . . . . . . . . . . . . . . . 18 (((𝑖 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ) ∧ 𝑗 ∈ ℕ) ∧ 𝑘𝑋) → (([,) ∘ (𝑖𝑗))‘𝑘) = ((1st ‘((𝑖𝑗)‘𝑘))[,)(2nd ‘((𝑖𝑗)‘𝑘))))
7877ixpeq2dva 8885 . . . . . . . . . . . . . . . . 17 ((𝑖 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ) ∧ 𝑗 ∈ ℕ) → X𝑘𝑋 (([,) ∘ (𝑖𝑗))‘𝑘) = X𝑘𝑋 ((1st ‘((𝑖𝑗)‘𝑘))[,)(2nd ‘((𝑖𝑗)‘𝑘))))
7978iuneq2dv 4980 . . . . . . . . . . . . . . . 16 (𝑖 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ) → 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝑖𝑗))‘𝑘) = 𝑗 ∈ ℕ X𝑘𝑋 ((1st ‘((𝑖𝑗)‘𝑘))[,)(2nd ‘((𝑖𝑗)‘𝑘))))
80 simpl 482 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑖 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ) ∧ 𝑛 ∈ ℕ) → 𝑖 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ))
8138a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑖 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ) ∧ 𝑛 ∈ ℕ) → (𝑛 ∈ ℕ ↦ (𝑙𝑋 ↦ (1st ‘((𝑖𝑛)‘𝑙)))) ∈ V)
8280, 81, 41syl2anc 584 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑖 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ) ∧ 𝑛 ∈ ℕ) → (𝐹𝑖) = (𝑛 ∈ ℕ ↦ (𝑙𝑋 ↦ (1st ‘((𝑖𝑛)‘𝑙)))))
8382fveq1d 6860 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑖 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ) ∧ 𝑛 ∈ ℕ) → ((𝐹𝑖)‘𝑛) = ((𝑛 ∈ ℕ ↦ (𝑙𝑋 ↦ (1st ‘((𝑖𝑛)‘𝑙))))‘𝑛))
84 simpr 484 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑖 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ) ∧ 𝑛 ∈ ℕ) → 𝑛 ∈ ℕ)
85 mptexg 7195 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑋 ∈ V → (𝑙𝑋 ↦ (1st ‘((𝑖𝑛)‘𝑙))) ∈ V)
8630, 85syl 17 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑖 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ) → (𝑙𝑋 ↦ (1st ‘((𝑖𝑛)‘𝑙))) ∈ V)
8786adantr 480 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑖 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ) ∧ 𝑛 ∈ ℕ) → (𝑙𝑋 ↦ (1st ‘((𝑖𝑛)‘𝑙))) ∈ V)
88 eqid 2729 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑛 ∈ ℕ ↦ (𝑙𝑋 ↦ (1st ‘((𝑖𝑛)‘𝑙)))) = (𝑛 ∈ ℕ ↦ (𝑙𝑋 ↦ (1st ‘((𝑖𝑛)‘𝑙))))
8988fvmpt2 6979 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑛 ∈ ℕ ∧ (𝑙𝑋 ↦ (1st ‘((𝑖𝑛)‘𝑙))) ∈ V) → ((𝑛 ∈ ℕ ↦ (𝑙𝑋 ↦ (1st ‘((𝑖𝑛)‘𝑙))))‘𝑛) = (𝑙𝑋 ↦ (1st ‘((𝑖𝑛)‘𝑙))))
9084, 87, 89syl2anc 584 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑖 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ) ∧ 𝑛 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ (𝑙𝑋 ↦ (1st ‘((𝑖𝑛)‘𝑙))))‘𝑛) = (𝑙𝑋 ↦ (1st ‘((𝑖𝑛)‘𝑙))))
9183, 90eqtrd 2764 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑖 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ) ∧ 𝑛 ∈ ℕ) → ((𝐹𝑖)‘𝑛) = (𝑙𝑋 ↦ (1st ‘((𝑖𝑛)‘𝑙))))
9291fveq1d 6860 . . . . . . . . . . . . . . . . . . . . 21 ((𝑖 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ) ∧ 𝑛 ∈ ℕ) → (((𝐹𝑖)‘𝑛)‘𝑘) = ((𝑙𝑋 ↦ (1st ‘((𝑖𝑛)‘𝑙)))‘𝑘))
9392adantr 480 . . . . . . . . . . . . . . . . . . . 20 (((𝑖 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ) ∧ 𝑛 ∈ ℕ) ∧ 𝑘𝑋) → (((𝐹𝑖)‘𝑛)‘𝑘) = ((𝑙𝑋 ↦ (1st ‘((𝑖𝑛)‘𝑙)))‘𝑘))
94 eqidd 2730 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑖 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ) ∧ 𝑘𝑋) → (𝑙𝑋 ↦ (1st ‘((𝑖𝑛)‘𝑙))) = (𝑙𝑋 ↦ (1st ‘((𝑖𝑛)‘𝑙))))
95 simpr 484 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝑖 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ) ∧ 𝑘𝑋) ∧ 𝑙 = 𝑘) → 𝑙 = 𝑘)
9695fveq2d 6862 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑖 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ) ∧ 𝑘𝑋) ∧ 𝑙 = 𝑘) → ((𝑖𝑛)‘𝑙) = ((𝑖𝑛)‘𝑘))
9796fveq2d 6862 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑖 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ) ∧ 𝑘𝑋) ∧ 𝑙 = 𝑘) → (1st ‘((𝑖𝑛)‘𝑙)) = (1st ‘((𝑖𝑛)‘𝑘)))
98 simpr 484 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑖 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ) ∧ 𝑘𝑋) → 𝑘𝑋)
99 fvexd 6873 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑖 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ) ∧ 𝑘𝑋) → (1st ‘((𝑖𝑛)‘𝑘)) ∈ V)
10094, 97, 98, 99fvmptd 6975 . . . . . . . . . . . . . . . . . . . . 21 ((𝑖 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ) ∧ 𝑘𝑋) → ((𝑙𝑋 ↦ (1st ‘((𝑖𝑛)‘𝑙)))‘𝑘) = (1st ‘((𝑖𝑛)‘𝑘)))
101100adantlr 715 . . . . . . . . . . . . . . . . . . . 20 (((𝑖 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ) ∧ 𝑛 ∈ ℕ) ∧ 𝑘𝑋) → ((𝑙𝑋 ↦ (1st ‘((𝑖𝑛)‘𝑙)))‘𝑘) = (1st ‘((𝑖𝑛)‘𝑘)))
10293, 101eqtrd 2764 . . . . . . . . . . . . . . . . . . 19 (((𝑖 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ) ∧ 𝑛 ∈ ℕ) ∧ 𝑘𝑋) → (((𝐹𝑖)‘𝑛)‘𝑘) = (1st ‘((𝑖𝑛)‘𝑘)))
10357fveq1d 6860 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑖 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ) → ((𝑆𝑖)‘𝑛) = ((𝑛 ∈ ℕ ↦ (𝑙𝑋 ↦ (2nd ‘((𝑖𝑛)‘𝑙))))‘𝑛))
104103adantr 480 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑖 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ) ∧ 𝑛 ∈ ℕ) → ((𝑆𝑖)‘𝑛) = ((𝑛 ∈ ℕ ↦ (𝑙𝑋 ↦ (2nd ‘((𝑖𝑛)‘𝑙))))‘𝑛))
105 mptexg 7195 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑋 ∈ V → (𝑙𝑋 ↦ (2nd ‘((𝑖𝑛)‘𝑙))) ∈ V)
10630, 105syl 17 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑖 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ) → (𝑙𝑋 ↦ (2nd ‘((𝑖𝑛)‘𝑙))) ∈ V)
107106adantr 480 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑖 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ) ∧ 𝑛 ∈ ℕ) → (𝑙𝑋 ↦ (2nd ‘((𝑖𝑛)‘𝑙))) ∈ V)
108 eqid 2729 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑛 ∈ ℕ ↦ (𝑙𝑋 ↦ (2nd ‘((𝑖𝑛)‘𝑙)))) = (𝑛 ∈ ℕ ↦ (𝑙𝑋 ↦ (2nd ‘((𝑖𝑛)‘𝑙))))
109108fvmpt2 6979 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑛 ∈ ℕ ∧ (𝑙𝑋 ↦ (2nd ‘((𝑖𝑛)‘𝑙))) ∈ V) → ((𝑛 ∈ ℕ ↦ (𝑙𝑋 ↦ (2nd ‘((𝑖𝑛)‘𝑙))))‘𝑛) = (𝑙𝑋 ↦ (2nd ‘((𝑖𝑛)‘𝑙))))
11084, 107, 109syl2anc 584 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑖 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ) ∧ 𝑛 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ (𝑙𝑋 ↦ (2nd ‘((𝑖𝑛)‘𝑙))))‘𝑛) = (𝑙𝑋 ↦ (2nd ‘((𝑖𝑛)‘𝑙))))
111104, 110eqtrd 2764 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑖 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ) ∧ 𝑛 ∈ ℕ) → ((𝑆𝑖)‘𝑛) = (𝑙𝑋 ↦ (2nd ‘((𝑖𝑛)‘𝑙))))
112111fveq1d 6860 . . . . . . . . . . . . . . . . . . . . 21 ((𝑖 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ) ∧ 𝑛 ∈ ℕ) → (((𝑆𝑖)‘𝑛)‘𝑘) = ((𝑙𝑋 ↦ (2nd ‘((𝑖𝑛)‘𝑙)))‘𝑘))
113112adantr 480 . . . . . . . . . . . . . . . . . . . 20 (((𝑖 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ) ∧ 𝑛 ∈ ℕ) ∧ 𝑘𝑋) → (((𝑆𝑖)‘𝑛)‘𝑘) = ((𝑙𝑋 ↦ (2nd ‘((𝑖𝑛)‘𝑙)))‘𝑘))
114 eqidd 2730 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑖 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ) ∧ 𝑘𝑋) → (𝑙𝑋 ↦ (2nd ‘((𝑖𝑛)‘𝑙))) = (𝑙𝑋 ↦ (2nd ‘((𝑖𝑛)‘𝑙))))
115 2fveq3 6863 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑙 = 𝑘 → (2nd ‘((𝑖𝑛)‘𝑙)) = (2nd ‘((𝑖𝑛)‘𝑘)))
116115adantl 481 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑖 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ) ∧ 𝑘𝑋) ∧ 𝑙 = 𝑘) → (2nd ‘((𝑖𝑛)‘𝑙)) = (2nd ‘((𝑖𝑛)‘𝑘)))
117 fvexd 6873 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑖 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ) ∧ 𝑘𝑋) → (2nd ‘((𝑖𝑛)‘𝑘)) ∈ V)
118114, 116, 98, 117fvmptd 6975 . . . . . . . . . . . . . . . . . . . . 21 ((𝑖 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ) ∧ 𝑘𝑋) → ((𝑙𝑋 ↦ (2nd ‘((𝑖𝑛)‘𝑙)))‘𝑘) = (2nd ‘((𝑖𝑛)‘𝑘)))
119118adantlr 715 . . . . . . . . . . . . . . . . . . . 20 (((𝑖 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ) ∧ 𝑛 ∈ ℕ) ∧ 𝑘𝑋) → ((𝑙𝑋 ↦ (2nd ‘((𝑖𝑛)‘𝑙)))‘𝑘) = (2nd ‘((𝑖𝑛)‘𝑘)))
120113, 119eqtrd 2764 . . . . . . . . . . . . . . . . . . 19 (((𝑖 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ) ∧ 𝑛 ∈ ℕ) ∧ 𝑘𝑋) → (((𝑆𝑖)‘𝑛)‘𝑘) = (2nd ‘((𝑖𝑛)‘𝑘)))
121102, 120oveq12d 7405 . . . . . . . . . . . . . . . . . 18 (((𝑖 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ) ∧ 𝑛 ∈ ℕ) ∧ 𝑘𝑋) → ((((𝐹𝑖)‘𝑛)‘𝑘)[,)(((𝑆𝑖)‘𝑛)‘𝑘)) = ((1st ‘((𝑖𝑛)‘𝑘))[,)(2nd ‘((𝑖𝑛)‘𝑘))))
122121ixpeq2dva 8885 . . . . . . . . . . . . . . . . 17 ((𝑖 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ) ∧ 𝑛 ∈ ℕ) → X𝑘𝑋 ((((𝐹𝑖)‘𝑛)‘𝑘)[,)(((𝑆𝑖)‘𝑛)‘𝑘)) = X𝑘𝑋 ((1st ‘((𝑖𝑛)‘𝑘))[,)(2nd ‘((𝑖𝑛)‘𝑘))))
123122iuneq2dv 4980 . . . . . . . . . . . . . . . 16 (𝑖 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ) → 𝑛 ∈ ℕ X𝑘𝑋 ((((𝐹𝑖)‘𝑛)‘𝑘)[,)(((𝑆𝑖)‘𝑛)‘𝑘)) = 𝑛 ∈ ℕ X𝑘𝑋 ((1st ‘((𝑖𝑛)‘𝑘))[,)(2nd ‘((𝑖𝑛)‘𝑘))))
12471, 79, 1233eqtr4d 2774 . . . . . . . . . . . . . . 15 (𝑖 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ) → 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝑖𝑗))‘𝑘) = 𝑛 ∈ ℕ X𝑘𝑋 ((((𝐹𝑖)‘𝑛)‘𝑘)[,)(((𝑆𝑖)‘𝑛)‘𝑘)))
125124adantl 481 . . . . . . . . . . . . . 14 ((𝜑𝑖 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ)) → 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝑖𝑗))‘𝑘) = 𝑛 ∈ ℕ X𝑘𝑋 ((((𝐹𝑖)‘𝑛)‘𝑘)[,)(((𝑆𝑖)‘𝑛)‘𝑘)))
1261253adant3 1132 . . . . . . . . . . . . 13 ((𝜑𝑖 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ) ∧ 𝐼 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝑖𝑗))‘𝑘)) → 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝑖𝑗))‘𝑘) = 𝑛 ∈ ℕ X𝑘𝑋 ((((𝐹𝑖)‘𝑛)‘𝑘)[,)(((𝑆𝑖)‘𝑛)‘𝑘)))
12763, 126sseq12d 3980 . . . . . . . . . . . 12 ((𝜑𝑖 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ) ∧ 𝐼 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝑖𝑗))‘𝑘)) → (𝐼 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝑖𝑗))‘𝑘) ↔ X𝑘𝑋 ((𝐴𝑘)[,)(𝐵𝑘)) ⊆ 𝑛 ∈ ℕ X𝑘𝑋 ((((𝐹𝑖)‘𝑛)‘𝑘)[,)(((𝑆𝑖)‘𝑛)‘𝑘))))
12861, 127mpbid 232 . . . . . . . . . . 11 ((𝜑𝑖 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ) ∧ 𝐼 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝑖𝑗))‘𝑘)) → X𝑘𝑋 ((𝐴𝑘)[,)(𝐵𝑘)) ⊆ 𝑛 ∈ ℕ X𝑘𝑋 ((((𝐹𝑖)‘𝑛)‘𝑘)[,)(((𝑆𝑖)‘𝑛)‘𝑘)))
1291283adant3r 1182 . . . . . . . . . 10 ((𝜑𝑖 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ) ∧ (𝐼 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝑖𝑗))‘𝑘) ∧ 𝑧 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ (𝑖𝑗))‘𝑘)))))) → X𝑘𝑋 ((𝐴𝑘)[,)(𝐵𝑘)) ⊆ 𝑛 ∈ ℕ X𝑘𝑋 ((((𝐹𝑖)‘𝑛)‘𝑘)[,)(((𝑆𝑖)‘𝑛)‘𝑘)))
1308, 10, 12, 14, 45, 60, 129hoidmvle 46598 . . . . . . . . 9 ((𝜑𝑖 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ) ∧ (𝐼 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝑖𝑗))‘𝑘) ∧ 𝑧 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ (𝑖𝑗))‘𝑘)))))) → (𝐴(𝐿𝑋)𝐵) ≤ (Σ^‘(𝑛 ∈ ℕ ↦ (((𝐹𝑖)‘𝑛)(𝐿𝑋)((𝑆𝑖)‘𝑛)))))
131 simpl 482 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑛 = 𝑗𝑙𝑋) → 𝑛 = 𝑗)
132131fveq2d 6862 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑛 = 𝑗𝑙𝑋) → (𝑖𝑛) = (𝑖𝑗))
133132fveq1d 6860 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑛 = 𝑗𝑙𝑋) → ((𝑖𝑛)‘𝑙) = ((𝑖𝑗)‘𝑙))
134133fveq2d 6862 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑛 = 𝑗𝑙𝑋) → (1st ‘((𝑖𝑛)‘𝑙)) = (1st ‘((𝑖𝑗)‘𝑙)))
135134mpteq2dva 5200 . . . . . . . . . . . . . . . . . . . . . 22 (𝑛 = 𝑗 → (𝑙𝑋 ↦ (1st ‘((𝑖𝑛)‘𝑙))) = (𝑙𝑋 ↦ (1st ‘((𝑖𝑗)‘𝑙))))
136135fveq1d 6860 . . . . . . . . . . . . . . . . . . . . 21 (𝑛 = 𝑗 → ((𝑙𝑋 ↦ (1st ‘((𝑖𝑛)‘𝑙)))‘𝑘) = ((𝑙𝑋 ↦ (1st ‘((𝑖𝑗)‘𝑙)))‘𝑘))
137136adantr 480 . . . . . . . . . . . . . . . . . . . 20 ((𝑛 = 𝑗𝑘𝑋) → ((𝑙𝑋 ↦ (1st ‘((𝑖𝑛)‘𝑙)))‘𝑘) = ((𝑙𝑋 ↦ (1st ‘((𝑖𝑗)‘𝑙)))‘𝑘))
138 eqidd 2730 . . . . . . . . . . . . . . . . . . . . . 22 (𝑘𝑋 → (𝑙𝑋 ↦ (1st ‘((𝑖𝑗)‘𝑙))) = (𝑙𝑋 ↦ (1st ‘((𝑖𝑗)‘𝑙))))
139 2fveq3 6863 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑙 = 𝑘 → (1st ‘((𝑖𝑗)‘𝑙)) = (1st ‘((𝑖𝑗)‘𝑘)))
140139adantl 481 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑘𝑋𝑙 = 𝑘) → (1st ‘((𝑖𝑗)‘𝑙)) = (1st ‘((𝑖𝑗)‘𝑘)))
141 id 22 . . . . . . . . . . . . . . . . . . . . . 22 (𝑘𝑋𝑘𝑋)
142 fvexd 6873 . . . . . . . . . . . . . . . . . . . . . 22 (𝑘𝑋 → (1st ‘((𝑖𝑗)‘𝑘)) ∈ V)
143138, 140, 141, 142fvmptd 6975 . . . . . . . . . . . . . . . . . . . . 21 (𝑘𝑋 → ((𝑙𝑋 ↦ (1st ‘((𝑖𝑗)‘𝑙)))‘𝑘) = (1st ‘((𝑖𝑗)‘𝑘)))
144143adantl 481 . . . . . . . . . . . . . . . . . . . 20 ((𝑛 = 𝑗𝑘𝑋) → ((𝑙𝑋 ↦ (1st ‘((𝑖𝑗)‘𝑙)))‘𝑘) = (1st ‘((𝑖𝑗)‘𝑘)))
145137, 144eqtrd 2764 . . . . . . . . . . . . . . . . . . 19 ((𝑛 = 𝑗𝑘𝑋) → ((𝑙𝑋 ↦ (1st ‘((𝑖𝑛)‘𝑙)))‘𝑘) = (1st ‘((𝑖𝑗)‘𝑘)))
146133fveq2d 6862 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑛 = 𝑗𝑙𝑋) → (2nd ‘((𝑖𝑛)‘𝑙)) = (2nd ‘((𝑖𝑗)‘𝑙)))
147146mpteq2dva 5200 . . . . . . . . . . . . . . . . . . . . . 22 (𝑛 = 𝑗 → (𝑙𝑋 ↦ (2nd ‘((𝑖𝑛)‘𝑙))) = (𝑙𝑋 ↦ (2nd ‘((𝑖𝑗)‘𝑙))))
148147fveq1d 6860 . . . . . . . . . . . . . . . . . . . . 21 (𝑛 = 𝑗 → ((𝑙𝑋 ↦ (2nd ‘((𝑖𝑛)‘𝑙)))‘𝑘) = ((𝑙𝑋 ↦ (2nd ‘((𝑖𝑗)‘𝑙)))‘𝑘))
149148adantr 480 . . . . . . . . . . . . . . . . . . . 20 ((𝑛 = 𝑗𝑘𝑋) → ((𝑙𝑋 ↦ (2nd ‘((𝑖𝑛)‘𝑙)))‘𝑘) = ((𝑙𝑋 ↦ (2nd ‘((𝑖𝑗)‘𝑙)))‘𝑘))
150 eqidd 2730 . . . . . . . . . . . . . . . . . . . . . 22 (𝑘𝑋 → (𝑙𝑋 ↦ (2nd ‘((𝑖𝑗)‘𝑙))) = (𝑙𝑋 ↦ (2nd ‘((𝑖𝑗)‘𝑙))))
151 2fveq3 6863 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑙 = 𝑘 → (2nd ‘((𝑖𝑗)‘𝑙)) = (2nd ‘((𝑖𝑗)‘𝑘)))
152151adantl 481 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑘𝑋𝑙 = 𝑘) → (2nd ‘((𝑖𝑗)‘𝑙)) = (2nd ‘((𝑖𝑗)‘𝑘)))
153 fvexd 6873 . . . . . . . . . . . . . . . . . . . . . 22 (𝑘𝑋 → (2nd ‘((𝑖𝑗)‘𝑘)) ∈ V)
154150, 152, 141, 153fvmptd 6975 . . . . . . . . . . . . . . . . . . . . 21 (𝑘𝑋 → ((𝑙𝑋 ↦ (2nd ‘((𝑖𝑗)‘𝑙)))‘𝑘) = (2nd ‘((𝑖𝑗)‘𝑘)))
155154adantl 481 . . . . . . . . . . . . . . . . . . . 20 ((𝑛 = 𝑗𝑘𝑋) → ((𝑙𝑋 ↦ (2nd ‘((𝑖𝑗)‘𝑙)))‘𝑘) = (2nd ‘((𝑖𝑗)‘𝑘)))
156149, 155eqtrd 2764 . . . . . . . . . . . . . . . . . . 19 ((𝑛 = 𝑗𝑘𝑋) → ((𝑙𝑋 ↦ (2nd ‘((𝑖𝑛)‘𝑙)))‘𝑘) = (2nd ‘((𝑖𝑗)‘𝑘)))
157145, 156oveq12d 7405 . . . . . . . . . . . . . . . . . 18 ((𝑛 = 𝑗𝑘𝑋) → (((𝑙𝑋 ↦ (1st ‘((𝑖𝑛)‘𝑙)))‘𝑘)[,)((𝑙𝑋 ↦ (2nd ‘((𝑖𝑛)‘𝑙)))‘𝑘)) = ((1st ‘((𝑖𝑗)‘𝑘))[,)(2nd ‘((𝑖𝑗)‘𝑘))))
158157fveq2d 6862 . . . . . . . . . . . . . . . . 17 ((𝑛 = 𝑗𝑘𝑋) → (vol‘(((𝑙𝑋 ↦ (1st ‘((𝑖𝑛)‘𝑙)))‘𝑘)[,)((𝑙𝑋 ↦ (2nd ‘((𝑖𝑛)‘𝑙)))‘𝑘))) = (vol‘((1st ‘((𝑖𝑗)‘𝑘))[,)(2nd ‘((𝑖𝑗)‘𝑘)))))
159158prodeq2dv 15888 . . . . . . . . . . . . . . . 16 (𝑛 = 𝑗 → ∏𝑘𝑋 (vol‘(((𝑙𝑋 ↦ (1st ‘((𝑖𝑛)‘𝑙)))‘𝑘)[,)((𝑙𝑋 ↦ (2nd ‘((𝑖𝑛)‘𝑙)))‘𝑘))) = ∏𝑘𝑋 (vol‘((1st ‘((𝑖𝑗)‘𝑘))[,)(2nd ‘((𝑖𝑗)‘𝑘)))))
160159cbvmptv 5211 . . . . . . . . . . . . . . 15 (𝑛 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(((𝑙𝑋 ↦ (1st ‘((𝑖𝑛)‘𝑙)))‘𝑘)[,)((𝑙𝑋 ↦ (2nd ‘((𝑖𝑛)‘𝑙)))‘𝑘)))) = (𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘((1st ‘((𝑖𝑗)‘𝑘))[,)(2nd ‘((𝑖𝑗)‘𝑘)))))
161160a1i 11 . . . . . . . . . . . . . 14 (𝑖 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ) → (𝑛 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(((𝑙𝑋 ↦ (1st ‘((𝑖𝑛)‘𝑙)))‘𝑘)[,)((𝑙𝑋 ↦ (2nd ‘((𝑖𝑛)‘𝑙)))‘𝑘)))) = (𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘((1st ‘((𝑖𝑗)‘𝑘))[,)(2nd ‘((𝑖𝑗)‘𝑘))))))
16277eqcomd 2735 . . . . . . . . . . . . . . . . 17 (((𝑖 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ) ∧ 𝑗 ∈ ℕ) ∧ 𝑘𝑋) → ((1st ‘((𝑖𝑗)‘𝑘))[,)(2nd ‘((𝑖𝑗)‘𝑘))) = (([,) ∘ (𝑖𝑗))‘𝑘))
163162fveq2d 6862 . . . . . . . . . . . . . . . 16 (((𝑖 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ) ∧ 𝑗 ∈ ℕ) ∧ 𝑘𝑋) → (vol‘((1st ‘((𝑖𝑗)‘𝑘))[,)(2nd ‘((𝑖𝑗)‘𝑘)))) = (vol‘(([,) ∘ (𝑖𝑗))‘𝑘)))
164163prodeq2dv 15888 . . . . . . . . . . . . . . 15 ((𝑖 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ) ∧ 𝑗 ∈ ℕ) → ∏𝑘𝑋 (vol‘((1st ‘((𝑖𝑗)‘𝑘))[,)(2nd ‘((𝑖𝑗)‘𝑘)))) = ∏𝑘𝑋 (vol‘(([,) ∘ (𝑖𝑗))‘𝑘)))
165164mpteq2dva 5200 . . . . . . . . . . . . . 14 (𝑖 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ) → (𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘((1st ‘((𝑖𝑗)‘𝑘))[,)(2nd ‘((𝑖𝑗)‘𝑘))))) = (𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ (𝑖𝑗))‘𝑘))))
166161, 165eqtrd 2764 . . . . . . . . . . . . 13 (𝑖 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ) → (𝑛 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(((𝑙𝑋 ↦ (1st ‘((𝑖𝑛)‘𝑙)))‘𝑘)[,)((𝑙𝑋 ↦ (2nd ‘((𝑖𝑛)‘𝑙)))‘𝑘)))) = (𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ (𝑖𝑗))‘𝑘))))
167166fveq2d 6862 . . . . . . . . . . . 12 (𝑖 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ) → (Σ^‘(𝑛 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(((𝑙𝑋 ↦ (1st ‘((𝑖𝑛)‘𝑙)))‘𝑘)[,)((𝑙𝑋 ↦ (2nd ‘((𝑖𝑛)‘𝑙)))‘𝑘))))) = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ (𝑖𝑗))‘𝑘)))))
1681673ad2ant2 1134 . . . . . . . . . . 11 ((𝜑𝑖 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ) ∧ 𝑧 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ (𝑖𝑗))‘𝑘))))) → (Σ^‘(𝑛 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(((𝑙𝑋 ↦ (1st ‘((𝑖𝑛)‘𝑙)))‘𝑘)[,)((𝑙𝑋 ↦ (2nd ‘((𝑖𝑛)‘𝑙)))‘𝑘))))) = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ (𝑖𝑗))‘𝑘)))))
16991adantll 714 . . . . . . . . . . . . . . . 16 (((𝜑𝑖 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ)) ∧ 𝑛 ∈ ℕ) → ((𝐹𝑖)‘𝑛) = (𝑙𝑋 ↦ (1st ‘((𝑖𝑛)‘𝑙))))
170111adantll 714 . . . . . . . . . . . . . . . 16 (((𝜑𝑖 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ)) ∧ 𝑛 ∈ ℕ) → ((𝑆𝑖)‘𝑛) = (𝑙𝑋 ↦ (2nd ‘((𝑖𝑛)‘𝑙))))
171169, 170oveq12d 7405 . . . . . . . . . . . . . . 15 (((𝜑𝑖 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ)) ∧ 𝑛 ∈ ℕ) → (((𝐹𝑖)‘𝑛)(𝐿𝑋)((𝑆𝑖)‘𝑛)) = ((𝑙𝑋 ↦ (1st ‘((𝑖𝑛)‘𝑙)))(𝐿𝑋)(𝑙𝑋 ↦ (2nd ‘((𝑖𝑛)‘𝑙)))))
1729ad2antrr 726 . . . . . . . . . . . . . . . 16 (((𝜑𝑖 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ)) ∧ 𝑛 ∈ ℕ) → 𝑋 ∈ Fin)
173 ovnhoilem2.n . . . . . . . . . . . . . . . . 17 (𝜑𝑋 ≠ ∅)
174173ad2antrr 726 . . . . . . . . . . . . . . . 16 (((𝜑𝑖 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ)) ∧ 𝑛 ∈ ℕ) → 𝑋 ≠ ∅)
17519adantlll 718 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑖 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ)) ∧ 𝑛 ∈ ℕ) ∧ 𝑙𝑋) → ((𝑖𝑛)‘𝑙) ∈ (ℝ × ℝ))
176175, 20syl 17 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑖 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ)) ∧ 𝑛 ∈ ℕ) ∧ 𝑙𝑋) → (1st ‘((𝑖𝑛)‘𝑙)) ∈ ℝ)
177176fmpttd 7087 . . . . . . . . . . . . . . . 16 (((𝜑𝑖 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ)) ∧ 𝑛 ∈ ℕ) → (𝑙𝑋 ↦ (1st ‘((𝑖𝑛)‘𝑙))):𝑋⟶ℝ)
178175, 46syl 17 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑖 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ)) ∧ 𝑛 ∈ ℕ) ∧ 𝑙𝑋) → (2nd ‘((𝑖𝑛)‘𝑙)) ∈ ℝ)
179178fmpttd 7087 . . . . . . . . . . . . . . . 16 (((𝜑𝑖 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ)) ∧ 𝑛 ∈ ℕ) → (𝑙𝑋 ↦ (2nd ‘((𝑖𝑛)‘𝑙))):𝑋⟶ℝ)
1808, 172, 174, 177, 179hoidmvn0val 46582 . . . . . . . . . . . . . . 15 (((𝜑𝑖 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ)) ∧ 𝑛 ∈ ℕ) → ((𝑙𝑋 ↦ (1st ‘((𝑖𝑛)‘𝑙)))(𝐿𝑋)(𝑙𝑋 ↦ (2nd ‘((𝑖𝑛)‘𝑙)))) = ∏𝑘𝑋 (vol‘(((𝑙𝑋 ↦ (1st ‘((𝑖𝑛)‘𝑙)))‘𝑘)[,)((𝑙𝑋 ↦ (2nd ‘((𝑖𝑛)‘𝑙)))‘𝑘))))
181171, 180eqtrd 2764 . . . . . . . . . . . . . 14 (((𝜑𝑖 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ)) ∧ 𝑛 ∈ ℕ) → (((𝐹𝑖)‘𝑛)(𝐿𝑋)((𝑆𝑖)‘𝑛)) = ∏𝑘𝑋 (vol‘(((𝑙𝑋 ↦ (1st ‘((𝑖𝑛)‘𝑙)))‘𝑘)[,)((𝑙𝑋 ↦ (2nd ‘((𝑖𝑛)‘𝑙)))‘𝑘))))
182181mpteq2dva 5200 . . . . . . . . . . . . 13 ((𝜑𝑖 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ)) → (𝑛 ∈ ℕ ↦ (((𝐹𝑖)‘𝑛)(𝐿𝑋)((𝑆𝑖)‘𝑛))) = (𝑛 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(((𝑙𝑋 ↦ (1st ‘((𝑖𝑛)‘𝑙)))‘𝑘)[,)((𝑙𝑋 ↦ (2nd ‘((𝑖𝑛)‘𝑙)))‘𝑘)))))
183182fveq2d 6862 . . . . . . . . . . . 12 ((𝜑𝑖 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ)) → (Σ^‘(𝑛 ∈ ℕ ↦ (((𝐹𝑖)‘𝑛)(𝐿𝑋)((𝑆𝑖)‘𝑛)))) = (Σ^‘(𝑛 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(((𝑙𝑋 ↦ (1st ‘((𝑖𝑛)‘𝑙)))‘𝑘)[,)((𝑙𝑋 ↦ (2nd ‘((𝑖𝑛)‘𝑙)))‘𝑘))))))
1841833adant3 1132 . . . . . . . . . . 11 ((𝜑𝑖 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ) ∧ 𝑧 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ (𝑖𝑗))‘𝑘))))) → (Σ^‘(𝑛 ∈ ℕ ↦ (((𝐹𝑖)‘𝑛)(𝐿𝑋)((𝑆𝑖)‘𝑛)))) = (Σ^‘(𝑛 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(((𝑙𝑋 ↦ (1st ‘((𝑖𝑛)‘𝑙)))‘𝑘)[,)((𝑙𝑋 ↦ (2nd ‘((𝑖𝑛)‘𝑙)))‘𝑘))))))
185 simp3 1138 . . . . . . . . . . 11 ((𝜑𝑖 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ) ∧ 𝑧 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ (𝑖𝑗))‘𝑘))))) → 𝑧 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ (𝑖𝑗))‘𝑘)))))
186168, 184, 1853eqtr4d 2774 . . . . . . . . . 10 ((𝜑𝑖 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ) ∧ 𝑧 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ (𝑖𝑗))‘𝑘))))) → (Σ^‘(𝑛 ∈ ℕ ↦ (((𝐹𝑖)‘𝑛)(𝐿𝑋)((𝑆𝑖)‘𝑛)))) = 𝑧)
1871863adant3l 1181 . . . . . . . . 9 ((𝜑𝑖 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ) ∧ (𝐼 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝑖𝑗))‘𝑘) ∧ 𝑧 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ (𝑖𝑗))‘𝑘)))))) → (Σ^‘(𝑛 ∈ ℕ ↦ (((𝐹𝑖)‘𝑛)(𝐿𝑋)((𝑆𝑖)‘𝑛)))) = 𝑧)
188130, 187breqtrd 5133 . . . . . . . 8 ((𝜑𝑖 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ) ∧ (𝐼 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝑖𝑗))‘𝑘) ∧ 𝑧 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ (𝑖𝑗))‘𝑘)))))) → (𝐴(𝐿𝑋)𝐵) ≤ 𝑧)
1891883exp 1119 . . . . . . 7 (𝜑 → (𝑖 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ) → ((𝐼 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝑖𝑗))‘𝑘) ∧ 𝑧 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ (𝑖𝑗))‘𝑘))))) → (𝐴(𝐿𝑋)𝐵) ≤ 𝑧)))
190189adantr 480 . . . . . 6 ((𝜑𝑧𝑀) → (𝑖 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ) → ((𝐼 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝑖𝑗))‘𝑘) ∧ 𝑧 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ (𝑖𝑗))‘𝑘))))) → (𝐴(𝐿𝑋)𝐵) ≤ 𝑧)))
191190rexlimdv 3132 . . . . 5 ((𝜑𝑧𝑀) → (∃𝑖 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ)(𝐼 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝑖𝑗))‘𝑘) ∧ 𝑧 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ (𝑖𝑗))‘𝑘))))) → (𝐴(𝐿𝑋)𝐵) ≤ 𝑧))
1927, 191mpd 15 . . . 4 ((𝜑𝑧𝑀) → (𝐴(𝐿𝑋)𝐵) ≤ 𝑧)
193192ralrimiva 3125 . . 3 (𝜑 → ∀𝑧𝑀 (𝐴(𝐿𝑋)𝐵) ≤ 𝑧)
194 ssrab2 4043 . . . . . 6 {𝑧 ∈ ℝ* ∣ ∃𝑖 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ)(𝐼 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝑖𝑗))‘𝑘) ∧ 𝑧 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ (𝑖𝑗))‘𝑘)))))} ⊆ ℝ*
1951, 194eqsstri 3993 . . . . 5 𝑀 ⊆ ℝ*
196195a1i 11 . . . 4 (𝜑𝑀 ⊆ ℝ*)
197 icossxr 13393 . . . . 5 (0[,)+∞) ⊆ ℝ*
1988, 9, 11, 13hoidmvcl 46580 . . . . 5 (𝜑 → (𝐴(𝐿𝑋)𝐵) ∈ (0[,)+∞))
199197, 198sselid 3944 . . . 4 (𝜑 → (𝐴(𝐿𝑋)𝐵) ∈ ℝ*)
200 infxrgelb 13296 . . . 4 ((𝑀 ⊆ ℝ* ∧ (𝐴(𝐿𝑋)𝐵) ∈ ℝ*) → ((𝐴(𝐿𝑋)𝐵) ≤ inf(𝑀, ℝ*, < ) ↔ ∀𝑧𝑀 (𝐴(𝐿𝑋)𝐵) ≤ 𝑧))
201196, 199, 200syl2anc 584 . . 3 (𝜑 → ((𝐴(𝐿𝑋)𝐵) ≤ inf(𝑀, ℝ*, < ) ↔ ∀𝑧𝑀 (𝐴(𝐿𝑋)𝐵) ≤ 𝑧))
202193, 201mpbird 257 . 2 (𝜑 → (𝐴(𝐿𝑋)𝐵) ≤ inf(𝑀, ℝ*, < ))
20362a1i 11 . . . . 5 (𝜑𝐼 = X𝑘𝑋 ((𝐴𝑘)[,)(𝐵𝑘)))
204 nfv 1914 . . . . . 6 𝑘𝜑
20511ffvelcdmda 7056 . . . . . 6 ((𝜑𝑘𝑋) → (𝐴𝑘) ∈ ℝ)
20613ffvelcdmda 7056 . . . . . . 7 ((𝜑𝑘𝑋) → (𝐵𝑘) ∈ ℝ)
207206rexrd 11224 . . . . . 6 ((𝜑𝑘𝑋) → (𝐵𝑘) ∈ ℝ*)
208204, 205, 207hoissrrn2 46576 . . . . 5 (𝜑X𝑘𝑋 ((𝐴𝑘)[,)(𝐵𝑘)) ⊆ (ℝ ↑m 𝑋))
209203, 208eqsstrd 3981 . . . 4 (𝜑𝐼 ⊆ (ℝ ↑m 𝑋))
2109, 173, 209, 1ovnn0val 46549 . . 3 (𝜑 → ((voln*‘𝑋)‘𝐼) = inf(𝑀, ℝ*, < ))
211210eqcomd 2735 . 2 (𝜑 → inf(𝑀, ℝ*, < ) = ((voln*‘𝑋)‘𝐼))
212202, 211breqtrd 5133 1 (𝜑 → (𝐴(𝐿𝑋)𝐵) ≤ ((voln*‘𝑋)‘𝐼))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2925  wral 3044  wrex 3053  {crab 3405  Vcvv 3447  wss 3914  c0 4296  ifcif 4488   ciun 4955   class class class wbr 5107  cmpt 5188   × cxp 5636  ccom 5642  wf 6507  cfv 6511  (class class class)co 7387  cmpo 7389  1st c1st 7966  2nd c2nd 7967  m cmap 8799  Xcixp 8870  Fincfn 8918  infcinf 9392  cr 11067  0cc0 11068  1c1 11069  +∞cpnf 11205  *cxr 11207   < clt 11208  cle 11209  cn 12186  [,)cico 13308  cprod 15869  volcvol 25364  Σ^csumge0 46360  voln*covoln 46534
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-inf2 9594  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145  ax-pre-sup 11146
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-int 4911  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-se 5592  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-isom 6520  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-of 7653  df-om 7843  df-1st 7968  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-2o 8435  df-er 8671  df-map 8801  df-pm 8802  df-ixp 8871  df-en 8919  df-dom 8920  df-sdom 8921  df-fin 8922  df-fi 9362  df-sup 9393  df-inf 9394  df-oi 9463  df-dju 9854  df-card 9892  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-div 11836  df-nn 12187  df-2 12249  df-3 12250  df-n0 12443  df-z 12530  df-uz 12794  df-q 12908  df-rp 12952  df-xneg 13072  df-xadd 13073  df-xmul 13074  df-ioo 13310  df-ico 13312  df-icc 13313  df-fz 13469  df-fzo 13616  df-fl 13754  df-seq 13967  df-exp 14027  df-hash 14296  df-cj 15065  df-re 15066  df-im 15067  df-sqrt 15201  df-abs 15202  df-clim 15454  df-rlim 15455  df-sum 15653  df-prod 15870  df-rest 17385  df-topgen 17406  df-psmet 21256  df-xmet 21257  df-met 21258  df-bl 21259  df-mopn 21260  df-top 22781  df-topon 22798  df-bases 22833  df-cmp 23274  df-ovol 25365  df-vol 25366  df-sumge0 46361  df-ovoln 46535
This theorem is referenced by:  ovnhoi  46601
  Copyright terms: Public domain W3C validator