| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 3brtr3i | Structured version Visualization version GIF version | ||
| Description: Substitution of equality into both sides of a binary relation. (Contributed by NM, 11-Aug-1999.) |
| Ref | Expression |
|---|---|
| 3brtr3.1 | ⊢ 𝐴𝑅𝐵 |
| 3brtr3.2 | ⊢ 𝐴 = 𝐶 |
| 3brtr3.3 | ⊢ 𝐵 = 𝐷 |
| Ref | Expression |
|---|---|
| 3brtr3i | ⊢ 𝐶𝑅𝐷 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3brtr3.2 | . . 3 ⊢ 𝐴 = 𝐶 | |
| 2 | 3brtr3.1 | . . 3 ⊢ 𝐴𝑅𝐵 | |
| 3 | 1, 2 | eqbrtrri 5133 | . 2 ⊢ 𝐶𝑅𝐵 |
| 4 | 3brtr3.3 | . 2 ⊢ 𝐵 = 𝐷 | |
| 5 | 3, 4 | breqtri 5135 | 1 ⊢ 𝐶𝑅𝐷 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 class class class wbr 5110 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-ss 3934 df-nul 4300 df-if 4492 df-sn 4593 df-pr 4595 df-op 4599 df-br 5111 |
| This theorem is referenced by: supsrlem 11071 ef01bndlem 16159 pige3ALT 26436 log2ublem1 26863 log2ub 26866 ppiublem1 27120 logfacrlim2 27144 chebbnd1 27390 twocut 28316 nmoptri2i 32035 dpmul4 32841 problem5 35663 fouriersw 46236 |
| Copyright terms: Public domain | W3C validator |