Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 3brtr3i | Structured version Visualization version GIF version |
Description: Substitution of equality into both sides of a binary relation. (Contributed by NM, 11-Aug-1999.) |
Ref | Expression |
---|---|
3brtr3.1 | ⊢ 𝐴𝑅𝐵 |
3brtr3.2 | ⊢ 𝐴 = 𝐶 |
3brtr3.3 | ⊢ 𝐵 = 𝐷 |
Ref | Expression |
---|---|
3brtr3i | ⊢ 𝐶𝑅𝐷 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3brtr3.2 | . . 3 ⊢ 𝐴 = 𝐶 | |
2 | 3brtr3.1 | . . 3 ⊢ 𝐴𝑅𝐵 | |
3 | 1, 2 | eqbrtrri 5093 | . 2 ⊢ 𝐶𝑅𝐵 |
4 | 3brtr3.3 | . 2 ⊢ 𝐵 = 𝐷 | |
5 | 3, 4 | breqtri 5095 | 1 ⊢ 𝐶𝑅𝐷 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1539 class class class wbr 5070 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-br 5071 |
This theorem is referenced by: supsrlem 10798 ef01bndlem 15821 pige3ALT 25581 log2ublem1 26001 log2ub 26004 ppiublem1 26255 logfacrlim2 26279 chebbnd1 26525 nmoptri2i 30362 dpmul4 31090 problem5 33527 fouriersw 43662 |
Copyright terms: Public domain | W3C validator |