Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  3brtr3i Structured version   Visualization version   GIF version

Theorem 3brtr3i 5068
 Description: Substitution of equality into both sides of a binary relation. (Contributed by NM, 11-Aug-1999.)
Hypotheses
Ref Expression
3brtr3.1 𝐴𝑅𝐵
3brtr3.2 𝐴 = 𝐶
3brtr3.3 𝐵 = 𝐷
Assertion
Ref Expression
3brtr3i 𝐶𝑅𝐷

Proof of Theorem 3brtr3i
StepHypRef Expression
1 3brtr3.2 . . 3 𝐴 = 𝐶
2 3brtr3.1 . . 3 𝐴𝑅𝐵
31, 2eqbrtrri 5062 . 2 𝐶𝑅𝐵
4 3brtr3.3 . 2 𝐵 = 𝐷
53, 4breqtri 5064 1 𝐶𝑅𝐷
 Colors of variables: wff setvar class Syntax hints:   = wceq 1538   class class class wbr 5039 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-10 2146  ax-11 2162  ax-12 2178  ax-ext 2793 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2071  df-clab 2800  df-cleq 2814  df-clel 2892  df-nfc 2960  df-rab 3135  df-v 3473  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-nul 4267  df-if 4441  df-sn 4541  df-pr 4543  df-op 4547  df-br 5040 This theorem is referenced by:  supsrlem  10510  ef01bndlem  15516  pige3ALT  25090  log2ublem1  25510  log2ub  25513  ppiublem1  25764  logfacrlim2  25788  chebbnd1  26034  nmoptri2i  29860  dpmul4  30576  problem5  32919  fouriersw  42664
 Copyright terms: Public domain W3C validator