![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 3brtr3i | Structured version Visualization version GIF version |
Description: Substitution of equality into both sides of a binary relation. (Contributed by NM, 11-Aug-1999.) |
Ref | Expression |
---|---|
3brtr3.1 | ⊢ 𝐴𝑅𝐵 |
3brtr3.2 | ⊢ 𝐴 = 𝐶 |
3brtr3.3 | ⊢ 𝐵 = 𝐷 |
Ref | Expression |
---|---|
3brtr3i | ⊢ 𝐶𝑅𝐷 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3brtr3.2 | . . 3 ⊢ 𝐴 = 𝐶 | |
2 | 3brtr3.1 | . . 3 ⊢ 𝐴𝑅𝐵 | |
3 | 1, 2 | eqbrtrri 5175 | . 2 ⊢ 𝐶𝑅𝐵 |
4 | 3brtr3.3 | . 2 ⊢ 𝐵 = 𝐷 | |
5 | 3, 4 | breqtri 5177 | 1 ⊢ 𝐶𝑅𝐷 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1533 class class class wbr 5152 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-ext 2699 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-sb 2060 df-clab 2706 df-cleq 2720 df-clel 2806 df-rab 3431 df-v 3475 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4327 df-if 4533 df-sn 4633 df-pr 4635 df-op 4639 df-br 5153 |
This theorem is referenced by: supsrlem 11142 ef01bndlem 16168 pige3ALT 26474 log2ublem1 26898 log2ub 26901 ppiublem1 27155 logfacrlim2 27179 chebbnd1 27425 nmoptri2i 31929 dpmul4 32658 problem5 35306 fouriersw 45648 |
Copyright terms: Public domain | W3C validator |