| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 3brtr3i | Structured version Visualization version GIF version | ||
| Description: Substitution of equality into both sides of a binary relation. (Contributed by NM, 11-Aug-1999.) |
| Ref | Expression |
|---|---|
| 3brtr3.1 | ⊢ 𝐴𝑅𝐵 |
| 3brtr3.2 | ⊢ 𝐴 = 𝐶 |
| 3brtr3.3 | ⊢ 𝐵 = 𝐷 |
| Ref | Expression |
|---|---|
| 3brtr3i | ⊢ 𝐶𝑅𝐷 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3brtr3.2 | . . 3 ⊢ 𝐴 = 𝐶 | |
| 2 | 3brtr3.1 | . . 3 ⊢ 𝐴𝑅𝐵 | |
| 3 | 1, 2 | eqbrtrri 5112 | . 2 ⊢ 𝐶𝑅𝐵 |
| 4 | 3brtr3.3 | . 2 ⊢ 𝐵 = 𝐷 | |
| 5 | 3, 4 | breqtri 5114 | 1 ⊢ 𝐶𝑅𝐷 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1541 class class class wbr 5089 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-ss 3914 df-nul 4281 df-if 4473 df-sn 4574 df-pr 4576 df-op 4580 df-br 5090 |
| This theorem is referenced by: supsrlem 11002 ef01bndlem 16093 pige3ALT 26456 log2ublem1 26883 log2ub 26886 ppiublem1 27140 logfacrlim2 27164 chebbnd1 27410 twocut 28346 nmoptri2i 32079 dpmul4 32894 problem5 35713 fouriersw 46339 |
| Copyright terms: Public domain | W3C validator |