MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  3brtr3i Structured version   Visualization version   GIF version

Theorem 3brtr3i 5139
Description: Substitution of equality into both sides of a binary relation. (Contributed by NM, 11-Aug-1999.)
Hypotheses
Ref Expression
3brtr3.1 𝐴𝑅𝐵
3brtr3.2 𝐴 = 𝐶
3brtr3.3 𝐵 = 𝐷
Assertion
Ref Expression
3brtr3i 𝐶𝑅𝐷

Proof of Theorem 3brtr3i
StepHypRef Expression
1 3brtr3.2 . . 3 𝐴 = 𝐶
2 3brtr3.1 . . 3 𝐴𝑅𝐵
31, 2eqbrtrri 5133 . 2 𝐶𝑅𝐵
4 3brtr3.3 . 2 𝐵 = 𝐷
53, 4breqtri 5135 1 𝐶𝑅𝐷
Colors of variables: wff setvar class
Syntax hints:   = wceq 1540   class class class wbr 5110
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2702
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2709  df-cleq 2722  df-clel 2804  df-rab 3409  df-v 3452  df-dif 3920  df-un 3922  df-ss 3934  df-nul 4300  df-if 4492  df-sn 4593  df-pr 4595  df-op 4599  df-br 5111
This theorem is referenced by:  supsrlem  11071  ef01bndlem  16159  pige3ALT  26436  log2ublem1  26863  log2ub  26866  ppiublem1  27120  logfacrlim2  27144  chebbnd1  27390  twocut  28316  nmoptri2i  32035  dpmul4  32841  problem5  35663  fouriersw  46236
  Copyright terms: Public domain W3C validator