MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  3brtr3i Structured version   Visualization version   GIF version

Theorem 3brtr3i 5103
Description: Substitution of equality into both sides of a binary relation. (Contributed by NM, 11-Aug-1999.)
Hypotheses
Ref Expression
3brtr3.1 𝐴𝑅𝐵
3brtr3.2 𝐴 = 𝐶
3brtr3.3 𝐵 = 𝐷
Assertion
Ref Expression
3brtr3i 𝐶𝑅𝐷

Proof of Theorem 3brtr3i
StepHypRef Expression
1 3brtr3.2 . . 3 𝐴 = 𝐶
2 3brtr3.1 . . 3 𝐴𝑅𝐵
31, 2eqbrtrri 5097 . 2 𝐶𝑅𝐵
4 3brtr3.3 . 2 𝐵 = 𝐷
53, 4breqtri 5099 1 𝐶𝑅𝐷
Colors of variables: wff setvar class
Syntax hints:   = wceq 1539   class class class wbr 5074
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816  df-rab 3073  df-v 3434  df-dif 3890  df-un 3892  df-nul 4257  df-if 4460  df-sn 4562  df-pr 4564  df-op 4568  df-br 5075
This theorem is referenced by:  supsrlem  10867  ef01bndlem  15893  pige3ALT  25676  log2ublem1  26096  log2ub  26099  ppiublem1  26350  logfacrlim2  26374  chebbnd1  26620  nmoptri2i  30461  dpmul4  31188  problem5  33627  fouriersw  43772
  Copyright terms: Public domain W3C validator