![]() |
Mathbox for Filip Cernatescu |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > problem5 | Structured version Visualization version GIF version |
Description: Practice problem 5. Clues: 3brtr3i 4904 mpbi 222 breqtri 4900 ltaddsubi 10920 remulcli 10380 2re 11432 3re 11438 9re 11463 eqcomi 2834 mvlladdi 10627 3cn 6cn 11452 eqtr3i 2851 6p3e9 11525 addcomi 10553 ltdiv1ii 11290 6re 11451 nngt0i 11397 2nn 11431 divcan3i 11104 recni 10378 2cn 11433 2ne0 11469 mpbir 223 eqtri 2849 mulcomi 10372 3t2e6 11531 divmuli 11112. (Contributed by Filip Cernatescu, 16-Mar-2019.) (Proof modification is discouraged.) |
Ref | Expression |
---|---|
problem5.1 | ⊢ 𝐴 ∈ ℝ |
problem5.2 | ⊢ ((2 · 𝐴) + 3) < 9 |
Ref | Expression |
---|---|
problem5 | ⊢ 𝐴 < 3 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | problem5.2 | . . . . 5 ⊢ ((2 · 𝐴) + 3) < 9 | |
2 | 2re 11432 | . . . . . . 7 ⊢ 2 ∈ ℝ | |
3 | problem5.1 | . . . . . . 7 ⊢ 𝐴 ∈ ℝ | |
4 | 2, 3 | remulcli 10380 | . . . . . 6 ⊢ (2 · 𝐴) ∈ ℝ |
5 | 3re 11438 | . . . . . 6 ⊢ 3 ∈ ℝ | |
6 | 9re 11463 | . . . . . 6 ⊢ 9 ∈ ℝ | |
7 | 4, 5, 6 | ltaddsubi 10920 | . . . . 5 ⊢ (((2 · 𝐴) + 3) < 9 ↔ (2 · 𝐴) < (9 − 3)) |
8 | 1, 7 | mpbi 222 | . . . 4 ⊢ (2 · 𝐴) < (9 − 3) |
9 | 3cn 11439 | . . . . . 6 ⊢ 3 ∈ ℂ | |
10 | 6cn 11452 | . . . . . 6 ⊢ 6 ∈ ℂ | |
11 | 6p3e9 11525 | . . . . . . . 8 ⊢ (6 + 3) = 9 | |
12 | 10, 9 | addcomi 10553 | . . . . . . . 8 ⊢ (6 + 3) = (3 + 6) |
13 | 11, 12 | eqtr3i 2851 | . . . . . . 7 ⊢ 9 = (3 + 6) |
14 | 13 | eqcomi 2834 | . . . . . 6 ⊢ (3 + 6) = 9 |
15 | 9, 10, 14 | mvlladdi 10627 | . . . . 5 ⊢ 6 = (9 − 3) |
16 | 15 | eqcomi 2834 | . . . 4 ⊢ (9 − 3) = 6 |
17 | 8, 16 | breqtri 4900 | . . 3 ⊢ (2 · 𝐴) < 6 |
18 | 6re 11451 | . . . 4 ⊢ 6 ∈ ℝ | |
19 | 2nn 11431 | . . . . 5 ⊢ 2 ∈ ℕ | |
20 | 19 | nngt0i 11397 | . . . 4 ⊢ 0 < 2 |
21 | 4, 18, 2, 20 | ltdiv1ii 11290 | . . 3 ⊢ ((2 · 𝐴) < 6 ↔ ((2 · 𝐴) / 2) < (6 / 2)) |
22 | 17, 21 | mpbi 222 | . 2 ⊢ ((2 · 𝐴) / 2) < (6 / 2) |
23 | 3 | recni 10378 | . . 3 ⊢ 𝐴 ∈ ℂ |
24 | 2cn 11433 | . . 3 ⊢ 2 ∈ ℂ | |
25 | 2ne0 11469 | . . 3 ⊢ 2 ≠ 0 | |
26 | 23, 24, 25 | divcan3i 11104 | . 2 ⊢ ((2 · 𝐴) / 2) = 𝐴 |
27 | 24, 9 | mulcomi 10372 | . . . 4 ⊢ (2 · 3) = (3 · 2) |
28 | 3t2e6 11531 | . . . 4 ⊢ (3 · 2) = 6 | |
29 | 27, 28 | eqtri 2849 | . . 3 ⊢ (2 · 3) = 6 |
30 | 10, 24, 9, 25 | divmuli 11112 | . . 3 ⊢ ((6 / 2) = 3 ↔ (2 · 3) = 6) |
31 | 29, 30 | mpbir 223 | . 2 ⊢ (6 / 2) = 3 |
32 | 22, 26, 31 | 3brtr3i 4904 | 1 ⊢ 𝐴 < 3 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1656 ∈ wcel 2164 class class class wbr 4875 (class class class)co 6910 ℝcr 10258 + caddc 10262 · cmul 10264 < clt 10398 − cmin 10592 / cdiv 11016 2c2 11413 3c3 11414 6c6 11417 9c9 11420 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1894 ax-4 1908 ax-5 2009 ax-6 2075 ax-7 2112 ax-8 2166 ax-9 2173 ax-10 2192 ax-11 2207 ax-12 2220 ax-13 2389 ax-ext 2803 ax-sep 5007 ax-nul 5015 ax-pow 5067 ax-pr 5129 ax-un 7214 ax-resscn 10316 ax-1cn 10317 ax-icn 10318 ax-addcl 10319 ax-addrcl 10320 ax-mulcl 10321 ax-mulrcl 10322 ax-mulcom 10323 ax-addass 10324 ax-mulass 10325 ax-distr 10326 ax-i2m1 10327 ax-1ne0 10328 ax-1rid 10329 ax-rnegex 10330 ax-rrecex 10331 ax-cnre 10332 ax-pre-lttri 10333 ax-pre-lttrn 10334 ax-pre-ltadd 10335 ax-pre-mulgt0 10336 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 879 df-3or 1112 df-3an 1113 df-tru 1660 df-ex 1879 df-nf 1883 df-sb 2068 df-mo 2605 df-eu 2640 df-clab 2812 df-cleq 2818 df-clel 2821 df-nfc 2958 df-ne 3000 df-nel 3103 df-ral 3122 df-rex 3123 df-reu 3124 df-rmo 3125 df-rab 3126 df-v 3416 df-sbc 3663 df-csb 3758 df-dif 3801 df-un 3803 df-in 3805 df-ss 3812 df-pss 3814 df-nul 4147 df-if 4309 df-pw 4382 df-sn 4400 df-pr 4402 df-tp 4404 df-op 4406 df-uni 4661 df-iun 4744 df-br 4876 df-opab 4938 df-mpt 4955 df-tr 4978 df-id 5252 df-eprel 5257 df-po 5265 df-so 5266 df-fr 5305 df-we 5307 df-xp 5352 df-rel 5353 df-cnv 5354 df-co 5355 df-dm 5356 df-rn 5357 df-res 5358 df-ima 5359 df-pred 5924 df-ord 5970 df-on 5971 df-lim 5972 df-suc 5973 df-iota 6090 df-fun 6129 df-fn 6130 df-f 6131 df-f1 6132 df-fo 6133 df-f1o 6134 df-fv 6135 df-riota 6871 df-ov 6913 df-oprab 6914 df-mpt2 6915 df-om 7332 df-wrecs 7677 df-recs 7739 df-rdg 7777 df-er 8014 df-en 8229 df-dom 8230 df-sdom 8231 df-pnf 10400 df-mnf 10401 df-xr 10402 df-ltxr 10403 df-le 10404 df-sub 10594 df-neg 10595 df-div 11017 df-nn 11358 df-2 11421 df-3 11422 df-4 11423 df-5 11424 df-6 11425 df-7 11426 df-8 11427 df-9 11428 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |