| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > breqtri | Structured version Visualization version GIF version | ||
| Description: Substitution of equal classes into a binary relation. (Contributed by NM, 1-Aug-1999.) |
| Ref | Expression |
|---|---|
| breqtr.1 | ⊢ 𝐴𝑅𝐵 |
| breqtr.2 | ⊢ 𝐵 = 𝐶 |
| Ref | Expression |
|---|---|
| breqtri | ⊢ 𝐴𝑅𝐶 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | breqtr.1 | . 2 ⊢ 𝐴𝑅𝐵 | |
| 2 | breqtr.2 | . . 3 ⊢ 𝐵 = 𝐶 | |
| 3 | 2 | breq2i 5115 | . 2 ⊢ (𝐴𝑅𝐵 ↔ 𝐴𝑅𝐶) |
| 4 | 1, 3 | mpbi 230 | 1 ⊢ 𝐴𝑅𝐶 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 class class class wbr 5107 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-br 5108 |
| This theorem is referenced by: breqtrri 5134 3brtr3i 5136 supsrlem 11064 0lt1 11700 le9lt10 12676 9lt10 12780 hashunlei 14390 sqrt2gt1lt2 15240 trireciplem 15828 cos1bnd 16155 cos2bnd 16156 cos01gt0 16159 sin4lt0 16163 rpnnen2lem3 16184 z4even 16342 gcdaddmlem 16494 dec2dvds 17034 abvtrivd 20741 sincos4thpi 26422 log2cnv 26854 log2ublem2 26857 log2ublem3 26858 log2le1 26860 birthday 26864 harmonicbnd3 26918 lgam1 26974 basellem7 26997 ppiublem1 27113 ppiub 27115 bposlem4 27198 bposlem5 27199 bposlem9 27203 lgsdir2lem2 27237 lgsdir2lem3 27238 0reno 28348 ex-fl 30376 siilem1 30780 normlem5 31043 normlem6 31044 norm-ii-i 31066 norm3adifii 31077 cmm2i 31536 mayetes3i 31658 nmopcoadji 32030 mdoc2i 32355 dmdoc2i 32357 dp2lt10 32804 dp2ltsuc 32806 dplti 32825 sqsscirc1 33898 ballotlem1c 34499 hgt750lem 34642 problem5 35656 circum 35661 bj-pinftyccb 37209 bj-minftyccb 37213 poimirlem25 37639 cntotbnd 37790 3lexlogpow5ineq1 42042 3lexlogpow5ineq2 42043 aks4d1p1p2 42058 aks4d1p1p7 42062 posbezout 42088 aks6d1c7lem1 42168 jm2.23 42985 tr3dom 43517 halffl 45294 wallispi 46068 stirlinglem1 46072 fouriersw 46229 sinnpoly 46892 |
| Copyright terms: Public domain | W3C validator |