| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > breqtri | Structured version Visualization version GIF version | ||
| Description: Substitution of equal classes into a binary relation. (Contributed by NM, 1-Aug-1999.) |
| Ref | Expression |
|---|---|
| breqtr.1 | ⊢ 𝐴𝑅𝐵 |
| breqtr.2 | ⊢ 𝐵 = 𝐶 |
| Ref | Expression |
|---|---|
| breqtri | ⊢ 𝐴𝑅𝐶 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | breqtr.1 | . 2 ⊢ 𝐴𝑅𝐵 | |
| 2 | breqtr.2 | . . 3 ⊢ 𝐵 = 𝐶 | |
| 3 | 2 | breq2i 5100 | . 2 ⊢ (𝐴𝑅𝐵 ↔ 𝐴𝑅𝐶) |
| 4 | 1, 3 | mpbi 230 | 1 ⊢ 𝐴𝑅𝐶 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 class class class wbr 5092 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-rab 3395 df-v 3438 df-dif 3906 df-un 3908 df-ss 3920 df-nul 4285 df-if 4477 df-sn 4578 df-pr 4580 df-op 4584 df-br 5093 |
| This theorem is referenced by: breqtrri 5119 3brtr3i 5121 supsrlem 11005 0lt1 11642 le9lt10 12618 9lt10 12722 hashunlei 14332 sqrt2gt1lt2 15181 trireciplem 15769 cos1bnd 16096 cos2bnd 16097 cos01gt0 16100 sin4lt0 16104 rpnnen2lem3 16125 z4even 16283 gcdaddmlem 16435 dec2dvds 16975 abvtrivd 20717 sincos4thpi 26420 log2cnv 26852 log2ublem2 26855 log2ublem3 26856 log2le1 26858 birthday 26862 harmonicbnd3 26916 lgam1 26972 basellem7 26995 ppiublem1 27111 ppiub 27113 bposlem4 27196 bposlem5 27197 bposlem9 27201 lgsdir2lem2 27235 lgsdir2lem3 27236 0reno 28366 ex-fl 30391 siilem1 30795 normlem5 31058 normlem6 31059 norm-ii-i 31081 norm3adifii 31092 cmm2i 31551 mayetes3i 31673 nmopcoadji 32045 mdoc2i 32370 dmdoc2i 32372 dp2lt10 32825 dp2ltsuc 32827 dplti 32846 sqsscirc1 33881 ballotlem1c 34482 hgt750lem 34625 problem5 35652 circum 35657 bj-pinftyccb 37205 bj-minftyccb 37209 poimirlem25 37635 cntotbnd 37786 3lexlogpow5ineq1 42037 3lexlogpow5ineq2 42038 aks4d1p1p2 42053 aks4d1p1p7 42057 posbezout 42083 aks6d1c7lem1 42163 jm2.23 42979 tr3dom 43511 halffl 45288 wallispi 46061 stirlinglem1 46065 fouriersw 46222 sinnpoly 46885 |
| Copyright terms: Public domain | W3C validator |