![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > breqtri | Structured version Visualization version GIF version |
Description: Substitution of equal classes into a binary relation. (Contributed by NM, 1-Aug-1999.) |
Ref | Expression |
---|---|
breqtr.1 | ⊢ 𝐴𝑅𝐵 |
breqtr.2 | ⊢ 𝐵 = 𝐶 |
Ref | Expression |
---|---|
breqtri | ⊢ 𝐴𝑅𝐶 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | breqtr.1 | . 2 ⊢ 𝐴𝑅𝐵 | |
2 | breqtr.2 | . . 3 ⊢ 𝐵 = 𝐶 | |
3 | 2 | breq2i 5174 | . 2 ⊢ (𝐴𝑅𝐵 ↔ 𝐴𝑅𝐶) |
4 | 1, 3 | mpbi 230 | 1 ⊢ 𝐴𝑅𝐶 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1537 class class class wbr 5166 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-br 5167 |
This theorem is referenced by: breqtrri 5193 3brtr3i 5195 supsrlem 11180 0lt1 11812 le9lt10 12785 9lt10 12889 hashunlei 14474 sqrt2gt1lt2 15323 trireciplem 15910 cos1bnd 16235 cos2bnd 16236 cos01gt0 16239 sin4lt0 16243 rpnnen2lem3 16264 z4even 16420 gcdaddmlem 16570 dec2dvds 17110 abvtrivd 20855 sincos4thpi 26573 log2cnv 27005 log2ublem2 27008 log2ublem3 27009 log2le1 27011 birthday 27015 harmonicbnd3 27069 lgam1 27125 basellem7 27148 ppiublem1 27264 ppiub 27266 bposlem4 27349 bposlem5 27350 bposlem9 27354 lgsdir2lem2 27388 lgsdir2lem3 27389 0reno 28447 ex-fl 30479 siilem1 30883 normlem5 31146 normlem6 31147 norm-ii-i 31169 norm3adifii 31180 cmm2i 31639 mayetes3i 31761 nmopcoadji 32133 mdoc2i 32458 dmdoc2i 32460 dp2lt10 32848 dp2ltsuc 32850 dplti 32869 sqsscirc1 33854 ballotlem1c 34472 hgt750lem 34628 problem5 35637 circum 35642 bj-pinftyccb 37187 bj-minftyccb 37191 poimirlem25 37605 cntotbnd 37756 3lexlogpow5ineq1 42011 3lexlogpow5ineq2 42012 aks4d1p1p2 42027 aks4d1p1p7 42031 posbezout 42057 aks6d1c7lem1 42137 jm2.23 42953 tr3dom 43490 halffl 45211 wallispi 45991 stirlinglem1 45995 fouriersw 46152 |
Copyright terms: Public domain | W3C validator |