![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > breqtri | Structured version Visualization version GIF version |
Description: Substitution of equal classes into a binary relation. (Contributed by NM, 1-Aug-1999.) |
Ref | Expression |
---|---|
breqtr.1 | ⊢ 𝐴𝑅𝐵 |
breqtr.2 | ⊢ 𝐵 = 𝐶 |
Ref | Expression |
---|---|
breqtri | ⊢ 𝐴𝑅𝐶 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | breqtr.1 | . 2 ⊢ 𝐴𝑅𝐵 | |
2 | breqtr.2 | . . 3 ⊢ 𝐵 = 𝐶 | |
3 | 2 | breq2i 4896 | . 2 ⊢ (𝐴𝑅𝐵 ↔ 𝐴𝑅𝐶) |
4 | 1, 3 | mpbi 222 | 1 ⊢ 𝐴𝑅𝐶 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1601 class class class wbr 4888 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1839 ax-4 1853 ax-5 1953 ax-6 2021 ax-7 2055 ax-9 2116 ax-10 2135 ax-11 2150 ax-12 2163 ax-13 2334 ax-ext 2754 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 837 df-3an 1073 df-tru 1605 df-ex 1824 df-nf 1828 df-sb 2012 df-clab 2764 df-cleq 2770 df-clel 2774 df-nfc 2921 df-rab 3099 df-v 3400 df-dif 3795 df-un 3797 df-in 3799 df-ss 3806 df-nul 4142 df-if 4308 df-sn 4399 df-pr 4401 df-op 4405 df-br 4889 |
This theorem is referenced by: breqtrri 4915 3brtr3i 4917 supsrlem 10270 0lt1 10900 le9lt10 11878 9lt10 11983 hashunlei 13532 sqrt2gt1lt2 14428 trireciplem 15007 cos1bnd 15328 cos2bnd 15329 cos01gt0 15332 sin4lt0 15336 rpnnen2lem3 15358 z4even 15512 gcdaddmlem 15661 dec2dvds 16182 abvtrivd 19243 sincos4thpi 24714 log2cnv 25134 log2ublem2 25137 log2ublem3 25138 log2le1 25140 birthday 25144 harmonicbnd3 25197 lgam1 25253 basellem7 25276 ppiublem1 25390 ppiublem2 25391 ppiub 25392 bposlem4 25475 bposlem5 25476 bposlem9 25480 lgsdir2lem2 25514 lgsdir2lem3 25515 ex-fl 27896 siilem1 28295 normlem5 28560 normlem6 28561 norm-ii-i 28583 norm3adifii 28594 cmm2i 29055 mayetes3i 29177 nmopcoadji 29549 mdoc2i 29874 dmdoc2i 29876 dp2lt10 30168 dp2ltsuc 30170 dplti 30189 sqsscirc1 30560 ballotlem1c 31176 hgt750lem 31339 problem5 32168 circum 32173 bj-pinftyccb 33706 bj-minftyccb 33710 poimirlem25 34069 cntotbnd 34228 jm2.23 38536 halffl 40433 wallispi 41228 stirlinglem1 41232 fouriersw 41389 |
Copyright terms: Public domain | W3C validator |