| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > breqtri | Structured version Visualization version GIF version | ||
| Description: Substitution of equal classes into a binary relation. (Contributed by NM, 1-Aug-1999.) |
| Ref | Expression |
|---|---|
| breqtr.1 | ⊢ 𝐴𝑅𝐵 |
| breqtr.2 | ⊢ 𝐵 = 𝐶 |
| Ref | Expression |
|---|---|
| breqtri | ⊢ 𝐴𝑅𝐶 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | breqtr.1 | . 2 ⊢ 𝐴𝑅𝐵 | |
| 2 | breqtr.2 | . . 3 ⊢ 𝐵 = 𝐶 | |
| 3 | 2 | breq2i 5097 | . 2 ⊢ (𝐴𝑅𝐵 ↔ 𝐴𝑅𝐶) |
| 4 | 1, 3 | mpbi 230 | 1 ⊢ 𝐴𝑅𝐶 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1541 class class class wbr 5089 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-ss 3914 df-nul 4281 df-if 4473 df-sn 4574 df-pr 4576 df-op 4580 df-br 5090 |
| This theorem is referenced by: breqtrri 5116 3brtr3i 5118 supsrlem 11002 0lt1 11639 le9lt10 12615 9lt10 12719 hashunlei 14332 sqrt2gt1lt2 15181 trireciplem 15769 cos1bnd 16096 cos2bnd 16097 cos01gt0 16100 sin4lt0 16104 rpnnen2lem3 16125 z4even 16283 gcdaddmlem 16435 dec2dvds 16975 abvtrivd 20747 sincos4thpi 26449 log2cnv 26881 log2ublem2 26884 log2ublem3 26885 log2le1 26887 birthday 26891 harmonicbnd3 26945 lgam1 27001 basellem7 27024 ppiublem1 27140 ppiub 27142 bposlem4 27225 bposlem5 27226 bposlem9 27230 lgsdir2lem2 27264 lgsdir2lem3 27265 0reno 28399 ex-fl 30427 siilem1 30831 normlem5 31094 normlem6 31095 norm-ii-i 31117 norm3adifii 31128 cmm2i 31587 mayetes3i 31709 nmopcoadji 32081 mdoc2i 32406 dmdoc2i 32408 dp2lt10 32864 dp2ltsuc 32866 dplti 32885 sqsscirc1 33921 ballotlem1c 34521 hgt750lem 34664 problem5 35713 circum 35718 bj-pinftyccb 37265 bj-minftyccb 37269 poimirlem25 37695 cntotbnd 37846 3lexlogpow5ineq1 42157 3lexlogpow5ineq2 42158 aks4d1p1p2 42173 aks4d1p1p7 42177 posbezout 42203 aks6d1c7lem1 42283 jm2.23 43099 tr3dom 43631 halffl 45407 wallispi 46178 stirlinglem1 46182 fouriersw 46339 sinnpoly 47001 |
| Copyright terms: Public domain | W3C validator |