| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > breqtri | Structured version Visualization version GIF version | ||
| Description: Substitution of equal classes into a binary relation. (Contributed by NM, 1-Aug-1999.) |
| Ref | Expression |
|---|---|
| breqtr.1 | ⊢ 𝐴𝑅𝐵 |
| breqtr.2 | ⊢ 𝐵 = 𝐶 |
| Ref | Expression |
|---|---|
| breqtri | ⊢ 𝐴𝑅𝐶 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | breqtr.1 | . 2 ⊢ 𝐴𝑅𝐵 | |
| 2 | breqtr.2 | . . 3 ⊢ 𝐵 = 𝐶 | |
| 3 | 2 | breq2i 5110 | . 2 ⊢ (𝐴𝑅𝐵 ↔ 𝐴𝑅𝐶) |
| 4 | 1, 3 | mpbi 230 | 1 ⊢ 𝐴𝑅𝐶 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 class class class wbr 5102 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-rab 3403 df-v 3446 df-dif 3914 df-un 3916 df-ss 3928 df-nul 4293 df-if 4485 df-sn 4586 df-pr 4588 df-op 4592 df-br 5103 |
| This theorem is referenced by: breqtrri 5129 3brtr3i 5131 supsrlem 11040 0lt1 11676 le9lt10 12652 9lt10 12756 hashunlei 14366 sqrt2gt1lt2 15216 trireciplem 15804 cos1bnd 16131 cos2bnd 16132 cos01gt0 16135 sin4lt0 16139 rpnnen2lem3 16160 z4even 16318 gcdaddmlem 16470 dec2dvds 17010 abvtrivd 20752 sincos4thpi 26455 log2cnv 26887 log2ublem2 26890 log2ublem3 26891 log2le1 26893 birthday 26897 harmonicbnd3 26951 lgam1 27007 basellem7 27030 ppiublem1 27146 ppiub 27148 bposlem4 27231 bposlem5 27232 bposlem9 27236 lgsdir2lem2 27270 lgsdir2lem3 27271 0reno 28401 ex-fl 30426 siilem1 30830 normlem5 31093 normlem6 31094 norm-ii-i 31116 norm3adifii 31127 cmm2i 31586 mayetes3i 31708 nmopcoadji 32080 mdoc2i 32405 dmdoc2i 32407 dp2lt10 32854 dp2ltsuc 32856 dplti 32875 sqsscirc1 33891 ballotlem1c 34492 hgt750lem 34635 problem5 35649 circum 35654 bj-pinftyccb 37202 bj-minftyccb 37206 poimirlem25 37632 cntotbnd 37783 3lexlogpow5ineq1 42035 3lexlogpow5ineq2 42036 aks4d1p1p2 42051 aks4d1p1p7 42055 posbezout 42081 aks6d1c7lem1 42161 jm2.23 42978 tr3dom 43510 halffl 45287 wallispi 46061 stirlinglem1 46065 fouriersw 46222 sinnpoly 46885 |
| Copyright terms: Public domain | W3C validator |