Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > breqtri | Structured version Visualization version GIF version |
Description: Substitution of equal classes into a binary relation. (Contributed by NM, 1-Aug-1999.) |
Ref | Expression |
---|---|
breqtr.1 | ⊢ 𝐴𝑅𝐵 |
breqtr.2 | ⊢ 𝐵 = 𝐶 |
Ref | Expression |
---|---|
breqtri | ⊢ 𝐴𝑅𝐶 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | breqtr.1 | . 2 ⊢ 𝐴𝑅𝐵 | |
2 | breqtr.2 | . . 3 ⊢ 𝐵 = 𝐶 | |
3 | 2 | breq2i 5078 | . 2 ⊢ (𝐴𝑅𝐵 ↔ 𝐴𝑅𝐶) |
4 | 1, 3 | mpbi 233 | 1 ⊢ 𝐴𝑅𝐶 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1543 class class class wbr 5070 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2114 ax-9 2122 ax-ext 2710 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-sb 2073 df-clab 2717 df-cleq 2731 df-clel 2818 df-rab 3073 df-v 3425 df-dif 3887 df-un 3889 df-nul 4255 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-br 5071 |
This theorem is referenced by: breqtrri 5097 3brtr3i 5099 supsrlem 10773 0lt1 11402 le9lt10 12368 9lt10 12472 hashunlei 14043 sqrt2gt1lt2 14889 trireciplem 15477 cos1bnd 15799 cos2bnd 15800 cos01gt0 15803 sin4lt0 15807 rpnnen2lem3 15828 z4even 15984 gcdaddmlem 16134 dec2dvds 16667 abvtrivd 19990 sincos4thpi 25550 log2cnv 25974 log2ublem2 25977 log2ublem3 25978 log2le1 25980 birthday 25984 harmonicbnd3 26037 lgam1 26093 basellem7 26116 ppiublem1 26230 ppiub 26232 bposlem4 26315 bposlem5 26316 bposlem9 26320 lgsdir2lem2 26354 lgsdir2lem3 26355 ex-fl 28687 siilem1 29089 normlem5 29352 normlem6 29353 norm-ii-i 29375 norm3adifii 29386 cmm2i 29845 mayetes3i 29967 nmopcoadji 30339 mdoc2i 30664 dmdoc2i 30666 dp2lt10 31035 dp2ltsuc 31037 dplti 31056 sqsscirc1 31735 ballotlem1c 32349 hgt750lem 32506 problem5 33502 circum 33507 bj-pinftyccb 35295 bj-minftyccb 35299 poimirlem25 35708 cntotbnd 35860 3lexlogpow5ineq1 39969 3lexlogpow5ineq2 39970 aks4d1p1p2 39984 aks4d1p1p7 39988 jm2.23 40706 tr3dom 41005 halffl 42698 wallispi 43474 stirlinglem1 43478 fouriersw 43635 |
Copyright terms: Public domain | W3C validator |