| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > breqtri | Structured version Visualization version GIF version | ||
| Description: Substitution of equal classes into a binary relation. (Contributed by NM, 1-Aug-1999.) |
| Ref | Expression |
|---|---|
| breqtr.1 | ⊢ 𝐴𝑅𝐵 |
| breqtr.2 | ⊢ 𝐵 = 𝐶 |
| Ref | Expression |
|---|---|
| breqtri | ⊢ 𝐴𝑅𝐶 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | breqtr.1 | . 2 ⊢ 𝐴𝑅𝐵 | |
| 2 | breqtr.2 | . . 3 ⊢ 𝐵 = 𝐶 | |
| 3 | 2 | breq2i 5132 | . 2 ⊢ (𝐴𝑅𝐵 ↔ 𝐴𝑅𝐶) |
| 4 | 1, 3 | mpbi 230 | 1 ⊢ 𝐴𝑅𝐶 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 class class class wbr 5124 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2708 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2715 df-cleq 2728 df-clel 2810 df-rab 3421 df-v 3466 df-dif 3934 df-un 3936 df-ss 3948 df-nul 4314 df-if 4506 df-sn 4607 df-pr 4609 df-op 4613 df-br 5125 |
| This theorem is referenced by: breqtrri 5151 3brtr3i 5153 supsrlem 11130 0lt1 11764 le9lt10 12740 9lt10 12844 hashunlei 14448 sqrt2gt1lt2 15298 trireciplem 15883 cos1bnd 16210 cos2bnd 16211 cos01gt0 16214 sin4lt0 16218 rpnnen2lem3 16239 z4even 16396 gcdaddmlem 16548 dec2dvds 17088 abvtrivd 20797 sincos4thpi 26479 log2cnv 26911 log2ublem2 26914 log2ublem3 26915 log2le1 26917 birthday 26921 harmonicbnd3 26975 lgam1 27031 basellem7 27054 ppiublem1 27170 ppiub 27172 bposlem4 27255 bposlem5 27256 bposlem9 27260 lgsdir2lem2 27294 lgsdir2lem3 27295 0reno 28405 ex-fl 30433 siilem1 30837 normlem5 31100 normlem6 31101 norm-ii-i 31123 norm3adifii 31134 cmm2i 31593 mayetes3i 31715 nmopcoadji 32087 mdoc2i 32412 dmdoc2i 32414 dp2lt10 32863 dp2ltsuc 32865 dplti 32884 sqsscirc1 33944 ballotlem1c 34545 hgt750lem 34688 problem5 35696 circum 35701 bj-pinftyccb 37244 bj-minftyccb 37248 poimirlem25 37674 cntotbnd 37825 3lexlogpow5ineq1 42072 3lexlogpow5ineq2 42073 aks4d1p1p2 42088 aks4d1p1p7 42092 posbezout 42118 aks6d1c7lem1 42198 jm2.23 42995 tr3dom 43527 halffl 45305 wallispi 46079 stirlinglem1 46083 fouriersw 46240 |
| Copyright terms: Public domain | W3C validator |