![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 3brtr4i | Structured version Visualization version GIF version |
Description: Substitution of equality into both sides of a binary relation. (Contributed by NM, 11-Aug-1999.) |
Ref | Expression |
---|---|
3brtr4.1 | ⊢ 𝐴𝑅𝐵 |
3brtr4.2 | ⊢ 𝐶 = 𝐴 |
3brtr4.3 | ⊢ 𝐷 = 𝐵 |
Ref | Expression |
---|---|
3brtr4i | ⊢ 𝐶𝑅𝐷 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3brtr4.2 | . . 3 ⊢ 𝐶 = 𝐴 | |
2 | 3brtr4.1 | . . 3 ⊢ 𝐴𝑅𝐵 | |
3 | 1, 2 | eqbrtri 5168 | . 2 ⊢ 𝐶𝑅𝐵 |
4 | 3brtr4.3 | . 2 ⊢ 𝐷 = 𝐵 | |
5 | 3, 4 | breqtrri 5174 | 1 ⊢ 𝐶𝑅𝐷 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1536 class class class wbr 5147 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 ax-5 1907 ax-6 1964 ax-7 2004 ax-8 2107 ax-9 2115 ax-ext 2705 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1539 df-fal 1549 df-ex 1776 df-sb 2062 df-clab 2712 df-cleq 2726 df-clel 2813 df-rab 3433 df-v 3479 df-dif 3965 df-un 3967 df-ss 3979 df-nul 4339 df-if 4531 df-sn 4631 df-pr 4633 df-op 4637 df-br 5148 |
This theorem is referenced by: 1lt2nq 11010 0lt1sr 11132 declt 12758 decltc 12759 decle 12764 fzennn 14005 faclbnd4lem1 14328 fsumabs 15833 basendxltplusgndx 17326 basendxlttsetndx 17400 basendxltplendx 17414 basendxltdsndx 17433 basendxltunifndx 17443 ovolfiniun 25549 log2ublem3 27005 log2ub 27006 bclbnd 27338 bposlem8 27349 basendxltedgfndx 29024 baseltedgfOLD 29025 nmblolbii 30827 normlem6 31143 norm-ii-i 31165 nmbdoplbi 32052 dp2lt 32851 dp2ltsuc 32852 dp2ltc 32853 dplt 32870 dpltc 32873 dpmul4 32880 hgt750lemd 34641 hgt750lem 34644 supxrltinfxr 45398 nnsum4primesevenALTV 47725 |
Copyright terms: Public domain | W3C validator |