| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 3brtr4i | Structured version Visualization version GIF version | ||
| Description: Substitution of equality into both sides of a binary relation. (Contributed by NM, 11-Aug-1999.) |
| Ref | Expression |
|---|---|
| 3brtr4.1 | ⊢ 𝐴𝑅𝐵 |
| 3brtr4.2 | ⊢ 𝐶 = 𝐴 |
| 3brtr4.3 | ⊢ 𝐷 = 𝐵 |
| Ref | Expression |
|---|---|
| 3brtr4i | ⊢ 𝐶𝑅𝐷 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3brtr4.2 | . . 3 ⊢ 𝐶 = 𝐴 | |
| 2 | 3brtr4.1 | . . 3 ⊢ 𝐴𝑅𝐵 | |
| 3 | 1, 2 | eqbrtri 5128 | . 2 ⊢ 𝐶𝑅𝐵 |
| 4 | 3brtr4.3 | . 2 ⊢ 𝐷 = 𝐵 | |
| 5 | 3, 4 | breqtrri 5134 | 1 ⊢ 𝐶𝑅𝐷 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 class class class wbr 5107 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-br 5108 |
| This theorem is referenced by: 1lt2nq 10926 0lt1sr 11048 declt 12677 decltc 12678 decle 12683 fzennn 13933 faclbnd4lem1 14258 fsumabs 15767 basendxltplusgndx 17249 basendxlttsetndx 17318 basendxltplendx 17332 basendxltdsndx 17351 basendxltunifndx 17361 ovolfiniun 25402 log2ublem3 26858 log2ub 26859 bclbnd 27191 bposlem8 27202 basendxltedgfndx 28921 nmblolbii 30728 normlem6 31044 norm-ii-i 31066 nmbdoplbi 31953 dp2lt 32805 dp2ltsuc 32806 dp2ltc 32807 dplt 32824 dpltc 32827 dpmul4 32834 hgt750lemd 34639 hgt750lem 34642 supxrltinfxr 45445 nnsum4primesevenALTV 47802 |
| Copyright terms: Public domain | W3C validator |