| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 3brtr4i | Structured version Visualization version GIF version | ||
| Description: Substitution of equality into both sides of a binary relation. (Contributed by NM, 11-Aug-1999.) |
| Ref | Expression |
|---|---|
| 3brtr4.1 | ⊢ 𝐴𝑅𝐵 |
| 3brtr4.2 | ⊢ 𝐶 = 𝐴 |
| 3brtr4.3 | ⊢ 𝐷 = 𝐵 |
| Ref | Expression |
|---|---|
| 3brtr4i | ⊢ 𝐶𝑅𝐷 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3brtr4.2 | . . 3 ⊢ 𝐶 = 𝐴 | |
| 2 | 3brtr4.1 | . . 3 ⊢ 𝐴𝑅𝐵 | |
| 3 | 1, 2 | eqbrtri 5110 | . 2 ⊢ 𝐶𝑅𝐵 |
| 4 | 3brtr4.3 | . 2 ⊢ 𝐷 = 𝐵 | |
| 5 | 3, 4 | breqtrri 5116 | 1 ⊢ 𝐶𝑅𝐷 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1541 class class class wbr 5089 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-ss 3914 df-nul 4281 df-if 4473 df-sn 4574 df-pr 4576 df-op 4580 df-br 5090 |
| This theorem is referenced by: 1lt2nq 10864 0lt1sr 10986 declt 12616 decltc 12617 decle 12622 fzennn 13875 faclbnd4lem1 14200 fsumabs 15708 basendxltplusgndx 17190 basendxlttsetndx 17259 basendxltplendx 17273 basendxltdsndx 17292 basendxltunifndx 17302 ovolfiniun 25429 log2ublem3 26885 log2ub 26886 bclbnd 27218 bposlem8 27229 basendxltedgfndx 28972 nmblolbii 30779 normlem6 31095 norm-ii-i 31117 nmbdoplbi 32004 dp2lt 32865 dp2ltsuc 32866 dp2ltc 32867 dplt 32884 dpltc 32887 dpmul4 32894 hgt750lemd 34661 hgt750lem 34664 supxrltinfxr 45557 nnsum4primesevenALTV 47911 |
| Copyright terms: Public domain | W3C validator |