| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 3brtr4i | Structured version Visualization version GIF version | ||
| Description: Substitution of equality into both sides of a binary relation. (Contributed by NM, 11-Aug-1999.) |
| Ref | Expression |
|---|---|
| 3brtr4.1 | ⊢ 𝐴𝑅𝐵 |
| 3brtr4.2 | ⊢ 𝐶 = 𝐴 |
| 3brtr4.3 | ⊢ 𝐷 = 𝐵 |
| Ref | Expression |
|---|---|
| 3brtr4i | ⊢ 𝐶𝑅𝐷 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3brtr4.2 | . . 3 ⊢ 𝐶 = 𝐴 | |
| 2 | 3brtr4.1 | . . 3 ⊢ 𝐴𝑅𝐵 | |
| 3 | 1, 2 | eqbrtri 5131 | . 2 ⊢ 𝐶𝑅𝐵 |
| 4 | 3brtr4.3 | . 2 ⊢ 𝐷 = 𝐵 | |
| 5 | 3, 4 | breqtrri 5137 | 1 ⊢ 𝐶𝑅𝐷 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 class class class wbr 5110 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-ss 3934 df-nul 4300 df-if 4492 df-sn 4593 df-pr 4595 df-op 4599 df-br 5111 |
| This theorem is referenced by: 1lt2nq 10933 0lt1sr 11055 declt 12684 decltc 12685 decle 12690 fzennn 13940 faclbnd4lem1 14265 fsumabs 15774 basendxltplusgndx 17256 basendxlttsetndx 17325 basendxltplendx 17339 basendxltdsndx 17358 basendxltunifndx 17368 ovolfiniun 25409 log2ublem3 26865 log2ub 26866 bclbnd 27198 bposlem8 27209 basendxltedgfndx 28928 nmblolbii 30735 normlem6 31051 norm-ii-i 31073 nmbdoplbi 31960 dp2lt 32812 dp2ltsuc 32813 dp2ltc 32814 dplt 32831 dpltc 32834 dpmul4 32841 hgt750lemd 34646 hgt750lem 34649 supxrltinfxr 45452 nnsum4primesevenALTV 47806 |
| Copyright terms: Public domain | W3C validator |