![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 3brtr4i | Structured version Visualization version GIF version |
Description: Substitution of equality into both sides of a binary relation. (Contributed by NM, 11-Aug-1999.) |
Ref | Expression |
---|---|
3brtr4.1 | ⊢ 𝐴𝑅𝐵 |
3brtr4.2 | ⊢ 𝐶 = 𝐴 |
3brtr4.3 | ⊢ 𝐷 = 𝐵 |
Ref | Expression |
---|---|
3brtr4i | ⊢ 𝐶𝑅𝐷 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3brtr4.2 | . . 3 ⊢ 𝐶 = 𝐴 | |
2 | 3brtr4.1 | . . 3 ⊢ 𝐴𝑅𝐵 | |
3 | 1, 2 | eqbrtri 5187 | . 2 ⊢ 𝐶𝑅𝐵 |
4 | 3brtr4.3 | . 2 ⊢ 𝐷 = 𝐵 | |
5 | 3, 4 | breqtrri 5193 | 1 ⊢ 𝐶𝑅𝐷 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1537 class class class wbr 5166 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-br 5167 |
This theorem is referenced by: 1lt2nq 11042 0lt1sr 11164 declt 12786 decltc 12787 decle 12792 fzennn 14019 faclbnd4lem1 14342 fsumabs 15849 basendxltplusgndx 17340 basendxlttsetndx 17414 basendxltplendx 17428 basendxltdsndx 17447 basendxltunifndx 17457 ovolfiniun 25555 log2ublem3 27009 log2ub 27010 bclbnd 27342 bposlem8 27353 basendxltedgfndx 29028 baseltedgfOLD 29029 nmblolbii 30831 normlem6 31147 norm-ii-i 31169 nmbdoplbi 32056 dp2lt 32849 dp2ltsuc 32850 dp2ltc 32851 dplt 32868 dpltc 32871 dpmul4 32878 hgt750lemd 34625 hgt750lem 34628 supxrltinfxr 45364 nnsum4primesevenALTV 47675 |
Copyright terms: Public domain | W3C validator |