| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 3brtr4i | Structured version Visualization version GIF version | ||
| Description: Substitution of equality into both sides of a binary relation. (Contributed by NM, 11-Aug-1999.) |
| Ref | Expression |
|---|---|
| 3brtr4.1 | ⊢ 𝐴𝑅𝐵 |
| 3brtr4.2 | ⊢ 𝐶 = 𝐴 |
| 3brtr4.3 | ⊢ 𝐷 = 𝐵 |
| Ref | Expression |
|---|---|
| 3brtr4i | ⊢ 𝐶𝑅𝐷 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3brtr4.2 | . . 3 ⊢ 𝐶 = 𝐴 | |
| 2 | 3brtr4.1 | . . 3 ⊢ 𝐴𝑅𝐵 | |
| 3 | 1, 2 | eqbrtri 5123 | . 2 ⊢ 𝐶𝑅𝐵 |
| 4 | 3brtr4.3 | . 2 ⊢ 𝐷 = 𝐵 | |
| 5 | 3, 4 | breqtrri 5129 | 1 ⊢ 𝐶𝑅𝐷 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 class class class wbr 5102 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-rab 3403 df-v 3446 df-dif 3914 df-un 3916 df-ss 3928 df-nul 4293 df-if 4485 df-sn 4586 df-pr 4588 df-op 4592 df-br 5103 |
| This theorem is referenced by: 1lt2nq 10902 0lt1sr 11024 declt 12653 decltc 12654 decle 12659 fzennn 13909 faclbnd4lem1 14234 fsumabs 15743 basendxltplusgndx 17225 basendxlttsetndx 17294 basendxltplendx 17308 basendxltdsndx 17327 basendxltunifndx 17337 ovolfiniun 25435 log2ublem3 26891 log2ub 26892 bclbnd 27224 bposlem8 27235 basendxltedgfndx 28974 nmblolbii 30778 normlem6 31094 norm-ii-i 31116 nmbdoplbi 32003 dp2lt 32855 dp2ltsuc 32856 dp2ltc 32857 dplt 32874 dpltc 32877 dpmul4 32884 hgt750lemd 34632 hgt750lem 34635 supxrltinfxr 45438 nnsum4primesevenALTV 47795 |
| Copyright terms: Public domain | W3C validator |