Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 3brtr4i | Structured version Visualization version GIF version |
Description: Substitution of equality into both sides of a binary relation. (Contributed by NM, 11-Aug-1999.) |
Ref | Expression |
---|---|
3brtr4.1 | ⊢ 𝐴𝑅𝐵 |
3brtr4.2 | ⊢ 𝐶 = 𝐴 |
3brtr4.3 | ⊢ 𝐷 = 𝐵 |
Ref | Expression |
---|---|
3brtr4i | ⊢ 𝐶𝑅𝐷 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3brtr4.2 | . . 3 ⊢ 𝐶 = 𝐴 | |
2 | 3brtr4.1 | . . 3 ⊢ 𝐴𝑅𝐵 | |
3 | 1, 2 | eqbrtri 5091 | . 2 ⊢ 𝐶𝑅𝐵 |
4 | 3brtr4.3 | . 2 ⊢ 𝐷 = 𝐵 | |
5 | 3, 4 | breqtrri 5097 | 1 ⊢ 𝐶𝑅𝐷 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1539 class class class wbr 5070 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-br 5071 |
This theorem is referenced by: 1lt2nq 10660 0lt1sr 10782 declt 12394 decltc 12395 decle 12400 fzennn 13616 faclbnd4lem1 13935 fsumabs 15441 basendxltplusgndx 16917 basendxlttsetndx 16990 basendxltplendx 17003 basendxltdsndx 17019 basendxltunifndx 17028 ovolfiniun 24570 log2ublem3 26003 log2ub 26004 bclbnd 26333 bposlem8 26344 baseltedgf 27266 baseltedgfOLD 27267 nmblolbii 29062 normlem6 29378 norm-ii-i 29400 nmbdoplbi 30287 dp2lt 31061 dp2ltsuc 31062 dp2ltc 31063 dplt 31080 dpltc 31083 dpmul4 31090 hgt750lemd 32528 hgt750lem 32531 supxrltinfxr 42879 nnsum4primesevenALTV 45141 |
Copyright terms: Public domain | W3C validator |