Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 3brtr4i | Structured version Visualization version GIF version |
Description: Substitution of equality into both sides of a binary relation. (Contributed by NM, 11-Aug-1999.) |
Ref | Expression |
---|---|
3brtr4.1 | ⊢ 𝐴𝑅𝐵 |
3brtr4.2 | ⊢ 𝐶 = 𝐴 |
3brtr4.3 | ⊢ 𝐷 = 𝐵 |
Ref | Expression |
---|---|
3brtr4i | ⊢ 𝐶𝑅𝐷 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3brtr4.2 | . . 3 ⊢ 𝐶 = 𝐴 | |
2 | 3brtr4.1 | . . 3 ⊢ 𝐴𝑅𝐵 | |
3 | 1, 2 | eqbrtri 5095 | . 2 ⊢ 𝐶𝑅𝐵 |
4 | 3brtr4.3 | . 2 ⊢ 𝐷 = 𝐵 | |
5 | 3, 4 | breqtrri 5101 | 1 ⊢ 𝐶𝑅𝐷 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1539 class class class wbr 5074 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-br 5075 |
This theorem is referenced by: 1lt2nq 10729 0lt1sr 10851 declt 12465 decltc 12466 decle 12471 fzennn 13688 faclbnd4lem1 14007 fsumabs 15513 basendxltplusgndx 16991 basendxlttsetndx 17065 basendxltplendx 17079 basendxltdsndx 17098 basendxltunifndx 17108 ovolfiniun 24665 log2ublem3 26098 log2ub 26099 bclbnd 26428 bposlem8 26439 basendxltedgfndx 27363 baseltedgfOLD 27364 nmblolbii 29161 normlem6 29477 norm-ii-i 29499 nmbdoplbi 30386 dp2lt 31159 dp2ltsuc 31160 dp2ltc 31161 dplt 31178 dpltc 31181 dpmul4 31188 hgt750lemd 32628 hgt750lem 32631 supxrltinfxr 42989 nnsum4primesevenALTV 45253 |
Copyright terms: Public domain | W3C validator |