MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  chebbnd1 Structured version   Visualization version   GIF version

Theorem chebbnd1 27383
Description: The Chebyshev bound: The function π(𝑥) is eventually lower bounded by a positive constant times 𝑥 / log(𝑥). Alternatively stated, the function (𝑥 / log(𝑥)) / π(𝑥) is eventually bounded. (Contributed by Mario Carneiro, 22-Sep-2014.)
Assertion
Ref Expression
chebbnd1 (𝑥 ∈ (2[,)+∞) ↦ ((𝑥 / (log‘𝑥)) / (π𝑥))) ∈ 𝑂(1)

Proof of Theorem chebbnd1
StepHypRef Expression
1 2re 12260 . . . . 5 2 ∈ ℝ
2 pnfxr 11228 . . . . 5 +∞ ∈ ℝ*
3 icossre 13389 . . . . 5 ((2 ∈ ℝ ∧ +∞ ∈ ℝ*) → (2[,)+∞) ⊆ ℝ)
41, 2, 3mp2an 692 . . . 4 (2[,)+∞) ⊆ ℝ
54a1i 11 . . 3 (⊤ → (2[,)+∞) ⊆ ℝ)
6 elicopnf 13406 . . . . . . . . . 10 (2 ∈ ℝ → (𝑥 ∈ (2[,)+∞) ↔ (𝑥 ∈ ℝ ∧ 2 ≤ 𝑥)))
71, 6ax-mp 5 . . . . . . . . 9 (𝑥 ∈ (2[,)+∞) ↔ (𝑥 ∈ ℝ ∧ 2 ≤ 𝑥))
87simplbi 497 . . . . . . . 8 (𝑥 ∈ (2[,)+∞) → 𝑥 ∈ ℝ)
9 0red 11177 . . . . . . . . 9 (𝑥 ∈ (2[,)+∞) → 0 ∈ ℝ)
10 1re 11174 . . . . . . . . . 10 1 ∈ ℝ
1110a1i 11 . . . . . . . . 9 (𝑥 ∈ (2[,)+∞) → 1 ∈ ℝ)
12 0lt1 11700 . . . . . . . . . 10 0 < 1
1312a1i 11 . . . . . . . . 9 (𝑥 ∈ (2[,)+∞) → 0 < 1)
141a1i 11 . . . . . . . . . 10 (𝑥 ∈ (2[,)+∞) → 2 ∈ ℝ)
15 1lt2 12352 . . . . . . . . . . 11 1 < 2
1615a1i 11 . . . . . . . . . 10 (𝑥 ∈ (2[,)+∞) → 1 < 2)
177simprbi 496 . . . . . . . . . 10 (𝑥 ∈ (2[,)+∞) → 2 ≤ 𝑥)
1811, 14, 8, 16, 17ltletrd 11334 . . . . . . . . 9 (𝑥 ∈ (2[,)+∞) → 1 < 𝑥)
199, 11, 8, 13, 18lttrd 11335 . . . . . . . 8 (𝑥 ∈ (2[,)+∞) → 0 < 𝑥)
208, 19elrpd 12992 . . . . . . 7 (𝑥 ∈ (2[,)+∞) → 𝑥 ∈ ℝ+)
218, 18rplogcld 26538 . . . . . . 7 (𝑥 ∈ (2[,)+∞) → (log‘𝑥) ∈ ℝ+)
2220, 21rpdivcld 13012 . . . . . 6 (𝑥 ∈ (2[,)+∞) → (𝑥 / (log‘𝑥)) ∈ ℝ+)
23 ppinncl 27084 . . . . . . . 8 ((𝑥 ∈ ℝ ∧ 2 ≤ 𝑥) → (π𝑥) ∈ ℕ)
247, 23sylbi 217 . . . . . . 7 (𝑥 ∈ (2[,)+∞) → (π𝑥) ∈ ℕ)
2524nnrpd 12993 . . . . . 6 (𝑥 ∈ (2[,)+∞) → (π𝑥) ∈ ℝ+)
2622, 25rpdivcld 13012 . . . . 5 (𝑥 ∈ (2[,)+∞) → ((𝑥 / (log‘𝑥)) / (π𝑥)) ∈ ℝ+)
2726rpcnd 12997 . . . 4 (𝑥 ∈ (2[,)+∞) → ((𝑥 / (log‘𝑥)) / (π𝑥)) ∈ ℂ)
2827adantl 481 . . 3 ((⊤ ∧ 𝑥 ∈ (2[,)+∞)) → ((𝑥 / (log‘𝑥)) / (π𝑥)) ∈ ℂ)
29 8re 12282 . . . 4 8 ∈ ℝ
3029a1i 11 . . 3 (⊤ → 8 ∈ ℝ)
31 2rp 12956 . . . . . . . 8 2 ∈ ℝ+
32 relogcl 26484 . . . . . . . 8 (2 ∈ ℝ+ → (log‘2) ∈ ℝ)
3331, 32ax-mp 5 . . . . . . 7 (log‘2) ∈ ℝ
34 ere 16055 . . . . . . . . 9 e ∈ ℝ
351, 34remulcli 11190 . . . . . . . 8 (2 · e) ∈ ℝ
36 2pos 12289 . . . . . . . . . 10 0 < 2
37 epos 16175 . . . . . . . . . 10 0 < e
381, 34, 36, 37mulgt0ii 11307 . . . . . . . . 9 0 < (2 · e)
3935, 38gt0ne0ii 11714 . . . . . . . 8 (2 · e) ≠ 0
4035, 39rereccli 11947 . . . . . . 7 (1 / (2 · e)) ∈ ℝ
4133, 40resubcli 11484 . . . . . 6 ((log‘2) − (1 / (2 · e))) ∈ ℝ
42 2t1e2 12344 . . . . . . . . . 10 (2 · 1) = 2
43 egt2lt3 16174 . . . . . . . . . . . . 13 (2 < e ∧ e < 3)
4443simpli 483 . . . . . . . . . . . 12 2 < e
4510, 1, 34lttri 11300 . . . . . . . . . . . 12 ((1 < 2 ∧ 2 < e) → 1 < e)
4615, 44, 45mp2an 692 . . . . . . . . . . 11 1 < e
4710, 34, 1ltmul2i 12104 . . . . . . . . . . . 12 (0 < 2 → (1 < e ↔ (2 · 1) < (2 · e)))
4836, 47ax-mp 5 . . . . . . . . . . 11 (1 < e ↔ (2 · 1) < (2 · e))
4946, 48mpbi 230 . . . . . . . . . 10 (2 · 1) < (2 · e)
5042, 49eqbrtrri 5130 . . . . . . . . 9 2 < (2 · e)
511, 35, 36, 38ltrecii 12099 . . . . . . . . 9 (2 < (2 · e) ↔ (1 / (2 · e)) < (1 / 2))
5250, 51mpbi 230 . . . . . . . 8 (1 / (2 · e)) < (1 / 2)
5343simpri 485 . . . . . . . . . . . 12 e < 3
54 3lt4 12355 . . . . . . . . . . . 12 3 < 4
55 3re 12266 . . . . . . . . . . . . 13 3 ∈ ℝ
56 4re 12270 . . . . . . . . . . . . 13 4 ∈ ℝ
5734, 55, 56lttri 11300 . . . . . . . . . . . 12 ((e < 3 ∧ 3 < 4) → e < 4)
5853, 54, 57mp2an 692 . . . . . . . . . . 11 e < 4
59 epr 16176 . . . . . . . . . . . 12 e ∈ ℝ+
60 4pos 12293 . . . . . . . . . . . . 13 0 < 4
6156, 60elrpii 12954 . . . . . . . . . . . 12 4 ∈ ℝ+
62 logltb 26509 . . . . . . . . . . . 12 ((e ∈ ℝ+ ∧ 4 ∈ ℝ+) → (e < 4 ↔ (log‘e) < (log‘4)))
6359, 61, 62mp2an 692 . . . . . . . . . . 11 (e < 4 ↔ (log‘e) < (log‘4))
6458, 63mpbi 230 . . . . . . . . . 10 (log‘e) < (log‘4)
65 loge 26495 . . . . . . . . . 10 (log‘e) = 1
66 sq2 14162 . . . . . . . . . . . 12 (2↑2) = 4
6766fveq2i 6861 . . . . . . . . . . 11 (log‘(2↑2)) = (log‘4)
68 2z 12565 . . . . . . . . . . . 12 2 ∈ ℤ
69 relogexp 26505 . . . . . . . . . . . 12 ((2 ∈ ℝ+ ∧ 2 ∈ ℤ) → (log‘(2↑2)) = (2 · (log‘2)))
7031, 68, 69mp2an 692 . . . . . . . . . . 11 (log‘(2↑2)) = (2 · (log‘2))
7167, 70eqtr3i 2754 . . . . . . . . . 10 (log‘4) = (2 · (log‘2))
7264, 65, 713brtr3i 5136 . . . . . . . . 9 1 < (2 · (log‘2))
731, 36pm3.2i 470 . . . . . . . . . 10 (2 ∈ ℝ ∧ 0 < 2)
74 ltdivmul 12058 . . . . . . . . . 10 ((1 ∈ ℝ ∧ (log‘2) ∈ ℝ ∧ (2 ∈ ℝ ∧ 0 < 2)) → ((1 / 2) < (log‘2) ↔ 1 < (2 · (log‘2))))
7510, 33, 73, 74mp3an 1463 . . . . . . . . 9 ((1 / 2) < (log‘2) ↔ 1 < (2 · (log‘2)))
7672, 75mpbir 231 . . . . . . . 8 (1 / 2) < (log‘2)
77 halfre 12395 . . . . . . . . 9 (1 / 2) ∈ ℝ
7840, 77, 33lttri 11300 . . . . . . . 8 (((1 / (2 · e)) < (1 / 2) ∧ (1 / 2) < (log‘2)) → (1 / (2 · e)) < (log‘2))
7952, 76, 78mp2an 692 . . . . . . 7 (1 / (2 · e)) < (log‘2)
8040, 33posdifi 11728 . . . . . . 7 ((1 / (2 · e)) < (log‘2) ↔ 0 < ((log‘2) − (1 / (2 · e))))
8179, 80mpbi 230 . . . . . 6 0 < ((log‘2) − (1 / (2 · e)))
8241, 81elrpii 12954 . . . . 5 ((log‘2) − (1 / (2 · e))) ∈ ℝ+
83 rerpdivcl 12983 . . . . 5 ((2 ∈ ℝ ∧ ((log‘2) − (1 / (2 · e))) ∈ ℝ+) → (2 / ((log‘2) − (1 / (2 · e)))) ∈ ℝ)
841, 82, 83mp2an 692 . . . 4 (2 / ((log‘2) − (1 / (2 · e)))) ∈ ℝ
8584a1i 11 . . 3 (⊤ → (2 / ((log‘2) − (1 / (2 · e)))) ∈ ℝ)
86 rpre 12960 . . . . . . . 8 (((𝑥 / (log‘𝑥)) / (π𝑥)) ∈ ℝ+ → ((𝑥 / (log‘𝑥)) / (π𝑥)) ∈ ℝ)
87 rpge0 12965 . . . . . . . 8 (((𝑥 / (log‘𝑥)) / (π𝑥)) ∈ ℝ+ → 0 ≤ ((𝑥 / (log‘𝑥)) / (π𝑥)))
8886, 87absidd 15389 . . . . . . 7 (((𝑥 / (log‘𝑥)) / (π𝑥)) ∈ ℝ+ → (abs‘((𝑥 / (log‘𝑥)) / (π𝑥))) = ((𝑥 / (log‘𝑥)) / (π𝑥)))
8926, 88syl 17 . . . . . 6 (𝑥 ∈ (2[,)+∞) → (abs‘((𝑥 / (log‘𝑥)) / (π𝑥))) = ((𝑥 / (log‘𝑥)) / (π𝑥)))
9089adantr 480 . . . . 5 ((𝑥 ∈ (2[,)+∞) ∧ 8 ≤ 𝑥) → (abs‘((𝑥 / (log‘𝑥)) / (π𝑥))) = ((𝑥 / (log‘𝑥)) / (π𝑥)))
91 eqid 2729 . . . . . . . . . 10 (⌊‘(𝑥 / 2)) = (⌊‘(𝑥 / 2))
9291chebbnd1lem3 27382 . . . . . . . . 9 ((𝑥 ∈ ℝ ∧ 8 ≤ 𝑥) → (((log‘2) − (1 / (2 · e))) / 2) < ((π𝑥) · ((log‘𝑥) / 𝑥)))
938, 92sylan 580 . . . . . . . 8 ((𝑥 ∈ (2[,)+∞) ∧ 8 ≤ 𝑥) → (((log‘2) − (1 / (2 · e))) / 2) < ((π𝑥) · ((log‘𝑥) / 𝑥)))
941recni 11188 . . . . . . . . . 10 2 ∈ ℂ
95 2ne0 12290 . . . . . . . . . 10 2 ≠ 0
9641recni 11188 . . . . . . . . . 10 ((log‘2) − (1 / (2 · e))) ∈ ℂ
9741, 81gt0ne0ii 11714 . . . . . . . . . 10 ((log‘2) − (1 / (2 · e))) ≠ 0
98 recdiv 11888 . . . . . . . . . 10 (((2 ∈ ℂ ∧ 2 ≠ 0) ∧ (((log‘2) − (1 / (2 · e))) ∈ ℂ ∧ ((log‘2) − (1 / (2 · e))) ≠ 0)) → (1 / (2 / ((log‘2) − (1 / (2 · e))))) = (((log‘2) − (1 / (2 · e))) / 2))
9994, 95, 96, 97, 98mp4an 693 . . . . . . . . 9 (1 / (2 / ((log‘2) − (1 / (2 · e))))) = (((log‘2) − (1 / (2 · e))) / 2)
10099a1i 11 . . . . . . . 8 ((𝑥 ∈ (2[,)+∞) ∧ 8 ≤ 𝑥) → (1 / (2 / ((log‘2) − (1 / (2 · e))))) = (((log‘2) − (1 / (2 · e))) / 2))
10122rpcnd 12997 . . . . . . . . . . 11 (𝑥 ∈ (2[,)+∞) → (𝑥 / (log‘𝑥)) ∈ ℂ)
10224nncnd 12202 . . . . . . . . . . 11 (𝑥 ∈ (2[,)+∞) → (π𝑥) ∈ ℂ)
10322rpne0d 13000 . . . . . . . . . . 11 (𝑥 ∈ (2[,)+∞) → (𝑥 / (log‘𝑥)) ≠ 0)
10424nnne0d 12236 . . . . . . . . . . 11 (𝑥 ∈ (2[,)+∞) → (π𝑥) ≠ 0)
105101, 102, 103, 104recdivd 11975 . . . . . . . . . 10 (𝑥 ∈ (2[,)+∞) → (1 / ((𝑥 / (log‘𝑥)) / (π𝑥))) = ((π𝑥) / (𝑥 / (log‘𝑥))))
106102, 101, 103divrecd 11961 . . . . . . . . . 10 (𝑥 ∈ (2[,)+∞) → ((π𝑥) / (𝑥 / (log‘𝑥))) = ((π𝑥) · (1 / (𝑥 / (log‘𝑥)))))
10720rpcnne0d 13004 . . . . . . . . . . . 12 (𝑥 ∈ (2[,)+∞) → (𝑥 ∈ ℂ ∧ 𝑥 ≠ 0))
10821rpcnne0d 13004 . . . . . . . . . . . 12 (𝑥 ∈ (2[,)+∞) → ((log‘𝑥) ∈ ℂ ∧ (log‘𝑥) ≠ 0))
109 recdiv 11888 . . . . . . . . . . . 12 (((𝑥 ∈ ℂ ∧ 𝑥 ≠ 0) ∧ ((log‘𝑥) ∈ ℂ ∧ (log‘𝑥) ≠ 0)) → (1 / (𝑥 / (log‘𝑥))) = ((log‘𝑥) / 𝑥))
110107, 108, 109syl2anc 584 . . . . . . . . . . 11 (𝑥 ∈ (2[,)+∞) → (1 / (𝑥 / (log‘𝑥))) = ((log‘𝑥) / 𝑥))
111110oveq2d 7403 . . . . . . . . . 10 (𝑥 ∈ (2[,)+∞) → ((π𝑥) · (1 / (𝑥 / (log‘𝑥)))) = ((π𝑥) · ((log‘𝑥) / 𝑥)))
112105, 106, 1113eqtrd 2768 . . . . . . . . 9 (𝑥 ∈ (2[,)+∞) → (1 / ((𝑥 / (log‘𝑥)) / (π𝑥))) = ((π𝑥) · ((log‘𝑥) / 𝑥)))
113112adantr 480 . . . . . . . 8 ((𝑥 ∈ (2[,)+∞) ∧ 8 ≤ 𝑥) → (1 / ((𝑥 / (log‘𝑥)) / (π𝑥))) = ((π𝑥) · ((log‘𝑥) / 𝑥)))
11493, 100, 1133brtr4d 5139 . . . . . . 7 ((𝑥 ∈ (2[,)+∞) ∧ 8 ≤ 𝑥) → (1 / (2 / ((log‘2) − (1 / (2 · e))))) < (1 / ((𝑥 / (log‘𝑥)) / (π𝑥))))
11526adantr 480 . . . . . . . 8 ((𝑥 ∈ (2[,)+∞) ∧ 8 ≤ 𝑥) → ((𝑥 / (log‘𝑥)) / (π𝑥)) ∈ ℝ+)
116 elrp 12953 . . . . . . . . 9 (((𝑥 / (log‘𝑥)) / (π𝑥)) ∈ ℝ+ ↔ (((𝑥 / (log‘𝑥)) / (π𝑥)) ∈ ℝ ∧ 0 < ((𝑥 / (log‘𝑥)) / (π𝑥))))
1171, 41, 36, 81divgt0ii 12100 . . . . . . . . . 10 0 < (2 / ((log‘2) − (1 / (2 · e))))
118 ltrec 12065 . . . . . . . . . 10 (((((𝑥 / (log‘𝑥)) / (π𝑥)) ∈ ℝ ∧ 0 < ((𝑥 / (log‘𝑥)) / (π𝑥))) ∧ ((2 / ((log‘2) − (1 / (2 · e)))) ∈ ℝ ∧ 0 < (2 / ((log‘2) − (1 / (2 · e)))))) → (((𝑥 / (log‘𝑥)) / (π𝑥)) < (2 / ((log‘2) − (1 / (2 · e)))) ↔ (1 / (2 / ((log‘2) − (1 / (2 · e))))) < (1 / ((𝑥 / (log‘𝑥)) / (π𝑥)))))
11984, 117, 118mpanr12 705 . . . . . . . . 9 ((((𝑥 / (log‘𝑥)) / (π𝑥)) ∈ ℝ ∧ 0 < ((𝑥 / (log‘𝑥)) / (π𝑥))) → (((𝑥 / (log‘𝑥)) / (π𝑥)) < (2 / ((log‘2) − (1 / (2 · e)))) ↔ (1 / (2 / ((log‘2) − (1 / (2 · e))))) < (1 / ((𝑥 / (log‘𝑥)) / (π𝑥)))))
120116, 119sylbi 217 . . . . . . . 8 (((𝑥 / (log‘𝑥)) / (π𝑥)) ∈ ℝ+ → (((𝑥 / (log‘𝑥)) / (π𝑥)) < (2 / ((log‘2) − (1 / (2 · e)))) ↔ (1 / (2 / ((log‘2) − (1 / (2 · e))))) < (1 / ((𝑥 / (log‘𝑥)) / (π𝑥)))))
121115, 120syl 17 . . . . . . 7 ((𝑥 ∈ (2[,)+∞) ∧ 8 ≤ 𝑥) → (((𝑥 / (log‘𝑥)) / (π𝑥)) < (2 / ((log‘2) − (1 / (2 · e)))) ↔ (1 / (2 / ((log‘2) − (1 / (2 · e))))) < (1 / ((𝑥 / (log‘𝑥)) / (π𝑥)))))
122114, 121mpbird 257 . . . . . 6 ((𝑥 ∈ (2[,)+∞) ∧ 8 ≤ 𝑥) → ((𝑥 / (log‘𝑥)) / (π𝑥)) < (2 / ((log‘2) − (1 / (2 · e)))))
123115rpred 12995 . . . . . . 7 ((𝑥 ∈ (2[,)+∞) ∧ 8 ≤ 𝑥) → ((𝑥 / (log‘𝑥)) / (π𝑥)) ∈ ℝ)
124 ltle 11262 . . . . . . 7 ((((𝑥 / (log‘𝑥)) / (π𝑥)) ∈ ℝ ∧ (2 / ((log‘2) − (1 / (2 · e)))) ∈ ℝ) → (((𝑥 / (log‘𝑥)) / (π𝑥)) < (2 / ((log‘2) − (1 / (2 · e)))) → ((𝑥 / (log‘𝑥)) / (π𝑥)) ≤ (2 / ((log‘2) − (1 / (2 · e))))))
125123, 84, 124sylancl 586 . . . . . 6 ((𝑥 ∈ (2[,)+∞) ∧ 8 ≤ 𝑥) → (((𝑥 / (log‘𝑥)) / (π𝑥)) < (2 / ((log‘2) − (1 / (2 · e)))) → ((𝑥 / (log‘𝑥)) / (π𝑥)) ≤ (2 / ((log‘2) − (1 / (2 · e))))))
126122, 125mpd 15 . . . . 5 ((𝑥 ∈ (2[,)+∞) ∧ 8 ≤ 𝑥) → ((𝑥 / (log‘𝑥)) / (π𝑥)) ≤ (2 / ((log‘2) − (1 / (2 · e)))))
12790, 126eqbrtrd 5129 . . . 4 ((𝑥 ∈ (2[,)+∞) ∧ 8 ≤ 𝑥) → (abs‘((𝑥 / (log‘𝑥)) / (π𝑥))) ≤ (2 / ((log‘2) − (1 / (2 · e)))))
128127adantl 481 . . 3 ((⊤ ∧ (𝑥 ∈ (2[,)+∞) ∧ 8 ≤ 𝑥)) → (abs‘((𝑥 / (log‘𝑥)) / (π𝑥))) ≤ (2 / ((log‘2) − (1 / (2 · e)))))
1295, 28, 30, 85, 128elo1d 15502 . 2 (⊤ → (𝑥 ∈ (2[,)+∞) ↦ ((𝑥 / (log‘𝑥)) / (π𝑥))) ∈ 𝑂(1))
130129mptru 1547 1 (𝑥 ∈ (2[,)+∞) ↦ ((𝑥 / (log‘𝑥)) / (π𝑥))) ∈ 𝑂(1)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wtru 1541  wcel 2109  wne 2925  wss 3914   class class class wbr 5107  cmpt 5188  cfv 6511  (class class class)co 7387  cc 11066  cr 11067  0cc0 11068  1c1 11069   · cmul 11073  +∞cpnf 11205  *cxr 11207   < clt 11208  cle 11209  cmin 11405   / cdiv 11835  cn 12186  2c2 12241  3c3 12242  4c4 12243  8c8 12247  cz 12529  +crp 12951  [,)cico 13308  cfl 13752  cexp 14026  abscabs 15200  𝑂(1)co1 15452  eceu 16028  logclog 26463  πcppi 27004
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-inf2 9594  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145  ax-pre-sup 11146  ax-addf 11147
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-tp 4594  df-op 4596  df-uni 4872  df-int 4911  df-iun 4957  df-iin 4958  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-se 5592  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-isom 6520  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-of 7653  df-om 7843  df-1st 7968  df-2nd 7969  df-supp 8140  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-2o 8435  df-oadd 8438  df-er 8671  df-map 8801  df-pm 8802  df-ixp 8871  df-en 8919  df-dom 8920  df-sdom 8921  df-fin 8922  df-fsupp 9313  df-fi 9362  df-sup 9393  df-inf 9394  df-oi 9463  df-dju 9854  df-card 9892  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-div 11836  df-nn 12187  df-2 12249  df-3 12250  df-4 12251  df-5 12252  df-6 12253  df-7 12254  df-8 12255  df-9 12256  df-n0 12443  df-xnn0 12516  df-z 12530  df-dec 12650  df-uz 12794  df-q 12908  df-rp 12952  df-xneg 13072  df-xadd 13073  df-xmul 13074  df-ioo 13310  df-ioc 13311  df-ico 13312  df-icc 13313  df-fz 13469  df-fzo 13616  df-fl 13754  df-mod 13832  df-seq 13967  df-exp 14027  df-fac 14239  df-bc 14268  df-hash 14296  df-shft 15033  df-cj 15065  df-re 15066  df-im 15067  df-sqrt 15201  df-abs 15202  df-limsup 15437  df-clim 15454  df-rlim 15455  df-o1 15456  df-lo1 15457  df-sum 15653  df-ef 16033  df-e 16034  df-sin 16035  df-cos 16036  df-pi 16038  df-dvds 16223  df-gcd 16465  df-prm 16642  df-pc 16808  df-struct 17117  df-sets 17134  df-slot 17152  df-ndx 17164  df-base 17180  df-ress 17201  df-plusg 17233  df-mulr 17234  df-starv 17235  df-sca 17236  df-vsca 17237  df-ip 17238  df-tset 17239  df-ple 17240  df-ds 17242  df-unif 17243  df-hom 17244  df-cco 17245  df-rest 17385  df-topn 17386  df-0g 17404  df-gsum 17405  df-topgen 17406  df-pt 17407  df-prds 17410  df-xrs 17465  df-qtop 17470  df-imas 17471  df-xps 17473  df-mre 17547  df-mrc 17548  df-acs 17550  df-mgm 18567  df-sgrp 18646  df-mnd 18662  df-submnd 18711  df-mulg 19000  df-cntz 19249  df-cmn 19712  df-psmet 21256  df-xmet 21257  df-met 21258  df-bl 21259  df-mopn 21260  df-fbas 21261  df-fg 21262  df-cnfld 21265  df-top 22781  df-topon 22798  df-topsp 22820  df-bases 22833  df-cld 22906  df-ntr 22907  df-cls 22908  df-nei 22985  df-lp 23023  df-perf 23024  df-cn 23114  df-cnp 23115  df-haus 23202  df-tx 23449  df-hmeo 23642  df-fil 23733  df-fm 23825  df-flim 23826  df-flf 23827  df-xms 24208  df-ms 24209  df-tms 24210  df-cncf 24771  df-limc 25767  df-dv 25768  df-log 26465  df-ppi 27010
This theorem is referenced by:  chtppilimlem2  27385  chto1lb  27389
  Copyright terms: Public domain W3C validator