MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  chebbnd1 Structured version   Visualization version   GIF version

Theorem chebbnd1 26820
Description: The Chebyshev bound: The function π(𝑥) is eventually lower bounded by a positive constant times 𝑥 / log(𝑥). Alternatively stated, the function (𝑥 / log(𝑥)) / π(𝑥) is eventually bounded. (Contributed by Mario Carneiro, 22-Sep-2014.)
Assertion
Ref Expression
chebbnd1 (𝑥 ∈ (2[,)+∞) ↦ ((𝑥 / (log‘𝑥)) / (π𝑥))) ∈ 𝑂(1)

Proof of Theorem chebbnd1
StepHypRef Expression
1 2re 12227 . . . . 5 2 ∈ ℝ
2 pnfxr 11209 . . . . 5 +∞ ∈ ℝ*
3 icossre 13345 . . . . 5 ((2 ∈ ℝ ∧ +∞ ∈ ℝ*) → (2[,)+∞) ⊆ ℝ)
41, 2, 3mp2an 690 . . . 4 (2[,)+∞) ⊆ ℝ
54a1i 11 . . 3 (⊤ → (2[,)+∞) ⊆ ℝ)
6 elicopnf 13362 . . . . . . . . . 10 (2 ∈ ℝ → (𝑥 ∈ (2[,)+∞) ↔ (𝑥 ∈ ℝ ∧ 2 ≤ 𝑥)))
71, 6ax-mp 5 . . . . . . . . 9 (𝑥 ∈ (2[,)+∞) ↔ (𝑥 ∈ ℝ ∧ 2 ≤ 𝑥))
87simplbi 498 . . . . . . . 8 (𝑥 ∈ (2[,)+∞) → 𝑥 ∈ ℝ)
9 0red 11158 . . . . . . . . 9 (𝑥 ∈ (2[,)+∞) → 0 ∈ ℝ)
10 1re 11155 . . . . . . . . . 10 1 ∈ ℝ
1110a1i 11 . . . . . . . . 9 (𝑥 ∈ (2[,)+∞) → 1 ∈ ℝ)
12 0lt1 11677 . . . . . . . . . 10 0 < 1
1312a1i 11 . . . . . . . . 9 (𝑥 ∈ (2[,)+∞) → 0 < 1)
141a1i 11 . . . . . . . . . 10 (𝑥 ∈ (2[,)+∞) → 2 ∈ ℝ)
15 1lt2 12324 . . . . . . . . . . 11 1 < 2
1615a1i 11 . . . . . . . . . 10 (𝑥 ∈ (2[,)+∞) → 1 < 2)
177simprbi 497 . . . . . . . . . 10 (𝑥 ∈ (2[,)+∞) → 2 ≤ 𝑥)
1811, 14, 8, 16, 17ltletrd 11315 . . . . . . . . 9 (𝑥 ∈ (2[,)+∞) → 1 < 𝑥)
199, 11, 8, 13, 18lttrd 11316 . . . . . . . 8 (𝑥 ∈ (2[,)+∞) → 0 < 𝑥)
208, 19elrpd 12954 . . . . . . 7 (𝑥 ∈ (2[,)+∞) → 𝑥 ∈ ℝ+)
218, 18rplogcld 25984 . . . . . . 7 (𝑥 ∈ (2[,)+∞) → (log‘𝑥) ∈ ℝ+)
2220, 21rpdivcld 12974 . . . . . 6 (𝑥 ∈ (2[,)+∞) → (𝑥 / (log‘𝑥)) ∈ ℝ+)
23 ppinncl 26523 . . . . . . . 8 ((𝑥 ∈ ℝ ∧ 2 ≤ 𝑥) → (π𝑥) ∈ ℕ)
247, 23sylbi 216 . . . . . . 7 (𝑥 ∈ (2[,)+∞) → (π𝑥) ∈ ℕ)
2524nnrpd 12955 . . . . . 6 (𝑥 ∈ (2[,)+∞) → (π𝑥) ∈ ℝ+)
2622, 25rpdivcld 12974 . . . . 5 (𝑥 ∈ (2[,)+∞) → ((𝑥 / (log‘𝑥)) / (π𝑥)) ∈ ℝ+)
2726rpcnd 12959 . . . 4 (𝑥 ∈ (2[,)+∞) → ((𝑥 / (log‘𝑥)) / (π𝑥)) ∈ ℂ)
2827adantl 482 . . 3 ((⊤ ∧ 𝑥 ∈ (2[,)+∞)) → ((𝑥 / (log‘𝑥)) / (π𝑥)) ∈ ℂ)
29 8re 12249 . . . 4 8 ∈ ℝ
3029a1i 11 . . 3 (⊤ → 8 ∈ ℝ)
31 2rp 12920 . . . . . . . 8 2 ∈ ℝ+
32 relogcl 25931 . . . . . . . 8 (2 ∈ ℝ+ → (log‘2) ∈ ℝ)
3331, 32ax-mp 5 . . . . . . 7 (log‘2) ∈ ℝ
34 ere 15971 . . . . . . . . 9 e ∈ ℝ
351, 34remulcli 11171 . . . . . . . 8 (2 · e) ∈ ℝ
36 2pos 12256 . . . . . . . . . 10 0 < 2
37 epos 16089 . . . . . . . . . 10 0 < e
381, 34, 36, 37mulgt0ii 11288 . . . . . . . . 9 0 < (2 · e)
3935, 38gt0ne0ii 11691 . . . . . . . 8 (2 · e) ≠ 0
4035, 39rereccli 11920 . . . . . . 7 (1 / (2 · e)) ∈ ℝ
4133, 40resubcli 11463 . . . . . 6 ((log‘2) − (1 / (2 · e))) ∈ ℝ
42 2t1e2 12316 . . . . . . . . . 10 (2 · 1) = 2
43 egt2lt3 16088 . . . . . . . . . . . . 13 (2 < e ∧ e < 3)
4443simpli 484 . . . . . . . . . . . 12 2 < e
4510, 1, 34lttri 11281 . . . . . . . . . . . 12 ((1 < 2 ∧ 2 < e) → 1 < e)
4615, 44, 45mp2an 690 . . . . . . . . . . 11 1 < e
4710, 34, 1ltmul2i 12076 . . . . . . . . . . . 12 (0 < 2 → (1 < e ↔ (2 · 1) < (2 · e)))
4836, 47ax-mp 5 . . . . . . . . . . 11 (1 < e ↔ (2 · 1) < (2 · e))
4946, 48mpbi 229 . . . . . . . . . 10 (2 · 1) < (2 · e)
5042, 49eqbrtrri 5128 . . . . . . . . 9 2 < (2 · e)
511, 35, 36, 38ltrecii 12071 . . . . . . . . 9 (2 < (2 · e) ↔ (1 / (2 · e)) < (1 / 2))
5250, 51mpbi 229 . . . . . . . 8 (1 / (2 · e)) < (1 / 2)
5343simpri 486 . . . . . . . . . . . 12 e < 3
54 3lt4 12327 . . . . . . . . . . . 12 3 < 4
55 3re 12233 . . . . . . . . . . . . 13 3 ∈ ℝ
56 4re 12237 . . . . . . . . . . . . 13 4 ∈ ℝ
5734, 55, 56lttri 11281 . . . . . . . . . . . 12 ((e < 3 ∧ 3 < 4) → e < 4)
5853, 54, 57mp2an 690 . . . . . . . . . . 11 e < 4
59 epr 16090 . . . . . . . . . . . 12 e ∈ ℝ+
60 4pos 12260 . . . . . . . . . . . . 13 0 < 4
6156, 60elrpii 12918 . . . . . . . . . . . 12 4 ∈ ℝ+
62 logltb 25955 . . . . . . . . . . . 12 ((e ∈ ℝ+ ∧ 4 ∈ ℝ+) → (e < 4 ↔ (log‘e) < (log‘4)))
6359, 61, 62mp2an 690 . . . . . . . . . . 11 (e < 4 ↔ (log‘e) < (log‘4))
6458, 63mpbi 229 . . . . . . . . . 10 (log‘e) < (log‘4)
65 loge 25942 . . . . . . . . . 10 (log‘e) = 1
66 sq2 14101 . . . . . . . . . . . 12 (2↑2) = 4
6766fveq2i 6845 . . . . . . . . . . 11 (log‘(2↑2)) = (log‘4)
68 2z 12535 . . . . . . . . . . . 12 2 ∈ ℤ
69 relogexp 25951 . . . . . . . . . . . 12 ((2 ∈ ℝ+ ∧ 2 ∈ ℤ) → (log‘(2↑2)) = (2 · (log‘2)))
7031, 68, 69mp2an 690 . . . . . . . . . . 11 (log‘(2↑2)) = (2 · (log‘2))
7167, 70eqtr3i 2766 . . . . . . . . . 10 (log‘4) = (2 · (log‘2))
7264, 65, 713brtr3i 5134 . . . . . . . . 9 1 < (2 · (log‘2))
731, 36pm3.2i 471 . . . . . . . . . 10 (2 ∈ ℝ ∧ 0 < 2)
74 ltdivmul 12030 . . . . . . . . . 10 ((1 ∈ ℝ ∧ (log‘2) ∈ ℝ ∧ (2 ∈ ℝ ∧ 0 < 2)) → ((1 / 2) < (log‘2) ↔ 1 < (2 · (log‘2))))
7510, 33, 73, 74mp3an 1461 . . . . . . . . 9 ((1 / 2) < (log‘2) ↔ 1 < (2 · (log‘2)))
7672, 75mpbir 230 . . . . . . . 8 (1 / 2) < (log‘2)
77 halfre 12367 . . . . . . . . 9 (1 / 2) ∈ ℝ
7840, 77, 33lttri 11281 . . . . . . . 8 (((1 / (2 · e)) < (1 / 2) ∧ (1 / 2) < (log‘2)) → (1 / (2 · e)) < (log‘2))
7952, 76, 78mp2an 690 . . . . . . 7 (1 / (2 · e)) < (log‘2)
8040, 33posdifi 11705 . . . . . . 7 ((1 / (2 · e)) < (log‘2) ↔ 0 < ((log‘2) − (1 / (2 · e))))
8179, 80mpbi 229 . . . . . 6 0 < ((log‘2) − (1 / (2 · e)))
8241, 81elrpii 12918 . . . . 5 ((log‘2) − (1 / (2 · e))) ∈ ℝ+
83 rerpdivcl 12945 . . . . 5 ((2 ∈ ℝ ∧ ((log‘2) − (1 / (2 · e))) ∈ ℝ+) → (2 / ((log‘2) − (1 / (2 · e)))) ∈ ℝ)
841, 82, 83mp2an 690 . . . 4 (2 / ((log‘2) − (1 / (2 · e)))) ∈ ℝ
8584a1i 11 . . 3 (⊤ → (2 / ((log‘2) − (1 / (2 · e)))) ∈ ℝ)
86 rpre 12923 . . . . . . . 8 (((𝑥 / (log‘𝑥)) / (π𝑥)) ∈ ℝ+ → ((𝑥 / (log‘𝑥)) / (π𝑥)) ∈ ℝ)
87 rpge0 12928 . . . . . . . 8 (((𝑥 / (log‘𝑥)) / (π𝑥)) ∈ ℝ+ → 0 ≤ ((𝑥 / (log‘𝑥)) / (π𝑥)))
8886, 87absidd 15307 . . . . . . 7 (((𝑥 / (log‘𝑥)) / (π𝑥)) ∈ ℝ+ → (abs‘((𝑥 / (log‘𝑥)) / (π𝑥))) = ((𝑥 / (log‘𝑥)) / (π𝑥)))
8926, 88syl 17 . . . . . 6 (𝑥 ∈ (2[,)+∞) → (abs‘((𝑥 / (log‘𝑥)) / (π𝑥))) = ((𝑥 / (log‘𝑥)) / (π𝑥)))
9089adantr 481 . . . . 5 ((𝑥 ∈ (2[,)+∞) ∧ 8 ≤ 𝑥) → (abs‘((𝑥 / (log‘𝑥)) / (π𝑥))) = ((𝑥 / (log‘𝑥)) / (π𝑥)))
91 eqid 2736 . . . . . . . . . 10 (⌊‘(𝑥 / 2)) = (⌊‘(𝑥 / 2))
9291chebbnd1lem3 26819 . . . . . . . . 9 ((𝑥 ∈ ℝ ∧ 8 ≤ 𝑥) → (((log‘2) − (1 / (2 · e))) / 2) < ((π𝑥) · ((log‘𝑥) / 𝑥)))
938, 92sylan 580 . . . . . . . 8 ((𝑥 ∈ (2[,)+∞) ∧ 8 ≤ 𝑥) → (((log‘2) − (1 / (2 · e))) / 2) < ((π𝑥) · ((log‘𝑥) / 𝑥)))
941recni 11169 . . . . . . . . . 10 2 ∈ ℂ
95 2ne0 12257 . . . . . . . . . 10 2 ≠ 0
9641recni 11169 . . . . . . . . . 10 ((log‘2) − (1 / (2 · e))) ∈ ℂ
9741, 81gt0ne0ii 11691 . . . . . . . . . 10 ((log‘2) − (1 / (2 · e))) ≠ 0
98 recdiv 11861 . . . . . . . . . 10 (((2 ∈ ℂ ∧ 2 ≠ 0) ∧ (((log‘2) − (1 / (2 · e))) ∈ ℂ ∧ ((log‘2) − (1 / (2 · e))) ≠ 0)) → (1 / (2 / ((log‘2) − (1 / (2 · e))))) = (((log‘2) − (1 / (2 · e))) / 2))
9994, 95, 96, 97, 98mp4an 691 . . . . . . . . 9 (1 / (2 / ((log‘2) − (1 / (2 · e))))) = (((log‘2) − (1 / (2 · e))) / 2)
10099a1i 11 . . . . . . . 8 ((𝑥 ∈ (2[,)+∞) ∧ 8 ≤ 𝑥) → (1 / (2 / ((log‘2) − (1 / (2 · e))))) = (((log‘2) − (1 / (2 · e))) / 2))
10122rpcnd 12959 . . . . . . . . . . 11 (𝑥 ∈ (2[,)+∞) → (𝑥 / (log‘𝑥)) ∈ ℂ)
10224nncnd 12169 . . . . . . . . . . 11 (𝑥 ∈ (2[,)+∞) → (π𝑥) ∈ ℂ)
10322rpne0d 12962 . . . . . . . . . . 11 (𝑥 ∈ (2[,)+∞) → (𝑥 / (log‘𝑥)) ≠ 0)
10424nnne0d 12203 . . . . . . . . . . 11 (𝑥 ∈ (2[,)+∞) → (π𝑥) ≠ 0)
105101, 102, 103, 104recdivd 11948 . . . . . . . . . 10 (𝑥 ∈ (2[,)+∞) → (1 / ((𝑥 / (log‘𝑥)) / (π𝑥))) = ((π𝑥) / (𝑥 / (log‘𝑥))))
106102, 101, 103divrecd 11934 . . . . . . . . . 10 (𝑥 ∈ (2[,)+∞) → ((π𝑥) / (𝑥 / (log‘𝑥))) = ((π𝑥) · (1 / (𝑥 / (log‘𝑥)))))
10720rpcnne0d 12966 . . . . . . . . . . . 12 (𝑥 ∈ (2[,)+∞) → (𝑥 ∈ ℂ ∧ 𝑥 ≠ 0))
10821rpcnne0d 12966 . . . . . . . . . . . 12 (𝑥 ∈ (2[,)+∞) → ((log‘𝑥) ∈ ℂ ∧ (log‘𝑥) ≠ 0))
109 recdiv 11861 . . . . . . . . . . . 12 (((𝑥 ∈ ℂ ∧ 𝑥 ≠ 0) ∧ ((log‘𝑥) ∈ ℂ ∧ (log‘𝑥) ≠ 0)) → (1 / (𝑥 / (log‘𝑥))) = ((log‘𝑥) / 𝑥))
110107, 108, 109syl2anc 584 . . . . . . . . . . 11 (𝑥 ∈ (2[,)+∞) → (1 / (𝑥 / (log‘𝑥))) = ((log‘𝑥) / 𝑥))
111110oveq2d 7373 . . . . . . . . . 10 (𝑥 ∈ (2[,)+∞) → ((π𝑥) · (1 / (𝑥 / (log‘𝑥)))) = ((π𝑥) · ((log‘𝑥) / 𝑥)))
112105, 106, 1113eqtrd 2780 . . . . . . . . 9 (𝑥 ∈ (2[,)+∞) → (1 / ((𝑥 / (log‘𝑥)) / (π𝑥))) = ((π𝑥) · ((log‘𝑥) / 𝑥)))
113112adantr 481 . . . . . . . 8 ((𝑥 ∈ (2[,)+∞) ∧ 8 ≤ 𝑥) → (1 / ((𝑥 / (log‘𝑥)) / (π𝑥))) = ((π𝑥) · ((log‘𝑥) / 𝑥)))
11493, 100, 1133brtr4d 5137 . . . . . . 7 ((𝑥 ∈ (2[,)+∞) ∧ 8 ≤ 𝑥) → (1 / (2 / ((log‘2) − (1 / (2 · e))))) < (1 / ((𝑥 / (log‘𝑥)) / (π𝑥))))
11526adantr 481 . . . . . . . 8 ((𝑥 ∈ (2[,)+∞) ∧ 8 ≤ 𝑥) → ((𝑥 / (log‘𝑥)) / (π𝑥)) ∈ ℝ+)
116 elrp 12917 . . . . . . . . 9 (((𝑥 / (log‘𝑥)) / (π𝑥)) ∈ ℝ+ ↔ (((𝑥 / (log‘𝑥)) / (π𝑥)) ∈ ℝ ∧ 0 < ((𝑥 / (log‘𝑥)) / (π𝑥))))
1171, 41, 36, 81divgt0ii 12072 . . . . . . . . . 10 0 < (2 / ((log‘2) − (1 / (2 · e))))
118 ltrec 12037 . . . . . . . . . 10 (((((𝑥 / (log‘𝑥)) / (π𝑥)) ∈ ℝ ∧ 0 < ((𝑥 / (log‘𝑥)) / (π𝑥))) ∧ ((2 / ((log‘2) − (1 / (2 · e)))) ∈ ℝ ∧ 0 < (2 / ((log‘2) − (1 / (2 · e)))))) → (((𝑥 / (log‘𝑥)) / (π𝑥)) < (2 / ((log‘2) − (1 / (2 · e)))) ↔ (1 / (2 / ((log‘2) − (1 / (2 · e))))) < (1 / ((𝑥 / (log‘𝑥)) / (π𝑥)))))
11984, 117, 118mpanr12 703 . . . . . . . . 9 ((((𝑥 / (log‘𝑥)) / (π𝑥)) ∈ ℝ ∧ 0 < ((𝑥 / (log‘𝑥)) / (π𝑥))) → (((𝑥 / (log‘𝑥)) / (π𝑥)) < (2 / ((log‘2) − (1 / (2 · e)))) ↔ (1 / (2 / ((log‘2) − (1 / (2 · e))))) < (1 / ((𝑥 / (log‘𝑥)) / (π𝑥)))))
120116, 119sylbi 216 . . . . . . . 8 (((𝑥 / (log‘𝑥)) / (π𝑥)) ∈ ℝ+ → (((𝑥 / (log‘𝑥)) / (π𝑥)) < (2 / ((log‘2) − (1 / (2 · e)))) ↔ (1 / (2 / ((log‘2) − (1 / (2 · e))))) < (1 / ((𝑥 / (log‘𝑥)) / (π𝑥)))))
121115, 120syl 17 . . . . . . 7 ((𝑥 ∈ (2[,)+∞) ∧ 8 ≤ 𝑥) → (((𝑥 / (log‘𝑥)) / (π𝑥)) < (2 / ((log‘2) − (1 / (2 · e)))) ↔ (1 / (2 / ((log‘2) − (1 / (2 · e))))) < (1 / ((𝑥 / (log‘𝑥)) / (π𝑥)))))
122114, 121mpbird 256 . . . . . 6 ((𝑥 ∈ (2[,)+∞) ∧ 8 ≤ 𝑥) → ((𝑥 / (log‘𝑥)) / (π𝑥)) < (2 / ((log‘2) − (1 / (2 · e)))))
123115rpred 12957 . . . . . . 7 ((𝑥 ∈ (2[,)+∞) ∧ 8 ≤ 𝑥) → ((𝑥 / (log‘𝑥)) / (π𝑥)) ∈ ℝ)
124 ltle 11243 . . . . . . 7 ((((𝑥 / (log‘𝑥)) / (π𝑥)) ∈ ℝ ∧ (2 / ((log‘2) − (1 / (2 · e)))) ∈ ℝ) → (((𝑥 / (log‘𝑥)) / (π𝑥)) < (2 / ((log‘2) − (1 / (2 · e)))) → ((𝑥 / (log‘𝑥)) / (π𝑥)) ≤ (2 / ((log‘2) − (1 / (2 · e))))))
125123, 84, 124sylancl 586 . . . . . 6 ((𝑥 ∈ (2[,)+∞) ∧ 8 ≤ 𝑥) → (((𝑥 / (log‘𝑥)) / (π𝑥)) < (2 / ((log‘2) − (1 / (2 · e)))) → ((𝑥 / (log‘𝑥)) / (π𝑥)) ≤ (2 / ((log‘2) − (1 / (2 · e))))))
126122, 125mpd 15 . . . . 5 ((𝑥 ∈ (2[,)+∞) ∧ 8 ≤ 𝑥) → ((𝑥 / (log‘𝑥)) / (π𝑥)) ≤ (2 / ((log‘2) − (1 / (2 · e)))))
12790, 126eqbrtrd 5127 . . . 4 ((𝑥 ∈ (2[,)+∞) ∧ 8 ≤ 𝑥) → (abs‘((𝑥 / (log‘𝑥)) / (π𝑥))) ≤ (2 / ((log‘2) − (1 / (2 · e)))))
128127adantl 482 . . 3 ((⊤ ∧ (𝑥 ∈ (2[,)+∞) ∧ 8 ≤ 𝑥)) → (abs‘((𝑥 / (log‘𝑥)) / (π𝑥))) ≤ (2 / ((log‘2) − (1 / (2 · e)))))
1295, 28, 30, 85, 128elo1d 15418 . 2 (⊤ → (𝑥 ∈ (2[,)+∞) ↦ ((𝑥 / (log‘𝑥)) / (π𝑥))) ∈ 𝑂(1))
130129mptru 1548 1 (𝑥 ∈ (2[,)+∞) ↦ ((𝑥 / (log‘𝑥)) / (π𝑥))) ∈ 𝑂(1)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1541  wtru 1542  wcel 2106  wne 2943  wss 3910   class class class wbr 5105  cmpt 5188  cfv 6496  (class class class)co 7357  cc 11049  cr 11050  0cc0 11051  1c1 11052   · cmul 11056  +∞cpnf 11186  *cxr 11188   < clt 11189  cle 11190  cmin 11385   / cdiv 11812  cn 12153  2c2 12208  3c3 12209  4c4 12210  8c8 12214  cz 12499  +crp 12915  [,)cico 13266  cfl 13695  cexp 13967  abscabs 15119  𝑂(1)co1 15368  eceu 15945  logclog 25910  πcppi 26443
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-rep 5242  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-inf2 9577  ax-cnex 11107  ax-resscn 11108  ax-1cn 11109  ax-icn 11110  ax-addcl 11111  ax-addrcl 11112  ax-mulcl 11113  ax-mulrcl 11114  ax-mulcom 11115  ax-addass 11116  ax-mulass 11117  ax-distr 11118  ax-i2m1 11119  ax-1ne0 11120  ax-1rid 11121  ax-rnegex 11122  ax-rrecex 11123  ax-cnre 11124  ax-pre-lttri 11125  ax-pre-lttrn 11126  ax-pre-ltadd 11127  ax-pre-mulgt0 11128  ax-pre-sup 11129  ax-addf 11130  ax-mulf 11131
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-rmo 3353  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-tp 4591  df-op 4593  df-uni 4866  df-int 4908  df-iun 4956  df-iin 4957  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-se 5589  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-isom 6505  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-of 7617  df-om 7803  df-1st 7921  df-2nd 7922  df-supp 8093  df-frecs 8212  df-wrecs 8243  df-recs 8317  df-rdg 8356  df-1o 8412  df-2o 8413  df-oadd 8416  df-er 8648  df-map 8767  df-pm 8768  df-ixp 8836  df-en 8884  df-dom 8885  df-sdom 8886  df-fin 8887  df-fsupp 9306  df-fi 9347  df-sup 9378  df-inf 9379  df-oi 9446  df-dju 9837  df-card 9875  df-pnf 11191  df-mnf 11192  df-xr 11193  df-ltxr 11194  df-le 11195  df-sub 11387  df-neg 11388  df-div 11813  df-nn 12154  df-2 12216  df-3 12217  df-4 12218  df-5 12219  df-6 12220  df-7 12221  df-8 12222  df-9 12223  df-n0 12414  df-xnn0 12486  df-z 12500  df-dec 12619  df-uz 12764  df-q 12874  df-rp 12916  df-xneg 13033  df-xadd 13034  df-xmul 13035  df-ioo 13268  df-ioc 13269  df-ico 13270  df-icc 13271  df-fz 13425  df-fzo 13568  df-fl 13697  df-mod 13775  df-seq 13907  df-exp 13968  df-fac 14174  df-bc 14203  df-hash 14231  df-shft 14952  df-cj 14984  df-re 14985  df-im 14986  df-sqrt 15120  df-abs 15121  df-limsup 15353  df-clim 15370  df-rlim 15371  df-o1 15372  df-lo1 15373  df-sum 15571  df-ef 15950  df-e 15951  df-sin 15952  df-cos 15953  df-pi 15955  df-dvds 16137  df-gcd 16375  df-prm 16548  df-pc 16709  df-struct 17019  df-sets 17036  df-slot 17054  df-ndx 17066  df-base 17084  df-ress 17113  df-plusg 17146  df-mulr 17147  df-starv 17148  df-sca 17149  df-vsca 17150  df-ip 17151  df-tset 17152  df-ple 17153  df-ds 17155  df-unif 17156  df-hom 17157  df-cco 17158  df-rest 17304  df-topn 17305  df-0g 17323  df-gsum 17324  df-topgen 17325  df-pt 17326  df-prds 17329  df-xrs 17384  df-qtop 17389  df-imas 17390  df-xps 17392  df-mre 17466  df-mrc 17467  df-acs 17469  df-mgm 18497  df-sgrp 18546  df-mnd 18557  df-submnd 18602  df-mulg 18873  df-cntz 19097  df-cmn 19564  df-psmet 20788  df-xmet 20789  df-met 20790  df-bl 20791  df-mopn 20792  df-fbas 20793  df-fg 20794  df-cnfld 20797  df-top 22243  df-topon 22260  df-topsp 22282  df-bases 22296  df-cld 22370  df-ntr 22371  df-cls 22372  df-nei 22449  df-lp 22487  df-perf 22488  df-cn 22578  df-cnp 22579  df-haus 22666  df-tx 22913  df-hmeo 23106  df-fil 23197  df-fm 23289  df-flim 23290  df-flf 23291  df-xms 23673  df-ms 23674  df-tms 23675  df-cncf 24241  df-limc 25230  df-dv 25231  df-log 25912  df-ppi 26449
This theorem is referenced by:  chtppilimlem2  26822  chto1lb  26826
  Copyright terms: Public domain W3C validator