MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  chebbnd1 Structured version   Visualization version   GIF version

Theorem chebbnd1 25975
Description: The Chebyshev bound: The function π(𝑥) is eventually lower bounded by a positive constant times 𝑥 / log(𝑥). Alternatively stated, the function (𝑥 / log(𝑥)) / π(𝑥) is eventually bounded. (Contributed by Mario Carneiro, 22-Sep-2014.)
Assertion
Ref Expression
chebbnd1 (𝑥 ∈ (2[,)+∞) ↦ ((𝑥 / (log‘𝑥)) / (π𝑥))) ∈ 𝑂(1)

Proof of Theorem chebbnd1
StepHypRef Expression
1 2re 11699 . . . . 5 2 ∈ ℝ
2 pnfxr 10683 . . . . 5 +∞ ∈ ℝ*
3 icossre 12805 . . . . 5 ((2 ∈ ℝ ∧ +∞ ∈ ℝ*) → (2[,)+∞) ⊆ ℝ)
41, 2, 3mp2an 688 . . . 4 (2[,)+∞) ⊆ ℝ
54a1i 11 . . 3 (⊤ → (2[,)+∞) ⊆ ℝ)
6 elicopnf 12821 . . . . . . . . . 10 (2 ∈ ℝ → (𝑥 ∈ (2[,)+∞) ↔ (𝑥 ∈ ℝ ∧ 2 ≤ 𝑥)))
71, 6ax-mp 5 . . . . . . . . 9 (𝑥 ∈ (2[,)+∞) ↔ (𝑥 ∈ ℝ ∧ 2 ≤ 𝑥))
87simplbi 498 . . . . . . . 8 (𝑥 ∈ (2[,)+∞) → 𝑥 ∈ ℝ)
9 0red 10632 . . . . . . . . 9 (𝑥 ∈ (2[,)+∞) → 0 ∈ ℝ)
10 1re 10629 . . . . . . . . . 10 1 ∈ ℝ
1110a1i 11 . . . . . . . . 9 (𝑥 ∈ (2[,)+∞) → 1 ∈ ℝ)
12 0lt1 11150 . . . . . . . . . 10 0 < 1
1312a1i 11 . . . . . . . . 9 (𝑥 ∈ (2[,)+∞) → 0 < 1)
141a1i 11 . . . . . . . . . 10 (𝑥 ∈ (2[,)+∞) → 2 ∈ ℝ)
15 1lt2 11796 . . . . . . . . . . 11 1 < 2
1615a1i 11 . . . . . . . . . 10 (𝑥 ∈ (2[,)+∞) → 1 < 2)
177simprbi 497 . . . . . . . . . 10 (𝑥 ∈ (2[,)+∞) → 2 ≤ 𝑥)
1811, 14, 8, 16, 17ltletrd 10788 . . . . . . . . 9 (𝑥 ∈ (2[,)+∞) → 1 < 𝑥)
199, 11, 8, 13, 18lttrd 10789 . . . . . . . 8 (𝑥 ∈ (2[,)+∞) → 0 < 𝑥)
208, 19elrpd 12416 . . . . . . 7 (𝑥 ∈ (2[,)+∞) → 𝑥 ∈ ℝ+)
218, 18rplogcld 25139 . . . . . . 7 (𝑥 ∈ (2[,)+∞) → (log‘𝑥) ∈ ℝ+)
2220, 21rpdivcld 12436 . . . . . 6 (𝑥 ∈ (2[,)+∞) → (𝑥 / (log‘𝑥)) ∈ ℝ+)
23 ppinncl 25678 . . . . . . . 8 ((𝑥 ∈ ℝ ∧ 2 ≤ 𝑥) → (π𝑥) ∈ ℕ)
247, 23sylbi 218 . . . . . . 7 (𝑥 ∈ (2[,)+∞) → (π𝑥) ∈ ℕ)
2524nnrpd 12417 . . . . . 6 (𝑥 ∈ (2[,)+∞) → (π𝑥) ∈ ℝ+)
2622, 25rpdivcld 12436 . . . . 5 (𝑥 ∈ (2[,)+∞) → ((𝑥 / (log‘𝑥)) / (π𝑥)) ∈ ℝ+)
2726rpcnd 12421 . . . 4 (𝑥 ∈ (2[,)+∞) → ((𝑥 / (log‘𝑥)) / (π𝑥)) ∈ ℂ)
2827adantl 482 . . 3 ((⊤ ∧ 𝑥 ∈ (2[,)+∞)) → ((𝑥 / (log‘𝑥)) / (π𝑥)) ∈ ℂ)
29 8re 11721 . . . 4 8 ∈ ℝ
3029a1i 11 . . 3 (⊤ → 8 ∈ ℝ)
31 2rp 12382 . . . . . . . 8 2 ∈ ℝ+
32 relogcl 25086 . . . . . . . 8 (2 ∈ ℝ+ → (log‘2) ∈ ℝ)
3331, 32ax-mp 5 . . . . . . 7 (log‘2) ∈ ℝ
34 ere 15430 . . . . . . . . 9 e ∈ ℝ
351, 34remulcli 10645 . . . . . . . 8 (2 · e) ∈ ℝ
36 2pos 11728 . . . . . . . . . 10 0 < 2
37 epos 15548 . . . . . . . . . 10 0 < e
381, 34, 36, 37mulgt0ii 10761 . . . . . . . . 9 0 < (2 · e)
3935, 38gt0ne0ii 11164 . . . . . . . 8 (2 · e) ≠ 0
4035, 39rereccli 11393 . . . . . . 7 (1 / (2 · e)) ∈ ℝ
4133, 40resubcli 10936 . . . . . 6 ((log‘2) − (1 / (2 · e))) ∈ ℝ
42 2t1e2 11788 . . . . . . . . . 10 (2 · 1) = 2
43 egt2lt3 15547 . . . . . . . . . . . . 13 (2 < e ∧ e < 3)
4443simpli 484 . . . . . . . . . . . 12 2 < e
4510, 1, 34lttri 10754 . . . . . . . . . . . 12 ((1 < 2 ∧ 2 < e) → 1 < e)
4615, 44, 45mp2an 688 . . . . . . . . . . 11 1 < e
4710, 34, 1ltmul2i 11549 . . . . . . . . . . . 12 (0 < 2 → (1 < e ↔ (2 · 1) < (2 · e)))
4836, 47ax-mp 5 . . . . . . . . . . 11 (1 < e ↔ (2 · 1) < (2 · e))
4946, 48mpbi 231 . . . . . . . . . 10 (2 · 1) < (2 · e)
5042, 49eqbrtrri 5080 . . . . . . . . 9 2 < (2 · e)
511, 35, 36, 38ltrecii 11544 . . . . . . . . 9 (2 < (2 · e) ↔ (1 / (2 · e)) < (1 / 2))
5250, 51mpbi 231 . . . . . . . 8 (1 / (2 · e)) < (1 / 2)
5343simpri 486 . . . . . . . . . . . 12 e < 3
54 3lt4 11799 . . . . . . . . . . . 12 3 < 4
55 3re 11705 . . . . . . . . . . . . 13 3 ∈ ℝ
56 4re 11709 . . . . . . . . . . . . 13 4 ∈ ℝ
5734, 55, 56lttri 10754 . . . . . . . . . . . 12 ((e < 3 ∧ 3 < 4) → e < 4)
5853, 54, 57mp2an 688 . . . . . . . . . . 11 e < 4
59 epr 15549 . . . . . . . . . . . 12 e ∈ ℝ+
60 4pos 11732 . . . . . . . . . . . . 13 0 < 4
6156, 60elrpii 12380 . . . . . . . . . . . 12 4 ∈ ℝ+
62 logltb 25110 . . . . . . . . . . . 12 ((e ∈ ℝ+ ∧ 4 ∈ ℝ+) → (e < 4 ↔ (log‘e) < (log‘4)))
6359, 61, 62mp2an 688 . . . . . . . . . . 11 (e < 4 ↔ (log‘e) < (log‘4))
6458, 63mpbi 231 . . . . . . . . . 10 (log‘e) < (log‘4)
65 loge 25097 . . . . . . . . . 10 (log‘e) = 1
66 sq2 13548 . . . . . . . . . . . 12 (2↑2) = 4
6766fveq2i 6666 . . . . . . . . . . 11 (log‘(2↑2)) = (log‘4)
68 2z 12002 . . . . . . . . . . . 12 2 ∈ ℤ
69 relogexp 25106 . . . . . . . . . . . 12 ((2 ∈ ℝ+ ∧ 2 ∈ ℤ) → (log‘(2↑2)) = (2 · (log‘2)))
7031, 68, 69mp2an 688 . . . . . . . . . . 11 (log‘(2↑2)) = (2 · (log‘2))
7167, 70eqtr3i 2843 . . . . . . . . . 10 (log‘4) = (2 · (log‘2))
7264, 65, 713brtr3i 5086 . . . . . . . . 9 1 < (2 · (log‘2))
731, 36pm3.2i 471 . . . . . . . . . 10 (2 ∈ ℝ ∧ 0 < 2)
74 ltdivmul 11503 . . . . . . . . . 10 ((1 ∈ ℝ ∧ (log‘2) ∈ ℝ ∧ (2 ∈ ℝ ∧ 0 < 2)) → ((1 / 2) < (log‘2) ↔ 1 < (2 · (log‘2))))
7510, 33, 73, 74mp3an 1452 . . . . . . . . 9 ((1 / 2) < (log‘2) ↔ 1 < (2 · (log‘2)))
7672, 75mpbir 232 . . . . . . . 8 (1 / 2) < (log‘2)
77 halfre 11839 . . . . . . . . 9 (1 / 2) ∈ ℝ
7840, 77, 33lttri 10754 . . . . . . . 8 (((1 / (2 · e)) < (1 / 2) ∧ (1 / 2) < (log‘2)) → (1 / (2 · e)) < (log‘2))
7952, 76, 78mp2an 688 . . . . . . 7 (1 / (2 · e)) < (log‘2)
8040, 33posdifi 11178 . . . . . . 7 ((1 / (2 · e)) < (log‘2) ↔ 0 < ((log‘2) − (1 / (2 · e))))
8179, 80mpbi 231 . . . . . 6 0 < ((log‘2) − (1 / (2 · e)))
8241, 81elrpii 12380 . . . . 5 ((log‘2) − (1 / (2 · e))) ∈ ℝ+
83 rerpdivcl 12407 . . . . 5 ((2 ∈ ℝ ∧ ((log‘2) − (1 / (2 · e))) ∈ ℝ+) → (2 / ((log‘2) − (1 / (2 · e)))) ∈ ℝ)
841, 82, 83mp2an 688 . . . 4 (2 / ((log‘2) − (1 / (2 · e)))) ∈ ℝ
8584a1i 11 . . 3 (⊤ → (2 / ((log‘2) − (1 / (2 · e)))) ∈ ℝ)
86 rpre 12385 . . . . . . . 8 (((𝑥 / (log‘𝑥)) / (π𝑥)) ∈ ℝ+ → ((𝑥 / (log‘𝑥)) / (π𝑥)) ∈ ℝ)
87 rpge0 12390 . . . . . . . 8 (((𝑥 / (log‘𝑥)) / (π𝑥)) ∈ ℝ+ → 0 ≤ ((𝑥 / (log‘𝑥)) / (π𝑥)))
8886, 87absidd 14770 . . . . . . 7 (((𝑥 / (log‘𝑥)) / (π𝑥)) ∈ ℝ+ → (abs‘((𝑥 / (log‘𝑥)) / (π𝑥))) = ((𝑥 / (log‘𝑥)) / (π𝑥)))
8926, 88syl 17 . . . . . 6 (𝑥 ∈ (2[,)+∞) → (abs‘((𝑥 / (log‘𝑥)) / (π𝑥))) = ((𝑥 / (log‘𝑥)) / (π𝑥)))
9089adantr 481 . . . . 5 ((𝑥 ∈ (2[,)+∞) ∧ 8 ≤ 𝑥) → (abs‘((𝑥 / (log‘𝑥)) / (π𝑥))) = ((𝑥 / (log‘𝑥)) / (π𝑥)))
91 eqid 2818 . . . . . . . . . 10 (⌊‘(𝑥 / 2)) = (⌊‘(𝑥 / 2))
9291chebbnd1lem3 25974 . . . . . . . . 9 ((𝑥 ∈ ℝ ∧ 8 ≤ 𝑥) → (((log‘2) − (1 / (2 · e))) / 2) < ((π𝑥) · ((log‘𝑥) / 𝑥)))
938, 92sylan 580 . . . . . . . 8 ((𝑥 ∈ (2[,)+∞) ∧ 8 ≤ 𝑥) → (((log‘2) − (1 / (2 · e))) / 2) < ((π𝑥) · ((log‘𝑥) / 𝑥)))
941recni 10643 . . . . . . . . . 10 2 ∈ ℂ
95 2ne0 11729 . . . . . . . . . 10 2 ≠ 0
9641recni 10643 . . . . . . . . . 10 ((log‘2) − (1 / (2 · e))) ∈ ℂ
9741, 81gt0ne0ii 11164 . . . . . . . . . 10 ((log‘2) − (1 / (2 · e))) ≠ 0
98 recdiv 11334 . . . . . . . . . 10 (((2 ∈ ℂ ∧ 2 ≠ 0) ∧ (((log‘2) − (1 / (2 · e))) ∈ ℂ ∧ ((log‘2) − (1 / (2 · e))) ≠ 0)) → (1 / (2 / ((log‘2) − (1 / (2 · e))))) = (((log‘2) − (1 / (2 · e))) / 2))
9994, 95, 96, 97, 98mp4an 689 . . . . . . . . 9 (1 / (2 / ((log‘2) − (1 / (2 · e))))) = (((log‘2) − (1 / (2 · e))) / 2)
10099a1i 11 . . . . . . . 8 ((𝑥 ∈ (2[,)+∞) ∧ 8 ≤ 𝑥) → (1 / (2 / ((log‘2) − (1 / (2 · e))))) = (((log‘2) − (1 / (2 · e))) / 2))
10122rpcnd 12421 . . . . . . . . . . 11 (𝑥 ∈ (2[,)+∞) → (𝑥 / (log‘𝑥)) ∈ ℂ)
10224nncnd 11642 . . . . . . . . . . 11 (𝑥 ∈ (2[,)+∞) → (π𝑥) ∈ ℂ)
10322rpne0d 12424 . . . . . . . . . . 11 (𝑥 ∈ (2[,)+∞) → (𝑥 / (log‘𝑥)) ≠ 0)
10424nnne0d 11675 . . . . . . . . . . 11 (𝑥 ∈ (2[,)+∞) → (π𝑥) ≠ 0)
105101, 102, 103, 104recdivd 11421 . . . . . . . . . 10 (𝑥 ∈ (2[,)+∞) → (1 / ((𝑥 / (log‘𝑥)) / (π𝑥))) = ((π𝑥) / (𝑥 / (log‘𝑥))))
106102, 101, 103divrecd 11407 . . . . . . . . . 10 (𝑥 ∈ (2[,)+∞) → ((π𝑥) / (𝑥 / (log‘𝑥))) = ((π𝑥) · (1 / (𝑥 / (log‘𝑥)))))
10720rpcnne0d 12428 . . . . . . . . . . . 12 (𝑥 ∈ (2[,)+∞) → (𝑥 ∈ ℂ ∧ 𝑥 ≠ 0))
10821rpcnne0d 12428 . . . . . . . . . . . 12 (𝑥 ∈ (2[,)+∞) → ((log‘𝑥) ∈ ℂ ∧ (log‘𝑥) ≠ 0))
109 recdiv 11334 . . . . . . . . . . . 12 (((𝑥 ∈ ℂ ∧ 𝑥 ≠ 0) ∧ ((log‘𝑥) ∈ ℂ ∧ (log‘𝑥) ≠ 0)) → (1 / (𝑥 / (log‘𝑥))) = ((log‘𝑥) / 𝑥))
110107, 108, 109syl2anc 584 . . . . . . . . . . 11 (𝑥 ∈ (2[,)+∞) → (1 / (𝑥 / (log‘𝑥))) = ((log‘𝑥) / 𝑥))
111110oveq2d 7161 . . . . . . . . . 10 (𝑥 ∈ (2[,)+∞) → ((π𝑥) · (1 / (𝑥 / (log‘𝑥)))) = ((π𝑥) · ((log‘𝑥) / 𝑥)))
112105, 106, 1113eqtrd 2857 . . . . . . . . 9 (𝑥 ∈ (2[,)+∞) → (1 / ((𝑥 / (log‘𝑥)) / (π𝑥))) = ((π𝑥) · ((log‘𝑥) / 𝑥)))
113112adantr 481 . . . . . . . 8 ((𝑥 ∈ (2[,)+∞) ∧ 8 ≤ 𝑥) → (1 / ((𝑥 / (log‘𝑥)) / (π𝑥))) = ((π𝑥) · ((log‘𝑥) / 𝑥)))
11493, 100, 1133brtr4d 5089 . . . . . . 7 ((𝑥 ∈ (2[,)+∞) ∧ 8 ≤ 𝑥) → (1 / (2 / ((log‘2) − (1 / (2 · e))))) < (1 / ((𝑥 / (log‘𝑥)) / (π𝑥))))
11526adantr 481 . . . . . . . 8 ((𝑥 ∈ (2[,)+∞) ∧ 8 ≤ 𝑥) → ((𝑥 / (log‘𝑥)) / (π𝑥)) ∈ ℝ+)
116 elrp 12379 . . . . . . . . 9 (((𝑥 / (log‘𝑥)) / (π𝑥)) ∈ ℝ+ ↔ (((𝑥 / (log‘𝑥)) / (π𝑥)) ∈ ℝ ∧ 0 < ((𝑥 / (log‘𝑥)) / (π𝑥))))
1171, 41, 36, 81divgt0ii 11545 . . . . . . . . . 10 0 < (2 / ((log‘2) − (1 / (2 · e))))
118 ltrec 11510 . . . . . . . . . 10 (((((𝑥 / (log‘𝑥)) / (π𝑥)) ∈ ℝ ∧ 0 < ((𝑥 / (log‘𝑥)) / (π𝑥))) ∧ ((2 / ((log‘2) − (1 / (2 · e)))) ∈ ℝ ∧ 0 < (2 / ((log‘2) − (1 / (2 · e)))))) → (((𝑥 / (log‘𝑥)) / (π𝑥)) < (2 / ((log‘2) − (1 / (2 · e)))) ↔ (1 / (2 / ((log‘2) − (1 / (2 · e))))) < (1 / ((𝑥 / (log‘𝑥)) / (π𝑥)))))
11984, 117, 118mpanr12 701 . . . . . . . . 9 ((((𝑥 / (log‘𝑥)) / (π𝑥)) ∈ ℝ ∧ 0 < ((𝑥 / (log‘𝑥)) / (π𝑥))) → (((𝑥 / (log‘𝑥)) / (π𝑥)) < (2 / ((log‘2) − (1 / (2 · e)))) ↔ (1 / (2 / ((log‘2) − (1 / (2 · e))))) < (1 / ((𝑥 / (log‘𝑥)) / (π𝑥)))))
120116, 119sylbi 218 . . . . . . . 8 (((𝑥 / (log‘𝑥)) / (π𝑥)) ∈ ℝ+ → (((𝑥 / (log‘𝑥)) / (π𝑥)) < (2 / ((log‘2) − (1 / (2 · e)))) ↔ (1 / (2 / ((log‘2) − (1 / (2 · e))))) < (1 / ((𝑥 / (log‘𝑥)) / (π𝑥)))))
121115, 120syl 17 . . . . . . 7 ((𝑥 ∈ (2[,)+∞) ∧ 8 ≤ 𝑥) → (((𝑥 / (log‘𝑥)) / (π𝑥)) < (2 / ((log‘2) − (1 / (2 · e)))) ↔ (1 / (2 / ((log‘2) − (1 / (2 · e))))) < (1 / ((𝑥 / (log‘𝑥)) / (π𝑥)))))
122114, 121mpbird 258 . . . . . 6 ((𝑥 ∈ (2[,)+∞) ∧ 8 ≤ 𝑥) → ((𝑥 / (log‘𝑥)) / (π𝑥)) < (2 / ((log‘2) − (1 / (2 · e)))))
123115rpred 12419 . . . . . . 7 ((𝑥 ∈ (2[,)+∞) ∧ 8 ≤ 𝑥) → ((𝑥 / (log‘𝑥)) / (π𝑥)) ∈ ℝ)
124 ltle 10717 . . . . . . 7 ((((𝑥 / (log‘𝑥)) / (π𝑥)) ∈ ℝ ∧ (2 / ((log‘2) − (1 / (2 · e)))) ∈ ℝ) → (((𝑥 / (log‘𝑥)) / (π𝑥)) < (2 / ((log‘2) − (1 / (2 · e)))) → ((𝑥 / (log‘𝑥)) / (π𝑥)) ≤ (2 / ((log‘2) − (1 / (2 · e))))))
125123, 84, 124sylancl 586 . . . . . 6 ((𝑥 ∈ (2[,)+∞) ∧ 8 ≤ 𝑥) → (((𝑥 / (log‘𝑥)) / (π𝑥)) < (2 / ((log‘2) − (1 / (2 · e)))) → ((𝑥 / (log‘𝑥)) / (π𝑥)) ≤ (2 / ((log‘2) − (1 / (2 · e))))))
126122, 125mpd 15 . . . . 5 ((𝑥 ∈ (2[,)+∞) ∧ 8 ≤ 𝑥) → ((𝑥 / (log‘𝑥)) / (π𝑥)) ≤ (2 / ((log‘2) − (1 / (2 · e)))))
12790, 126eqbrtrd 5079 . . . 4 ((𝑥 ∈ (2[,)+∞) ∧ 8 ≤ 𝑥) → (abs‘((𝑥 / (log‘𝑥)) / (π𝑥))) ≤ (2 / ((log‘2) − (1 / (2 · e)))))
128127adantl 482 . . 3 ((⊤ ∧ (𝑥 ∈ (2[,)+∞) ∧ 8 ≤ 𝑥)) → (abs‘((𝑥 / (log‘𝑥)) / (π𝑥))) ≤ (2 / ((log‘2) − (1 / (2 · e)))))
1295, 28, 30, 85, 128elo1d 14881 . 2 (⊤ → (𝑥 ∈ (2[,)+∞) ↦ ((𝑥 / (log‘𝑥)) / (π𝑥))) ∈ 𝑂(1))
130129mptru 1535 1 (𝑥 ∈ (2[,)+∞) ↦ ((𝑥 / (log‘𝑥)) / (π𝑥))) ∈ 𝑂(1)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 207  wa 396   = wceq 1528  wtru 1529  wcel 2105  wne 3013  wss 3933   class class class wbr 5057  cmpt 5137  cfv 6348  (class class class)co 7145  cc 10523  cr 10524  0cc0 10525  1c1 10526   · cmul 10530  +∞cpnf 10660  *cxr 10662   < clt 10663  cle 10664  cmin 10858   / cdiv 11285  cn 11626  2c2 11680  3c3 11681  4c4 11682  8c8 11686  cz 11969  +crp 12377  [,)cico 12728  cfl 13148  cexp 13417  abscabs 14581  𝑂(1)co1 14831  eceu 15404  logclog 25065  πcppi 25598
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1787  ax-4 1801  ax-5 1902  ax-6 1961  ax-7 2006  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2151  ax-12 2167  ax-ext 2790  ax-rep 5181  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320  ax-un 7450  ax-inf2 9092  ax-cnex 10581  ax-resscn 10582  ax-1cn 10583  ax-icn 10584  ax-addcl 10585  ax-addrcl 10586  ax-mulcl 10587  ax-mulrcl 10588  ax-mulcom 10589  ax-addass 10590  ax-mulass 10591  ax-distr 10592  ax-i2m1 10593  ax-1ne0 10594  ax-1rid 10595  ax-rnegex 10596  ax-rrecex 10597  ax-cnre 10598  ax-pre-lttri 10599  ax-pre-lttrn 10600  ax-pre-ltadd 10601  ax-pre-mulgt0 10602  ax-pre-sup 10603  ax-addf 10604  ax-mulf 10605
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 842  df-3or 1080  df-3an 1081  df-tru 1531  df-fal 1541  df-ex 1772  df-nf 1776  df-sb 2061  df-mo 2615  df-eu 2647  df-clab 2797  df-cleq 2811  df-clel 2890  df-nfc 2960  df-ne 3014  df-nel 3121  df-ral 3140  df-rex 3141  df-reu 3142  df-rmo 3143  df-rab 3144  df-v 3494  df-sbc 3770  df-csb 3881  df-dif 3936  df-un 3938  df-in 3940  df-ss 3949  df-pss 3951  df-nul 4289  df-if 4464  df-pw 4537  df-sn 4558  df-pr 4560  df-tp 4562  df-op 4564  df-uni 4831  df-int 4868  df-iun 4912  df-iin 4913  df-br 5058  df-opab 5120  df-mpt 5138  df-tr 5164  df-id 5453  df-eprel 5458  df-po 5467  df-so 5468  df-fr 5507  df-se 5508  df-we 5509  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-pred 6141  df-ord 6187  df-on 6188  df-lim 6189  df-suc 6190  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-isom 6357  df-riota 7103  df-ov 7148  df-oprab 7149  df-mpo 7150  df-of 7398  df-om 7570  df-1st 7678  df-2nd 7679  df-supp 7820  df-wrecs 7936  df-recs 7997  df-rdg 8035  df-1o 8091  df-2o 8092  df-oadd 8095  df-er 8278  df-map 8397  df-pm 8398  df-ixp 8450  df-en 8498  df-dom 8499  df-sdom 8500  df-fin 8501  df-fsupp 8822  df-fi 8863  df-sup 8894  df-inf 8895  df-oi 8962  df-dju 9318  df-card 9356  df-pnf 10665  df-mnf 10666  df-xr 10667  df-ltxr 10668  df-le 10669  df-sub 10860  df-neg 10861  df-div 11286  df-nn 11627  df-2 11688  df-3 11689  df-4 11690  df-5 11691  df-6 11692  df-7 11693  df-8 11694  df-9 11695  df-n0 11886  df-xnn0 11956  df-z 11970  df-dec 12087  df-uz 12232  df-q 12337  df-rp 12378  df-xneg 12495  df-xadd 12496  df-xmul 12497  df-ioo 12730  df-ioc 12731  df-ico 12732  df-icc 12733  df-fz 12881  df-fzo 13022  df-fl 13150  df-mod 13226  df-seq 13358  df-exp 13418  df-fac 13622  df-bc 13651  df-hash 13679  df-shft 14414  df-cj 14446  df-re 14447  df-im 14448  df-sqrt 14582  df-abs 14583  df-limsup 14816  df-clim 14833  df-rlim 14834  df-o1 14835  df-lo1 14836  df-sum 15031  df-ef 15409  df-e 15410  df-sin 15411  df-cos 15412  df-pi 15414  df-dvds 15596  df-gcd 15832  df-prm 16004  df-pc 16162  df-struct 16473  df-ndx 16474  df-slot 16475  df-base 16477  df-sets 16478  df-ress 16479  df-plusg 16566  df-mulr 16567  df-starv 16568  df-sca 16569  df-vsca 16570  df-ip 16571  df-tset 16572  df-ple 16573  df-ds 16575  df-unif 16576  df-hom 16577  df-cco 16578  df-rest 16684  df-topn 16685  df-0g 16703  df-gsum 16704  df-topgen 16705  df-pt 16706  df-prds 16709  df-xrs 16763  df-qtop 16768  df-imas 16769  df-xps 16771  df-mre 16845  df-mrc 16846  df-acs 16848  df-mgm 17840  df-sgrp 17889  df-mnd 17900  df-submnd 17945  df-mulg 18163  df-cntz 18385  df-cmn 18837  df-psmet 20465  df-xmet 20466  df-met 20467  df-bl 20468  df-mopn 20469  df-fbas 20470  df-fg 20471  df-cnfld 20474  df-top 21430  df-topon 21447  df-topsp 21469  df-bases 21482  df-cld 21555  df-ntr 21556  df-cls 21557  df-nei 21634  df-lp 21672  df-perf 21673  df-cn 21763  df-cnp 21764  df-haus 21851  df-tx 22098  df-hmeo 22291  df-fil 22382  df-fm 22474  df-flim 22475  df-flf 22476  df-xms 22857  df-ms 22858  df-tms 22859  df-cncf 23413  df-limc 24391  df-dv 24392  df-log 25067  df-ppi 25604
This theorem is referenced by:  chtppilimlem2  25977  chto1lb  25981
  Copyright terms: Public domain W3C validator