MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  chebbnd1 Structured version   Visualization version   GIF version

Theorem chebbnd1 27516
Description: The Chebyshev bound: The function π(𝑥) is eventually lower bounded by a positive constant times 𝑥 / log(𝑥). Alternatively stated, the function (𝑥 / log(𝑥)) / π(𝑥) is eventually bounded. (Contributed by Mario Carneiro, 22-Sep-2014.)
Assertion
Ref Expression
chebbnd1 (𝑥 ∈ (2[,)+∞) ↦ ((𝑥 / (log‘𝑥)) / (π𝑥))) ∈ 𝑂(1)

Proof of Theorem chebbnd1
StepHypRef Expression
1 2re 12340 . . . . 5 2 ∈ ℝ
2 pnfxr 11315 . . . . 5 +∞ ∈ ℝ*
3 icossre 13468 . . . . 5 ((2 ∈ ℝ ∧ +∞ ∈ ℝ*) → (2[,)+∞) ⊆ ℝ)
41, 2, 3mp2an 692 . . . 4 (2[,)+∞) ⊆ ℝ
54a1i 11 . . 3 (⊤ → (2[,)+∞) ⊆ ℝ)
6 elicopnf 13485 . . . . . . . . . 10 (2 ∈ ℝ → (𝑥 ∈ (2[,)+∞) ↔ (𝑥 ∈ ℝ ∧ 2 ≤ 𝑥)))
71, 6ax-mp 5 . . . . . . . . 9 (𝑥 ∈ (2[,)+∞) ↔ (𝑥 ∈ ℝ ∧ 2 ≤ 𝑥))
87simplbi 497 . . . . . . . 8 (𝑥 ∈ (2[,)+∞) → 𝑥 ∈ ℝ)
9 0red 11264 . . . . . . . . 9 (𝑥 ∈ (2[,)+∞) → 0 ∈ ℝ)
10 1re 11261 . . . . . . . . . 10 1 ∈ ℝ
1110a1i 11 . . . . . . . . 9 (𝑥 ∈ (2[,)+∞) → 1 ∈ ℝ)
12 0lt1 11785 . . . . . . . . . 10 0 < 1
1312a1i 11 . . . . . . . . 9 (𝑥 ∈ (2[,)+∞) → 0 < 1)
141a1i 11 . . . . . . . . . 10 (𝑥 ∈ (2[,)+∞) → 2 ∈ ℝ)
15 1lt2 12437 . . . . . . . . . . 11 1 < 2
1615a1i 11 . . . . . . . . . 10 (𝑥 ∈ (2[,)+∞) → 1 < 2)
177simprbi 496 . . . . . . . . . 10 (𝑥 ∈ (2[,)+∞) → 2 ≤ 𝑥)
1811, 14, 8, 16, 17ltletrd 11421 . . . . . . . . 9 (𝑥 ∈ (2[,)+∞) → 1 < 𝑥)
199, 11, 8, 13, 18lttrd 11422 . . . . . . . 8 (𝑥 ∈ (2[,)+∞) → 0 < 𝑥)
208, 19elrpd 13074 . . . . . . 7 (𝑥 ∈ (2[,)+∞) → 𝑥 ∈ ℝ+)
218, 18rplogcld 26671 . . . . . . 7 (𝑥 ∈ (2[,)+∞) → (log‘𝑥) ∈ ℝ+)
2220, 21rpdivcld 13094 . . . . . 6 (𝑥 ∈ (2[,)+∞) → (𝑥 / (log‘𝑥)) ∈ ℝ+)
23 ppinncl 27217 . . . . . . . 8 ((𝑥 ∈ ℝ ∧ 2 ≤ 𝑥) → (π𝑥) ∈ ℕ)
247, 23sylbi 217 . . . . . . 7 (𝑥 ∈ (2[,)+∞) → (π𝑥) ∈ ℕ)
2524nnrpd 13075 . . . . . 6 (𝑥 ∈ (2[,)+∞) → (π𝑥) ∈ ℝ+)
2622, 25rpdivcld 13094 . . . . 5 (𝑥 ∈ (2[,)+∞) → ((𝑥 / (log‘𝑥)) / (π𝑥)) ∈ ℝ+)
2726rpcnd 13079 . . . 4 (𝑥 ∈ (2[,)+∞) → ((𝑥 / (log‘𝑥)) / (π𝑥)) ∈ ℂ)
2827adantl 481 . . 3 ((⊤ ∧ 𝑥 ∈ (2[,)+∞)) → ((𝑥 / (log‘𝑥)) / (π𝑥)) ∈ ℂ)
29 8re 12362 . . . 4 8 ∈ ℝ
3029a1i 11 . . 3 (⊤ → 8 ∈ ℝ)
31 2rp 13039 . . . . . . . 8 2 ∈ ℝ+
32 relogcl 26617 . . . . . . . 8 (2 ∈ ℝ+ → (log‘2) ∈ ℝ)
3331, 32ax-mp 5 . . . . . . 7 (log‘2) ∈ ℝ
34 ere 16125 . . . . . . . . 9 e ∈ ℝ
351, 34remulcli 11277 . . . . . . . 8 (2 · e) ∈ ℝ
36 2pos 12369 . . . . . . . . . 10 0 < 2
37 epos 16243 . . . . . . . . . 10 0 < e
381, 34, 36, 37mulgt0ii 11394 . . . . . . . . 9 0 < (2 · e)
3935, 38gt0ne0ii 11799 . . . . . . . 8 (2 · e) ≠ 0
4035, 39rereccli 12032 . . . . . . 7 (1 / (2 · e)) ∈ ℝ
4133, 40resubcli 11571 . . . . . 6 ((log‘2) − (1 / (2 · e))) ∈ ℝ
42 2t1e2 12429 . . . . . . . . . 10 (2 · 1) = 2
43 egt2lt3 16242 . . . . . . . . . . . . 13 (2 < e ∧ e < 3)
4443simpli 483 . . . . . . . . . . . 12 2 < e
4510, 1, 34lttri 11387 . . . . . . . . . . . 12 ((1 < 2 ∧ 2 < e) → 1 < e)
4615, 44, 45mp2an 692 . . . . . . . . . . 11 1 < e
4710, 34, 1ltmul2i 12189 . . . . . . . . . . . 12 (0 < 2 → (1 < e ↔ (2 · 1) < (2 · e)))
4836, 47ax-mp 5 . . . . . . . . . . 11 (1 < e ↔ (2 · 1) < (2 · e))
4946, 48mpbi 230 . . . . . . . . . 10 (2 · 1) < (2 · e)
5042, 49eqbrtrri 5166 . . . . . . . . 9 2 < (2 · e)
511, 35, 36, 38ltrecii 12184 . . . . . . . . 9 (2 < (2 · e) ↔ (1 / (2 · e)) < (1 / 2))
5250, 51mpbi 230 . . . . . . . 8 (1 / (2 · e)) < (1 / 2)
5343simpri 485 . . . . . . . . . . . 12 e < 3
54 3lt4 12440 . . . . . . . . . . . 12 3 < 4
55 3re 12346 . . . . . . . . . . . . 13 3 ∈ ℝ
56 4re 12350 . . . . . . . . . . . . 13 4 ∈ ℝ
5734, 55, 56lttri 11387 . . . . . . . . . . . 12 ((e < 3 ∧ 3 < 4) → e < 4)
5853, 54, 57mp2an 692 . . . . . . . . . . 11 e < 4
59 epr 16244 . . . . . . . . . . . 12 e ∈ ℝ+
60 4pos 12373 . . . . . . . . . . . . 13 0 < 4
6156, 60elrpii 13037 . . . . . . . . . . . 12 4 ∈ ℝ+
62 logltb 26642 . . . . . . . . . . . 12 ((e ∈ ℝ+ ∧ 4 ∈ ℝ+) → (e < 4 ↔ (log‘e) < (log‘4)))
6359, 61, 62mp2an 692 . . . . . . . . . . 11 (e < 4 ↔ (log‘e) < (log‘4))
6458, 63mpbi 230 . . . . . . . . . 10 (log‘e) < (log‘4)
65 loge 26628 . . . . . . . . . 10 (log‘e) = 1
66 sq2 14236 . . . . . . . . . . . 12 (2↑2) = 4
6766fveq2i 6909 . . . . . . . . . . 11 (log‘(2↑2)) = (log‘4)
68 2z 12649 . . . . . . . . . . . 12 2 ∈ ℤ
69 relogexp 26638 . . . . . . . . . . . 12 ((2 ∈ ℝ+ ∧ 2 ∈ ℤ) → (log‘(2↑2)) = (2 · (log‘2)))
7031, 68, 69mp2an 692 . . . . . . . . . . 11 (log‘(2↑2)) = (2 · (log‘2))
7167, 70eqtr3i 2767 . . . . . . . . . 10 (log‘4) = (2 · (log‘2))
7264, 65, 713brtr3i 5172 . . . . . . . . 9 1 < (2 · (log‘2))
731, 36pm3.2i 470 . . . . . . . . . 10 (2 ∈ ℝ ∧ 0 < 2)
74 ltdivmul 12143 . . . . . . . . . 10 ((1 ∈ ℝ ∧ (log‘2) ∈ ℝ ∧ (2 ∈ ℝ ∧ 0 < 2)) → ((1 / 2) < (log‘2) ↔ 1 < (2 · (log‘2))))
7510, 33, 73, 74mp3an 1463 . . . . . . . . 9 ((1 / 2) < (log‘2) ↔ 1 < (2 · (log‘2)))
7672, 75mpbir 231 . . . . . . . 8 (1 / 2) < (log‘2)
77 halfre 12480 . . . . . . . . 9 (1 / 2) ∈ ℝ
7840, 77, 33lttri 11387 . . . . . . . 8 (((1 / (2 · e)) < (1 / 2) ∧ (1 / 2) < (log‘2)) → (1 / (2 · e)) < (log‘2))
7952, 76, 78mp2an 692 . . . . . . 7 (1 / (2 · e)) < (log‘2)
8040, 33posdifi 11813 . . . . . . 7 ((1 / (2 · e)) < (log‘2) ↔ 0 < ((log‘2) − (1 / (2 · e))))
8179, 80mpbi 230 . . . . . 6 0 < ((log‘2) − (1 / (2 · e)))
8241, 81elrpii 13037 . . . . 5 ((log‘2) − (1 / (2 · e))) ∈ ℝ+
83 rerpdivcl 13065 . . . . 5 ((2 ∈ ℝ ∧ ((log‘2) − (1 / (2 · e))) ∈ ℝ+) → (2 / ((log‘2) − (1 / (2 · e)))) ∈ ℝ)
841, 82, 83mp2an 692 . . . 4 (2 / ((log‘2) − (1 / (2 · e)))) ∈ ℝ
8584a1i 11 . . 3 (⊤ → (2 / ((log‘2) − (1 / (2 · e)))) ∈ ℝ)
86 rpre 13043 . . . . . . . 8 (((𝑥 / (log‘𝑥)) / (π𝑥)) ∈ ℝ+ → ((𝑥 / (log‘𝑥)) / (π𝑥)) ∈ ℝ)
87 rpge0 13048 . . . . . . . 8 (((𝑥 / (log‘𝑥)) / (π𝑥)) ∈ ℝ+ → 0 ≤ ((𝑥 / (log‘𝑥)) / (π𝑥)))
8886, 87absidd 15461 . . . . . . 7 (((𝑥 / (log‘𝑥)) / (π𝑥)) ∈ ℝ+ → (abs‘((𝑥 / (log‘𝑥)) / (π𝑥))) = ((𝑥 / (log‘𝑥)) / (π𝑥)))
8926, 88syl 17 . . . . . 6 (𝑥 ∈ (2[,)+∞) → (abs‘((𝑥 / (log‘𝑥)) / (π𝑥))) = ((𝑥 / (log‘𝑥)) / (π𝑥)))
9089adantr 480 . . . . 5 ((𝑥 ∈ (2[,)+∞) ∧ 8 ≤ 𝑥) → (abs‘((𝑥 / (log‘𝑥)) / (π𝑥))) = ((𝑥 / (log‘𝑥)) / (π𝑥)))
91 eqid 2737 . . . . . . . . . 10 (⌊‘(𝑥 / 2)) = (⌊‘(𝑥 / 2))
9291chebbnd1lem3 27515 . . . . . . . . 9 ((𝑥 ∈ ℝ ∧ 8 ≤ 𝑥) → (((log‘2) − (1 / (2 · e))) / 2) < ((π𝑥) · ((log‘𝑥) / 𝑥)))
938, 92sylan 580 . . . . . . . 8 ((𝑥 ∈ (2[,)+∞) ∧ 8 ≤ 𝑥) → (((log‘2) − (1 / (2 · e))) / 2) < ((π𝑥) · ((log‘𝑥) / 𝑥)))
941recni 11275 . . . . . . . . . 10 2 ∈ ℂ
95 2ne0 12370 . . . . . . . . . 10 2 ≠ 0
9641recni 11275 . . . . . . . . . 10 ((log‘2) − (1 / (2 · e))) ∈ ℂ
9741, 81gt0ne0ii 11799 . . . . . . . . . 10 ((log‘2) − (1 / (2 · e))) ≠ 0
98 recdiv 11973 . . . . . . . . . 10 (((2 ∈ ℂ ∧ 2 ≠ 0) ∧ (((log‘2) − (1 / (2 · e))) ∈ ℂ ∧ ((log‘2) − (1 / (2 · e))) ≠ 0)) → (1 / (2 / ((log‘2) − (1 / (2 · e))))) = (((log‘2) − (1 / (2 · e))) / 2))
9994, 95, 96, 97, 98mp4an 693 . . . . . . . . 9 (1 / (2 / ((log‘2) − (1 / (2 · e))))) = (((log‘2) − (1 / (2 · e))) / 2)
10099a1i 11 . . . . . . . 8 ((𝑥 ∈ (2[,)+∞) ∧ 8 ≤ 𝑥) → (1 / (2 / ((log‘2) − (1 / (2 · e))))) = (((log‘2) − (1 / (2 · e))) / 2))
10122rpcnd 13079 . . . . . . . . . . 11 (𝑥 ∈ (2[,)+∞) → (𝑥 / (log‘𝑥)) ∈ ℂ)
10224nncnd 12282 . . . . . . . . . . 11 (𝑥 ∈ (2[,)+∞) → (π𝑥) ∈ ℂ)
10322rpne0d 13082 . . . . . . . . . . 11 (𝑥 ∈ (2[,)+∞) → (𝑥 / (log‘𝑥)) ≠ 0)
10424nnne0d 12316 . . . . . . . . . . 11 (𝑥 ∈ (2[,)+∞) → (π𝑥) ≠ 0)
105101, 102, 103, 104recdivd 12060 . . . . . . . . . 10 (𝑥 ∈ (2[,)+∞) → (1 / ((𝑥 / (log‘𝑥)) / (π𝑥))) = ((π𝑥) / (𝑥 / (log‘𝑥))))
106102, 101, 103divrecd 12046 . . . . . . . . . 10 (𝑥 ∈ (2[,)+∞) → ((π𝑥) / (𝑥 / (log‘𝑥))) = ((π𝑥) · (1 / (𝑥 / (log‘𝑥)))))
10720rpcnne0d 13086 . . . . . . . . . . . 12 (𝑥 ∈ (2[,)+∞) → (𝑥 ∈ ℂ ∧ 𝑥 ≠ 0))
10821rpcnne0d 13086 . . . . . . . . . . . 12 (𝑥 ∈ (2[,)+∞) → ((log‘𝑥) ∈ ℂ ∧ (log‘𝑥) ≠ 0))
109 recdiv 11973 . . . . . . . . . . . 12 (((𝑥 ∈ ℂ ∧ 𝑥 ≠ 0) ∧ ((log‘𝑥) ∈ ℂ ∧ (log‘𝑥) ≠ 0)) → (1 / (𝑥 / (log‘𝑥))) = ((log‘𝑥) / 𝑥))
110107, 108, 109syl2anc 584 . . . . . . . . . . 11 (𝑥 ∈ (2[,)+∞) → (1 / (𝑥 / (log‘𝑥))) = ((log‘𝑥) / 𝑥))
111110oveq2d 7447 . . . . . . . . . 10 (𝑥 ∈ (2[,)+∞) → ((π𝑥) · (1 / (𝑥 / (log‘𝑥)))) = ((π𝑥) · ((log‘𝑥) / 𝑥)))
112105, 106, 1113eqtrd 2781 . . . . . . . . 9 (𝑥 ∈ (2[,)+∞) → (1 / ((𝑥 / (log‘𝑥)) / (π𝑥))) = ((π𝑥) · ((log‘𝑥) / 𝑥)))
113112adantr 480 . . . . . . . 8 ((𝑥 ∈ (2[,)+∞) ∧ 8 ≤ 𝑥) → (1 / ((𝑥 / (log‘𝑥)) / (π𝑥))) = ((π𝑥) · ((log‘𝑥) / 𝑥)))
11493, 100, 1133brtr4d 5175 . . . . . . 7 ((𝑥 ∈ (2[,)+∞) ∧ 8 ≤ 𝑥) → (1 / (2 / ((log‘2) − (1 / (2 · e))))) < (1 / ((𝑥 / (log‘𝑥)) / (π𝑥))))
11526adantr 480 . . . . . . . 8 ((𝑥 ∈ (2[,)+∞) ∧ 8 ≤ 𝑥) → ((𝑥 / (log‘𝑥)) / (π𝑥)) ∈ ℝ+)
116 elrp 13036 . . . . . . . . 9 (((𝑥 / (log‘𝑥)) / (π𝑥)) ∈ ℝ+ ↔ (((𝑥 / (log‘𝑥)) / (π𝑥)) ∈ ℝ ∧ 0 < ((𝑥 / (log‘𝑥)) / (π𝑥))))
1171, 41, 36, 81divgt0ii 12185 . . . . . . . . . 10 0 < (2 / ((log‘2) − (1 / (2 · e))))
118 ltrec 12150 . . . . . . . . . 10 (((((𝑥 / (log‘𝑥)) / (π𝑥)) ∈ ℝ ∧ 0 < ((𝑥 / (log‘𝑥)) / (π𝑥))) ∧ ((2 / ((log‘2) − (1 / (2 · e)))) ∈ ℝ ∧ 0 < (2 / ((log‘2) − (1 / (2 · e)))))) → (((𝑥 / (log‘𝑥)) / (π𝑥)) < (2 / ((log‘2) − (1 / (2 · e)))) ↔ (1 / (2 / ((log‘2) − (1 / (2 · e))))) < (1 / ((𝑥 / (log‘𝑥)) / (π𝑥)))))
11984, 117, 118mpanr12 705 . . . . . . . . 9 ((((𝑥 / (log‘𝑥)) / (π𝑥)) ∈ ℝ ∧ 0 < ((𝑥 / (log‘𝑥)) / (π𝑥))) → (((𝑥 / (log‘𝑥)) / (π𝑥)) < (2 / ((log‘2) − (1 / (2 · e)))) ↔ (1 / (2 / ((log‘2) − (1 / (2 · e))))) < (1 / ((𝑥 / (log‘𝑥)) / (π𝑥)))))
120116, 119sylbi 217 . . . . . . . 8 (((𝑥 / (log‘𝑥)) / (π𝑥)) ∈ ℝ+ → (((𝑥 / (log‘𝑥)) / (π𝑥)) < (2 / ((log‘2) − (1 / (2 · e)))) ↔ (1 / (2 / ((log‘2) − (1 / (2 · e))))) < (1 / ((𝑥 / (log‘𝑥)) / (π𝑥)))))
121115, 120syl 17 . . . . . . 7 ((𝑥 ∈ (2[,)+∞) ∧ 8 ≤ 𝑥) → (((𝑥 / (log‘𝑥)) / (π𝑥)) < (2 / ((log‘2) − (1 / (2 · e)))) ↔ (1 / (2 / ((log‘2) − (1 / (2 · e))))) < (1 / ((𝑥 / (log‘𝑥)) / (π𝑥)))))
122114, 121mpbird 257 . . . . . 6 ((𝑥 ∈ (2[,)+∞) ∧ 8 ≤ 𝑥) → ((𝑥 / (log‘𝑥)) / (π𝑥)) < (2 / ((log‘2) − (1 / (2 · e)))))
123115rpred 13077 . . . . . . 7 ((𝑥 ∈ (2[,)+∞) ∧ 8 ≤ 𝑥) → ((𝑥 / (log‘𝑥)) / (π𝑥)) ∈ ℝ)
124 ltle 11349 . . . . . . 7 ((((𝑥 / (log‘𝑥)) / (π𝑥)) ∈ ℝ ∧ (2 / ((log‘2) − (1 / (2 · e)))) ∈ ℝ) → (((𝑥 / (log‘𝑥)) / (π𝑥)) < (2 / ((log‘2) − (1 / (2 · e)))) → ((𝑥 / (log‘𝑥)) / (π𝑥)) ≤ (2 / ((log‘2) − (1 / (2 · e))))))
125123, 84, 124sylancl 586 . . . . . 6 ((𝑥 ∈ (2[,)+∞) ∧ 8 ≤ 𝑥) → (((𝑥 / (log‘𝑥)) / (π𝑥)) < (2 / ((log‘2) − (1 / (2 · e)))) → ((𝑥 / (log‘𝑥)) / (π𝑥)) ≤ (2 / ((log‘2) − (1 / (2 · e))))))
126122, 125mpd 15 . . . . 5 ((𝑥 ∈ (2[,)+∞) ∧ 8 ≤ 𝑥) → ((𝑥 / (log‘𝑥)) / (π𝑥)) ≤ (2 / ((log‘2) − (1 / (2 · e)))))
12790, 126eqbrtrd 5165 . . . 4 ((𝑥 ∈ (2[,)+∞) ∧ 8 ≤ 𝑥) → (abs‘((𝑥 / (log‘𝑥)) / (π𝑥))) ≤ (2 / ((log‘2) − (1 / (2 · e)))))
128127adantl 481 . . 3 ((⊤ ∧ (𝑥 ∈ (2[,)+∞) ∧ 8 ≤ 𝑥)) → (abs‘((𝑥 / (log‘𝑥)) / (π𝑥))) ≤ (2 / ((log‘2) − (1 / (2 · e)))))
1295, 28, 30, 85, 128elo1d 15572 . 2 (⊤ → (𝑥 ∈ (2[,)+∞) ↦ ((𝑥 / (log‘𝑥)) / (π𝑥))) ∈ 𝑂(1))
130129mptru 1547 1 (𝑥 ∈ (2[,)+∞) ↦ ((𝑥 / (log‘𝑥)) / (π𝑥))) ∈ 𝑂(1)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wtru 1541  wcel 2108  wne 2940  wss 3951   class class class wbr 5143  cmpt 5225  cfv 6561  (class class class)co 7431  cc 11153  cr 11154  0cc0 11155  1c1 11156   · cmul 11160  +∞cpnf 11292  *cxr 11294   < clt 11295  cle 11296  cmin 11492   / cdiv 11920  cn 12266  2c2 12321  3c3 12322  4c4 12323  8c8 12327  cz 12613  +crp 13034  [,)cico 13389  cfl 13830  cexp 14102  abscabs 15273  𝑂(1)co1 15522  eceu 16098  logclog 26596  πcppi 27137
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-inf2 9681  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232  ax-pre-sup 11233  ax-addf 11234
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-tp 4631  df-op 4633  df-uni 4908  df-int 4947  df-iun 4993  df-iin 4994  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-se 5638  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-isom 6570  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-of 7697  df-om 7888  df-1st 8014  df-2nd 8015  df-supp 8186  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-1o 8506  df-2o 8507  df-oadd 8510  df-er 8745  df-map 8868  df-pm 8869  df-ixp 8938  df-en 8986  df-dom 8987  df-sdom 8988  df-fin 8989  df-fsupp 9402  df-fi 9451  df-sup 9482  df-inf 9483  df-oi 9550  df-dju 9941  df-card 9979  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-div 11921  df-nn 12267  df-2 12329  df-3 12330  df-4 12331  df-5 12332  df-6 12333  df-7 12334  df-8 12335  df-9 12336  df-n0 12527  df-xnn0 12600  df-z 12614  df-dec 12734  df-uz 12879  df-q 12991  df-rp 13035  df-xneg 13154  df-xadd 13155  df-xmul 13156  df-ioo 13391  df-ioc 13392  df-ico 13393  df-icc 13394  df-fz 13548  df-fzo 13695  df-fl 13832  df-mod 13910  df-seq 14043  df-exp 14103  df-fac 14313  df-bc 14342  df-hash 14370  df-shft 15106  df-cj 15138  df-re 15139  df-im 15140  df-sqrt 15274  df-abs 15275  df-limsup 15507  df-clim 15524  df-rlim 15525  df-o1 15526  df-lo1 15527  df-sum 15723  df-ef 16103  df-e 16104  df-sin 16105  df-cos 16106  df-pi 16108  df-dvds 16291  df-gcd 16532  df-prm 16709  df-pc 16875  df-struct 17184  df-sets 17201  df-slot 17219  df-ndx 17231  df-base 17248  df-ress 17275  df-plusg 17310  df-mulr 17311  df-starv 17312  df-sca 17313  df-vsca 17314  df-ip 17315  df-tset 17316  df-ple 17317  df-ds 17319  df-unif 17320  df-hom 17321  df-cco 17322  df-rest 17467  df-topn 17468  df-0g 17486  df-gsum 17487  df-topgen 17488  df-pt 17489  df-prds 17492  df-xrs 17547  df-qtop 17552  df-imas 17553  df-xps 17555  df-mre 17629  df-mrc 17630  df-acs 17632  df-mgm 18653  df-sgrp 18732  df-mnd 18748  df-submnd 18797  df-mulg 19086  df-cntz 19335  df-cmn 19800  df-psmet 21356  df-xmet 21357  df-met 21358  df-bl 21359  df-mopn 21360  df-fbas 21361  df-fg 21362  df-cnfld 21365  df-top 22900  df-topon 22917  df-topsp 22939  df-bases 22953  df-cld 23027  df-ntr 23028  df-cls 23029  df-nei 23106  df-lp 23144  df-perf 23145  df-cn 23235  df-cnp 23236  df-haus 23323  df-tx 23570  df-hmeo 23763  df-fil 23854  df-fm 23946  df-flim 23947  df-flf 23948  df-xms 24330  df-ms 24331  df-tms 24332  df-cncf 24904  df-limc 25901  df-dv 25902  df-log 26598  df-ppi 27143
This theorem is referenced by:  chtppilimlem2  27518  chto1lb  27522
  Copyright terms: Public domain W3C validator