Proof of Theorem chebbnd1
Step | Hyp | Ref
| Expression |
1 | | 2re 12047 |
. . . . 5
⊢ 2 ∈
ℝ |
2 | | pnfxr 11029 |
. . . . 5
⊢ +∞
∈ ℝ* |
3 | | icossre 13160 |
. . . . 5
⊢ ((2
∈ ℝ ∧ +∞ ∈ ℝ*) → (2[,)+∞)
⊆ ℝ) |
4 | 1, 2, 3 | mp2an 689 |
. . . 4
⊢
(2[,)+∞) ⊆ ℝ |
5 | 4 | a1i 11 |
. . 3
⊢ (⊤
→ (2[,)+∞) ⊆ ℝ) |
6 | | elicopnf 13177 |
. . . . . . . . . 10
⊢ (2 ∈
ℝ → (𝑥 ∈
(2[,)+∞) ↔ (𝑥
∈ ℝ ∧ 2 ≤ 𝑥))) |
7 | 1, 6 | ax-mp 5 |
. . . . . . . . 9
⊢ (𝑥 ∈ (2[,)+∞) ↔
(𝑥 ∈ ℝ ∧ 2
≤ 𝑥)) |
8 | 7 | simplbi 498 |
. . . . . . . 8
⊢ (𝑥 ∈ (2[,)+∞) →
𝑥 ∈
ℝ) |
9 | | 0red 10978 |
. . . . . . . . 9
⊢ (𝑥 ∈ (2[,)+∞) → 0
∈ ℝ) |
10 | | 1re 10975 |
. . . . . . . . . 10
⊢ 1 ∈
ℝ |
11 | 10 | a1i 11 |
. . . . . . . . 9
⊢ (𝑥 ∈ (2[,)+∞) → 1
∈ ℝ) |
12 | | 0lt1 11497 |
. . . . . . . . . 10
⊢ 0 <
1 |
13 | 12 | a1i 11 |
. . . . . . . . 9
⊢ (𝑥 ∈ (2[,)+∞) → 0
< 1) |
14 | 1 | a1i 11 |
. . . . . . . . . 10
⊢ (𝑥 ∈ (2[,)+∞) → 2
∈ ℝ) |
15 | | 1lt2 12144 |
. . . . . . . . . . 11
⊢ 1 <
2 |
16 | 15 | a1i 11 |
. . . . . . . . . 10
⊢ (𝑥 ∈ (2[,)+∞) → 1
< 2) |
17 | 7 | simprbi 497 |
. . . . . . . . . 10
⊢ (𝑥 ∈ (2[,)+∞) → 2
≤ 𝑥) |
18 | 11, 14, 8, 16, 17 | ltletrd 11135 |
. . . . . . . . 9
⊢ (𝑥 ∈ (2[,)+∞) → 1
< 𝑥) |
19 | 9, 11, 8, 13, 18 | lttrd 11136 |
. . . . . . . 8
⊢ (𝑥 ∈ (2[,)+∞) → 0
< 𝑥) |
20 | 8, 19 | elrpd 12769 |
. . . . . . 7
⊢ (𝑥 ∈ (2[,)+∞) →
𝑥 ∈
ℝ+) |
21 | 8, 18 | rplogcld 25784 |
. . . . . . 7
⊢ (𝑥 ∈ (2[,)+∞) →
(log‘𝑥) ∈
ℝ+) |
22 | 20, 21 | rpdivcld 12789 |
. . . . . 6
⊢ (𝑥 ∈ (2[,)+∞) →
(𝑥 / (log‘𝑥)) ∈
ℝ+) |
23 | | ppinncl 26323 |
. . . . . . . 8
⊢ ((𝑥 ∈ ℝ ∧ 2 ≤
𝑥) →
(π‘𝑥)
∈ ℕ) |
24 | 7, 23 | sylbi 216 |
. . . . . . 7
⊢ (𝑥 ∈ (2[,)+∞) →
(π‘𝑥)
∈ ℕ) |
25 | 24 | nnrpd 12770 |
. . . . . 6
⊢ (𝑥 ∈ (2[,)+∞) →
(π‘𝑥)
∈ ℝ+) |
26 | 22, 25 | rpdivcld 12789 |
. . . . 5
⊢ (𝑥 ∈ (2[,)+∞) →
((𝑥 / (log‘𝑥)) / (π‘𝑥)) ∈
ℝ+) |
27 | 26 | rpcnd 12774 |
. . . 4
⊢ (𝑥 ∈ (2[,)+∞) →
((𝑥 / (log‘𝑥)) / (π‘𝑥)) ∈
ℂ) |
28 | 27 | adantl 482 |
. . 3
⊢
((⊤ ∧ 𝑥
∈ (2[,)+∞)) → ((𝑥 / (log‘𝑥)) / (π‘𝑥)) ∈ ℂ) |
29 | | 8re 12069 |
. . . 4
⊢ 8 ∈
ℝ |
30 | 29 | a1i 11 |
. . 3
⊢ (⊤
→ 8 ∈ ℝ) |
31 | | 2rp 12735 |
. . . . . . . 8
⊢ 2 ∈
ℝ+ |
32 | | relogcl 25731 |
. . . . . . . 8
⊢ (2 ∈
ℝ+ → (log‘2) ∈ ℝ) |
33 | 31, 32 | ax-mp 5 |
. . . . . . 7
⊢
(log‘2) ∈ ℝ |
34 | | ere 15798 |
. . . . . . . . 9
⊢ e ∈
ℝ |
35 | 1, 34 | remulcli 10991 |
. . . . . . . 8
⊢ (2
· e) ∈ ℝ |
36 | | 2pos 12076 |
. . . . . . . . . 10
⊢ 0 <
2 |
37 | | epos 15916 |
. . . . . . . . . 10
⊢ 0 <
e |
38 | 1, 34, 36, 37 | mulgt0ii 11108 |
. . . . . . . . 9
⊢ 0 < (2
· e) |
39 | 35, 38 | gt0ne0ii 11511 |
. . . . . . . 8
⊢ (2
· e) ≠ 0 |
40 | 35, 39 | rereccli 11740 |
. . . . . . 7
⊢ (1 / (2
· e)) ∈ ℝ |
41 | 33, 40 | resubcli 11283 |
. . . . . 6
⊢
((log‘2) − (1 / (2 · e))) ∈
ℝ |
42 | | 2t1e2 12136 |
. . . . . . . . . 10
⊢ (2
· 1) = 2 |
43 | | egt2lt3 15915 |
. . . . . . . . . . . . 13
⊢ (2 < e
∧ e < 3) |
44 | 43 | simpli 484 |
. . . . . . . . . . . 12
⊢ 2 <
e |
45 | 10, 1, 34 | lttri 11101 |
. . . . . . . . . . . 12
⊢ ((1 <
2 ∧ 2 < e) → 1 < e) |
46 | 15, 44, 45 | mp2an 689 |
. . . . . . . . . . 11
⊢ 1 <
e |
47 | 10, 34, 1 | ltmul2i 11896 |
. . . . . . . . . . . 12
⊢ (0 < 2
→ (1 < e ↔ (2 · 1) < (2 · e))) |
48 | 36, 47 | ax-mp 5 |
. . . . . . . . . . 11
⊢ (1 < e
↔ (2 · 1) < (2 · e)) |
49 | 46, 48 | mpbi 229 |
. . . . . . . . . 10
⊢ (2
· 1) < (2 · e) |
50 | 42, 49 | eqbrtrri 5097 |
. . . . . . . . 9
⊢ 2 < (2
· e) |
51 | 1, 35, 36, 38 | ltrecii 11891 |
. . . . . . . . 9
⊢ (2 <
(2 · e) ↔ (1 / (2 · e)) < (1 / 2)) |
52 | 50, 51 | mpbi 229 |
. . . . . . . 8
⊢ (1 / (2
· e)) < (1 / 2) |
53 | 43 | simpri 486 |
. . . . . . . . . . . 12
⊢ e <
3 |
54 | | 3lt4 12147 |
. . . . . . . . . . . 12
⊢ 3 <
4 |
55 | | 3re 12053 |
. . . . . . . . . . . . 13
⊢ 3 ∈
ℝ |
56 | | 4re 12057 |
. . . . . . . . . . . . 13
⊢ 4 ∈
ℝ |
57 | 34, 55, 56 | lttri 11101 |
. . . . . . . . . . . 12
⊢ ((e <
3 ∧ 3 < 4) → e < 4) |
58 | 53, 54, 57 | mp2an 689 |
. . . . . . . . . . 11
⊢ e <
4 |
59 | | epr 15917 |
. . . . . . . . . . . 12
⊢ e ∈
ℝ+ |
60 | | 4pos 12080 |
. . . . . . . . . . . . 13
⊢ 0 <
4 |
61 | 56, 60 | elrpii 12733 |
. . . . . . . . . . . 12
⊢ 4 ∈
ℝ+ |
62 | | logltb 25755 |
. . . . . . . . . . . 12
⊢ ((e
∈ ℝ+ ∧ 4 ∈ ℝ+) → (e < 4
↔ (log‘e) < (log‘4))) |
63 | 59, 61, 62 | mp2an 689 |
. . . . . . . . . . 11
⊢ (e < 4
↔ (log‘e) < (log‘4)) |
64 | 58, 63 | mpbi 229 |
. . . . . . . . . 10
⊢
(log‘e) < (log‘4) |
65 | | loge 25742 |
. . . . . . . . . 10
⊢
(log‘e) = 1 |
66 | | sq2 13914 |
. . . . . . . . . . . 12
⊢
(2↑2) = 4 |
67 | 66 | fveq2i 6777 |
. . . . . . . . . . 11
⊢
(log‘(2↑2)) = (log‘4) |
68 | | 2z 12352 |
. . . . . . . . . . . 12
⊢ 2 ∈
ℤ |
69 | | relogexp 25751 |
. . . . . . . . . . . 12
⊢ ((2
∈ ℝ+ ∧ 2 ∈ ℤ) →
(log‘(2↑2)) = (2 · (log‘2))) |
70 | 31, 68, 69 | mp2an 689 |
. . . . . . . . . . 11
⊢
(log‘(2↑2)) = (2 · (log‘2)) |
71 | 67, 70 | eqtr3i 2768 |
. . . . . . . . . 10
⊢
(log‘4) = (2 · (log‘2)) |
72 | 64, 65, 71 | 3brtr3i 5103 |
. . . . . . . . 9
⊢ 1 < (2
· (log‘2)) |
73 | 1, 36 | pm3.2i 471 |
. . . . . . . . . 10
⊢ (2 ∈
ℝ ∧ 0 < 2) |
74 | | ltdivmul 11850 |
. . . . . . . . . 10
⊢ ((1
∈ ℝ ∧ (log‘2) ∈ ℝ ∧ (2 ∈ ℝ ∧
0 < 2)) → ((1 / 2) < (log‘2) ↔ 1 < (2 ·
(log‘2)))) |
75 | 10, 33, 73, 74 | mp3an 1460 |
. . . . . . . . 9
⊢ ((1 / 2)
< (log‘2) ↔ 1 < (2 · (log‘2))) |
76 | 72, 75 | mpbir 230 |
. . . . . . . 8
⊢ (1 / 2)
< (log‘2) |
77 | | halfre 12187 |
. . . . . . . . 9
⊢ (1 / 2)
∈ ℝ |
78 | 40, 77, 33 | lttri 11101 |
. . . . . . . 8
⊢ (((1 / (2
· e)) < (1 / 2) ∧ (1 / 2) < (log‘2)) → (1 / (2
· e)) < (log‘2)) |
79 | 52, 76, 78 | mp2an 689 |
. . . . . . 7
⊢ (1 / (2
· e)) < (log‘2) |
80 | 40, 33 | posdifi 11525 |
. . . . . . 7
⊢ ((1 / (2
· e)) < (log‘2) ↔ 0 < ((log‘2) − (1 / (2
· e)))) |
81 | 79, 80 | mpbi 229 |
. . . . . 6
⊢ 0 <
((log‘2) − (1 / (2 · e))) |
82 | 41, 81 | elrpii 12733 |
. . . . 5
⊢
((log‘2) − (1 / (2 · e))) ∈
ℝ+ |
83 | | rerpdivcl 12760 |
. . . . 5
⊢ ((2
∈ ℝ ∧ ((log‘2) − (1 / (2 · e))) ∈
ℝ+) → (2 / ((log‘2) − (1 / (2 · e))))
∈ ℝ) |
84 | 1, 82, 83 | mp2an 689 |
. . . 4
⊢ (2 /
((log‘2) − (1 / (2 · e)))) ∈ ℝ |
85 | 84 | a1i 11 |
. . 3
⊢ (⊤
→ (2 / ((log‘2) − (1 / (2 · e)))) ∈
ℝ) |
86 | | rpre 12738 |
. . . . . . . 8
⊢ (((𝑥 / (log‘𝑥)) / (π‘𝑥)) ∈ ℝ+ → ((𝑥 / (log‘𝑥)) / (π‘𝑥)) ∈ ℝ) |
87 | | rpge0 12743 |
. . . . . . . 8
⊢ (((𝑥 / (log‘𝑥)) / (π‘𝑥)) ∈ ℝ+ → 0 ≤
((𝑥 / (log‘𝑥)) / (π‘𝑥))) |
88 | 86, 87 | absidd 15134 |
. . . . . . 7
⊢ (((𝑥 / (log‘𝑥)) / (π‘𝑥)) ∈ ℝ+ →
(abs‘((𝑥 /
(log‘𝑥)) /
(π‘𝑥))) =
((𝑥 / (log‘𝑥)) / (π‘𝑥))) |
89 | 26, 88 | syl 17 |
. . . . . 6
⊢ (𝑥 ∈ (2[,)+∞) →
(abs‘((𝑥 /
(log‘𝑥)) /
(π‘𝑥))) =
((𝑥 / (log‘𝑥)) / (π‘𝑥))) |
90 | 89 | adantr 481 |
. . . . 5
⊢ ((𝑥 ∈ (2[,)+∞) ∧ 8
≤ 𝑥) →
(abs‘((𝑥 /
(log‘𝑥)) /
(π‘𝑥))) =
((𝑥 / (log‘𝑥)) / (π‘𝑥))) |
91 | | eqid 2738 |
. . . . . . . . . 10
⊢
(⌊‘(𝑥 /
2)) = (⌊‘(𝑥 /
2)) |
92 | 91 | chebbnd1lem3 26619 |
. . . . . . . . 9
⊢ ((𝑥 ∈ ℝ ∧ 8 ≤
𝑥) → (((log‘2)
− (1 / (2 · e))) / 2) < ((π‘𝑥) · ((log‘𝑥) / 𝑥))) |
93 | 8, 92 | sylan 580 |
. . . . . . . 8
⊢ ((𝑥 ∈ (2[,)+∞) ∧ 8
≤ 𝑥) →
(((log‘2) − (1 / (2 · e))) / 2) <
((π‘𝑥)
· ((log‘𝑥) /
𝑥))) |
94 | 1 | recni 10989 |
. . . . . . . . . 10
⊢ 2 ∈
ℂ |
95 | | 2ne0 12077 |
. . . . . . . . . 10
⊢ 2 ≠
0 |
96 | 41 | recni 10989 |
. . . . . . . . . 10
⊢
((log‘2) − (1 / (2 · e))) ∈
ℂ |
97 | 41, 81 | gt0ne0ii 11511 |
. . . . . . . . . 10
⊢
((log‘2) − (1 / (2 · e))) ≠ 0 |
98 | | recdiv 11681 |
. . . . . . . . . 10
⊢ (((2
∈ ℂ ∧ 2 ≠ 0) ∧ (((log‘2) − (1 / (2 ·
e))) ∈ ℂ ∧ ((log‘2) − (1 / (2 · e))) ≠ 0))
→ (1 / (2 / ((log‘2) − (1 / (2 · e))))) =
(((log‘2) − (1 / (2 · e))) / 2)) |
99 | 94, 95, 96, 97, 98 | mp4an 690 |
. . . . . . . . 9
⊢ (1 / (2 /
((log‘2) − (1 / (2 · e))))) = (((log‘2) − (1 /
(2 · e))) / 2) |
100 | 99 | a1i 11 |
. . . . . . . 8
⊢ ((𝑥 ∈ (2[,)+∞) ∧ 8
≤ 𝑥) → (1 / (2 /
((log‘2) − (1 / (2 · e))))) = (((log‘2) − (1 /
(2 · e))) / 2)) |
101 | 22 | rpcnd 12774 |
. . . . . . . . . . 11
⊢ (𝑥 ∈ (2[,)+∞) →
(𝑥 / (log‘𝑥)) ∈
ℂ) |
102 | 24 | nncnd 11989 |
. . . . . . . . . . 11
⊢ (𝑥 ∈ (2[,)+∞) →
(π‘𝑥)
∈ ℂ) |
103 | 22 | rpne0d 12777 |
. . . . . . . . . . 11
⊢ (𝑥 ∈ (2[,)+∞) →
(𝑥 / (log‘𝑥)) ≠ 0) |
104 | 24 | nnne0d 12023 |
. . . . . . . . . . 11
⊢ (𝑥 ∈ (2[,)+∞) →
(π‘𝑥) ≠
0) |
105 | 101, 102,
103, 104 | recdivd 11768 |
. . . . . . . . . 10
⊢ (𝑥 ∈ (2[,)+∞) → (1
/ ((𝑥 / (log‘𝑥)) / (π‘𝑥))) = ((π‘𝑥) / (𝑥 / (log‘𝑥)))) |
106 | 102, 101,
103 | divrecd 11754 |
. . . . . . . . . 10
⊢ (𝑥 ∈ (2[,)+∞) →
((π‘𝑥) /
(𝑥 / (log‘𝑥))) = ((π‘𝑥) · (1 / (𝑥 / (log‘𝑥))))) |
107 | 20 | rpcnne0d 12781 |
. . . . . . . . . . . 12
⊢ (𝑥 ∈ (2[,)+∞) →
(𝑥 ∈ ℂ ∧
𝑥 ≠ 0)) |
108 | 21 | rpcnne0d 12781 |
. . . . . . . . . . . 12
⊢ (𝑥 ∈ (2[,)+∞) →
((log‘𝑥) ∈
ℂ ∧ (log‘𝑥)
≠ 0)) |
109 | | recdiv 11681 |
. . . . . . . . . . . 12
⊢ (((𝑥 ∈ ℂ ∧ 𝑥 ≠ 0) ∧ ((log‘𝑥) ∈ ℂ ∧
(log‘𝑥) ≠ 0))
→ (1 / (𝑥 /
(log‘𝑥))) =
((log‘𝑥) / 𝑥)) |
110 | 107, 108,
109 | syl2anc 584 |
. . . . . . . . . . 11
⊢ (𝑥 ∈ (2[,)+∞) → (1
/ (𝑥 / (log‘𝑥))) = ((log‘𝑥) / 𝑥)) |
111 | 110 | oveq2d 7291 |
. . . . . . . . . 10
⊢ (𝑥 ∈ (2[,)+∞) →
((π‘𝑥)
· (1 / (𝑥 /
(log‘𝑥)))) =
((π‘𝑥)
· ((log‘𝑥) /
𝑥))) |
112 | 105, 106,
111 | 3eqtrd 2782 |
. . . . . . . . 9
⊢ (𝑥 ∈ (2[,)+∞) → (1
/ ((𝑥 / (log‘𝑥)) / (π‘𝑥))) = ((π‘𝑥) · ((log‘𝑥) / 𝑥))) |
113 | 112 | adantr 481 |
. . . . . . . 8
⊢ ((𝑥 ∈ (2[,)+∞) ∧ 8
≤ 𝑥) → (1 / ((𝑥 / (log‘𝑥)) / (π‘𝑥))) = ((π‘𝑥) · ((log‘𝑥) / 𝑥))) |
114 | 93, 100, 113 | 3brtr4d 5106 |
. . . . . . 7
⊢ ((𝑥 ∈ (2[,)+∞) ∧ 8
≤ 𝑥) → (1 / (2 /
((log‘2) − (1 / (2 · e))))) < (1 / ((𝑥 / (log‘𝑥)) / (π‘𝑥)))) |
115 | 26 | adantr 481 |
. . . . . . . 8
⊢ ((𝑥 ∈ (2[,)+∞) ∧ 8
≤ 𝑥) → ((𝑥 / (log‘𝑥)) / (π‘𝑥)) ∈
ℝ+) |
116 | | elrp 12732 |
. . . . . . . . 9
⊢ (((𝑥 / (log‘𝑥)) / (π‘𝑥)) ∈ ℝ+ ↔ (((𝑥 / (log‘𝑥)) / (π‘𝑥)) ∈ ℝ ∧ 0 < ((𝑥 / (log‘𝑥)) / (π‘𝑥)))) |
117 | 1, 41, 36, 81 | divgt0ii 11892 |
. . . . . . . . . 10
⊢ 0 < (2
/ ((log‘2) − (1 / (2 · e)))) |
118 | | ltrec 11857 |
. . . . . . . . . 10
⊢
(((((𝑥 /
(log‘𝑥)) /
(π‘𝑥))
∈ ℝ ∧ 0 < ((𝑥 / (log‘𝑥)) / (π‘𝑥))) ∧ ((2 / ((log‘2) − (1 /
(2 · e)))) ∈ ℝ ∧ 0 < (2 / ((log‘2) − (1 /
(2 · e)))))) → (((𝑥 / (log‘𝑥)) / (π‘𝑥)) < (2 / ((log‘2) − (1 / (2
· e)))) ↔ (1 / (2 / ((log‘2) − (1 / (2 · e)))))
< (1 / ((𝑥 /
(log‘𝑥)) /
(π‘𝑥))))) |
119 | 84, 117, 118 | mpanr12 702 |
. . . . . . . . 9
⊢ ((((𝑥 / (log‘𝑥)) / (π‘𝑥)) ∈ ℝ ∧ 0 < ((𝑥 / (log‘𝑥)) / (π‘𝑥))) → (((𝑥 / (log‘𝑥)) / (π‘𝑥)) < (2 / ((log‘2) − (1 / (2
· e)))) ↔ (1 / (2 / ((log‘2) − (1 / (2 · e)))))
< (1 / ((𝑥 /
(log‘𝑥)) /
(π‘𝑥))))) |
120 | 116, 119 | sylbi 216 |
. . . . . . . 8
⊢ (((𝑥 / (log‘𝑥)) / (π‘𝑥)) ∈ ℝ+ → (((𝑥 / (log‘𝑥)) / (π‘𝑥)) < (2 / ((log‘2) − (1 / (2
· e)))) ↔ (1 / (2 / ((log‘2) − (1 / (2 · e)))))
< (1 / ((𝑥 /
(log‘𝑥)) /
(π‘𝑥))))) |
121 | 115, 120 | syl 17 |
. . . . . . 7
⊢ ((𝑥 ∈ (2[,)+∞) ∧ 8
≤ 𝑥) → (((𝑥 / (log‘𝑥)) / (π‘𝑥)) < (2 / ((log‘2) − (1 / (2
· e)))) ↔ (1 / (2 / ((log‘2) − (1 / (2 · e)))))
< (1 / ((𝑥 /
(log‘𝑥)) /
(π‘𝑥))))) |
122 | 114, 121 | mpbird 256 |
. . . . . 6
⊢ ((𝑥 ∈ (2[,)+∞) ∧ 8
≤ 𝑥) → ((𝑥 / (log‘𝑥)) / (π‘𝑥)) < (2 / ((log‘2) − (1 / (2
· e))))) |
123 | 115 | rpred 12772 |
. . . . . . 7
⊢ ((𝑥 ∈ (2[,)+∞) ∧ 8
≤ 𝑥) → ((𝑥 / (log‘𝑥)) / (π‘𝑥)) ∈ ℝ) |
124 | | ltle 11063 |
. . . . . . 7
⊢ ((((𝑥 / (log‘𝑥)) / (π‘𝑥)) ∈ ℝ ∧ (2 / ((log‘2)
− (1 / (2 · e)))) ∈ ℝ) → (((𝑥 / (log‘𝑥)) / (π‘𝑥)) < (2 / ((log‘2) − (1 / (2
· e)))) → ((𝑥 /
(log‘𝑥)) /
(π‘𝑥)) ≤
(2 / ((log‘2) − (1 / (2 · e)))))) |
125 | 123, 84, 124 | sylancl 586 |
. . . . . 6
⊢ ((𝑥 ∈ (2[,)+∞) ∧ 8
≤ 𝑥) → (((𝑥 / (log‘𝑥)) / (π‘𝑥)) < (2 / ((log‘2) − (1 / (2
· e)))) → ((𝑥 /
(log‘𝑥)) /
(π‘𝑥)) ≤
(2 / ((log‘2) − (1 / (2 · e)))))) |
126 | 122, 125 | mpd 15 |
. . . . 5
⊢ ((𝑥 ∈ (2[,)+∞) ∧ 8
≤ 𝑥) → ((𝑥 / (log‘𝑥)) / (π‘𝑥)) ≤ (2 / ((log‘2) − (1 / (2
· e))))) |
127 | 90, 126 | eqbrtrd 5096 |
. . . 4
⊢ ((𝑥 ∈ (2[,)+∞) ∧ 8
≤ 𝑥) →
(abs‘((𝑥 /
(log‘𝑥)) /
(π‘𝑥)))
≤ (2 / ((log‘2) − (1 / (2 · e))))) |
128 | 127 | adantl 482 |
. . 3
⊢
((⊤ ∧ (𝑥
∈ (2[,)+∞) ∧ 8 ≤ 𝑥)) → (abs‘((𝑥 / (log‘𝑥)) / (π‘𝑥))) ≤ (2 / ((log‘2) − (1 / (2
· e))))) |
129 | 5, 28, 30, 85, 128 | elo1d 15245 |
. 2
⊢ (⊤
→ (𝑥 ∈
(2[,)+∞) ↦ ((𝑥
/ (log‘𝑥)) /
(π‘𝑥)))
∈ 𝑂(1)) |
130 | 129 | mptru 1546 |
1
⊢ (𝑥 ∈ (2[,)+∞) ↦
((𝑥 / (log‘𝑥)) / (π‘𝑥))) ∈
𝑂(1) |