MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pige3ALT Structured version   Visualization version   GIF version

Theorem pige3ALT 26456
Description: Alternate proof of pige3 26455. This proof is based on the geometric observation that a hexagon of unit side length has perimeter 6, which is less than the unit-radius circumcircle, of perimeter . We translate this to algebra by looking at the function e↑(i𝑥) as 𝑥 goes from 0 to π / 3; it moves at unit speed and travels distance 1, hence 1 ≤ π / 3. (Contributed by Mario Carneiro, 21-May-2016.) (New usage is discouraged.) (Proof modification is discouraged.)
Assertion
Ref Expression
pige3ALT 3 ≤ π

Proof of Theorem pige3ALT
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 3cn 12206 . . 3 3 ∈ ℂ
21mullidi 11117 . 2 (1 · 3) = 3
3 tru 1545 . . . . . 6
4 0xr 11159 . . . . . . . 8 0 ∈ ℝ*
5 pirp 26397 . . . . . . . . . 10 π ∈ ℝ+
6 3rp 12896 . . . . . . . . . 10 3 ∈ ℝ+
7 rpdivcl 12917 . . . . . . . . . 10 ((π ∈ ℝ+ ∧ 3 ∈ ℝ+) → (π / 3) ∈ ℝ+)
85, 6, 7mp2an 692 . . . . . . . . 9 (π / 3) ∈ ℝ+
9 rpxr 12900 . . . . . . . . 9 ((π / 3) ∈ ℝ+ → (π / 3) ∈ ℝ*)
108, 9ax-mp 5 . . . . . . . 8 (π / 3) ∈ ℝ*
11 rpge0 12904 . . . . . . . . 9 ((π / 3) ∈ ℝ+ → 0 ≤ (π / 3))
128, 11ax-mp 5 . . . . . . . 8 0 ≤ (π / 3)
13 lbicc2 13364 . . . . . . . 8 ((0 ∈ ℝ* ∧ (π / 3) ∈ ℝ* ∧ 0 ≤ (π / 3)) → 0 ∈ (0[,](π / 3)))
144, 10, 12, 13mp3an 1463 . . . . . . 7 0 ∈ (0[,](π / 3))
15 ubicc2 13365 . . . . . . . 8 ((0 ∈ ℝ* ∧ (π / 3) ∈ ℝ* ∧ 0 ≤ (π / 3)) → (π / 3) ∈ (0[,](π / 3)))
164, 10, 12, 15mp3an 1463 . . . . . . 7 (π / 3) ∈ (0[,](π / 3))
1714, 16pm3.2i 470 . . . . . 6 (0 ∈ (0[,](π / 3)) ∧ (π / 3) ∈ (0[,](π / 3)))
18 0re 11114 . . . . . . . 8 0 ∈ ℝ
1918a1i 11 . . . . . . 7 (⊤ → 0 ∈ ℝ)
20 pire 26393 . . . . . . . . 9 π ∈ ℝ
21 3re 12205 . . . . . . . . 9 3 ∈ ℝ
22 3ne0 12231 . . . . . . . . 9 3 ≠ 0
2320, 21, 22redivcli 11888 . . . . . . . 8 (π / 3) ∈ ℝ
2423a1i 11 . . . . . . 7 (⊤ → (π / 3) ∈ ℝ)
25 efcn 26380 . . . . . . . . 9 exp ∈ (ℂ–cn→ℂ)
2625a1i 11 . . . . . . . 8 (⊤ → exp ∈ (ℂ–cn→ℂ))
27 iccssre 13329 . . . . . . . . . . . 12 ((0 ∈ ℝ ∧ (π / 3) ∈ ℝ) → (0[,](π / 3)) ⊆ ℝ)
2818, 23, 27mp2an 692 . . . . . . . . . . 11 (0[,](π / 3)) ⊆ ℝ
29 ax-resscn 11063 . . . . . . . . . . 11 ℝ ⊆ ℂ
3028, 29sstri 3939 . . . . . . . . . 10 (0[,](π / 3)) ⊆ ℂ
31 resmpt 5985 . . . . . . . . . 10 ((0[,](π / 3)) ⊆ ℂ → ((𝑥 ∈ ℂ ↦ (i · 𝑥)) ↾ (0[,](π / 3))) = (𝑥 ∈ (0[,](π / 3)) ↦ (i · 𝑥)))
3230, 31mp1i 13 . . . . . . . . 9 (⊤ → ((𝑥 ∈ ℂ ↦ (i · 𝑥)) ↾ (0[,](π / 3))) = (𝑥 ∈ (0[,](π / 3)) ↦ (i · 𝑥)))
33 ssidd 3953 . . . . . . . . . . 11 (⊤ → ℂ ⊆ ℂ)
34 ax-icn 11065 . . . . . . . . . . . . 13 i ∈ ℂ
35 simpr 484 . . . . . . . . . . . . 13 ((⊤ ∧ 𝑥 ∈ ℂ) → 𝑥 ∈ ℂ)
36 mulcl 11090 . . . . . . . . . . . . 13 ((i ∈ ℂ ∧ 𝑥 ∈ ℂ) → (i · 𝑥) ∈ ℂ)
3734, 35, 36sylancr 587 . . . . . . . . . . . 12 ((⊤ ∧ 𝑥 ∈ ℂ) → (i · 𝑥) ∈ ℂ)
3837fmpttd 7048 . . . . . . . . . . 11 (⊤ → (𝑥 ∈ ℂ ↦ (i · 𝑥)):ℂ⟶ℂ)
39 cnelprrecn 11099 . . . . . . . . . . . . . . . 16 ℂ ∈ {ℝ, ℂ}
4039a1i 11 . . . . . . . . . . . . . . 15 (⊤ → ℂ ∈ {ℝ, ℂ})
41 ax-1cn 11064 . . . . . . . . . . . . . . . 16 1 ∈ ℂ
4241a1i 11 . . . . . . . . . . . . . . 15 ((⊤ ∧ 𝑥 ∈ ℂ) → 1 ∈ ℂ)
4340dvmptid 25888 . . . . . . . . . . . . . . 15 (⊤ → (ℂ D (𝑥 ∈ ℂ ↦ 𝑥)) = (𝑥 ∈ ℂ ↦ 1))
4434a1i 11 . . . . . . . . . . . . . . 15 (⊤ → i ∈ ℂ)
4540, 35, 42, 43, 44dvmptcmul 25895 . . . . . . . . . . . . . 14 (⊤ → (ℂ D (𝑥 ∈ ℂ ↦ (i · 𝑥))) = (𝑥 ∈ ℂ ↦ (i · 1)))
4634mulridi 11116 . . . . . . . . . . . . . . 15 (i · 1) = i
4746mpteq2i 5185 . . . . . . . . . . . . . 14 (𝑥 ∈ ℂ ↦ (i · 1)) = (𝑥 ∈ ℂ ↦ i)
4845, 47eqtrdi 2782 . . . . . . . . . . . . 13 (⊤ → (ℂ D (𝑥 ∈ ℂ ↦ (i · 𝑥))) = (𝑥 ∈ ℂ ↦ i))
4948dmeqd 5844 . . . . . . . . . . . 12 (⊤ → dom (ℂ D (𝑥 ∈ ℂ ↦ (i · 𝑥))) = dom (𝑥 ∈ ℂ ↦ i))
5034elexi 3459 . . . . . . . . . . . . 13 i ∈ V
51 eqid 2731 . . . . . . . . . . . . 13 (𝑥 ∈ ℂ ↦ i) = (𝑥 ∈ ℂ ↦ i)
5250, 51dmmpti 6625 . . . . . . . . . . . 12 dom (𝑥 ∈ ℂ ↦ i) = ℂ
5349, 52eqtrdi 2782 . . . . . . . . . . 11 (⊤ → dom (ℂ D (𝑥 ∈ ℂ ↦ (i · 𝑥))) = ℂ)
54 dvcn 25850 . . . . . . . . . . 11 (((ℂ ⊆ ℂ ∧ (𝑥 ∈ ℂ ↦ (i · 𝑥)):ℂ⟶ℂ ∧ ℂ ⊆ ℂ) ∧ dom (ℂ D (𝑥 ∈ ℂ ↦ (i · 𝑥))) = ℂ) → (𝑥 ∈ ℂ ↦ (i · 𝑥)) ∈ (ℂ–cn→ℂ))
5533, 38, 33, 53, 54syl31anc 1375 . . . . . . . . . 10 (⊤ → (𝑥 ∈ ℂ ↦ (i · 𝑥)) ∈ (ℂ–cn→ℂ))
56 rescncf 24817 . . . . . . . . . 10 ((0[,](π / 3)) ⊆ ℂ → ((𝑥 ∈ ℂ ↦ (i · 𝑥)) ∈ (ℂ–cn→ℂ) → ((𝑥 ∈ ℂ ↦ (i · 𝑥)) ↾ (0[,](π / 3))) ∈ ((0[,](π / 3))–cn→ℂ)))
5730, 55, 56mpsyl 68 . . . . . . . . 9 (⊤ → ((𝑥 ∈ ℂ ↦ (i · 𝑥)) ↾ (0[,](π / 3))) ∈ ((0[,](π / 3))–cn→ℂ))
5832, 57eqeltrrd 2832 . . . . . . . 8 (⊤ → (𝑥 ∈ (0[,](π / 3)) ↦ (i · 𝑥)) ∈ ((0[,](π / 3))–cn→ℂ))
5926, 58cncfmpt1f 24834 . . . . . . 7 (⊤ → (𝑥 ∈ (0[,](π / 3)) ↦ (exp‘(i · 𝑥))) ∈ ((0[,](π / 3))–cn→ℂ))
60 reelprrecn 11098 . . . . . . . . . . 11 ℝ ∈ {ℝ, ℂ}
6160a1i 11 . . . . . . . . . 10 (⊤ → ℝ ∈ {ℝ, ℂ})
62 recn 11096 . . . . . . . . . . 11 (𝑥 ∈ ℝ → 𝑥 ∈ ℂ)
63 efcl 15989 . . . . . . . . . . . 12 ((i · 𝑥) ∈ ℂ → (exp‘(i · 𝑥)) ∈ ℂ)
6437, 63syl 17 . . . . . . . . . . 11 ((⊤ ∧ 𝑥 ∈ ℂ) → (exp‘(i · 𝑥)) ∈ ℂ)
6562, 64sylan2 593 . . . . . . . . . 10 ((⊤ ∧ 𝑥 ∈ ℝ) → (exp‘(i · 𝑥)) ∈ ℂ)
66 mulcl 11090 . . . . . . . . . . . 12 (((exp‘(i · 𝑥)) ∈ ℂ ∧ i ∈ ℂ) → ((exp‘(i · 𝑥)) · i) ∈ ℂ)
6764, 34, 66sylancl 586 . . . . . . . . . . 11 ((⊤ ∧ 𝑥 ∈ ℂ) → ((exp‘(i · 𝑥)) · i) ∈ ℂ)
6862, 67sylan2 593 . . . . . . . . . 10 ((⊤ ∧ 𝑥 ∈ ℝ) → ((exp‘(i · 𝑥)) · i) ∈ ℂ)
69 eqid 2731 . . . . . . . . . . 11 (TopOpen‘ℂfld) = (TopOpen‘ℂfld)
7069cnfldtopon 24697 . . . . . . . . . . . 12 (TopOpen‘ℂfld) ∈ (TopOn‘ℂ)
71 toponmax 22841 . . . . . . . . . . . 12 ((TopOpen‘ℂfld) ∈ (TopOn‘ℂ) → ℂ ∈ (TopOpen‘ℂfld))
7270, 71mp1i 13 . . . . . . . . . . 11 (⊤ → ℂ ∈ (TopOpen‘ℂfld))
7329a1i 11 . . . . . . . . . . . 12 (⊤ → ℝ ⊆ ℂ)
74 dfss2 3915 . . . . . . . . . . . 12 (ℝ ⊆ ℂ ↔ (ℝ ∩ ℂ) = ℝ)
7573, 74sylib 218 . . . . . . . . . . 11 (⊤ → (ℝ ∩ ℂ) = ℝ)
7634a1i 11 . . . . . . . . . . . 12 ((⊤ ∧ 𝑥 ∈ ℂ) → i ∈ ℂ)
77 efcl 15989 . . . . . . . . . . . . 13 (𝑦 ∈ ℂ → (exp‘𝑦) ∈ ℂ)
7877adantl 481 . . . . . . . . . . . 12 ((⊤ ∧ 𝑦 ∈ ℂ) → (exp‘𝑦) ∈ ℂ)
79 dvef 25911 . . . . . . . . . . . . 13 (ℂ D exp) = exp
80 eff 15988 . . . . . . . . . . . . . . . 16 exp:ℂ⟶ℂ
8180a1i 11 . . . . . . . . . . . . . . 15 (⊤ → exp:ℂ⟶ℂ)
8281feqmptd 6890 . . . . . . . . . . . . . 14 (⊤ → exp = (𝑦 ∈ ℂ ↦ (exp‘𝑦)))
8382oveq2d 7362 . . . . . . . . . . . . 13 (⊤ → (ℂ D exp) = (ℂ D (𝑦 ∈ ℂ ↦ (exp‘𝑦))))
8479, 83, 823eqtr3a 2790 . . . . . . . . . . . 12 (⊤ → (ℂ D (𝑦 ∈ ℂ ↦ (exp‘𝑦))) = (𝑦 ∈ ℂ ↦ (exp‘𝑦)))
85 fveq2 6822 . . . . . . . . . . . 12 (𝑦 = (i · 𝑥) → (exp‘𝑦) = (exp‘(i · 𝑥)))
8640, 40, 37, 76, 78, 78, 48, 84, 85, 85dvmptco 25903 . . . . . . . . . . 11 (⊤ → (ℂ D (𝑥 ∈ ℂ ↦ (exp‘(i · 𝑥)))) = (𝑥 ∈ ℂ ↦ ((exp‘(i · 𝑥)) · i)))
8769, 61, 72, 75, 64, 67, 86dvmptres3 25887 . . . . . . . . . 10 (⊤ → (ℝ D (𝑥 ∈ ℝ ↦ (exp‘(i · 𝑥)))) = (𝑥 ∈ ℝ ↦ ((exp‘(i · 𝑥)) · i)))
8828a1i 11 . . . . . . . . . 10 (⊤ → (0[,](π / 3)) ⊆ ℝ)
8969tgioo2 24718 . . . . . . . . . 10 (topGen‘ran (,)) = ((TopOpen‘ℂfld) ↾t ℝ)
90 iccntr 24737 . . . . . . . . . . 11 ((0 ∈ ℝ ∧ (π / 3) ∈ ℝ) → ((int‘(topGen‘ran (,)))‘(0[,](π / 3))) = (0(,)(π / 3)))
9118, 24, 90sylancr 587 . . . . . . . . . 10 (⊤ → ((int‘(topGen‘ran (,)))‘(0[,](π / 3))) = (0(,)(π / 3)))
9261, 65, 68, 87, 88, 89, 69, 91dvmptres2 25893 . . . . . . . . 9 (⊤ → (ℝ D (𝑥 ∈ (0[,](π / 3)) ↦ (exp‘(i · 𝑥)))) = (𝑥 ∈ (0(,)(π / 3)) ↦ ((exp‘(i · 𝑥)) · i)))
9392dmeqd 5844 . . . . . . . 8 (⊤ → dom (ℝ D (𝑥 ∈ (0[,](π / 3)) ↦ (exp‘(i · 𝑥)))) = dom (𝑥 ∈ (0(,)(π / 3)) ↦ ((exp‘(i · 𝑥)) · i)))
94 ovex 7379 . . . . . . . . 9 ((exp‘(i · 𝑥)) · i) ∈ V
95 eqid 2731 . . . . . . . . 9 (𝑥 ∈ (0(,)(π / 3)) ↦ ((exp‘(i · 𝑥)) · i)) = (𝑥 ∈ (0(,)(π / 3)) ↦ ((exp‘(i · 𝑥)) · i))
9694, 95dmmpti 6625 . . . . . . . 8 dom (𝑥 ∈ (0(,)(π / 3)) ↦ ((exp‘(i · 𝑥)) · i)) = (0(,)(π / 3))
9793, 96eqtrdi 2782 . . . . . . 7 (⊤ → dom (ℝ D (𝑥 ∈ (0[,](π / 3)) ↦ (exp‘(i · 𝑥)))) = (0(,)(π / 3)))
98 1re 11112 . . . . . . . 8 1 ∈ ℝ
9998a1i 11 . . . . . . 7 (⊤ → 1 ∈ ℝ)
10092fveq1d 6824 . . . . . . . . . . 11 (⊤ → ((ℝ D (𝑥 ∈ (0[,](π / 3)) ↦ (exp‘(i · 𝑥))))‘𝑦) = ((𝑥 ∈ (0(,)(π / 3)) ↦ ((exp‘(i · 𝑥)) · i))‘𝑦))
101 oveq2 7354 . . . . . . . . . . . . . 14 (𝑥 = 𝑦 → (i · 𝑥) = (i · 𝑦))
102101fveq2d 6826 . . . . . . . . . . . . 13 (𝑥 = 𝑦 → (exp‘(i · 𝑥)) = (exp‘(i · 𝑦)))
103102oveq1d 7361 . . . . . . . . . . . 12 (𝑥 = 𝑦 → ((exp‘(i · 𝑥)) · i) = ((exp‘(i · 𝑦)) · i))
104103, 95, 94fvmpt3i 6934 . . . . . . . . . . 11 (𝑦 ∈ (0(,)(π / 3)) → ((𝑥 ∈ (0(,)(π / 3)) ↦ ((exp‘(i · 𝑥)) · i))‘𝑦) = ((exp‘(i · 𝑦)) · i))
105100, 104sylan9eq 2786 . . . . . . . . . 10 ((⊤ ∧ 𝑦 ∈ (0(,)(π / 3))) → ((ℝ D (𝑥 ∈ (0[,](π / 3)) ↦ (exp‘(i · 𝑥))))‘𝑦) = ((exp‘(i · 𝑦)) · i))
106105fveq2d 6826 . . . . . . . . 9 ((⊤ ∧ 𝑦 ∈ (0(,)(π / 3))) → (abs‘((ℝ D (𝑥 ∈ (0[,](π / 3)) ↦ (exp‘(i · 𝑥))))‘𝑦)) = (abs‘((exp‘(i · 𝑦)) · i)))
107 ioossre 13307 . . . . . . . . . . . . . . 15 (0(,)(π / 3)) ⊆ ℝ
108107a1i 11 . . . . . . . . . . . . . 14 (⊤ → (0(,)(π / 3)) ⊆ ℝ)
109108sselda 3929 . . . . . . . . . . . . 13 ((⊤ ∧ 𝑦 ∈ (0(,)(π / 3))) → 𝑦 ∈ ℝ)
110109recnd 11140 . . . . . . . . . . . 12 ((⊤ ∧ 𝑦 ∈ (0(,)(π / 3))) → 𝑦 ∈ ℂ)
111 mulcl 11090 . . . . . . . . . . . 12 ((i ∈ ℂ ∧ 𝑦 ∈ ℂ) → (i · 𝑦) ∈ ℂ)
11234, 110, 111sylancr 587 . . . . . . . . . . 11 ((⊤ ∧ 𝑦 ∈ (0(,)(π / 3))) → (i · 𝑦) ∈ ℂ)
113 efcl 15989 . . . . . . . . . . 11 ((i · 𝑦) ∈ ℂ → (exp‘(i · 𝑦)) ∈ ℂ)
114112, 113syl 17 . . . . . . . . . 10 ((⊤ ∧ 𝑦 ∈ (0(,)(π / 3))) → (exp‘(i · 𝑦)) ∈ ℂ)
115 absmul 15201 . . . . . . . . . 10 (((exp‘(i · 𝑦)) ∈ ℂ ∧ i ∈ ℂ) → (abs‘((exp‘(i · 𝑦)) · i)) = ((abs‘(exp‘(i · 𝑦))) · (abs‘i)))
116114, 34, 115sylancl 586 . . . . . . . . 9 ((⊤ ∧ 𝑦 ∈ (0(,)(π / 3))) → (abs‘((exp‘(i · 𝑦)) · i)) = ((abs‘(exp‘(i · 𝑦))) · (abs‘i)))
117 absefi 16105 . . . . . . . . . . . 12 (𝑦 ∈ ℝ → (abs‘(exp‘(i · 𝑦))) = 1)
118109, 117syl 17 . . . . . . . . . . 11 ((⊤ ∧ 𝑦 ∈ (0(,)(π / 3))) → (abs‘(exp‘(i · 𝑦))) = 1)
119 absi 15193 . . . . . . . . . . . 12 (abs‘i) = 1
120119a1i 11 . . . . . . . . . . 11 ((⊤ ∧ 𝑦 ∈ (0(,)(π / 3))) → (abs‘i) = 1)
121118, 120oveq12d 7364 . . . . . . . . . 10 ((⊤ ∧ 𝑦 ∈ (0(,)(π / 3))) → ((abs‘(exp‘(i · 𝑦))) · (abs‘i)) = (1 · 1))
12241mulridi 11116 . . . . . . . . . 10 (1 · 1) = 1
123121, 122eqtrdi 2782 . . . . . . . . 9 ((⊤ ∧ 𝑦 ∈ (0(,)(π / 3))) → ((abs‘(exp‘(i · 𝑦))) · (abs‘i)) = 1)
124106, 116, 1233eqtrd 2770 . . . . . . . 8 ((⊤ ∧ 𝑦 ∈ (0(,)(π / 3))) → (abs‘((ℝ D (𝑥 ∈ (0[,](π / 3)) ↦ (exp‘(i · 𝑥))))‘𝑦)) = 1)
125 1le1 11745 . . . . . . . 8 1 ≤ 1
126124, 125eqbrtrdi 5128 . . . . . . 7 ((⊤ ∧ 𝑦 ∈ (0(,)(π / 3))) → (abs‘((ℝ D (𝑥 ∈ (0[,](π / 3)) ↦ (exp‘(i · 𝑥))))‘𝑦)) ≤ 1)
12719, 24, 59, 97, 99, 126dvlip 25925 . . . . . 6 ((⊤ ∧ (0 ∈ (0[,](π / 3)) ∧ (π / 3) ∈ (0[,](π / 3)))) → (abs‘(((𝑥 ∈ (0[,](π / 3)) ↦ (exp‘(i · 𝑥)))‘0) − ((𝑥 ∈ (0[,](π / 3)) ↦ (exp‘(i · 𝑥)))‘(π / 3)))) ≤ (1 · (abs‘(0 − (π / 3)))))
1283, 17, 127mp2an 692 . . . . 5 (abs‘(((𝑥 ∈ (0[,](π / 3)) ↦ (exp‘(i · 𝑥)))‘0) − ((𝑥 ∈ (0[,](π / 3)) ↦ (exp‘(i · 𝑥)))‘(π / 3)))) ≤ (1 · (abs‘(0 − (π / 3))))
129 oveq2 7354 . . . . . . . . . . . . 13 (𝑥 = 0 → (i · 𝑥) = (i · 0))
130 it0e0 12344 . . . . . . . . . . . . 13 (i · 0) = 0
131129, 130eqtrdi 2782 . . . . . . . . . . . 12 (𝑥 = 0 → (i · 𝑥) = 0)
132131fveq2d 6826 . . . . . . . . . . 11 (𝑥 = 0 → (exp‘(i · 𝑥)) = (exp‘0))
133 ef0 15998 . . . . . . . . . . 11 (exp‘0) = 1
134132, 133eqtrdi 2782 . . . . . . . . . 10 (𝑥 = 0 → (exp‘(i · 𝑥)) = 1)
135 eqid 2731 . . . . . . . . . 10 (𝑥 ∈ (0[,](π / 3)) ↦ (exp‘(i · 𝑥))) = (𝑥 ∈ (0[,](π / 3)) ↦ (exp‘(i · 𝑥)))
136 fvex 6835 . . . . . . . . . 10 (exp‘(i · 𝑥)) ∈ V
137134, 135, 136fvmpt3i 6934 . . . . . . . . 9 (0 ∈ (0[,](π / 3)) → ((𝑥 ∈ (0[,](π / 3)) ↦ (exp‘(i · 𝑥)))‘0) = 1)
13814, 137ax-mp 5 . . . . . . . 8 ((𝑥 ∈ (0[,](π / 3)) ↦ (exp‘(i · 𝑥)))‘0) = 1
139 oveq2 7354 . . . . . . . . . . 11 (𝑥 = (π / 3) → (i · 𝑥) = (i · (π / 3)))
140139fveq2d 6826 . . . . . . . . . 10 (𝑥 = (π / 3) → (exp‘(i · 𝑥)) = (exp‘(i · (π / 3))))
141140, 135, 136fvmpt3i 6934 . . . . . . . . 9 ((π / 3) ∈ (0[,](π / 3)) → ((𝑥 ∈ (0[,](π / 3)) ↦ (exp‘(i · 𝑥)))‘(π / 3)) = (exp‘(i · (π / 3))))
14216, 141ax-mp 5 . . . . . . . 8 ((𝑥 ∈ (0[,](π / 3)) ↦ (exp‘(i · 𝑥)))‘(π / 3)) = (exp‘(i · (π / 3)))
143138, 142oveq12i 7358 . . . . . . 7 (((𝑥 ∈ (0[,](π / 3)) ↦ (exp‘(i · 𝑥)))‘0) − ((𝑥 ∈ (0[,](π / 3)) ↦ (exp‘(i · 𝑥)))‘(π / 3))) = (1 − (exp‘(i · (π / 3))))
14423recni 11126 . . . . . . . . . 10 (π / 3) ∈ ℂ
14534, 144mulcli 11119 . . . . . . . . 9 (i · (π / 3)) ∈ ℂ
146 efcl 15989 . . . . . . . . 9 ((i · (π / 3)) ∈ ℂ → (exp‘(i · (π / 3))) ∈ ℂ)
147145, 146ax-mp 5 . . . . . . . 8 (exp‘(i · (π / 3))) ∈ ℂ
148 negicn 11361 . . . . . . . . . 10 -i ∈ ℂ
149148, 144mulcli 11119 . . . . . . . . 9 (-i · (π / 3)) ∈ ℂ
150 efcl 15989 . . . . . . . . 9 ((-i · (π / 3)) ∈ ℂ → (exp‘(-i · (π / 3))) ∈ ℂ)
151149, 150ax-mp 5 . . . . . . . 8 (exp‘(-i · (π / 3))) ∈ ℂ
152 cosval 16032 . . . . . . . . . . 11 ((π / 3) ∈ ℂ → (cos‘(π / 3)) = (((exp‘(i · (π / 3))) + (exp‘(-i · (π / 3)))) / 2))
153144, 152ax-mp 5 . . . . . . . . . 10 (cos‘(π / 3)) = (((exp‘(i · (π / 3))) + (exp‘(-i · (π / 3)))) / 2)
154 sincos3rdpi 26453 . . . . . . . . . . 11 ((sin‘(π / 3)) = ((√‘3) / 2) ∧ (cos‘(π / 3)) = (1 / 2))
155154simpri 485 . . . . . . . . . 10 (cos‘(π / 3)) = (1 / 2)
156153, 155eqtr3i 2756 . . . . . . . . 9 (((exp‘(i · (π / 3))) + (exp‘(-i · (π / 3)))) / 2) = (1 / 2)
157147, 151addcli 11118 . . . . . . . . . 10 ((exp‘(i · (π / 3))) + (exp‘(-i · (π / 3)))) ∈ ℂ
158 2cn 12200 . . . . . . . . . 10 2 ∈ ℂ
159 2ne0 12229 . . . . . . . . . 10 2 ≠ 0
160157, 41, 158, 159div11i 11880 . . . . . . . . 9 ((((exp‘(i · (π / 3))) + (exp‘(-i · (π / 3)))) / 2) = (1 / 2) ↔ ((exp‘(i · (π / 3))) + (exp‘(-i · (π / 3)))) = 1)
161156, 160mpbi 230 . . . . . . . 8 ((exp‘(i · (π / 3))) + (exp‘(-i · (π / 3)))) = 1
16241, 147, 151, 161subaddrii 11450 . . . . . . 7 (1 − (exp‘(i · (π / 3)))) = (exp‘(-i · (π / 3)))
163 mulneg12 11555 . . . . . . . . 9 ((i ∈ ℂ ∧ (π / 3) ∈ ℂ) → (-i · (π / 3)) = (i · -(π / 3)))
16434, 144, 163mp2an 692 . . . . . . . 8 (-i · (π / 3)) = (i · -(π / 3))
165164fveq2i 6825 . . . . . . 7 (exp‘(-i · (π / 3))) = (exp‘(i · -(π / 3)))
166143, 162, 1653eqtri 2758 . . . . . 6 (((𝑥 ∈ (0[,](π / 3)) ↦ (exp‘(i · 𝑥)))‘0) − ((𝑥 ∈ (0[,](π / 3)) ↦ (exp‘(i · 𝑥)))‘(π / 3))) = (exp‘(i · -(π / 3)))
167166fveq2i 6825 . . . . 5 (abs‘(((𝑥 ∈ (0[,](π / 3)) ↦ (exp‘(i · 𝑥)))‘0) − ((𝑥 ∈ (0[,](π / 3)) ↦ (exp‘(i · 𝑥)))‘(π / 3)))) = (abs‘(exp‘(i · -(π / 3))))
168144absnegi 15308 . . . . . . . 8 (abs‘-(π / 3)) = (abs‘(π / 3))
169 df-neg 11347 . . . . . . . . 9 -(π / 3) = (0 − (π / 3))
170169fveq2i 6825 . . . . . . . 8 (abs‘-(π / 3)) = (abs‘(0 − (π / 3)))
171168, 170eqtr3i 2756 . . . . . . 7 (abs‘(π / 3)) = (abs‘(0 − (π / 3)))
172 rprege0 12906 . . . . . . . 8 ((π / 3) ∈ ℝ+ → ((π / 3) ∈ ℝ ∧ 0 ≤ (π / 3)))
173 absid 15203 . . . . . . . 8 (((π / 3) ∈ ℝ ∧ 0 ≤ (π / 3)) → (abs‘(π / 3)) = (π / 3))
1748, 172, 173mp2b 10 . . . . . . 7 (abs‘(π / 3)) = (π / 3)
175171, 174eqtr3i 2756 . . . . . 6 (abs‘(0 − (π / 3))) = (π / 3)
176175oveq2i 7357 . . . . 5 (1 · (abs‘(0 − (π / 3)))) = (1 · (π / 3))
177128, 167, 1763brtr3i 5118 . . . 4 (abs‘(exp‘(i · -(π / 3)))) ≤ (1 · (π / 3))
17823renegcli 11422 . . . . 5 -(π / 3) ∈ ℝ
179 absefi 16105 . . . . 5 (-(π / 3) ∈ ℝ → (abs‘(exp‘(i · -(π / 3)))) = 1)
180178, 179ax-mp 5 . . . 4 (abs‘(exp‘(i · -(π / 3)))) = 1
181144mullidi 11117 . . . 4 (1 · (π / 3)) = (π / 3)
182177, 180, 1813brtr3i 5118 . . 3 1 ≤ (π / 3)
183 3pos 12230 . . . . 5 0 < 3
18421, 183pm3.2i 470 . . . 4 (3 ∈ ℝ ∧ 0 < 3)
185 lemuldiv 12002 . . . 4 ((1 ∈ ℝ ∧ π ∈ ℝ ∧ (3 ∈ ℝ ∧ 0 < 3)) → ((1 · 3) ≤ π ↔ 1 ≤ (π / 3)))
18698, 20, 184, 185mp3an 1463 . . 3 ((1 · 3) ≤ π ↔ 1 ≤ (π / 3))
187182, 186mpbir 231 . 2 (1 · 3) ≤ π
1882, 187eqbrtrri 5112 1 3 ≤ π
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395   = wceq 1541  wtru 1542  wcel 2111  cin 3896  wss 3897  {cpr 4575   class class class wbr 5089  cmpt 5170  dom cdm 5614  ran crn 5615  cres 5616  wf 6477  cfv 6481  (class class class)co 7346  cc 11004  cr 11005  0cc0 11006  1c1 11007  ici 11008   + caddc 11009   · cmul 11011  *cxr 11145   < clt 11146  cle 11147  cmin 11344  -cneg 11345   / cdiv 11774  2c2 12180  3c3 12181  +crp 12890  (,)cioo 13245  [,]cicc 13248  csqrt 15140  abscabs 15141  expce 15968  sincsin 15970  cosccos 15971  πcpi 15973  TopOpenctopn 17325  topGenctg 17341  fldccnfld 21291  TopOnctopon 22825  intcnt 22932  cnccncf 24796   D cdv 25791
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668  ax-inf2 9531  ax-cnex 11062  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083  ax-pre-sup 11084  ax-addf 11085
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-tp 4578  df-op 4580  df-uni 4857  df-int 4896  df-iun 4941  df-iin 4942  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-se 5568  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-isom 6490  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-of 7610  df-om 7797  df-1st 7921  df-2nd 7922  df-supp 8091  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-2o 8386  df-er 8622  df-map 8752  df-pm 8753  df-ixp 8822  df-en 8870  df-dom 8871  df-sdom 8872  df-fin 8873  df-fsupp 9246  df-fi 9295  df-sup 9326  df-inf 9327  df-oi 9396  df-card 9832  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-div 11775  df-nn 12126  df-2 12188  df-3 12189  df-4 12190  df-5 12191  df-6 12192  df-7 12193  df-8 12194  df-9 12195  df-n0 12382  df-z 12469  df-dec 12589  df-uz 12733  df-q 12847  df-rp 12891  df-xneg 13011  df-xadd 13012  df-xmul 13013  df-ioo 13249  df-ioc 13250  df-ico 13251  df-icc 13252  df-fz 13408  df-fzo 13555  df-fl 13696  df-seq 13909  df-exp 13969  df-fac 14181  df-bc 14210  df-hash 14238  df-shft 14974  df-cj 15006  df-re 15007  df-im 15008  df-sqrt 15142  df-abs 15143  df-limsup 15378  df-clim 15395  df-rlim 15396  df-sum 15594  df-ef 15974  df-sin 15976  df-cos 15977  df-pi 15979  df-struct 17058  df-sets 17075  df-slot 17093  df-ndx 17105  df-base 17121  df-ress 17142  df-plusg 17174  df-mulr 17175  df-starv 17176  df-sca 17177  df-vsca 17178  df-ip 17179  df-tset 17180  df-ple 17181  df-ds 17183  df-unif 17184  df-hom 17185  df-cco 17186  df-rest 17326  df-topn 17327  df-0g 17345  df-gsum 17346  df-topgen 17347  df-pt 17348  df-prds 17351  df-xrs 17406  df-qtop 17411  df-imas 17412  df-xps 17414  df-mre 17488  df-mrc 17489  df-acs 17491  df-mgm 18548  df-sgrp 18627  df-mnd 18643  df-submnd 18692  df-mulg 18981  df-cntz 19229  df-cmn 19694  df-psmet 21283  df-xmet 21284  df-met 21285  df-bl 21286  df-mopn 21287  df-fbas 21288  df-fg 21289  df-cnfld 21292  df-top 22809  df-topon 22826  df-topsp 22848  df-bases 22861  df-cld 22934  df-ntr 22935  df-cls 22936  df-nei 23013  df-lp 23051  df-perf 23052  df-cn 23142  df-cnp 23143  df-haus 23230  df-cmp 23302  df-tx 23477  df-hmeo 23670  df-fil 23761  df-fm 23853  df-flim 23854  df-flf 23855  df-xms 24235  df-ms 24236  df-tms 24237  df-cncf 24798  df-limc 25794  df-dv 25795
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator