MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pige3ALT Structured version   Visualization version   GIF version

Theorem pige3ALT 25876
Description: Alternate proof of pige3 25875. This proof is based on the geometric observation that a hexagon of unit side length has perimeter 6, which is less than the unit-radius circumcircle, of perimeter . We translate this to algebra by looking at the function e↑(i𝑥) as 𝑥 goes from 0 to π / 3; it moves at unit speed and travels distance 1, hence 1 ≤ π / 3. (Contributed by Mario Carneiro, 21-May-2016.) (New usage is discouraged.) (Proof modification is discouraged.)
Assertion
Ref Expression
pige3ALT 3 ≤ π

Proof of Theorem pige3ALT
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 3cn 12234 . . 3 3 ∈ ℂ
21mulid2i 11160 . 2 (1 · 3) = 3
3 tru 1545 . . . . . 6
4 0xr 11202 . . . . . . . 8 0 ∈ ℝ*
5 pirp 25818 . . . . . . . . . 10 π ∈ ℝ+
6 3rp 12921 . . . . . . . . . 10 3 ∈ ℝ+
7 rpdivcl 12940 . . . . . . . . . 10 ((π ∈ ℝ+ ∧ 3 ∈ ℝ+) → (π / 3) ∈ ℝ+)
85, 6, 7mp2an 690 . . . . . . . . 9 (π / 3) ∈ ℝ+
9 rpxr 12924 . . . . . . . . 9 ((π / 3) ∈ ℝ+ → (π / 3) ∈ ℝ*)
108, 9ax-mp 5 . . . . . . . 8 (π / 3) ∈ ℝ*
11 rpge0 12928 . . . . . . . . 9 ((π / 3) ∈ ℝ+ → 0 ≤ (π / 3))
128, 11ax-mp 5 . . . . . . . 8 0 ≤ (π / 3)
13 lbicc2 13381 . . . . . . . 8 ((0 ∈ ℝ* ∧ (π / 3) ∈ ℝ* ∧ 0 ≤ (π / 3)) → 0 ∈ (0[,](π / 3)))
144, 10, 12, 13mp3an 1461 . . . . . . 7 0 ∈ (0[,](π / 3))
15 ubicc2 13382 . . . . . . . 8 ((0 ∈ ℝ* ∧ (π / 3) ∈ ℝ* ∧ 0 ≤ (π / 3)) → (π / 3) ∈ (0[,](π / 3)))
164, 10, 12, 15mp3an 1461 . . . . . . 7 (π / 3) ∈ (0[,](π / 3))
1714, 16pm3.2i 471 . . . . . 6 (0 ∈ (0[,](π / 3)) ∧ (π / 3) ∈ (0[,](π / 3)))
18 0re 11157 . . . . . . . 8 0 ∈ ℝ
1918a1i 11 . . . . . . 7 (⊤ → 0 ∈ ℝ)
20 pire 25815 . . . . . . . . 9 π ∈ ℝ
21 3re 12233 . . . . . . . . 9 3 ∈ ℝ
22 3ne0 12259 . . . . . . . . 9 3 ≠ 0
2320, 21, 22redivcli 11922 . . . . . . . 8 (π / 3) ∈ ℝ
2423a1i 11 . . . . . . 7 (⊤ → (π / 3) ∈ ℝ)
25 efcn 25802 . . . . . . . . 9 exp ∈ (ℂ–cn→ℂ)
2625a1i 11 . . . . . . . 8 (⊤ → exp ∈ (ℂ–cn→ℂ))
27 iccssre 13346 . . . . . . . . . . . 12 ((0 ∈ ℝ ∧ (π / 3) ∈ ℝ) → (0[,](π / 3)) ⊆ ℝ)
2818, 23, 27mp2an 690 . . . . . . . . . . 11 (0[,](π / 3)) ⊆ ℝ
29 ax-resscn 11108 . . . . . . . . . . 11 ℝ ⊆ ℂ
3028, 29sstri 3953 . . . . . . . . . 10 (0[,](π / 3)) ⊆ ℂ
31 resmpt 5991 . . . . . . . . . 10 ((0[,](π / 3)) ⊆ ℂ → ((𝑥 ∈ ℂ ↦ (i · 𝑥)) ↾ (0[,](π / 3))) = (𝑥 ∈ (0[,](π / 3)) ↦ (i · 𝑥)))
3230, 31mp1i 13 . . . . . . . . 9 (⊤ → ((𝑥 ∈ ℂ ↦ (i · 𝑥)) ↾ (0[,](π / 3))) = (𝑥 ∈ (0[,](π / 3)) ↦ (i · 𝑥)))
33 ssidd 3967 . . . . . . . . . . 11 (⊤ → ℂ ⊆ ℂ)
34 ax-icn 11110 . . . . . . . . . . . . 13 i ∈ ℂ
35 simpr 485 . . . . . . . . . . . . 13 ((⊤ ∧ 𝑥 ∈ ℂ) → 𝑥 ∈ ℂ)
36 mulcl 11135 . . . . . . . . . . . . 13 ((i ∈ ℂ ∧ 𝑥 ∈ ℂ) → (i · 𝑥) ∈ ℂ)
3734, 35, 36sylancr 587 . . . . . . . . . . . 12 ((⊤ ∧ 𝑥 ∈ ℂ) → (i · 𝑥) ∈ ℂ)
3837fmpttd 7063 . . . . . . . . . . 11 (⊤ → (𝑥 ∈ ℂ ↦ (i · 𝑥)):ℂ⟶ℂ)
39 cnelprrecn 11144 . . . . . . . . . . . . . . . 16 ℂ ∈ {ℝ, ℂ}
4039a1i 11 . . . . . . . . . . . . . . 15 (⊤ → ℂ ∈ {ℝ, ℂ})
41 ax-1cn 11109 . . . . . . . . . . . . . . . 16 1 ∈ ℂ
4241a1i 11 . . . . . . . . . . . . . . 15 ((⊤ ∧ 𝑥 ∈ ℂ) → 1 ∈ ℂ)
4340dvmptid 25321 . . . . . . . . . . . . . . 15 (⊤ → (ℂ D (𝑥 ∈ ℂ ↦ 𝑥)) = (𝑥 ∈ ℂ ↦ 1))
4434a1i 11 . . . . . . . . . . . . . . 15 (⊤ → i ∈ ℂ)
4540, 35, 42, 43, 44dvmptcmul 25328 . . . . . . . . . . . . . 14 (⊤ → (ℂ D (𝑥 ∈ ℂ ↦ (i · 𝑥))) = (𝑥 ∈ ℂ ↦ (i · 1)))
4634mulid1i 11159 . . . . . . . . . . . . . . 15 (i · 1) = i
4746mpteq2i 5210 . . . . . . . . . . . . . 14 (𝑥 ∈ ℂ ↦ (i · 1)) = (𝑥 ∈ ℂ ↦ i)
4845, 47eqtrdi 2792 . . . . . . . . . . . . 13 (⊤ → (ℂ D (𝑥 ∈ ℂ ↦ (i · 𝑥))) = (𝑥 ∈ ℂ ↦ i))
4948dmeqd 5861 . . . . . . . . . . . 12 (⊤ → dom (ℂ D (𝑥 ∈ ℂ ↦ (i · 𝑥))) = dom (𝑥 ∈ ℂ ↦ i))
5034elexi 3464 . . . . . . . . . . . . 13 i ∈ V
51 eqid 2736 . . . . . . . . . . . . 13 (𝑥 ∈ ℂ ↦ i) = (𝑥 ∈ ℂ ↦ i)
5250, 51dmmpti 6645 . . . . . . . . . . . 12 dom (𝑥 ∈ ℂ ↦ i) = ℂ
5349, 52eqtrdi 2792 . . . . . . . . . . 11 (⊤ → dom (ℂ D (𝑥 ∈ ℂ ↦ (i · 𝑥))) = ℂ)
54 dvcn 25285 . . . . . . . . . . 11 (((ℂ ⊆ ℂ ∧ (𝑥 ∈ ℂ ↦ (i · 𝑥)):ℂ⟶ℂ ∧ ℂ ⊆ ℂ) ∧ dom (ℂ D (𝑥 ∈ ℂ ↦ (i · 𝑥))) = ℂ) → (𝑥 ∈ ℂ ↦ (i · 𝑥)) ∈ (ℂ–cn→ℂ))
5533, 38, 33, 53, 54syl31anc 1373 . . . . . . . . . 10 (⊤ → (𝑥 ∈ ℂ ↦ (i · 𝑥)) ∈ (ℂ–cn→ℂ))
56 rescncf 24260 . . . . . . . . . 10 ((0[,](π / 3)) ⊆ ℂ → ((𝑥 ∈ ℂ ↦ (i · 𝑥)) ∈ (ℂ–cn→ℂ) → ((𝑥 ∈ ℂ ↦ (i · 𝑥)) ↾ (0[,](π / 3))) ∈ ((0[,](π / 3))–cn→ℂ)))
5730, 55, 56mpsyl 68 . . . . . . . . 9 (⊤ → ((𝑥 ∈ ℂ ↦ (i · 𝑥)) ↾ (0[,](π / 3))) ∈ ((0[,](π / 3))–cn→ℂ))
5832, 57eqeltrrd 2839 . . . . . . . 8 (⊤ → (𝑥 ∈ (0[,](π / 3)) ↦ (i · 𝑥)) ∈ ((0[,](π / 3))–cn→ℂ))
5926, 58cncfmpt1f 24277 . . . . . . 7 (⊤ → (𝑥 ∈ (0[,](π / 3)) ↦ (exp‘(i · 𝑥))) ∈ ((0[,](π / 3))–cn→ℂ))
60 reelprrecn 11143 . . . . . . . . . . 11 ℝ ∈ {ℝ, ℂ}
6160a1i 11 . . . . . . . . . 10 (⊤ → ℝ ∈ {ℝ, ℂ})
62 recn 11141 . . . . . . . . . . 11 (𝑥 ∈ ℝ → 𝑥 ∈ ℂ)
63 efcl 15965 . . . . . . . . . . . 12 ((i · 𝑥) ∈ ℂ → (exp‘(i · 𝑥)) ∈ ℂ)
6437, 63syl 17 . . . . . . . . . . 11 ((⊤ ∧ 𝑥 ∈ ℂ) → (exp‘(i · 𝑥)) ∈ ℂ)
6562, 64sylan2 593 . . . . . . . . . 10 ((⊤ ∧ 𝑥 ∈ ℝ) → (exp‘(i · 𝑥)) ∈ ℂ)
66 mulcl 11135 . . . . . . . . . . . 12 (((exp‘(i · 𝑥)) ∈ ℂ ∧ i ∈ ℂ) → ((exp‘(i · 𝑥)) · i) ∈ ℂ)
6764, 34, 66sylancl 586 . . . . . . . . . . 11 ((⊤ ∧ 𝑥 ∈ ℂ) → ((exp‘(i · 𝑥)) · i) ∈ ℂ)
6862, 67sylan2 593 . . . . . . . . . 10 ((⊤ ∧ 𝑥 ∈ ℝ) → ((exp‘(i · 𝑥)) · i) ∈ ℂ)
69 eqid 2736 . . . . . . . . . . 11 (TopOpen‘ℂfld) = (TopOpen‘ℂfld)
7069cnfldtopon 24146 . . . . . . . . . . . 12 (TopOpen‘ℂfld) ∈ (TopOn‘ℂ)
71 toponmax 22275 . . . . . . . . . . . 12 ((TopOpen‘ℂfld) ∈ (TopOn‘ℂ) → ℂ ∈ (TopOpen‘ℂfld))
7270, 71mp1i 13 . . . . . . . . . . 11 (⊤ → ℂ ∈ (TopOpen‘ℂfld))
7329a1i 11 . . . . . . . . . . . 12 (⊤ → ℝ ⊆ ℂ)
74 df-ss 3927 . . . . . . . . . . . 12 (ℝ ⊆ ℂ ↔ (ℝ ∩ ℂ) = ℝ)
7573, 74sylib 217 . . . . . . . . . . 11 (⊤ → (ℝ ∩ ℂ) = ℝ)
7634a1i 11 . . . . . . . . . . . 12 ((⊤ ∧ 𝑥 ∈ ℂ) → i ∈ ℂ)
77 efcl 15965 . . . . . . . . . . . . 13 (𝑦 ∈ ℂ → (exp‘𝑦) ∈ ℂ)
7877adantl 482 . . . . . . . . . . . 12 ((⊤ ∧ 𝑦 ∈ ℂ) → (exp‘𝑦) ∈ ℂ)
79 dvef 25344 . . . . . . . . . . . . 13 (ℂ D exp) = exp
80 eff 15964 . . . . . . . . . . . . . . . 16 exp:ℂ⟶ℂ
8180a1i 11 . . . . . . . . . . . . . . 15 (⊤ → exp:ℂ⟶ℂ)
8281feqmptd 6910 . . . . . . . . . . . . . 14 (⊤ → exp = (𝑦 ∈ ℂ ↦ (exp‘𝑦)))
8382oveq2d 7373 . . . . . . . . . . . . 13 (⊤ → (ℂ D exp) = (ℂ D (𝑦 ∈ ℂ ↦ (exp‘𝑦))))
8479, 83, 823eqtr3a 2800 . . . . . . . . . . . 12 (⊤ → (ℂ D (𝑦 ∈ ℂ ↦ (exp‘𝑦))) = (𝑦 ∈ ℂ ↦ (exp‘𝑦)))
85 fveq2 6842 . . . . . . . . . . . 12 (𝑦 = (i · 𝑥) → (exp‘𝑦) = (exp‘(i · 𝑥)))
8640, 40, 37, 76, 78, 78, 48, 84, 85, 85dvmptco 25336 . . . . . . . . . . 11 (⊤ → (ℂ D (𝑥 ∈ ℂ ↦ (exp‘(i · 𝑥)))) = (𝑥 ∈ ℂ ↦ ((exp‘(i · 𝑥)) · i)))
8769, 61, 72, 75, 64, 67, 86dvmptres3 25320 . . . . . . . . . 10 (⊤ → (ℝ D (𝑥 ∈ ℝ ↦ (exp‘(i · 𝑥)))) = (𝑥 ∈ ℝ ↦ ((exp‘(i · 𝑥)) · i)))
8828a1i 11 . . . . . . . . . 10 (⊤ → (0[,](π / 3)) ⊆ ℝ)
8969tgioo2 24166 . . . . . . . . . 10 (topGen‘ran (,)) = ((TopOpen‘ℂfld) ↾t ℝ)
90 iccntr 24184 . . . . . . . . . . 11 ((0 ∈ ℝ ∧ (π / 3) ∈ ℝ) → ((int‘(topGen‘ran (,)))‘(0[,](π / 3))) = (0(,)(π / 3)))
9118, 24, 90sylancr 587 . . . . . . . . . 10 (⊤ → ((int‘(topGen‘ran (,)))‘(0[,](π / 3))) = (0(,)(π / 3)))
9261, 65, 68, 87, 88, 89, 69, 91dvmptres2 25326 . . . . . . . . 9 (⊤ → (ℝ D (𝑥 ∈ (0[,](π / 3)) ↦ (exp‘(i · 𝑥)))) = (𝑥 ∈ (0(,)(π / 3)) ↦ ((exp‘(i · 𝑥)) · i)))
9392dmeqd 5861 . . . . . . . 8 (⊤ → dom (ℝ D (𝑥 ∈ (0[,](π / 3)) ↦ (exp‘(i · 𝑥)))) = dom (𝑥 ∈ (0(,)(π / 3)) ↦ ((exp‘(i · 𝑥)) · i)))
94 ovex 7390 . . . . . . . . 9 ((exp‘(i · 𝑥)) · i) ∈ V
95 eqid 2736 . . . . . . . . 9 (𝑥 ∈ (0(,)(π / 3)) ↦ ((exp‘(i · 𝑥)) · i)) = (𝑥 ∈ (0(,)(π / 3)) ↦ ((exp‘(i · 𝑥)) · i))
9694, 95dmmpti 6645 . . . . . . . 8 dom (𝑥 ∈ (0(,)(π / 3)) ↦ ((exp‘(i · 𝑥)) · i)) = (0(,)(π / 3))
9793, 96eqtrdi 2792 . . . . . . 7 (⊤ → dom (ℝ D (𝑥 ∈ (0[,](π / 3)) ↦ (exp‘(i · 𝑥)))) = (0(,)(π / 3)))
98 1re 11155 . . . . . . . 8 1 ∈ ℝ
9998a1i 11 . . . . . . 7 (⊤ → 1 ∈ ℝ)
10092fveq1d 6844 . . . . . . . . . . 11 (⊤ → ((ℝ D (𝑥 ∈ (0[,](π / 3)) ↦ (exp‘(i · 𝑥))))‘𝑦) = ((𝑥 ∈ (0(,)(π / 3)) ↦ ((exp‘(i · 𝑥)) · i))‘𝑦))
101 oveq2 7365 . . . . . . . . . . . . . 14 (𝑥 = 𝑦 → (i · 𝑥) = (i · 𝑦))
102101fveq2d 6846 . . . . . . . . . . . . 13 (𝑥 = 𝑦 → (exp‘(i · 𝑥)) = (exp‘(i · 𝑦)))
103102oveq1d 7372 . . . . . . . . . . . 12 (𝑥 = 𝑦 → ((exp‘(i · 𝑥)) · i) = ((exp‘(i · 𝑦)) · i))
104103, 95, 94fvmpt3i 6953 . . . . . . . . . . 11 (𝑦 ∈ (0(,)(π / 3)) → ((𝑥 ∈ (0(,)(π / 3)) ↦ ((exp‘(i · 𝑥)) · i))‘𝑦) = ((exp‘(i · 𝑦)) · i))
105100, 104sylan9eq 2796 . . . . . . . . . 10 ((⊤ ∧ 𝑦 ∈ (0(,)(π / 3))) → ((ℝ D (𝑥 ∈ (0[,](π / 3)) ↦ (exp‘(i · 𝑥))))‘𝑦) = ((exp‘(i · 𝑦)) · i))
106105fveq2d 6846 . . . . . . . . 9 ((⊤ ∧ 𝑦 ∈ (0(,)(π / 3))) → (abs‘((ℝ D (𝑥 ∈ (0[,](π / 3)) ↦ (exp‘(i · 𝑥))))‘𝑦)) = (abs‘((exp‘(i · 𝑦)) · i)))
107 ioossre 13325 . . . . . . . . . . . . . . 15 (0(,)(π / 3)) ⊆ ℝ
108107a1i 11 . . . . . . . . . . . . . 14 (⊤ → (0(,)(π / 3)) ⊆ ℝ)
109108sselda 3944 . . . . . . . . . . . . 13 ((⊤ ∧ 𝑦 ∈ (0(,)(π / 3))) → 𝑦 ∈ ℝ)
110109recnd 11183 . . . . . . . . . . . 12 ((⊤ ∧ 𝑦 ∈ (0(,)(π / 3))) → 𝑦 ∈ ℂ)
111 mulcl 11135 . . . . . . . . . . . 12 ((i ∈ ℂ ∧ 𝑦 ∈ ℂ) → (i · 𝑦) ∈ ℂ)
11234, 110, 111sylancr 587 . . . . . . . . . . 11 ((⊤ ∧ 𝑦 ∈ (0(,)(π / 3))) → (i · 𝑦) ∈ ℂ)
113 efcl 15965 . . . . . . . . . . 11 ((i · 𝑦) ∈ ℂ → (exp‘(i · 𝑦)) ∈ ℂ)
114112, 113syl 17 . . . . . . . . . 10 ((⊤ ∧ 𝑦 ∈ (0(,)(π / 3))) → (exp‘(i · 𝑦)) ∈ ℂ)
115 absmul 15179 . . . . . . . . . 10 (((exp‘(i · 𝑦)) ∈ ℂ ∧ i ∈ ℂ) → (abs‘((exp‘(i · 𝑦)) · i)) = ((abs‘(exp‘(i · 𝑦))) · (abs‘i)))
116114, 34, 115sylancl 586 . . . . . . . . 9 ((⊤ ∧ 𝑦 ∈ (0(,)(π / 3))) → (abs‘((exp‘(i · 𝑦)) · i)) = ((abs‘(exp‘(i · 𝑦))) · (abs‘i)))
117 absefi 16078 . . . . . . . . . . . 12 (𝑦 ∈ ℝ → (abs‘(exp‘(i · 𝑦))) = 1)
118109, 117syl 17 . . . . . . . . . . 11 ((⊤ ∧ 𝑦 ∈ (0(,)(π / 3))) → (abs‘(exp‘(i · 𝑦))) = 1)
119 absi 15171 . . . . . . . . . . . 12 (abs‘i) = 1
120119a1i 11 . . . . . . . . . . 11 ((⊤ ∧ 𝑦 ∈ (0(,)(π / 3))) → (abs‘i) = 1)
121118, 120oveq12d 7375 . . . . . . . . . 10 ((⊤ ∧ 𝑦 ∈ (0(,)(π / 3))) → ((abs‘(exp‘(i · 𝑦))) · (abs‘i)) = (1 · 1))
12241mulid1i 11159 . . . . . . . . . 10 (1 · 1) = 1
123121, 122eqtrdi 2792 . . . . . . . . 9 ((⊤ ∧ 𝑦 ∈ (0(,)(π / 3))) → ((abs‘(exp‘(i · 𝑦))) · (abs‘i)) = 1)
124106, 116, 1233eqtrd 2780 . . . . . . . 8 ((⊤ ∧ 𝑦 ∈ (0(,)(π / 3))) → (abs‘((ℝ D (𝑥 ∈ (0[,](π / 3)) ↦ (exp‘(i · 𝑥))))‘𝑦)) = 1)
125 1le1 11783 . . . . . . . 8 1 ≤ 1
126124, 125eqbrtrdi 5144 . . . . . . 7 ((⊤ ∧ 𝑦 ∈ (0(,)(π / 3))) → (abs‘((ℝ D (𝑥 ∈ (0[,](π / 3)) ↦ (exp‘(i · 𝑥))))‘𝑦)) ≤ 1)
12719, 24, 59, 97, 99, 126dvlip 25357 . . . . . 6 ((⊤ ∧ (0 ∈ (0[,](π / 3)) ∧ (π / 3) ∈ (0[,](π / 3)))) → (abs‘(((𝑥 ∈ (0[,](π / 3)) ↦ (exp‘(i · 𝑥)))‘0) − ((𝑥 ∈ (0[,](π / 3)) ↦ (exp‘(i · 𝑥)))‘(π / 3)))) ≤ (1 · (abs‘(0 − (π / 3)))))
1283, 17, 127mp2an 690 . . . . 5 (abs‘(((𝑥 ∈ (0[,](π / 3)) ↦ (exp‘(i · 𝑥)))‘0) − ((𝑥 ∈ (0[,](π / 3)) ↦ (exp‘(i · 𝑥)))‘(π / 3)))) ≤ (1 · (abs‘(0 − (π / 3))))
129 oveq2 7365 . . . . . . . . . . . . 13 (𝑥 = 0 → (i · 𝑥) = (i · 0))
130 it0e0 12375 . . . . . . . . . . . . 13 (i · 0) = 0
131129, 130eqtrdi 2792 . . . . . . . . . . . 12 (𝑥 = 0 → (i · 𝑥) = 0)
132131fveq2d 6846 . . . . . . . . . . 11 (𝑥 = 0 → (exp‘(i · 𝑥)) = (exp‘0))
133 ef0 15973 . . . . . . . . . . 11 (exp‘0) = 1
134132, 133eqtrdi 2792 . . . . . . . . . 10 (𝑥 = 0 → (exp‘(i · 𝑥)) = 1)
135 eqid 2736 . . . . . . . . . 10 (𝑥 ∈ (0[,](π / 3)) ↦ (exp‘(i · 𝑥))) = (𝑥 ∈ (0[,](π / 3)) ↦ (exp‘(i · 𝑥)))
136 fvex 6855 . . . . . . . . . 10 (exp‘(i · 𝑥)) ∈ V
137134, 135, 136fvmpt3i 6953 . . . . . . . . 9 (0 ∈ (0[,](π / 3)) → ((𝑥 ∈ (0[,](π / 3)) ↦ (exp‘(i · 𝑥)))‘0) = 1)
13814, 137ax-mp 5 . . . . . . . 8 ((𝑥 ∈ (0[,](π / 3)) ↦ (exp‘(i · 𝑥)))‘0) = 1
139 oveq2 7365 . . . . . . . . . . 11 (𝑥 = (π / 3) → (i · 𝑥) = (i · (π / 3)))
140139fveq2d 6846 . . . . . . . . . 10 (𝑥 = (π / 3) → (exp‘(i · 𝑥)) = (exp‘(i · (π / 3))))
141140, 135, 136fvmpt3i 6953 . . . . . . . . 9 ((π / 3) ∈ (0[,](π / 3)) → ((𝑥 ∈ (0[,](π / 3)) ↦ (exp‘(i · 𝑥)))‘(π / 3)) = (exp‘(i · (π / 3))))
14216, 141ax-mp 5 . . . . . . . 8 ((𝑥 ∈ (0[,](π / 3)) ↦ (exp‘(i · 𝑥)))‘(π / 3)) = (exp‘(i · (π / 3)))
143138, 142oveq12i 7369 . . . . . . 7 (((𝑥 ∈ (0[,](π / 3)) ↦ (exp‘(i · 𝑥)))‘0) − ((𝑥 ∈ (0[,](π / 3)) ↦ (exp‘(i · 𝑥)))‘(π / 3))) = (1 − (exp‘(i · (π / 3))))
14423recni 11169 . . . . . . . . . 10 (π / 3) ∈ ℂ
14534, 144mulcli 11162 . . . . . . . . 9 (i · (π / 3)) ∈ ℂ
146 efcl 15965 . . . . . . . . 9 ((i · (π / 3)) ∈ ℂ → (exp‘(i · (π / 3))) ∈ ℂ)
147145, 146ax-mp 5 . . . . . . . 8 (exp‘(i · (π / 3))) ∈ ℂ
148 negicn 11402 . . . . . . . . . 10 -i ∈ ℂ
149148, 144mulcli 11162 . . . . . . . . 9 (-i · (π / 3)) ∈ ℂ
150 efcl 15965 . . . . . . . . 9 ((-i · (π / 3)) ∈ ℂ → (exp‘(-i · (π / 3))) ∈ ℂ)
151149, 150ax-mp 5 . . . . . . . 8 (exp‘(-i · (π / 3))) ∈ ℂ
152 cosval 16005 . . . . . . . . . . 11 ((π / 3) ∈ ℂ → (cos‘(π / 3)) = (((exp‘(i · (π / 3))) + (exp‘(-i · (π / 3)))) / 2))
153144, 152ax-mp 5 . . . . . . . . . 10 (cos‘(π / 3)) = (((exp‘(i · (π / 3))) + (exp‘(-i · (π / 3)))) / 2)
154 sincos3rdpi 25873 . . . . . . . . . . 11 ((sin‘(π / 3)) = ((√‘3) / 2) ∧ (cos‘(π / 3)) = (1 / 2))
155154simpri 486 . . . . . . . . . 10 (cos‘(π / 3)) = (1 / 2)
156153, 155eqtr3i 2766 . . . . . . . . 9 (((exp‘(i · (π / 3))) + (exp‘(-i · (π / 3)))) / 2) = (1 / 2)
157147, 151addcli 11161 . . . . . . . . . 10 ((exp‘(i · (π / 3))) + (exp‘(-i · (π / 3)))) ∈ ℂ
158 2cn 12228 . . . . . . . . . 10 2 ∈ ℂ
159 2ne0 12257 . . . . . . . . . 10 2 ≠ 0
160157, 41, 158, 159div11i 11914 . . . . . . . . 9 ((((exp‘(i · (π / 3))) + (exp‘(-i · (π / 3)))) / 2) = (1 / 2) ↔ ((exp‘(i · (π / 3))) + (exp‘(-i · (π / 3)))) = 1)
161156, 160mpbi 229 . . . . . . . 8 ((exp‘(i · (π / 3))) + (exp‘(-i · (π / 3)))) = 1
16241, 147, 151, 161subaddrii 11490 . . . . . . 7 (1 − (exp‘(i · (π / 3)))) = (exp‘(-i · (π / 3)))
163 mulneg12 11593 . . . . . . . . 9 ((i ∈ ℂ ∧ (π / 3) ∈ ℂ) → (-i · (π / 3)) = (i · -(π / 3)))
16434, 144, 163mp2an 690 . . . . . . . 8 (-i · (π / 3)) = (i · -(π / 3))
165164fveq2i 6845 . . . . . . 7 (exp‘(-i · (π / 3))) = (exp‘(i · -(π / 3)))
166143, 162, 1653eqtri 2768 . . . . . 6 (((𝑥 ∈ (0[,](π / 3)) ↦ (exp‘(i · 𝑥)))‘0) − ((𝑥 ∈ (0[,](π / 3)) ↦ (exp‘(i · 𝑥)))‘(π / 3))) = (exp‘(i · -(π / 3)))
167166fveq2i 6845 . . . . 5 (abs‘(((𝑥 ∈ (0[,](π / 3)) ↦ (exp‘(i · 𝑥)))‘0) − ((𝑥 ∈ (0[,](π / 3)) ↦ (exp‘(i · 𝑥)))‘(π / 3)))) = (abs‘(exp‘(i · -(π / 3))))
168144absnegi 15285 . . . . . . . 8 (abs‘-(π / 3)) = (abs‘(π / 3))
169 df-neg 11388 . . . . . . . . 9 -(π / 3) = (0 − (π / 3))
170169fveq2i 6845 . . . . . . . 8 (abs‘-(π / 3)) = (abs‘(0 − (π / 3)))
171168, 170eqtr3i 2766 . . . . . . 7 (abs‘(π / 3)) = (abs‘(0 − (π / 3)))
172 rprege0 12930 . . . . . . . 8 ((π / 3) ∈ ℝ+ → ((π / 3) ∈ ℝ ∧ 0 ≤ (π / 3)))
173 absid 15181 . . . . . . . 8 (((π / 3) ∈ ℝ ∧ 0 ≤ (π / 3)) → (abs‘(π / 3)) = (π / 3))
1748, 172, 173mp2b 10 . . . . . . 7 (abs‘(π / 3)) = (π / 3)
175171, 174eqtr3i 2766 . . . . . 6 (abs‘(0 − (π / 3))) = (π / 3)
176175oveq2i 7368 . . . . 5 (1 · (abs‘(0 − (π / 3)))) = (1 · (π / 3))
177128, 167, 1763brtr3i 5134 . . . 4 (abs‘(exp‘(i · -(π / 3)))) ≤ (1 · (π / 3))
17823renegcli 11462 . . . . 5 -(π / 3) ∈ ℝ
179 absefi 16078 . . . . 5 (-(π / 3) ∈ ℝ → (abs‘(exp‘(i · -(π / 3)))) = 1)
180178, 179ax-mp 5 . . . 4 (abs‘(exp‘(i · -(π / 3)))) = 1
181144mulid2i 11160 . . . 4 (1 · (π / 3)) = (π / 3)
182177, 180, 1813brtr3i 5134 . . 3 1 ≤ (π / 3)
183 3pos 12258 . . . . 5 0 < 3
18421, 183pm3.2i 471 . . . 4 (3 ∈ ℝ ∧ 0 < 3)
185 lemuldiv 12035 . . . 4 ((1 ∈ ℝ ∧ π ∈ ℝ ∧ (3 ∈ ℝ ∧ 0 < 3)) → ((1 · 3) ≤ π ↔ 1 ≤ (π / 3)))
18698, 20, 184, 185mp3an 1461 . . 3 ((1 · 3) ≤ π ↔ 1 ≤ (π / 3))
187182, 186mpbir 230 . 2 (1 · 3) ≤ π
1882, 187eqbrtrri 5128 1 3 ≤ π
Colors of variables: wff setvar class
Syntax hints:  wb 205  wa 396   = wceq 1541  wtru 1542  wcel 2106  cin 3909  wss 3910  {cpr 4588   class class class wbr 5105  cmpt 5188  dom cdm 5633  ran crn 5634  cres 5635  wf 6492  cfv 6496  (class class class)co 7357  cc 11049  cr 11050  0cc0 11051  1c1 11052  ici 11053   + caddc 11054   · cmul 11056  *cxr 11188   < clt 11189  cle 11190  cmin 11385  -cneg 11386   / cdiv 11812  2c2 12208  3c3 12209  +crp 12915  (,)cioo 13264  [,]cicc 13267  csqrt 15118  abscabs 15119  expce 15944  sincsin 15946  cosccos 15947  πcpi 15949  TopOpenctopn 17303  topGenctg 17319  fldccnfld 20796  TopOnctopon 22259  intcnt 22368  cnccncf 24239   D cdv 25227
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-rep 5242  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-inf2 9577  ax-cnex 11107  ax-resscn 11108  ax-1cn 11109  ax-icn 11110  ax-addcl 11111  ax-addrcl 11112  ax-mulcl 11113  ax-mulrcl 11114  ax-mulcom 11115  ax-addass 11116  ax-mulass 11117  ax-distr 11118  ax-i2m1 11119  ax-1ne0 11120  ax-1rid 11121  ax-rnegex 11122  ax-rrecex 11123  ax-cnre 11124  ax-pre-lttri 11125  ax-pre-lttrn 11126  ax-pre-ltadd 11127  ax-pre-mulgt0 11128  ax-pre-sup 11129  ax-addf 11130  ax-mulf 11131
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-rmo 3353  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-tp 4591  df-op 4593  df-uni 4866  df-int 4908  df-iun 4956  df-iin 4957  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-se 5589  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-isom 6505  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-of 7617  df-om 7803  df-1st 7921  df-2nd 7922  df-supp 8093  df-frecs 8212  df-wrecs 8243  df-recs 8317  df-rdg 8356  df-1o 8412  df-2o 8413  df-er 8648  df-map 8767  df-pm 8768  df-ixp 8836  df-en 8884  df-dom 8885  df-sdom 8886  df-fin 8887  df-fsupp 9306  df-fi 9347  df-sup 9378  df-inf 9379  df-oi 9446  df-card 9875  df-pnf 11191  df-mnf 11192  df-xr 11193  df-ltxr 11194  df-le 11195  df-sub 11387  df-neg 11388  df-div 11813  df-nn 12154  df-2 12216  df-3 12217  df-4 12218  df-5 12219  df-6 12220  df-7 12221  df-8 12222  df-9 12223  df-n0 12414  df-z 12500  df-dec 12619  df-uz 12764  df-q 12874  df-rp 12916  df-xneg 13033  df-xadd 13034  df-xmul 13035  df-ioo 13268  df-ioc 13269  df-ico 13270  df-icc 13271  df-fz 13425  df-fzo 13568  df-fl 13697  df-seq 13907  df-exp 13968  df-fac 14174  df-bc 14203  df-hash 14231  df-shft 14952  df-cj 14984  df-re 14985  df-im 14986  df-sqrt 15120  df-abs 15121  df-limsup 15353  df-clim 15370  df-rlim 15371  df-sum 15571  df-ef 15950  df-sin 15952  df-cos 15953  df-pi 15955  df-struct 17019  df-sets 17036  df-slot 17054  df-ndx 17066  df-base 17084  df-ress 17113  df-plusg 17146  df-mulr 17147  df-starv 17148  df-sca 17149  df-vsca 17150  df-ip 17151  df-tset 17152  df-ple 17153  df-ds 17155  df-unif 17156  df-hom 17157  df-cco 17158  df-rest 17304  df-topn 17305  df-0g 17323  df-gsum 17324  df-topgen 17325  df-pt 17326  df-prds 17329  df-xrs 17384  df-qtop 17389  df-imas 17390  df-xps 17392  df-mre 17466  df-mrc 17467  df-acs 17469  df-mgm 18497  df-sgrp 18546  df-mnd 18557  df-submnd 18602  df-mulg 18873  df-cntz 19097  df-cmn 19564  df-psmet 20788  df-xmet 20789  df-met 20790  df-bl 20791  df-mopn 20792  df-fbas 20793  df-fg 20794  df-cnfld 20797  df-top 22243  df-topon 22260  df-topsp 22282  df-bases 22296  df-cld 22370  df-ntr 22371  df-cls 22372  df-nei 22449  df-lp 22487  df-perf 22488  df-cn 22578  df-cnp 22579  df-haus 22666  df-cmp 22738  df-tx 22913  df-hmeo 23106  df-fil 23197  df-fm 23289  df-flim 23290  df-flf 23291  df-xms 23673  df-ms 23674  df-tms 23675  df-cncf 24241  df-limc 25230  df-dv 25231
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator