MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pige3ALT Structured version   Visualization version   GIF version

Theorem pige3ALT 26498
Description: Alternate proof of pige3 26497. This proof is based on the geometric observation that a hexagon of unit side length has perimeter 6, which is less than the unit-radius circumcircle, of perimeter . We translate this to algebra by looking at the function e↑(i𝑥) as 𝑥 goes from 0 to π / 3; it moves at unit speed and travels distance 1, hence 1 ≤ π / 3. (Contributed by Mario Carneiro, 21-May-2016.) (New usage is discouraged.) (Proof modification is discouraged.)
Assertion
Ref Expression
pige3ALT 3 ≤ π

Proof of Theorem pige3ALT
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 3cn 12329 . . 3 3 ∈ ℂ
21mullidi 11248 . 2 (1 · 3) = 3
3 tru 1543 . . . . . 6
4 0xr 11290 . . . . . . . 8 0 ∈ ℝ*
5 pirp 26439 . . . . . . . . . 10 π ∈ ℝ+
6 3rp 13022 . . . . . . . . . 10 3 ∈ ℝ+
7 rpdivcl 13042 . . . . . . . . . 10 ((π ∈ ℝ+ ∧ 3 ∈ ℝ+) → (π / 3) ∈ ℝ+)
85, 6, 7mp2an 692 . . . . . . . . 9 (π / 3) ∈ ℝ+
9 rpxr 13026 . . . . . . . . 9 ((π / 3) ∈ ℝ+ → (π / 3) ∈ ℝ*)
108, 9ax-mp 5 . . . . . . . 8 (π / 3) ∈ ℝ*
11 rpge0 13030 . . . . . . . . 9 ((π / 3) ∈ ℝ+ → 0 ≤ (π / 3))
128, 11ax-mp 5 . . . . . . . 8 0 ≤ (π / 3)
13 lbicc2 13486 . . . . . . . 8 ((0 ∈ ℝ* ∧ (π / 3) ∈ ℝ* ∧ 0 ≤ (π / 3)) → 0 ∈ (0[,](π / 3)))
144, 10, 12, 13mp3an 1462 . . . . . . 7 0 ∈ (0[,](π / 3))
15 ubicc2 13487 . . . . . . . 8 ((0 ∈ ℝ* ∧ (π / 3) ∈ ℝ* ∧ 0 ≤ (π / 3)) → (π / 3) ∈ (0[,](π / 3)))
164, 10, 12, 15mp3an 1462 . . . . . . 7 (π / 3) ∈ (0[,](π / 3))
1714, 16pm3.2i 470 . . . . . 6 (0 ∈ (0[,](π / 3)) ∧ (π / 3) ∈ (0[,](π / 3)))
18 0re 11245 . . . . . . . 8 0 ∈ ℝ
1918a1i 11 . . . . . . 7 (⊤ → 0 ∈ ℝ)
20 pire 26436 . . . . . . . . 9 π ∈ ℝ
21 3re 12328 . . . . . . . . 9 3 ∈ ℝ
22 3ne0 12354 . . . . . . . . 9 3 ≠ 0
2320, 21, 22redivcli 12016 . . . . . . . 8 (π / 3) ∈ ℝ
2423a1i 11 . . . . . . 7 (⊤ → (π / 3) ∈ ℝ)
25 efcn 26423 . . . . . . . . 9 exp ∈ (ℂ–cn→ℂ)
2625a1i 11 . . . . . . . 8 (⊤ → exp ∈ (ℂ–cn→ℂ))
27 iccssre 13451 . . . . . . . . . . . 12 ((0 ∈ ℝ ∧ (π / 3) ∈ ℝ) → (0[,](π / 3)) ⊆ ℝ)
2818, 23, 27mp2an 692 . . . . . . . . . . 11 (0[,](π / 3)) ⊆ ℝ
29 ax-resscn 11194 . . . . . . . . . . 11 ℝ ⊆ ℂ
3028, 29sstri 3973 . . . . . . . . . 10 (0[,](π / 3)) ⊆ ℂ
31 resmpt 6035 . . . . . . . . . 10 ((0[,](π / 3)) ⊆ ℂ → ((𝑥 ∈ ℂ ↦ (i · 𝑥)) ↾ (0[,](π / 3))) = (𝑥 ∈ (0[,](π / 3)) ↦ (i · 𝑥)))
3230, 31mp1i 13 . . . . . . . . 9 (⊤ → ((𝑥 ∈ ℂ ↦ (i · 𝑥)) ↾ (0[,](π / 3))) = (𝑥 ∈ (0[,](π / 3)) ↦ (i · 𝑥)))
33 ssidd 3987 . . . . . . . . . . 11 (⊤ → ℂ ⊆ ℂ)
34 ax-icn 11196 . . . . . . . . . . . . 13 i ∈ ℂ
35 simpr 484 . . . . . . . . . . . . 13 ((⊤ ∧ 𝑥 ∈ ℂ) → 𝑥 ∈ ℂ)
36 mulcl 11221 . . . . . . . . . . . . 13 ((i ∈ ℂ ∧ 𝑥 ∈ ℂ) → (i · 𝑥) ∈ ℂ)
3734, 35, 36sylancr 587 . . . . . . . . . . . 12 ((⊤ ∧ 𝑥 ∈ ℂ) → (i · 𝑥) ∈ ℂ)
3837fmpttd 7115 . . . . . . . . . . 11 (⊤ → (𝑥 ∈ ℂ ↦ (i · 𝑥)):ℂ⟶ℂ)
39 cnelprrecn 11230 . . . . . . . . . . . . . . . 16 ℂ ∈ {ℝ, ℂ}
4039a1i 11 . . . . . . . . . . . . . . 15 (⊤ → ℂ ∈ {ℝ, ℂ})
41 ax-1cn 11195 . . . . . . . . . . . . . . . 16 1 ∈ ℂ
4241a1i 11 . . . . . . . . . . . . . . 15 ((⊤ ∧ 𝑥 ∈ ℂ) → 1 ∈ ℂ)
4340dvmptid 25931 . . . . . . . . . . . . . . 15 (⊤ → (ℂ D (𝑥 ∈ ℂ ↦ 𝑥)) = (𝑥 ∈ ℂ ↦ 1))
4434a1i 11 . . . . . . . . . . . . . . 15 (⊤ → i ∈ ℂ)
4540, 35, 42, 43, 44dvmptcmul 25938 . . . . . . . . . . . . . 14 (⊤ → (ℂ D (𝑥 ∈ ℂ ↦ (i · 𝑥))) = (𝑥 ∈ ℂ ↦ (i · 1)))
4634mulridi 11247 . . . . . . . . . . . . . . 15 (i · 1) = i
4746mpteq2i 5227 . . . . . . . . . . . . . 14 (𝑥 ∈ ℂ ↦ (i · 1)) = (𝑥 ∈ ℂ ↦ i)
4845, 47eqtrdi 2785 . . . . . . . . . . . . 13 (⊤ → (ℂ D (𝑥 ∈ ℂ ↦ (i · 𝑥))) = (𝑥 ∈ ℂ ↦ i))
4948dmeqd 5896 . . . . . . . . . . . 12 (⊤ → dom (ℂ D (𝑥 ∈ ℂ ↦ (i · 𝑥))) = dom (𝑥 ∈ ℂ ↦ i))
5034elexi 3486 . . . . . . . . . . . . 13 i ∈ V
51 eqid 2734 . . . . . . . . . . . . 13 (𝑥 ∈ ℂ ↦ i) = (𝑥 ∈ ℂ ↦ i)
5250, 51dmmpti 6692 . . . . . . . . . . . 12 dom (𝑥 ∈ ℂ ↦ i) = ℂ
5349, 52eqtrdi 2785 . . . . . . . . . . 11 (⊤ → dom (ℂ D (𝑥 ∈ ℂ ↦ (i · 𝑥))) = ℂ)
54 dvcn 25893 . . . . . . . . . . 11 (((ℂ ⊆ ℂ ∧ (𝑥 ∈ ℂ ↦ (i · 𝑥)):ℂ⟶ℂ ∧ ℂ ⊆ ℂ) ∧ dom (ℂ D (𝑥 ∈ ℂ ↦ (i · 𝑥))) = ℂ) → (𝑥 ∈ ℂ ↦ (i · 𝑥)) ∈ (ℂ–cn→ℂ))
5533, 38, 33, 53, 54syl31anc 1374 . . . . . . . . . 10 (⊤ → (𝑥 ∈ ℂ ↦ (i · 𝑥)) ∈ (ℂ–cn→ℂ))
56 rescncf 24859 . . . . . . . . . 10 ((0[,](π / 3)) ⊆ ℂ → ((𝑥 ∈ ℂ ↦ (i · 𝑥)) ∈ (ℂ–cn→ℂ) → ((𝑥 ∈ ℂ ↦ (i · 𝑥)) ↾ (0[,](π / 3))) ∈ ((0[,](π / 3))–cn→ℂ)))
5730, 55, 56mpsyl 68 . . . . . . . . 9 (⊤ → ((𝑥 ∈ ℂ ↦ (i · 𝑥)) ↾ (0[,](π / 3))) ∈ ((0[,](π / 3))–cn→ℂ))
5832, 57eqeltrrd 2834 . . . . . . . 8 (⊤ → (𝑥 ∈ (0[,](π / 3)) ↦ (i · 𝑥)) ∈ ((0[,](π / 3))–cn→ℂ))
5926, 58cncfmpt1f 24876 . . . . . . 7 (⊤ → (𝑥 ∈ (0[,](π / 3)) ↦ (exp‘(i · 𝑥))) ∈ ((0[,](π / 3))–cn→ℂ))
60 reelprrecn 11229 . . . . . . . . . . 11 ℝ ∈ {ℝ, ℂ}
6160a1i 11 . . . . . . . . . 10 (⊤ → ℝ ∈ {ℝ, ℂ})
62 recn 11227 . . . . . . . . . . 11 (𝑥 ∈ ℝ → 𝑥 ∈ ℂ)
63 efcl 16100 . . . . . . . . . . . 12 ((i · 𝑥) ∈ ℂ → (exp‘(i · 𝑥)) ∈ ℂ)
6437, 63syl 17 . . . . . . . . . . 11 ((⊤ ∧ 𝑥 ∈ ℂ) → (exp‘(i · 𝑥)) ∈ ℂ)
6562, 64sylan2 593 . . . . . . . . . 10 ((⊤ ∧ 𝑥 ∈ ℝ) → (exp‘(i · 𝑥)) ∈ ℂ)
66 mulcl 11221 . . . . . . . . . . . 12 (((exp‘(i · 𝑥)) ∈ ℂ ∧ i ∈ ℂ) → ((exp‘(i · 𝑥)) · i) ∈ ℂ)
6764, 34, 66sylancl 586 . . . . . . . . . . 11 ((⊤ ∧ 𝑥 ∈ ℂ) → ((exp‘(i · 𝑥)) · i) ∈ ℂ)
6862, 67sylan2 593 . . . . . . . . . 10 ((⊤ ∧ 𝑥 ∈ ℝ) → ((exp‘(i · 𝑥)) · i) ∈ ℂ)
69 eqid 2734 . . . . . . . . . . 11 (TopOpen‘ℂfld) = (TopOpen‘ℂfld)
7069cnfldtopon 24739 . . . . . . . . . . . 12 (TopOpen‘ℂfld) ∈ (TopOn‘ℂ)
71 toponmax 22880 . . . . . . . . . . . 12 ((TopOpen‘ℂfld) ∈ (TopOn‘ℂ) → ℂ ∈ (TopOpen‘ℂfld))
7270, 71mp1i 13 . . . . . . . . . . 11 (⊤ → ℂ ∈ (TopOpen‘ℂfld))
7329a1i 11 . . . . . . . . . . . 12 (⊤ → ℝ ⊆ ℂ)
74 dfss2 3949 . . . . . . . . . . . 12 (ℝ ⊆ ℂ ↔ (ℝ ∩ ℂ) = ℝ)
7573, 74sylib 218 . . . . . . . . . . 11 (⊤ → (ℝ ∩ ℂ) = ℝ)
7634a1i 11 . . . . . . . . . . . 12 ((⊤ ∧ 𝑥 ∈ ℂ) → i ∈ ℂ)
77 efcl 16100 . . . . . . . . . . . . 13 (𝑦 ∈ ℂ → (exp‘𝑦) ∈ ℂ)
7877adantl 481 . . . . . . . . . . . 12 ((⊤ ∧ 𝑦 ∈ ℂ) → (exp‘𝑦) ∈ ℂ)
79 dvef 25954 . . . . . . . . . . . . 13 (ℂ D exp) = exp
80 eff 16099 . . . . . . . . . . . . . . . 16 exp:ℂ⟶ℂ
8180a1i 11 . . . . . . . . . . . . . . 15 (⊤ → exp:ℂ⟶ℂ)
8281feqmptd 6957 . . . . . . . . . . . . . 14 (⊤ → exp = (𝑦 ∈ ℂ ↦ (exp‘𝑦)))
8382oveq2d 7429 . . . . . . . . . . . . 13 (⊤ → (ℂ D exp) = (ℂ D (𝑦 ∈ ℂ ↦ (exp‘𝑦))))
8479, 83, 823eqtr3a 2793 . . . . . . . . . . . 12 (⊤ → (ℂ D (𝑦 ∈ ℂ ↦ (exp‘𝑦))) = (𝑦 ∈ ℂ ↦ (exp‘𝑦)))
85 fveq2 6886 . . . . . . . . . . . 12 (𝑦 = (i · 𝑥) → (exp‘𝑦) = (exp‘(i · 𝑥)))
8640, 40, 37, 76, 78, 78, 48, 84, 85, 85dvmptco 25946 . . . . . . . . . . 11 (⊤ → (ℂ D (𝑥 ∈ ℂ ↦ (exp‘(i · 𝑥)))) = (𝑥 ∈ ℂ ↦ ((exp‘(i · 𝑥)) · i)))
8769, 61, 72, 75, 64, 67, 86dvmptres3 25930 . . . . . . . . . 10 (⊤ → (ℝ D (𝑥 ∈ ℝ ↦ (exp‘(i · 𝑥)))) = (𝑥 ∈ ℝ ↦ ((exp‘(i · 𝑥)) · i)))
8828a1i 11 . . . . . . . . . 10 (⊤ → (0[,](π / 3)) ⊆ ℝ)
8969tgioo2 24760 . . . . . . . . . 10 (topGen‘ran (,)) = ((TopOpen‘ℂfld) ↾t ℝ)
90 iccntr 24779 . . . . . . . . . . 11 ((0 ∈ ℝ ∧ (π / 3) ∈ ℝ) → ((int‘(topGen‘ran (,)))‘(0[,](π / 3))) = (0(,)(π / 3)))
9118, 24, 90sylancr 587 . . . . . . . . . 10 (⊤ → ((int‘(topGen‘ran (,)))‘(0[,](π / 3))) = (0(,)(π / 3)))
9261, 65, 68, 87, 88, 89, 69, 91dvmptres2 25936 . . . . . . . . 9 (⊤ → (ℝ D (𝑥 ∈ (0[,](π / 3)) ↦ (exp‘(i · 𝑥)))) = (𝑥 ∈ (0(,)(π / 3)) ↦ ((exp‘(i · 𝑥)) · i)))
9392dmeqd 5896 . . . . . . . 8 (⊤ → dom (ℝ D (𝑥 ∈ (0[,](π / 3)) ↦ (exp‘(i · 𝑥)))) = dom (𝑥 ∈ (0(,)(π / 3)) ↦ ((exp‘(i · 𝑥)) · i)))
94 ovex 7446 . . . . . . . . 9 ((exp‘(i · 𝑥)) · i) ∈ V
95 eqid 2734 . . . . . . . . 9 (𝑥 ∈ (0(,)(π / 3)) ↦ ((exp‘(i · 𝑥)) · i)) = (𝑥 ∈ (0(,)(π / 3)) ↦ ((exp‘(i · 𝑥)) · i))
9694, 95dmmpti 6692 . . . . . . . 8 dom (𝑥 ∈ (0(,)(π / 3)) ↦ ((exp‘(i · 𝑥)) · i)) = (0(,)(π / 3))
9793, 96eqtrdi 2785 . . . . . . 7 (⊤ → dom (ℝ D (𝑥 ∈ (0[,](π / 3)) ↦ (exp‘(i · 𝑥)))) = (0(,)(π / 3)))
98 1re 11243 . . . . . . . 8 1 ∈ ℝ
9998a1i 11 . . . . . . 7 (⊤ → 1 ∈ ℝ)
10092fveq1d 6888 . . . . . . . . . . 11 (⊤ → ((ℝ D (𝑥 ∈ (0[,](π / 3)) ↦ (exp‘(i · 𝑥))))‘𝑦) = ((𝑥 ∈ (0(,)(π / 3)) ↦ ((exp‘(i · 𝑥)) · i))‘𝑦))
101 oveq2 7421 . . . . . . . . . . . . . 14 (𝑥 = 𝑦 → (i · 𝑥) = (i · 𝑦))
102101fveq2d 6890 . . . . . . . . . . . . 13 (𝑥 = 𝑦 → (exp‘(i · 𝑥)) = (exp‘(i · 𝑦)))
103102oveq1d 7428 . . . . . . . . . . . 12 (𝑥 = 𝑦 → ((exp‘(i · 𝑥)) · i) = ((exp‘(i · 𝑦)) · i))
104103, 95, 94fvmpt3i 7001 . . . . . . . . . . 11 (𝑦 ∈ (0(,)(π / 3)) → ((𝑥 ∈ (0(,)(π / 3)) ↦ ((exp‘(i · 𝑥)) · i))‘𝑦) = ((exp‘(i · 𝑦)) · i))
105100, 104sylan9eq 2789 . . . . . . . . . 10 ((⊤ ∧ 𝑦 ∈ (0(,)(π / 3))) → ((ℝ D (𝑥 ∈ (0[,](π / 3)) ↦ (exp‘(i · 𝑥))))‘𝑦) = ((exp‘(i · 𝑦)) · i))
106105fveq2d 6890 . . . . . . . . 9 ((⊤ ∧ 𝑦 ∈ (0(,)(π / 3))) → (abs‘((ℝ D (𝑥 ∈ (0[,](π / 3)) ↦ (exp‘(i · 𝑥))))‘𝑦)) = (abs‘((exp‘(i · 𝑦)) · i)))
107 ioossre 13430 . . . . . . . . . . . . . . 15 (0(,)(π / 3)) ⊆ ℝ
108107a1i 11 . . . . . . . . . . . . . 14 (⊤ → (0(,)(π / 3)) ⊆ ℝ)
109108sselda 3963 . . . . . . . . . . . . 13 ((⊤ ∧ 𝑦 ∈ (0(,)(π / 3))) → 𝑦 ∈ ℝ)
110109recnd 11271 . . . . . . . . . . . 12 ((⊤ ∧ 𝑦 ∈ (0(,)(π / 3))) → 𝑦 ∈ ℂ)
111 mulcl 11221 . . . . . . . . . . . 12 ((i ∈ ℂ ∧ 𝑦 ∈ ℂ) → (i · 𝑦) ∈ ℂ)
11234, 110, 111sylancr 587 . . . . . . . . . . 11 ((⊤ ∧ 𝑦 ∈ (0(,)(π / 3))) → (i · 𝑦) ∈ ℂ)
113 efcl 16100 . . . . . . . . . . 11 ((i · 𝑦) ∈ ℂ → (exp‘(i · 𝑦)) ∈ ℂ)
114112, 113syl 17 . . . . . . . . . 10 ((⊤ ∧ 𝑦 ∈ (0(,)(π / 3))) → (exp‘(i · 𝑦)) ∈ ℂ)
115 absmul 15315 . . . . . . . . . 10 (((exp‘(i · 𝑦)) ∈ ℂ ∧ i ∈ ℂ) → (abs‘((exp‘(i · 𝑦)) · i)) = ((abs‘(exp‘(i · 𝑦))) · (abs‘i)))
116114, 34, 115sylancl 586 . . . . . . . . 9 ((⊤ ∧ 𝑦 ∈ (0(,)(π / 3))) → (abs‘((exp‘(i · 𝑦)) · i)) = ((abs‘(exp‘(i · 𝑦))) · (abs‘i)))
117 absefi 16214 . . . . . . . . . . . 12 (𝑦 ∈ ℝ → (abs‘(exp‘(i · 𝑦))) = 1)
118109, 117syl 17 . . . . . . . . . . 11 ((⊤ ∧ 𝑦 ∈ (0(,)(π / 3))) → (abs‘(exp‘(i · 𝑦))) = 1)
119 absi 15307 . . . . . . . . . . . 12 (abs‘i) = 1
120119a1i 11 . . . . . . . . . . 11 ((⊤ ∧ 𝑦 ∈ (0(,)(π / 3))) → (abs‘i) = 1)
121118, 120oveq12d 7431 . . . . . . . . . 10 ((⊤ ∧ 𝑦 ∈ (0(,)(π / 3))) → ((abs‘(exp‘(i · 𝑦))) · (abs‘i)) = (1 · 1))
12241mulridi 11247 . . . . . . . . . 10 (1 · 1) = 1
123121, 122eqtrdi 2785 . . . . . . . . 9 ((⊤ ∧ 𝑦 ∈ (0(,)(π / 3))) → ((abs‘(exp‘(i · 𝑦))) · (abs‘i)) = 1)
124106, 116, 1233eqtrd 2773 . . . . . . . 8 ((⊤ ∧ 𝑦 ∈ (0(,)(π / 3))) → (abs‘((ℝ D (𝑥 ∈ (0[,](π / 3)) ↦ (exp‘(i · 𝑥))))‘𝑦)) = 1)
125 1le1 11873 . . . . . . . 8 1 ≤ 1
126124, 125eqbrtrdi 5162 . . . . . . 7 ((⊤ ∧ 𝑦 ∈ (0(,)(π / 3))) → (abs‘((ℝ D (𝑥 ∈ (0[,](π / 3)) ↦ (exp‘(i · 𝑥))))‘𝑦)) ≤ 1)
12719, 24, 59, 97, 99, 126dvlip 25968 . . . . . 6 ((⊤ ∧ (0 ∈ (0[,](π / 3)) ∧ (π / 3) ∈ (0[,](π / 3)))) → (abs‘(((𝑥 ∈ (0[,](π / 3)) ↦ (exp‘(i · 𝑥)))‘0) − ((𝑥 ∈ (0[,](π / 3)) ↦ (exp‘(i · 𝑥)))‘(π / 3)))) ≤ (1 · (abs‘(0 − (π / 3)))))
1283, 17, 127mp2an 692 . . . . 5 (abs‘(((𝑥 ∈ (0[,](π / 3)) ↦ (exp‘(i · 𝑥)))‘0) − ((𝑥 ∈ (0[,](π / 3)) ↦ (exp‘(i · 𝑥)))‘(π / 3)))) ≤ (1 · (abs‘(0 − (π / 3))))
129 oveq2 7421 . . . . . . . . . . . . 13 (𝑥 = 0 → (i · 𝑥) = (i · 0))
130 it0e0 12472 . . . . . . . . . . . . 13 (i · 0) = 0
131129, 130eqtrdi 2785 . . . . . . . . . . . 12 (𝑥 = 0 → (i · 𝑥) = 0)
132131fveq2d 6890 . . . . . . . . . . 11 (𝑥 = 0 → (exp‘(i · 𝑥)) = (exp‘0))
133 ef0 16109 . . . . . . . . . . 11 (exp‘0) = 1
134132, 133eqtrdi 2785 . . . . . . . . . 10 (𝑥 = 0 → (exp‘(i · 𝑥)) = 1)
135 eqid 2734 . . . . . . . . . 10 (𝑥 ∈ (0[,](π / 3)) ↦ (exp‘(i · 𝑥))) = (𝑥 ∈ (0[,](π / 3)) ↦ (exp‘(i · 𝑥)))
136 fvex 6899 . . . . . . . . . 10 (exp‘(i · 𝑥)) ∈ V
137134, 135, 136fvmpt3i 7001 . . . . . . . . 9 (0 ∈ (0[,](π / 3)) → ((𝑥 ∈ (0[,](π / 3)) ↦ (exp‘(i · 𝑥)))‘0) = 1)
13814, 137ax-mp 5 . . . . . . . 8 ((𝑥 ∈ (0[,](π / 3)) ↦ (exp‘(i · 𝑥)))‘0) = 1
139 oveq2 7421 . . . . . . . . . . 11 (𝑥 = (π / 3) → (i · 𝑥) = (i · (π / 3)))
140139fveq2d 6890 . . . . . . . . . 10 (𝑥 = (π / 3) → (exp‘(i · 𝑥)) = (exp‘(i · (π / 3))))
141140, 135, 136fvmpt3i 7001 . . . . . . . . 9 ((π / 3) ∈ (0[,](π / 3)) → ((𝑥 ∈ (0[,](π / 3)) ↦ (exp‘(i · 𝑥)))‘(π / 3)) = (exp‘(i · (π / 3))))
14216, 141ax-mp 5 . . . . . . . 8 ((𝑥 ∈ (0[,](π / 3)) ↦ (exp‘(i · 𝑥)))‘(π / 3)) = (exp‘(i · (π / 3)))
143138, 142oveq12i 7425 . . . . . . 7 (((𝑥 ∈ (0[,](π / 3)) ↦ (exp‘(i · 𝑥)))‘0) − ((𝑥 ∈ (0[,](π / 3)) ↦ (exp‘(i · 𝑥)))‘(π / 3))) = (1 − (exp‘(i · (π / 3))))
14423recni 11257 . . . . . . . . . 10 (π / 3) ∈ ℂ
14534, 144mulcli 11250 . . . . . . . . 9 (i · (π / 3)) ∈ ℂ
146 efcl 16100 . . . . . . . . 9 ((i · (π / 3)) ∈ ℂ → (exp‘(i · (π / 3))) ∈ ℂ)
147145, 146ax-mp 5 . . . . . . . 8 (exp‘(i · (π / 3))) ∈ ℂ
148 negicn 11491 . . . . . . . . . 10 -i ∈ ℂ
149148, 144mulcli 11250 . . . . . . . . 9 (-i · (π / 3)) ∈ ℂ
150 efcl 16100 . . . . . . . . 9 ((-i · (π / 3)) ∈ ℂ → (exp‘(-i · (π / 3))) ∈ ℂ)
151149, 150ax-mp 5 . . . . . . . 8 (exp‘(-i · (π / 3))) ∈ ℂ
152 cosval 16141 . . . . . . . . . . 11 ((π / 3) ∈ ℂ → (cos‘(π / 3)) = (((exp‘(i · (π / 3))) + (exp‘(-i · (π / 3)))) / 2))
153144, 152ax-mp 5 . . . . . . . . . 10 (cos‘(π / 3)) = (((exp‘(i · (π / 3))) + (exp‘(-i · (π / 3)))) / 2)
154 sincos3rdpi 26495 . . . . . . . . . . 11 ((sin‘(π / 3)) = ((√‘3) / 2) ∧ (cos‘(π / 3)) = (1 / 2))
155154simpri 485 . . . . . . . . . 10 (cos‘(π / 3)) = (1 / 2)
156153, 155eqtr3i 2759 . . . . . . . . 9 (((exp‘(i · (π / 3))) + (exp‘(-i · (π / 3)))) / 2) = (1 / 2)
157147, 151addcli 11249 . . . . . . . . . 10 ((exp‘(i · (π / 3))) + (exp‘(-i · (π / 3)))) ∈ ℂ
158 2cn 12323 . . . . . . . . . 10 2 ∈ ℂ
159 2ne0 12352 . . . . . . . . . 10 2 ≠ 0
160157, 41, 158, 159div11i 12008 . . . . . . . . 9 ((((exp‘(i · (π / 3))) + (exp‘(-i · (π / 3)))) / 2) = (1 / 2) ↔ ((exp‘(i · (π / 3))) + (exp‘(-i · (π / 3)))) = 1)
161156, 160mpbi 230 . . . . . . . 8 ((exp‘(i · (π / 3))) + (exp‘(-i · (π / 3)))) = 1
16241, 147, 151, 161subaddrii 11580 . . . . . . 7 (1 − (exp‘(i · (π / 3)))) = (exp‘(-i · (π / 3)))
163 mulneg12 11683 . . . . . . . . 9 ((i ∈ ℂ ∧ (π / 3) ∈ ℂ) → (-i · (π / 3)) = (i · -(π / 3)))
16434, 144, 163mp2an 692 . . . . . . . 8 (-i · (π / 3)) = (i · -(π / 3))
165164fveq2i 6889 . . . . . . 7 (exp‘(-i · (π / 3))) = (exp‘(i · -(π / 3)))
166143, 162, 1653eqtri 2761 . . . . . 6 (((𝑥 ∈ (0[,](π / 3)) ↦ (exp‘(i · 𝑥)))‘0) − ((𝑥 ∈ (0[,](π / 3)) ↦ (exp‘(i · 𝑥)))‘(π / 3))) = (exp‘(i · -(π / 3)))
167166fveq2i 6889 . . . . 5 (abs‘(((𝑥 ∈ (0[,](π / 3)) ↦ (exp‘(i · 𝑥)))‘0) − ((𝑥 ∈ (0[,](π / 3)) ↦ (exp‘(i · 𝑥)))‘(π / 3)))) = (abs‘(exp‘(i · -(π / 3))))
168144absnegi 15421 . . . . . . . 8 (abs‘-(π / 3)) = (abs‘(π / 3))
169 df-neg 11477 . . . . . . . . 9 -(π / 3) = (0 − (π / 3))
170169fveq2i 6889 . . . . . . . 8 (abs‘-(π / 3)) = (abs‘(0 − (π / 3)))
171168, 170eqtr3i 2759 . . . . . . 7 (abs‘(π / 3)) = (abs‘(0 − (π / 3)))
172 rprege0 13032 . . . . . . . 8 ((π / 3) ∈ ℝ+ → ((π / 3) ∈ ℝ ∧ 0 ≤ (π / 3)))
173 absid 15317 . . . . . . . 8 (((π / 3) ∈ ℝ ∧ 0 ≤ (π / 3)) → (abs‘(π / 3)) = (π / 3))
1748, 172, 173mp2b 10 . . . . . . 7 (abs‘(π / 3)) = (π / 3)
175171, 174eqtr3i 2759 . . . . . 6 (abs‘(0 − (π / 3))) = (π / 3)
176175oveq2i 7424 . . . . 5 (1 · (abs‘(0 − (π / 3)))) = (1 · (π / 3))
177128, 167, 1763brtr3i 5152 . . . 4 (abs‘(exp‘(i · -(π / 3)))) ≤ (1 · (π / 3))
17823renegcli 11552 . . . . 5 -(π / 3) ∈ ℝ
179 absefi 16214 . . . . 5 (-(π / 3) ∈ ℝ → (abs‘(exp‘(i · -(π / 3)))) = 1)
180178, 179ax-mp 5 . . . 4 (abs‘(exp‘(i · -(π / 3)))) = 1
181144mullidi 11248 . . . 4 (1 · (π / 3)) = (π / 3)
182177, 180, 1813brtr3i 5152 . . 3 1 ≤ (π / 3)
183 3pos 12353 . . . . 5 0 < 3
18421, 183pm3.2i 470 . . . 4 (3 ∈ ℝ ∧ 0 < 3)
185 lemuldiv 12130 . . . 4 ((1 ∈ ℝ ∧ π ∈ ℝ ∧ (3 ∈ ℝ ∧ 0 < 3)) → ((1 · 3) ≤ π ↔ 1 ≤ (π / 3)))
18698, 20, 184, 185mp3an 1462 . . 3 ((1 · 3) ≤ π ↔ 1 ≤ (π / 3))
187182, 186mpbir 231 . 2 (1 · 3) ≤ π
1882, 187eqbrtrri 5146 1 3 ≤ π
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395   = wceq 1539  wtru 1540  wcel 2107  cin 3930  wss 3931  {cpr 4608   class class class wbr 5123  cmpt 5205  dom cdm 5665  ran crn 5666  cres 5667  wf 6537  cfv 6541  (class class class)co 7413  cc 11135  cr 11136  0cc0 11137  1c1 11138  ici 11139   + caddc 11140   · cmul 11142  *cxr 11276   < clt 11277  cle 11278  cmin 11474  -cneg 11475   / cdiv 11902  2c2 12303  3c3 12304  +crp 13016  (,)cioo 13369  [,]cicc 13372  csqrt 15254  abscabs 15255  expce 16079  sincsin 16081  cosccos 16082  πcpi 16084  TopOpenctopn 17437  topGenctg 17453  fldccnfld 21326  TopOnctopon 22864  intcnt 22971  cnccncf 24838   D cdv 25834
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-rep 5259  ax-sep 5276  ax-nul 5286  ax-pow 5345  ax-pr 5412  ax-un 7737  ax-inf2 9663  ax-cnex 11193  ax-resscn 11194  ax-1cn 11195  ax-icn 11196  ax-addcl 11197  ax-addrcl 11198  ax-mulcl 11199  ax-mulrcl 11200  ax-mulcom 11201  ax-addass 11202  ax-mulass 11203  ax-distr 11204  ax-i2m1 11205  ax-1ne0 11206  ax-1rid 11207  ax-rnegex 11208  ax-rrecex 11209  ax-cnre 11210  ax-pre-lttri 11211  ax-pre-lttrn 11212  ax-pre-ltadd 11213  ax-pre-mulgt0 11214  ax-pre-sup 11215  ax-addf 11216
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-nel 3036  df-ral 3051  df-rex 3060  df-rmo 3363  df-reu 3364  df-rab 3420  df-v 3465  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-tp 4611  df-op 4613  df-uni 4888  df-int 4927  df-iun 4973  df-iin 4974  df-br 5124  df-opab 5186  df-mpt 5206  df-tr 5240  df-id 5558  df-eprel 5564  df-po 5572  df-so 5573  df-fr 5617  df-se 5618  df-we 5619  df-xp 5671  df-rel 5672  df-cnv 5673  df-co 5674  df-dm 5675  df-rn 5676  df-res 5677  df-ima 5678  df-pred 6301  df-ord 6366  df-on 6367  df-lim 6368  df-suc 6369  df-iota 6494  df-fun 6543  df-fn 6544  df-f 6545  df-f1 6546  df-fo 6547  df-f1o 6548  df-fv 6549  df-isom 6550  df-riota 7370  df-ov 7416  df-oprab 7417  df-mpo 7418  df-of 7679  df-om 7870  df-1st 7996  df-2nd 7997  df-supp 8168  df-frecs 8288  df-wrecs 8319  df-recs 8393  df-rdg 8432  df-1o 8488  df-2o 8489  df-er 8727  df-map 8850  df-pm 8851  df-ixp 8920  df-en 8968  df-dom 8969  df-sdom 8970  df-fin 8971  df-fsupp 9384  df-fi 9433  df-sup 9464  df-inf 9465  df-oi 9532  df-card 9961  df-pnf 11279  df-mnf 11280  df-xr 11281  df-ltxr 11282  df-le 11283  df-sub 11476  df-neg 11477  df-div 11903  df-nn 12249  df-2 12311  df-3 12312  df-4 12313  df-5 12314  df-6 12315  df-7 12316  df-8 12317  df-9 12318  df-n0 12510  df-z 12597  df-dec 12717  df-uz 12861  df-q 12973  df-rp 13017  df-xneg 13136  df-xadd 13137  df-xmul 13138  df-ioo 13373  df-ioc 13374  df-ico 13375  df-icc 13376  df-fz 13530  df-fzo 13677  df-fl 13814  df-seq 14025  df-exp 14085  df-fac 14295  df-bc 14324  df-hash 14352  df-shft 15088  df-cj 15120  df-re 15121  df-im 15122  df-sqrt 15256  df-abs 15257  df-limsup 15489  df-clim 15506  df-rlim 15507  df-sum 15705  df-ef 16085  df-sin 16087  df-cos 16088  df-pi 16090  df-struct 17166  df-sets 17183  df-slot 17201  df-ndx 17213  df-base 17230  df-ress 17253  df-plusg 17286  df-mulr 17287  df-starv 17288  df-sca 17289  df-vsca 17290  df-ip 17291  df-tset 17292  df-ple 17293  df-ds 17295  df-unif 17296  df-hom 17297  df-cco 17298  df-rest 17438  df-topn 17439  df-0g 17457  df-gsum 17458  df-topgen 17459  df-pt 17460  df-prds 17463  df-xrs 17518  df-qtop 17523  df-imas 17524  df-xps 17526  df-mre 17600  df-mrc 17601  df-acs 17603  df-mgm 18622  df-sgrp 18701  df-mnd 18717  df-submnd 18766  df-mulg 19055  df-cntz 19304  df-cmn 19768  df-psmet 21318  df-xmet 21319  df-met 21320  df-bl 21321  df-mopn 21322  df-fbas 21323  df-fg 21324  df-cnfld 21327  df-top 22848  df-topon 22865  df-topsp 22887  df-bases 22900  df-cld 22973  df-ntr 22974  df-cls 22975  df-nei 23052  df-lp 23090  df-perf 23091  df-cn 23181  df-cnp 23182  df-haus 23269  df-cmp 23341  df-tx 23516  df-hmeo 23709  df-fil 23800  df-fm 23892  df-flim 23893  df-flf 23894  df-xms 24275  df-ms 24276  df-tms 24277  df-cncf 24840  df-limc 25837  df-dv 25838
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator