MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pige3ALT Structured version   Visualization version   GIF version

Theorem pige3ALT 26427
Description: Alternate proof of pige3 26426. This proof is based on the geometric observation that a hexagon of unit side length has perimeter 6, which is less than the unit-radius circumcircle, of perimeter . We translate this to algebra by looking at the function e↑(i𝑥) as 𝑥 goes from 0 to π / 3; it moves at unit speed and travels distance 1, hence 1 ≤ π / 3. (Contributed by Mario Carneiro, 21-May-2016.) (New usage is discouraged.) (Proof modification is discouraged.)
Assertion
Ref Expression
pige3ALT 3 ≤ π

Proof of Theorem pige3ALT
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 3cn 12209 . . 3 3 ∈ ℂ
21mullidi 11120 . 2 (1 · 3) = 3
3 tru 1544 . . . . . 6
4 0xr 11162 . . . . . . . 8 0 ∈ ℝ*
5 pirp 26368 . . . . . . . . . 10 π ∈ ℝ+
6 3rp 12899 . . . . . . . . . 10 3 ∈ ℝ+
7 rpdivcl 12920 . . . . . . . . . 10 ((π ∈ ℝ+ ∧ 3 ∈ ℝ+) → (π / 3) ∈ ℝ+)
85, 6, 7mp2an 692 . . . . . . . . 9 (π / 3) ∈ ℝ+
9 rpxr 12903 . . . . . . . . 9 ((π / 3) ∈ ℝ+ → (π / 3) ∈ ℝ*)
108, 9ax-mp 5 . . . . . . . 8 (π / 3) ∈ ℝ*
11 rpge0 12907 . . . . . . . . 9 ((π / 3) ∈ ℝ+ → 0 ≤ (π / 3))
128, 11ax-mp 5 . . . . . . . 8 0 ≤ (π / 3)
13 lbicc2 13367 . . . . . . . 8 ((0 ∈ ℝ* ∧ (π / 3) ∈ ℝ* ∧ 0 ≤ (π / 3)) → 0 ∈ (0[,](π / 3)))
144, 10, 12, 13mp3an 1463 . . . . . . 7 0 ∈ (0[,](π / 3))
15 ubicc2 13368 . . . . . . . 8 ((0 ∈ ℝ* ∧ (π / 3) ∈ ℝ* ∧ 0 ≤ (π / 3)) → (π / 3) ∈ (0[,](π / 3)))
164, 10, 12, 15mp3an 1463 . . . . . . 7 (π / 3) ∈ (0[,](π / 3))
1714, 16pm3.2i 470 . . . . . 6 (0 ∈ (0[,](π / 3)) ∧ (π / 3) ∈ (0[,](π / 3)))
18 0re 11117 . . . . . . . 8 0 ∈ ℝ
1918a1i 11 . . . . . . 7 (⊤ → 0 ∈ ℝ)
20 pire 26364 . . . . . . . . 9 π ∈ ℝ
21 3re 12208 . . . . . . . . 9 3 ∈ ℝ
22 3ne0 12234 . . . . . . . . 9 3 ≠ 0
2320, 21, 22redivcli 11891 . . . . . . . 8 (π / 3) ∈ ℝ
2423a1i 11 . . . . . . 7 (⊤ → (π / 3) ∈ ℝ)
25 efcn 26351 . . . . . . . . 9 exp ∈ (ℂ–cn→ℂ)
2625a1i 11 . . . . . . . 8 (⊤ → exp ∈ (ℂ–cn→ℂ))
27 iccssre 13332 . . . . . . . . . . . 12 ((0 ∈ ℝ ∧ (π / 3) ∈ ℝ) → (0[,](π / 3)) ⊆ ℝ)
2818, 23, 27mp2an 692 . . . . . . . . . . 11 (0[,](π / 3)) ⊆ ℝ
29 ax-resscn 11066 . . . . . . . . . . 11 ℝ ⊆ ℂ
3028, 29sstri 3945 . . . . . . . . . 10 (0[,](π / 3)) ⊆ ℂ
31 resmpt 5988 . . . . . . . . . 10 ((0[,](π / 3)) ⊆ ℂ → ((𝑥 ∈ ℂ ↦ (i · 𝑥)) ↾ (0[,](π / 3))) = (𝑥 ∈ (0[,](π / 3)) ↦ (i · 𝑥)))
3230, 31mp1i 13 . . . . . . . . 9 (⊤ → ((𝑥 ∈ ℂ ↦ (i · 𝑥)) ↾ (0[,](π / 3))) = (𝑥 ∈ (0[,](π / 3)) ↦ (i · 𝑥)))
33 ssidd 3959 . . . . . . . . . . 11 (⊤ → ℂ ⊆ ℂ)
34 ax-icn 11068 . . . . . . . . . . . . 13 i ∈ ℂ
35 simpr 484 . . . . . . . . . . . . 13 ((⊤ ∧ 𝑥 ∈ ℂ) → 𝑥 ∈ ℂ)
36 mulcl 11093 . . . . . . . . . . . . 13 ((i ∈ ℂ ∧ 𝑥 ∈ ℂ) → (i · 𝑥) ∈ ℂ)
3734, 35, 36sylancr 587 . . . . . . . . . . . 12 ((⊤ ∧ 𝑥 ∈ ℂ) → (i · 𝑥) ∈ ℂ)
3837fmpttd 7049 . . . . . . . . . . 11 (⊤ → (𝑥 ∈ ℂ ↦ (i · 𝑥)):ℂ⟶ℂ)
39 cnelprrecn 11102 . . . . . . . . . . . . . . . 16 ℂ ∈ {ℝ, ℂ}
4039a1i 11 . . . . . . . . . . . . . . 15 (⊤ → ℂ ∈ {ℝ, ℂ})
41 ax-1cn 11067 . . . . . . . . . . . . . . . 16 1 ∈ ℂ
4241a1i 11 . . . . . . . . . . . . . . 15 ((⊤ ∧ 𝑥 ∈ ℂ) → 1 ∈ ℂ)
4340dvmptid 25859 . . . . . . . . . . . . . . 15 (⊤ → (ℂ D (𝑥 ∈ ℂ ↦ 𝑥)) = (𝑥 ∈ ℂ ↦ 1))
4434a1i 11 . . . . . . . . . . . . . . 15 (⊤ → i ∈ ℂ)
4540, 35, 42, 43, 44dvmptcmul 25866 . . . . . . . . . . . . . 14 (⊤ → (ℂ D (𝑥 ∈ ℂ ↦ (i · 𝑥))) = (𝑥 ∈ ℂ ↦ (i · 1)))
4634mulridi 11119 . . . . . . . . . . . . . . 15 (i · 1) = i
4746mpteq2i 5188 . . . . . . . . . . . . . 14 (𝑥 ∈ ℂ ↦ (i · 1)) = (𝑥 ∈ ℂ ↦ i)
4845, 47eqtrdi 2780 . . . . . . . . . . . . 13 (⊤ → (ℂ D (𝑥 ∈ ℂ ↦ (i · 𝑥))) = (𝑥 ∈ ℂ ↦ i))
4948dmeqd 5848 . . . . . . . . . . . 12 (⊤ → dom (ℂ D (𝑥 ∈ ℂ ↦ (i · 𝑥))) = dom (𝑥 ∈ ℂ ↦ i))
5034elexi 3459 . . . . . . . . . . . . 13 i ∈ V
51 eqid 2729 . . . . . . . . . . . . 13 (𝑥 ∈ ℂ ↦ i) = (𝑥 ∈ ℂ ↦ i)
5250, 51dmmpti 6626 . . . . . . . . . . . 12 dom (𝑥 ∈ ℂ ↦ i) = ℂ
5349, 52eqtrdi 2780 . . . . . . . . . . 11 (⊤ → dom (ℂ D (𝑥 ∈ ℂ ↦ (i · 𝑥))) = ℂ)
54 dvcn 25821 . . . . . . . . . . 11 (((ℂ ⊆ ℂ ∧ (𝑥 ∈ ℂ ↦ (i · 𝑥)):ℂ⟶ℂ ∧ ℂ ⊆ ℂ) ∧ dom (ℂ D (𝑥 ∈ ℂ ↦ (i · 𝑥))) = ℂ) → (𝑥 ∈ ℂ ↦ (i · 𝑥)) ∈ (ℂ–cn→ℂ))
5533, 38, 33, 53, 54syl31anc 1375 . . . . . . . . . 10 (⊤ → (𝑥 ∈ ℂ ↦ (i · 𝑥)) ∈ (ℂ–cn→ℂ))
56 rescncf 24788 . . . . . . . . . 10 ((0[,](π / 3)) ⊆ ℂ → ((𝑥 ∈ ℂ ↦ (i · 𝑥)) ∈ (ℂ–cn→ℂ) → ((𝑥 ∈ ℂ ↦ (i · 𝑥)) ↾ (0[,](π / 3))) ∈ ((0[,](π / 3))–cn→ℂ)))
5730, 55, 56mpsyl 68 . . . . . . . . 9 (⊤ → ((𝑥 ∈ ℂ ↦ (i · 𝑥)) ↾ (0[,](π / 3))) ∈ ((0[,](π / 3))–cn→ℂ))
5832, 57eqeltrrd 2829 . . . . . . . 8 (⊤ → (𝑥 ∈ (0[,](π / 3)) ↦ (i · 𝑥)) ∈ ((0[,](π / 3))–cn→ℂ))
5926, 58cncfmpt1f 24805 . . . . . . 7 (⊤ → (𝑥 ∈ (0[,](π / 3)) ↦ (exp‘(i · 𝑥))) ∈ ((0[,](π / 3))–cn→ℂ))
60 reelprrecn 11101 . . . . . . . . . . 11 ℝ ∈ {ℝ, ℂ}
6160a1i 11 . . . . . . . . . 10 (⊤ → ℝ ∈ {ℝ, ℂ})
62 recn 11099 . . . . . . . . . . 11 (𝑥 ∈ ℝ → 𝑥 ∈ ℂ)
63 efcl 15989 . . . . . . . . . . . 12 ((i · 𝑥) ∈ ℂ → (exp‘(i · 𝑥)) ∈ ℂ)
6437, 63syl 17 . . . . . . . . . . 11 ((⊤ ∧ 𝑥 ∈ ℂ) → (exp‘(i · 𝑥)) ∈ ℂ)
6562, 64sylan2 593 . . . . . . . . . 10 ((⊤ ∧ 𝑥 ∈ ℝ) → (exp‘(i · 𝑥)) ∈ ℂ)
66 mulcl 11093 . . . . . . . . . . . 12 (((exp‘(i · 𝑥)) ∈ ℂ ∧ i ∈ ℂ) → ((exp‘(i · 𝑥)) · i) ∈ ℂ)
6764, 34, 66sylancl 586 . . . . . . . . . . 11 ((⊤ ∧ 𝑥 ∈ ℂ) → ((exp‘(i · 𝑥)) · i) ∈ ℂ)
6862, 67sylan2 593 . . . . . . . . . 10 ((⊤ ∧ 𝑥 ∈ ℝ) → ((exp‘(i · 𝑥)) · i) ∈ ℂ)
69 eqid 2729 . . . . . . . . . . 11 (TopOpen‘ℂfld) = (TopOpen‘ℂfld)
7069cnfldtopon 24668 . . . . . . . . . . . 12 (TopOpen‘ℂfld) ∈ (TopOn‘ℂ)
71 toponmax 22811 . . . . . . . . . . . 12 ((TopOpen‘ℂfld) ∈ (TopOn‘ℂ) → ℂ ∈ (TopOpen‘ℂfld))
7270, 71mp1i 13 . . . . . . . . . . 11 (⊤ → ℂ ∈ (TopOpen‘ℂfld))
7329a1i 11 . . . . . . . . . . . 12 (⊤ → ℝ ⊆ ℂ)
74 dfss2 3921 . . . . . . . . . . . 12 (ℝ ⊆ ℂ ↔ (ℝ ∩ ℂ) = ℝ)
7573, 74sylib 218 . . . . . . . . . . 11 (⊤ → (ℝ ∩ ℂ) = ℝ)
7634a1i 11 . . . . . . . . . . . 12 ((⊤ ∧ 𝑥 ∈ ℂ) → i ∈ ℂ)
77 efcl 15989 . . . . . . . . . . . . 13 (𝑦 ∈ ℂ → (exp‘𝑦) ∈ ℂ)
7877adantl 481 . . . . . . . . . . . 12 ((⊤ ∧ 𝑦 ∈ ℂ) → (exp‘𝑦) ∈ ℂ)
79 dvef 25882 . . . . . . . . . . . . 13 (ℂ D exp) = exp
80 eff 15988 . . . . . . . . . . . . . . . 16 exp:ℂ⟶ℂ
8180a1i 11 . . . . . . . . . . . . . . 15 (⊤ → exp:ℂ⟶ℂ)
8281feqmptd 6891 . . . . . . . . . . . . . 14 (⊤ → exp = (𝑦 ∈ ℂ ↦ (exp‘𝑦)))
8382oveq2d 7365 . . . . . . . . . . . . 13 (⊤ → (ℂ D exp) = (ℂ D (𝑦 ∈ ℂ ↦ (exp‘𝑦))))
8479, 83, 823eqtr3a 2788 . . . . . . . . . . . 12 (⊤ → (ℂ D (𝑦 ∈ ℂ ↦ (exp‘𝑦))) = (𝑦 ∈ ℂ ↦ (exp‘𝑦)))
85 fveq2 6822 . . . . . . . . . . . 12 (𝑦 = (i · 𝑥) → (exp‘𝑦) = (exp‘(i · 𝑥)))
8640, 40, 37, 76, 78, 78, 48, 84, 85, 85dvmptco 25874 . . . . . . . . . . 11 (⊤ → (ℂ D (𝑥 ∈ ℂ ↦ (exp‘(i · 𝑥)))) = (𝑥 ∈ ℂ ↦ ((exp‘(i · 𝑥)) · i)))
8769, 61, 72, 75, 64, 67, 86dvmptres3 25858 . . . . . . . . . 10 (⊤ → (ℝ D (𝑥 ∈ ℝ ↦ (exp‘(i · 𝑥)))) = (𝑥 ∈ ℝ ↦ ((exp‘(i · 𝑥)) · i)))
8828a1i 11 . . . . . . . . . 10 (⊤ → (0[,](π / 3)) ⊆ ℝ)
8969tgioo2 24689 . . . . . . . . . 10 (topGen‘ran (,)) = ((TopOpen‘ℂfld) ↾t ℝ)
90 iccntr 24708 . . . . . . . . . . 11 ((0 ∈ ℝ ∧ (π / 3) ∈ ℝ) → ((int‘(topGen‘ran (,)))‘(0[,](π / 3))) = (0(,)(π / 3)))
9118, 24, 90sylancr 587 . . . . . . . . . 10 (⊤ → ((int‘(topGen‘ran (,)))‘(0[,](π / 3))) = (0(,)(π / 3)))
9261, 65, 68, 87, 88, 89, 69, 91dvmptres2 25864 . . . . . . . . 9 (⊤ → (ℝ D (𝑥 ∈ (0[,](π / 3)) ↦ (exp‘(i · 𝑥)))) = (𝑥 ∈ (0(,)(π / 3)) ↦ ((exp‘(i · 𝑥)) · i)))
9392dmeqd 5848 . . . . . . . 8 (⊤ → dom (ℝ D (𝑥 ∈ (0[,](π / 3)) ↦ (exp‘(i · 𝑥)))) = dom (𝑥 ∈ (0(,)(π / 3)) ↦ ((exp‘(i · 𝑥)) · i)))
94 ovex 7382 . . . . . . . . 9 ((exp‘(i · 𝑥)) · i) ∈ V
95 eqid 2729 . . . . . . . . 9 (𝑥 ∈ (0(,)(π / 3)) ↦ ((exp‘(i · 𝑥)) · i)) = (𝑥 ∈ (0(,)(π / 3)) ↦ ((exp‘(i · 𝑥)) · i))
9694, 95dmmpti 6626 . . . . . . . 8 dom (𝑥 ∈ (0(,)(π / 3)) ↦ ((exp‘(i · 𝑥)) · i)) = (0(,)(π / 3))
9793, 96eqtrdi 2780 . . . . . . 7 (⊤ → dom (ℝ D (𝑥 ∈ (0[,](π / 3)) ↦ (exp‘(i · 𝑥)))) = (0(,)(π / 3)))
98 1re 11115 . . . . . . . 8 1 ∈ ℝ
9998a1i 11 . . . . . . 7 (⊤ → 1 ∈ ℝ)
10092fveq1d 6824 . . . . . . . . . . 11 (⊤ → ((ℝ D (𝑥 ∈ (0[,](π / 3)) ↦ (exp‘(i · 𝑥))))‘𝑦) = ((𝑥 ∈ (0(,)(π / 3)) ↦ ((exp‘(i · 𝑥)) · i))‘𝑦))
101 oveq2 7357 . . . . . . . . . . . . . 14 (𝑥 = 𝑦 → (i · 𝑥) = (i · 𝑦))
102101fveq2d 6826 . . . . . . . . . . . . 13 (𝑥 = 𝑦 → (exp‘(i · 𝑥)) = (exp‘(i · 𝑦)))
103102oveq1d 7364 . . . . . . . . . . . 12 (𝑥 = 𝑦 → ((exp‘(i · 𝑥)) · i) = ((exp‘(i · 𝑦)) · i))
104103, 95, 94fvmpt3i 6935 . . . . . . . . . . 11 (𝑦 ∈ (0(,)(π / 3)) → ((𝑥 ∈ (0(,)(π / 3)) ↦ ((exp‘(i · 𝑥)) · i))‘𝑦) = ((exp‘(i · 𝑦)) · i))
105100, 104sylan9eq 2784 . . . . . . . . . 10 ((⊤ ∧ 𝑦 ∈ (0(,)(π / 3))) → ((ℝ D (𝑥 ∈ (0[,](π / 3)) ↦ (exp‘(i · 𝑥))))‘𝑦) = ((exp‘(i · 𝑦)) · i))
106105fveq2d 6826 . . . . . . . . 9 ((⊤ ∧ 𝑦 ∈ (0(,)(π / 3))) → (abs‘((ℝ D (𝑥 ∈ (0[,](π / 3)) ↦ (exp‘(i · 𝑥))))‘𝑦)) = (abs‘((exp‘(i · 𝑦)) · i)))
107 ioossre 13310 . . . . . . . . . . . . . . 15 (0(,)(π / 3)) ⊆ ℝ
108107a1i 11 . . . . . . . . . . . . . 14 (⊤ → (0(,)(π / 3)) ⊆ ℝ)
109108sselda 3935 . . . . . . . . . . . . 13 ((⊤ ∧ 𝑦 ∈ (0(,)(π / 3))) → 𝑦 ∈ ℝ)
110109recnd 11143 . . . . . . . . . . . 12 ((⊤ ∧ 𝑦 ∈ (0(,)(π / 3))) → 𝑦 ∈ ℂ)
111 mulcl 11093 . . . . . . . . . . . 12 ((i ∈ ℂ ∧ 𝑦 ∈ ℂ) → (i · 𝑦) ∈ ℂ)
11234, 110, 111sylancr 587 . . . . . . . . . . 11 ((⊤ ∧ 𝑦 ∈ (0(,)(π / 3))) → (i · 𝑦) ∈ ℂ)
113 efcl 15989 . . . . . . . . . . 11 ((i · 𝑦) ∈ ℂ → (exp‘(i · 𝑦)) ∈ ℂ)
114112, 113syl 17 . . . . . . . . . 10 ((⊤ ∧ 𝑦 ∈ (0(,)(π / 3))) → (exp‘(i · 𝑦)) ∈ ℂ)
115 absmul 15201 . . . . . . . . . 10 (((exp‘(i · 𝑦)) ∈ ℂ ∧ i ∈ ℂ) → (abs‘((exp‘(i · 𝑦)) · i)) = ((abs‘(exp‘(i · 𝑦))) · (abs‘i)))
116114, 34, 115sylancl 586 . . . . . . . . 9 ((⊤ ∧ 𝑦 ∈ (0(,)(π / 3))) → (abs‘((exp‘(i · 𝑦)) · i)) = ((abs‘(exp‘(i · 𝑦))) · (abs‘i)))
117 absefi 16105 . . . . . . . . . . . 12 (𝑦 ∈ ℝ → (abs‘(exp‘(i · 𝑦))) = 1)
118109, 117syl 17 . . . . . . . . . . 11 ((⊤ ∧ 𝑦 ∈ (0(,)(π / 3))) → (abs‘(exp‘(i · 𝑦))) = 1)
119 absi 15193 . . . . . . . . . . . 12 (abs‘i) = 1
120119a1i 11 . . . . . . . . . . 11 ((⊤ ∧ 𝑦 ∈ (0(,)(π / 3))) → (abs‘i) = 1)
121118, 120oveq12d 7367 . . . . . . . . . 10 ((⊤ ∧ 𝑦 ∈ (0(,)(π / 3))) → ((abs‘(exp‘(i · 𝑦))) · (abs‘i)) = (1 · 1))
12241mulridi 11119 . . . . . . . . . 10 (1 · 1) = 1
123121, 122eqtrdi 2780 . . . . . . . . 9 ((⊤ ∧ 𝑦 ∈ (0(,)(π / 3))) → ((abs‘(exp‘(i · 𝑦))) · (abs‘i)) = 1)
124106, 116, 1233eqtrd 2768 . . . . . . . 8 ((⊤ ∧ 𝑦 ∈ (0(,)(π / 3))) → (abs‘((ℝ D (𝑥 ∈ (0[,](π / 3)) ↦ (exp‘(i · 𝑥))))‘𝑦)) = 1)
125 1le1 11748 . . . . . . . 8 1 ≤ 1
126124, 125eqbrtrdi 5131 . . . . . . 7 ((⊤ ∧ 𝑦 ∈ (0(,)(π / 3))) → (abs‘((ℝ D (𝑥 ∈ (0[,](π / 3)) ↦ (exp‘(i · 𝑥))))‘𝑦)) ≤ 1)
12719, 24, 59, 97, 99, 126dvlip 25896 . . . . . 6 ((⊤ ∧ (0 ∈ (0[,](π / 3)) ∧ (π / 3) ∈ (0[,](π / 3)))) → (abs‘(((𝑥 ∈ (0[,](π / 3)) ↦ (exp‘(i · 𝑥)))‘0) − ((𝑥 ∈ (0[,](π / 3)) ↦ (exp‘(i · 𝑥)))‘(π / 3)))) ≤ (1 · (abs‘(0 − (π / 3)))))
1283, 17, 127mp2an 692 . . . . 5 (abs‘(((𝑥 ∈ (0[,](π / 3)) ↦ (exp‘(i · 𝑥)))‘0) − ((𝑥 ∈ (0[,](π / 3)) ↦ (exp‘(i · 𝑥)))‘(π / 3)))) ≤ (1 · (abs‘(0 − (π / 3))))
129 oveq2 7357 . . . . . . . . . . . . 13 (𝑥 = 0 → (i · 𝑥) = (i · 0))
130 it0e0 12347 . . . . . . . . . . . . 13 (i · 0) = 0
131129, 130eqtrdi 2780 . . . . . . . . . . . 12 (𝑥 = 0 → (i · 𝑥) = 0)
132131fveq2d 6826 . . . . . . . . . . 11 (𝑥 = 0 → (exp‘(i · 𝑥)) = (exp‘0))
133 ef0 15998 . . . . . . . . . . 11 (exp‘0) = 1
134132, 133eqtrdi 2780 . . . . . . . . . 10 (𝑥 = 0 → (exp‘(i · 𝑥)) = 1)
135 eqid 2729 . . . . . . . . . 10 (𝑥 ∈ (0[,](π / 3)) ↦ (exp‘(i · 𝑥))) = (𝑥 ∈ (0[,](π / 3)) ↦ (exp‘(i · 𝑥)))
136 fvex 6835 . . . . . . . . . 10 (exp‘(i · 𝑥)) ∈ V
137134, 135, 136fvmpt3i 6935 . . . . . . . . 9 (0 ∈ (0[,](π / 3)) → ((𝑥 ∈ (0[,](π / 3)) ↦ (exp‘(i · 𝑥)))‘0) = 1)
13814, 137ax-mp 5 . . . . . . . 8 ((𝑥 ∈ (0[,](π / 3)) ↦ (exp‘(i · 𝑥)))‘0) = 1
139 oveq2 7357 . . . . . . . . . . 11 (𝑥 = (π / 3) → (i · 𝑥) = (i · (π / 3)))
140139fveq2d 6826 . . . . . . . . . 10 (𝑥 = (π / 3) → (exp‘(i · 𝑥)) = (exp‘(i · (π / 3))))
141140, 135, 136fvmpt3i 6935 . . . . . . . . 9 ((π / 3) ∈ (0[,](π / 3)) → ((𝑥 ∈ (0[,](π / 3)) ↦ (exp‘(i · 𝑥)))‘(π / 3)) = (exp‘(i · (π / 3))))
14216, 141ax-mp 5 . . . . . . . 8 ((𝑥 ∈ (0[,](π / 3)) ↦ (exp‘(i · 𝑥)))‘(π / 3)) = (exp‘(i · (π / 3)))
143138, 142oveq12i 7361 . . . . . . 7 (((𝑥 ∈ (0[,](π / 3)) ↦ (exp‘(i · 𝑥)))‘0) − ((𝑥 ∈ (0[,](π / 3)) ↦ (exp‘(i · 𝑥)))‘(π / 3))) = (1 − (exp‘(i · (π / 3))))
14423recni 11129 . . . . . . . . . 10 (π / 3) ∈ ℂ
14534, 144mulcli 11122 . . . . . . . . 9 (i · (π / 3)) ∈ ℂ
146 efcl 15989 . . . . . . . . 9 ((i · (π / 3)) ∈ ℂ → (exp‘(i · (π / 3))) ∈ ℂ)
147145, 146ax-mp 5 . . . . . . . 8 (exp‘(i · (π / 3))) ∈ ℂ
148 negicn 11364 . . . . . . . . . 10 -i ∈ ℂ
149148, 144mulcli 11122 . . . . . . . . 9 (-i · (π / 3)) ∈ ℂ
150 efcl 15989 . . . . . . . . 9 ((-i · (π / 3)) ∈ ℂ → (exp‘(-i · (π / 3))) ∈ ℂ)
151149, 150ax-mp 5 . . . . . . . 8 (exp‘(-i · (π / 3))) ∈ ℂ
152 cosval 16032 . . . . . . . . . . 11 ((π / 3) ∈ ℂ → (cos‘(π / 3)) = (((exp‘(i · (π / 3))) + (exp‘(-i · (π / 3)))) / 2))
153144, 152ax-mp 5 . . . . . . . . . 10 (cos‘(π / 3)) = (((exp‘(i · (π / 3))) + (exp‘(-i · (π / 3)))) / 2)
154 sincos3rdpi 26424 . . . . . . . . . . 11 ((sin‘(π / 3)) = ((√‘3) / 2) ∧ (cos‘(π / 3)) = (1 / 2))
155154simpri 485 . . . . . . . . . 10 (cos‘(π / 3)) = (1 / 2)
156153, 155eqtr3i 2754 . . . . . . . . 9 (((exp‘(i · (π / 3))) + (exp‘(-i · (π / 3)))) / 2) = (1 / 2)
157147, 151addcli 11121 . . . . . . . . . 10 ((exp‘(i · (π / 3))) + (exp‘(-i · (π / 3)))) ∈ ℂ
158 2cn 12203 . . . . . . . . . 10 2 ∈ ℂ
159 2ne0 12232 . . . . . . . . . 10 2 ≠ 0
160157, 41, 158, 159div11i 11883 . . . . . . . . 9 ((((exp‘(i · (π / 3))) + (exp‘(-i · (π / 3)))) / 2) = (1 / 2) ↔ ((exp‘(i · (π / 3))) + (exp‘(-i · (π / 3)))) = 1)
161156, 160mpbi 230 . . . . . . . 8 ((exp‘(i · (π / 3))) + (exp‘(-i · (π / 3)))) = 1
16241, 147, 151, 161subaddrii 11453 . . . . . . 7 (1 − (exp‘(i · (π / 3)))) = (exp‘(-i · (π / 3)))
163 mulneg12 11558 . . . . . . . . 9 ((i ∈ ℂ ∧ (π / 3) ∈ ℂ) → (-i · (π / 3)) = (i · -(π / 3)))
16434, 144, 163mp2an 692 . . . . . . . 8 (-i · (π / 3)) = (i · -(π / 3))
165164fveq2i 6825 . . . . . . 7 (exp‘(-i · (π / 3))) = (exp‘(i · -(π / 3)))
166143, 162, 1653eqtri 2756 . . . . . 6 (((𝑥 ∈ (0[,](π / 3)) ↦ (exp‘(i · 𝑥)))‘0) − ((𝑥 ∈ (0[,](π / 3)) ↦ (exp‘(i · 𝑥)))‘(π / 3))) = (exp‘(i · -(π / 3)))
167166fveq2i 6825 . . . . 5 (abs‘(((𝑥 ∈ (0[,](π / 3)) ↦ (exp‘(i · 𝑥)))‘0) − ((𝑥 ∈ (0[,](π / 3)) ↦ (exp‘(i · 𝑥)))‘(π / 3)))) = (abs‘(exp‘(i · -(π / 3))))
168144absnegi 15308 . . . . . . . 8 (abs‘-(π / 3)) = (abs‘(π / 3))
169 df-neg 11350 . . . . . . . . 9 -(π / 3) = (0 − (π / 3))
170169fveq2i 6825 . . . . . . . 8 (abs‘-(π / 3)) = (abs‘(0 − (π / 3)))
171168, 170eqtr3i 2754 . . . . . . 7 (abs‘(π / 3)) = (abs‘(0 − (π / 3)))
172 rprege0 12909 . . . . . . . 8 ((π / 3) ∈ ℝ+ → ((π / 3) ∈ ℝ ∧ 0 ≤ (π / 3)))
173 absid 15203 . . . . . . . 8 (((π / 3) ∈ ℝ ∧ 0 ≤ (π / 3)) → (abs‘(π / 3)) = (π / 3))
1748, 172, 173mp2b 10 . . . . . . 7 (abs‘(π / 3)) = (π / 3)
175171, 174eqtr3i 2754 . . . . . 6 (abs‘(0 − (π / 3))) = (π / 3)
176175oveq2i 7360 . . . . 5 (1 · (abs‘(0 − (π / 3)))) = (1 · (π / 3))
177128, 167, 1763brtr3i 5121 . . . 4 (abs‘(exp‘(i · -(π / 3)))) ≤ (1 · (π / 3))
17823renegcli 11425 . . . . 5 -(π / 3) ∈ ℝ
179 absefi 16105 . . . . 5 (-(π / 3) ∈ ℝ → (abs‘(exp‘(i · -(π / 3)))) = 1)
180178, 179ax-mp 5 . . . 4 (abs‘(exp‘(i · -(π / 3)))) = 1
181144mullidi 11120 . . . 4 (1 · (π / 3)) = (π / 3)
182177, 180, 1813brtr3i 5121 . . 3 1 ≤ (π / 3)
183 3pos 12233 . . . . 5 0 < 3
18421, 183pm3.2i 470 . . . 4 (3 ∈ ℝ ∧ 0 < 3)
185 lemuldiv 12005 . . . 4 ((1 ∈ ℝ ∧ π ∈ ℝ ∧ (3 ∈ ℝ ∧ 0 < 3)) → ((1 · 3) ≤ π ↔ 1 ≤ (π / 3)))
18698, 20, 184, 185mp3an 1463 . . 3 ((1 · 3) ≤ π ↔ 1 ≤ (π / 3))
187182, 186mpbir 231 . 2 (1 · 3) ≤ π
1882, 187eqbrtrri 5115 1 3 ≤ π
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395   = wceq 1540  wtru 1541  wcel 2109  cin 3902  wss 3903  {cpr 4579   class class class wbr 5092  cmpt 5173  dom cdm 5619  ran crn 5620  cres 5621  wf 6478  cfv 6482  (class class class)co 7349  cc 11007  cr 11008  0cc0 11009  1c1 11010  ici 11011   + caddc 11012   · cmul 11014  *cxr 11148   < clt 11149  cle 11150  cmin 11347  -cneg 11348   / cdiv 11777  2c2 12183  3c3 12184  +crp 12893  (,)cioo 13248  [,]cicc 13251  csqrt 15140  abscabs 15141  expce 15968  sincsin 15970  cosccos 15971  πcpi 15973  TopOpenctopn 17325  topGenctg 17341  fldccnfld 21261  TopOnctopon 22795  intcnt 22902  cnccncf 24767   D cdv 25762
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-inf2 9537  ax-cnex 11065  ax-resscn 11066  ax-1cn 11067  ax-icn 11068  ax-addcl 11069  ax-addrcl 11070  ax-mulcl 11071  ax-mulrcl 11072  ax-mulcom 11073  ax-addass 11074  ax-mulass 11075  ax-distr 11076  ax-i2m1 11077  ax-1ne0 11078  ax-1rid 11079  ax-rnegex 11080  ax-rrecex 11081  ax-cnre 11082  ax-pre-lttri 11083  ax-pre-lttrn 11084  ax-pre-ltadd 11085  ax-pre-mulgt0 11086  ax-pre-sup 11087  ax-addf 11088
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3343  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-tp 4582  df-op 4584  df-uni 4859  df-int 4897  df-iun 4943  df-iin 4944  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-se 5573  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-isom 6491  df-riota 7306  df-ov 7352  df-oprab 7353  df-mpo 7354  df-of 7613  df-om 7800  df-1st 7924  df-2nd 7925  df-supp 8094  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-rdg 8332  df-1o 8388  df-2o 8389  df-er 8625  df-map 8755  df-pm 8756  df-ixp 8825  df-en 8873  df-dom 8874  df-sdom 8875  df-fin 8876  df-fsupp 9252  df-fi 9301  df-sup 9332  df-inf 9333  df-oi 9402  df-card 9835  df-pnf 11151  df-mnf 11152  df-xr 11153  df-ltxr 11154  df-le 11155  df-sub 11349  df-neg 11350  df-div 11778  df-nn 12129  df-2 12191  df-3 12192  df-4 12193  df-5 12194  df-6 12195  df-7 12196  df-8 12197  df-9 12198  df-n0 12385  df-z 12472  df-dec 12592  df-uz 12736  df-q 12850  df-rp 12894  df-xneg 13014  df-xadd 13015  df-xmul 13016  df-ioo 13252  df-ioc 13253  df-ico 13254  df-icc 13255  df-fz 13411  df-fzo 13558  df-fl 13696  df-seq 13909  df-exp 13969  df-fac 14181  df-bc 14210  df-hash 14238  df-shft 14974  df-cj 15006  df-re 15007  df-im 15008  df-sqrt 15142  df-abs 15143  df-limsup 15378  df-clim 15395  df-rlim 15396  df-sum 15594  df-ef 15974  df-sin 15976  df-cos 15977  df-pi 15979  df-struct 17058  df-sets 17075  df-slot 17093  df-ndx 17105  df-base 17121  df-ress 17142  df-plusg 17174  df-mulr 17175  df-starv 17176  df-sca 17177  df-vsca 17178  df-ip 17179  df-tset 17180  df-ple 17181  df-ds 17183  df-unif 17184  df-hom 17185  df-cco 17186  df-rest 17326  df-topn 17327  df-0g 17345  df-gsum 17346  df-topgen 17347  df-pt 17348  df-prds 17351  df-xrs 17406  df-qtop 17411  df-imas 17412  df-xps 17414  df-mre 17488  df-mrc 17489  df-acs 17491  df-mgm 18514  df-sgrp 18593  df-mnd 18609  df-submnd 18658  df-mulg 18947  df-cntz 19196  df-cmn 19661  df-psmet 21253  df-xmet 21254  df-met 21255  df-bl 21256  df-mopn 21257  df-fbas 21258  df-fg 21259  df-cnfld 21262  df-top 22779  df-topon 22796  df-topsp 22818  df-bases 22831  df-cld 22904  df-ntr 22905  df-cls 22906  df-nei 22983  df-lp 23021  df-perf 23022  df-cn 23112  df-cnp 23113  df-haus 23200  df-cmp 23272  df-tx 23447  df-hmeo 23640  df-fil 23731  df-fm 23823  df-flim 23824  df-flf 23825  df-xms 24206  df-ms 24207  df-tms 24208  df-cncf 24769  df-limc 25765  df-dv 25766
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator