MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pige3ALT Structured version   Visualization version   GIF version

Theorem pige3ALT 26580
Description: Alternate proof of pige3 26579. This proof is based on the geometric observation that a hexagon of unit side length has perimeter 6, which is less than the unit-radius circumcircle, of perimeter . We translate this to algebra by looking at the function e↑(i𝑥) as 𝑥 goes from 0 to π / 3; it moves at unit speed and travels distance 1, hence 1 ≤ π / 3. (Contributed by Mario Carneiro, 21-May-2016.) (New usage is discouraged.) (Proof modification is discouraged.)
Assertion
Ref Expression
pige3ALT 3 ≤ π

Proof of Theorem pige3ALT
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 3cn 12374 . . 3 3 ∈ ℂ
21mullidi 11295 . 2 (1 · 3) = 3
3 tru 1541 . . . . . 6
4 0xr 11337 . . . . . . . 8 0 ∈ ℝ*
5 pirp 26521 . . . . . . . . . 10 π ∈ ℝ+
6 3rp 13063 . . . . . . . . . 10 3 ∈ ℝ+
7 rpdivcl 13082 . . . . . . . . . 10 ((π ∈ ℝ+ ∧ 3 ∈ ℝ+) → (π / 3) ∈ ℝ+)
85, 6, 7mp2an 691 . . . . . . . . 9 (π / 3) ∈ ℝ+
9 rpxr 13066 . . . . . . . . 9 ((π / 3) ∈ ℝ+ → (π / 3) ∈ ℝ*)
108, 9ax-mp 5 . . . . . . . 8 (π / 3) ∈ ℝ*
11 rpge0 13070 . . . . . . . . 9 ((π / 3) ∈ ℝ+ → 0 ≤ (π / 3))
128, 11ax-mp 5 . . . . . . . 8 0 ≤ (π / 3)
13 lbicc2 13524 . . . . . . . 8 ((0 ∈ ℝ* ∧ (π / 3) ∈ ℝ* ∧ 0 ≤ (π / 3)) → 0 ∈ (0[,](π / 3)))
144, 10, 12, 13mp3an 1461 . . . . . . 7 0 ∈ (0[,](π / 3))
15 ubicc2 13525 . . . . . . . 8 ((0 ∈ ℝ* ∧ (π / 3) ∈ ℝ* ∧ 0 ≤ (π / 3)) → (π / 3) ∈ (0[,](π / 3)))
164, 10, 12, 15mp3an 1461 . . . . . . 7 (π / 3) ∈ (0[,](π / 3))
1714, 16pm3.2i 470 . . . . . 6 (0 ∈ (0[,](π / 3)) ∧ (π / 3) ∈ (0[,](π / 3)))
18 0re 11292 . . . . . . . 8 0 ∈ ℝ
1918a1i 11 . . . . . . 7 (⊤ → 0 ∈ ℝ)
20 pire 26518 . . . . . . . . 9 π ∈ ℝ
21 3re 12373 . . . . . . . . 9 3 ∈ ℝ
22 3ne0 12399 . . . . . . . . 9 3 ≠ 0
2320, 21, 22redivcli 12061 . . . . . . . 8 (π / 3) ∈ ℝ
2423a1i 11 . . . . . . 7 (⊤ → (π / 3) ∈ ℝ)
25 efcn 26505 . . . . . . . . 9 exp ∈ (ℂ–cn→ℂ)
2625a1i 11 . . . . . . . 8 (⊤ → exp ∈ (ℂ–cn→ℂ))
27 iccssre 13489 . . . . . . . . . . . 12 ((0 ∈ ℝ ∧ (π / 3) ∈ ℝ) → (0[,](π / 3)) ⊆ ℝ)
2818, 23, 27mp2an 691 . . . . . . . . . . 11 (0[,](π / 3)) ⊆ ℝ
29 ax-resscn 11241 . . . . . . . . . . 11 ℝ ⊆ ℂ
3028, 29sstri 4018 . . . . . . . . . 10 (0[,](π / 3)) ⊆ ℂ
31 resmpt 6066 . . . . . . . . . 10 ((0[,](π / 3)) ⊆ ℂ → ((𝑥 ∈ ℂ ↦ (i · 𝑥)) ↾ (0[,](π / 3))) = (𝑥 ∈ (0[,](π / 3)) ↦ (i · 𝑥)))
3230, 31mp1i 13 . . . . . . . . 9 (⊤ → ((𝑥 ∈ ℂ ↦ (i · 𝑥)) ↾ (0[,](π / 3))) = (𝑥 ∈ (0[,](π / 3)) ↦ (i · 𝑥)))
33 ssidd 4032 . . . . . . . . . . 11 (⊤ → ℂ ⊆ ℂ)
34 ax-icn 11243 . . . . . . . . . . . . 13 i ∈ ℂ
35 simpr 484 . . . . . . . . . . . . 13 ((⊤ ∧ 𝑥 ∈ ℂ) → 𝑥 ∈ ℂ)
36 mulcl 11268 . . . . . . . . . . . . 13 ((i ∈ ℂ ∧ 𝑥 ∈ ℂ) → (i · 𝑥) ∈ ℂ)
3734, 35, 36sylancr 586 . . . . . . . . . . . 12 ((⊤ ∧ 𝑥 ∈ ℂ) → (i · 𝑥) ∈ ℂ)
3837fmpttd 7149 . . . . . . . . . . 11 (⊤ → (𝑥 ∈ ℂ ↦ (i · 𝑥)):ℂ⟶ℂ)
39 cnelprrecn 11277 . . . . . . . . . . . . . . . 16 ℂ ∈ {ℝ, ℂ}
4039a1i 11 . . . . . . . . . . . . . . 15 (⊤ → ℂ ∈ {ℝ, ℂ})
41 ax-1cn 11242 . . . . . . . . . . . . . . . 16 1 ∈ ℂ
4241a1i 11 . . . . . . . . . . . . . . 15 ((⊤ ∧ 𝑥 ∈ ℂ) → 1 ∈ ℂ)
4340dvmptid 26015 . . . . . . . . . . . . . . 15 (⊤ → (ℂ D (𝑥 ∈ ℂ ↦ 𝑥)) = (𝑥 ∈ ℂ ↦ 1))
4434a1i 11 . . . . . . . . . . . . . . 15 (⊤ → i ∈ ℂ)
4540, 35, 42, 43, 44dvmptcmul 26022 . . . . . . . . . . . . . 14 (⊤ → (ℂ D (𝑥 ∈ ℂ ↦ (i · 𝑥))) = (𝑥 ∈ ℂ ↦ (i · 1)))
4634mulridi 11294 . . . . . . . . . . . . . . 15 (i · 1) = i
4746mpteq2i 5271 . . . . . . . . . . . . . 14 (𝑥 ∈ ℂ ↦ (i · 1)) = (𝑥 ∈ ℂ ↦ i)
4845, 47eqtrdi 2796 . . . . . . . . . . . . 13 (⊤ → (ℂ D (𝑥 ∈ ℂ ↦ (i · 𝑥))) = (𝑥 ∈ ℂ ↦ i))
4948dmeqd 5930 . . . . . . . . . . . 12 (⊤ → dom (ℂ D (𝑥 ∈ ℂ ↦ (i · 𝑥))) = dom (𝑥 ∈ ℂ ↦ i))
5034elexi 3511 . . . . . . . . . . . . 13 i ∈ V
51 eqid 2740 . . . . . . . . . . . . 13 (𝑥 ∈ ℂ ↦ i) = (𝑥 ∈ ℂ ↦ i)
5250, 51dmmpti 6724 . . . . . . . . . . . 12 dom (𝑥 ∈ ℂ ↦ i) = ℂ
5349, 52eqtrdi 2796 . . . . . . . . . . 11 (⊤ → dom (ℂ D (𝑥 ∈ ℂ ↦ (i · 𝑥))) = ℂ)
54 dvcn 25977 . . . . . . . . . . 11 (((ℂ ⊆ ℂ ∧ (𝑥 ∈ ℂ ↦ (i · 𝑥)):ℂ⟶ℂ ∧ ℂ ⊆ ℂ) ∧ dom (ℂ D (𝑥 ∈ ℂ ↦ (i · 𝑥))) = ℂ) → (𝑥 ∈ ℂ ↦ (i · 𝑥)) ∈ (ℂ–cn→ℂ))
5533, 38, 33, 53, 54syl31anc 1373 . . . . . . . . . 10 (⊤ → (𝑥 ∈ ℂ ↦ (i · 𝑥)) ∈ (ℂ–cn→ℂ))
56 rescncf 24942 . . . . . . . . . 10 ((0[,](π / 3)) ⊆ ℂ → ((𝑥 ∈ ℂ ↦ (i · 𝑥)) ∈ (ℂ–cn→ℂ) → ((𝑥 ∈ ℂ ↦ (i · 𝑥)) ↾ (0[,](π / 3))) ∈ ((0[,](π / 3))–cn→ℂ)))
5730, 55, 56mpsyl 68 . . . . . . . . 9 (⊤ → ((𝑥 ∈ ℂ ↦ (i · 𝑥)) ↾ (0[,](π / 3))) ∈ ((0[,](π / 3))–cn→ℂ))
5832, 57eqeltrrd 2845 . . . . . . . 8 (⊤ → (𝑥 ∈ (0[,](π / 3)) ↦ (i · 𝑥)) ∈ ((0[,](π / 3))–cn→ℂ))
5926, 58cncfmpt1f 24959 . . . . . . 7 (⊤ → (𝑥 ∈ (0[,](π / 3)) ↦ (exp‘(i · 𝑥))) ∈ ((0[,](π / 3))–cn→ℂ))
60 reelprrecn 11276 . . . . . . . . . . 11 ℝ ∈ {ℝ, ℂ}
6160a1i 11 . . . . . . . . . 10 (⊤ → ℝ ∈ {ℝ, ℂ})
62 recn 11274 . . . . . . . . . . 11 (𝑥 ∈ ℝ → 𝑥 ∈ ℂ)
63 efcl 16130 . . . . . . . . . . . 12 ((i · 𝑥) ∈ ℂ → (exp‘(i · 𝑥)) ∈ ℂ)
6437, 63syl 17 . . . . . . . . . . 11 ((⊤ ∧ 𝑥 ∈ ℂ) → (exp‘(i · 𝑥)) ∈ ℂ)
6562, 64sylan2 592 . . . . . . . . . 10 ((⊤ ∧ 𝑥 ∈ ℝ) → (exp‘(i · 𝑥)) ∈ ℂ)
66 mulcl 11268 . . . . . . . . . . . 12 (((exp‘(i · 𝑥)) ∈ ℂ ∧ i ∈ ℂ) → ((exp‘(i · 𝑥)) · i) ∈ ℂ)
6764, 34, 66sylancl 585 . . . . . . . . . . 11 ((⊤ ∧ 𝑥 ∈ ℂ) → ((exp‘(i · 𝑥)) · i) ∈ ℂ)
6862, 67sylan2 592 . . . . . . . . . 10 ((⊤ ∧ 𝑥 ∈ ℝ) → ((exp‘(i · 𝑥)) · i) ∈ ℂ)
69 eqid 2740 . . . . . . . . . . 11 (TopOpen‘ℂfld) = (TopOpen‘ℂfld)
7069cnfldtopon 24824 . . . . . . . . . . . 12 (TopOpen‘ℂfld) ∈ (TopOn‘ℂ)
71 toponmax 22953 . . . . . . . . . . . 12 ((TopOpen‘ℂfld) ∈ (TopOn‘ℂ) → ℂ ∈ (TopOpen‘ℂfld))
7270, 71mp1i 13 . . . . . . . . . . 11 (⊤ → ℂ ∈ (TopOpen‘ℂfld))
7329a1i 11 . . . . . . . . . . . 12 (⊤ → ℝ ⊆ ℂ)
74 dfss2 3994 . . . . . . . . . . . 12 (ℝ ⊆ ℂ ↔ (ℝ ∩ ℂ) = ℝ)
7573, 74sylib 218 . . . . . . . . . . 11 (⊤ → (ℝ ∩ ℂ) = ℝ)
7634a1i 11 . . . . . . . . . . . 12 ((⊤ ∧ 𝑥 ∈ ℂ) → i ∈ ℂ)
77 efcl 16130 . . . . . . . . . . . . 13 (𝑦 ∈ ℂ → (exp‘𝑦) ∈ ℂ)
7877adantl 481 . . . . . . . . . . . 12 ((⊤ ∧ 𝑦 ∈ ℂ) → (exp‘𝑦) ∈ ℂ)
79 dvef 26038 . . . . . . . . . . . . 13 (ℂ D exp) = exp
80 eff 16129 . . . . . . . . . . . . . . . 16 exp:ℂ⟶ℂ
8180a1i 11 . . . . . . . . . . . . . . 15 (⊤ → exp:ℂ⟶ℂ)
8281feqmptd 6990 . . . . . . . . . . . . . 14 (⊤ → exp = (𝑦 ∈ ℂ ↦ (exp‘𝑦)))
8382oveq2d 7464 . . . . . . . . . . . . 13 (⊤ → (ℂ D exp) = (ℂ D (𝑦 ∈ ℂ ↦ (exp‘𝑦))))
8479, 83, 823eqtr3a 2804 . . . . . . . . . . . 12 (⊤ → (ℂ D (𝑦 ∈ ℂ ↦ (exp‘𝑦))) = (𝑦 ∈ ℂ ↦ (exp‘𝑦)))
85 fveq2 6920 . . . . . . . . . . . 12 (𝑦 = (i · 𝑥) → (exp‘𝑦) = (exp‘(i · 𝑥)))
8640, 40, 37, 76, 78, 78, 48, 84, 85, 85dvmptco 26030 . . . . . . . . . . 11 (⊤ → (ℂ D (𝑥 ∈ ℂ ↦ (exp‘(i · 𝑥)))) = (𝑥 ∈ ℂ ↦ ((exp‘(i · 𝑥)) · i)))
8769, 61, 72, 75, 64, 67, 86dvmptres3 26014 . . . . . . . . . 10 (⊤ → (ℝ D (𝑥 ∈ ℝ ↦ (exp‘(i · 𝑥)))) = (𝑥 ∈ ℝ ↦ ((exp‘(i · 𝑥)) · i)))
8828a1i 11 . . . . . . . . . 10 (⊤ → (0[,](π / 3)) ⊆ ℝ)
8969tgioo2 24844 . . . . . . . . . 10 (topGen‘ran (,)) = ((TopOpen‘ℂfld) ↾t ℝ)
90 iccntr 24862 . . . . . . . . . . 11 ((0 ∈ ℝ ∧ (π / 3) ∈ ℝ) → ((int‘(topGen‘ran (,)))‘(0[,](π / 3))) = (0(,)(π / 3)))
9118, 24, 90sylancr 586 . . . . . . . . . 10 (⊤ → ((int‘(topGen‘ran (,)))‘(0[,](π / 3))) = (0(,)(π / 3)))
9261, 65, 68, 87, 88, 89, 69, 91dvmptres2 26020 . . . . . . . . 9 (⊤ → (ℝ D (𝑥 ∈ (0[,](π / 3)) ↦ (exp‘(i · 𝑥)))) = (𝑥 ∈ (0(,)(π / 3)) ↦ ((exp‘(i · 𝑥)) · i)))
9392dmeqd 5930 . . . . . . . 8 (⊤ → dom (ℝ D (𝑥 ∈ (0[,](π / 3)) ↦ (exp‘(i · 𝑥)))) = dom (𝑥 ∈ (0(,)(π / 3)) ↦ ((exp‘(i · 𝑥)) · i)))
94 ovex 7481 . . . . . . . . 9 ((exp‘(i · 𝑥)) · i) ∈ V
95 eqid 2740 . . . . . . . . 9 (𝑥 ∈ (0(,)(π / 3)) ↦ ((exp‘(i · 𝑥)) · i)) = (𝑥 ∈ (0(,)(π / 3)) ↦ ((exp‘(i · 𝑥)) · i))
9694, 95dmmpti 6724 . . . . . . . 8 dom (𝑥 ∈ (0(,)(π / 3)) ↦ ((exp‘(i · 𝑥)) · i)) = (0(,)(π / 3))
9793, 96eqtrdi 2796 . . . . . . 7 (⊤ → dom (ℝ D (𝑥 ∈ (0[,](π / 3)) ↦ (exp‘(i · 𝑥)))) = (0(,)(π / 3)))
98 1re 11290 . . . . . . . 8 1 ∈ ℝ
9998a1i 11 . . . . . . 7 (⊤ → 1 ∈ ℝ)
10092fveq1d 6922 . . . . . . . . . . 11 (⊤ → ((ℝ D (𝑥 ∈ (0[,](π / 3)) ↦ (exp‘(i · 𝑥))))‘𝑦) = ((𝑥 ∈ (0(,)(π / 3)) ↦ ((exp‘(i · 𝑥)) · i))‘𝑦))
101 oveq2 7456 . . . . . . . . . . . . . 14 (𝑥 = 𝑦 → (i · 𝑥) = (i · 𝑦))
102101fveq2d 6924 . . . . . . . . . . . . 13 (𝑥 = 𝑦 → (exp‘(i · 𝑥)) = (exp‘(i · 𝑦)))
103102oveq1d 7463 . . . . . . . . . . . 12 (𝑥 = 𝑦 → ((exp‘(i · 𝑥)) · i) = ((exp‘(i · 𝑦)) · i))
104103, 95, 94fvmpt3i 7034 . . . . . . . . . . 11 (𝑦 ∈ (0(,)(π / 3)) → ((𝑥 ∈ (0(,)(π / 3)) ↦ ((exp‘(i · 𝑥)) · i))‘𝑦) = ((exp‘(i · 𝑦)) · i))
105100, 104sylan9eq 2800 . . . . . . . . . 10 ((⊤ ∧ 𝑦 ∈ (0(,)(π / 3))) → ((ℝ D (𝑥 ∈ (0[,](π / 3)) ↦ (exp‘(i · 𝑥))))‘𝑦) = ((exp‘(i · 𝑦)) · i))
106105fveq2d 6924 . . . . . . . . 9 ((⊤ ∧ 𝑦 ∈ (0(,)(π / 3))) → (abs‘((ℝ D (𝑥 ∈ (0[,](π / 3)) ↦ (exp‘(i · 𝑥))))‘𝑦)) = (abs‘((exp‘(i · 𝑦)) · i)))
107 ioossre 13468 . . . . . . . . . . . . . . 15 (0(,)(π / 3)) ⊆ ℝ
108107a1i 11 . . . . . . . . . . . . . 14 (⊤ → (0(,)(π / 3)) ⊆ ℝ)
109108sselda 4008 . . . . . . . . . . . . 13 ((⊤ ∧ 𝑦 ∈ (0(,)(π / 3))) → 𝑦 ∈ ℝ)
110109recnd 11318 . . . . . . . . . . . 12 ((⊤ ∧ 𝑦 ∈ (0(,)(π / 3))) → 𝑦 ∈ ℂ)
111 mulcl 11268 . . . . . . . . . . . 12 ((i ∈ ℂ ∧ 𝑦 ∈ ℂ) → (i · 𝑦) ∈ ℂ)
11234, 110, 111sylancr 586 . . . . . . . . . . 11 ((⊤ ∧ 𝑦 ∈ (0(,)(π / 3))) → (i · 𝑦) ∈ ℂ)
113 efcl 16130 . . . . . . . . . . 11 ((i · 𝑦) ∈ ℂ → (exp‘(i · 𝑦)) ∈ ℂ)
114112, 113syl 17 . . . . . . . . . 10 ((⊤ ∧ 𝑦 ∈ (0(,)(π / 3))) → (exp‘(i · 𝑦)) ∈ ℂ)
115 absmul 15343 . . . . . . . . . 10 (((exp‘(i · 𝑦)) ∈ ℂ ∧ i ∈ ℂ) → (abs‘((exp‘(i · 𝑦)) · i)) = ((abs‘(exp‘(i · 𝑦))) · (abs‘i)))
116114, 34, 115sylancl 585 . . . . . . . . 9 ((⊤ ∧ 𝑦 ∈ (0(,)(π / 3))) → (abs‘((exp‘(i · 𝑦)) · i)) = ((abs‘(exp‘(i · 𝑦))) · (abs‘i)))
117 absefi 16244 . . . . . . . . . . . 12 (𝑦 ∈ ℝ → (abs‘(exp‘(i · 𝑦))) = 1)
118109, 117syl 17 . . . . . . . . . . 11 ((⊤ ∧ 𝑦 ∈ (0(,)(π / 3))) → (abs‘(exp‘(i · 𝑦))) = 1)
119 absi 15335 . . . . . . . . . . . 12 (abs‘i) = 1
120119a1i 11 . . . . . . . . . . 11 ((⊤ ∧ 𝑦 ∈ (0(,)(π / 3))) → (abs‘i) = 1)
121118, 120oveq12d 7466 . . . . . . . . . 10 ((⊤ ∧ 𝑦 ∈ (0(,)(π / 3))) → ((abs‘(exp‘(i · 𝑦))) · (abs‘i)) = (1 · 1))
12241mulridi 11294 . . . . . . . . . 10 (1 · 1) = 1
123121, 122eqtrdi 2796 . . . . . . . . 9 ((⊤ ∧ 𝑦 ∈ (0(,)(π / 3))) → ((abs‘(exp‘(i · 𝑦))) · (abs‘i)) = 1)
124106, 116, 1233eqtrd 2784 . . . . . . . 8 ((⊤ ∧ 𝑦 ∈ (0(,)(π / 3))) → (abs‘((ℝ D (𝑥 ∈ (0[,](π / 3)) ↦ (exp‘(i · 𝑥))))‘𝑦)) = 1)
125 1le1 11918 . . . . . . . 8 1 ≤ 1
126124, 125eqbrtrdi 5205 . . . . . . 7 ((⊤ ∧ 𝑦 ∈ (0(,)(π / 3))) → (abs‘((ℝ D (𝑥 ∈ (0[,](π / 3)) ↦ (exp‘(i · 𝑥))))‘𝑦)) ≤ 1)
12719, 24, 59, 97, 99, 126dvlip 26052 . . . . . 6 ((⊤ ∧ (0 ∈ (0[,](π / 3)) ∧ (π / 3) ∈ (0[,](π / 3)))) → (abs‘(((𝑥 ∈ (0[,](π / 3)) ↦ (exp‘(i · 𝑥)))‘0) − ((𝑥 ∈ (0[,](π / 3)) ↦ (exp‘(i · 𝑥)))‘(π / 3)))) ≤ (1 · (abs‘(0 − (π / 3)))))
1283, 17, 127mp2an 691 . . . . 5 (abs‘(((𝑥 ∈ (0[,](π / 3)) ↦ (exp‘(i · 𝑥)))‘0) − ((𝑥 ∈ (0[,](π / 3)) ↦ (exp‘(i · 𝑥)))‘(π / 3)))) ≤ (1 · (abs‘(0 − (π / 3))))
129 oveq2 7456 . . . . . . . . . . . . 13 (𝑥 = 0 → (i · 𝑥) = (i · 0))
130 it0e0 12515 . . . . . . . . . . . . 13 (i · 0) = 0
131129, 130eqtrdi 2796 . . . . . . . . . . . 12 (𝑥 = 0 → (i · 𝑥) = 0)
132131fveq2d 6924 . . . . . . . . . . 11 (𝑥 = 0 → (exp‘(i · 𝑥)) = (exp‘0))
133 ef0 16139 . . . . . . . . . . 11 (exp‘0) = 1
134132, 133eqtrdi 2796 . . . . . . . . . 10 (𝑥 = 0 → (exp‘(i · 𝑥)) = 1)
135 eqid 2740 . . . . . . . . . 10 (𝑥 ∈ (0[,](π / 3)) ↦ (exp‘(i · 𝑥))) = (𝑥 ∈ (0[,](π / 3)) ↦ (exp‘(i · 𝑥)))
136 fvex 6933 . . . . . . . . . 10 (exp‘(i · 𝑥)) ∈ V
137134, 135, 136fvmpt3i 7034 . . . . . . . . 9 (0 ∈ (0[,](π / 3)) → ((𝑥 ∈ (0[,](π / 3)) ↦ (exp‘(i · 𝑥)))‘0) = 1)
13814, 137ax-mp 5 . . . . . . . 8 ((𝑥 ∈ (0[,](π / 3)) ↦ (exp‘(i · 𝑥)))‘0) = 1
139 oveq2 7456 . . . . . . . . . . 11 (𝑥 = (π / 3) → (i · 𝑥) = (i · (π / 3)))
140139fveq2d 6924 . . . . . . . . . 10 (𝑥 = (π / 3) → (exp‘(i · 𝑥)) = (exp‘(i · (π / 3))))
141140, 135, 136fvmpt3i 7034 . . . . . . . . 9 ((π / 3) ∈ (0[,](π / 3)) → ((𝑥 ∈ (0[,](π / 3)) ↦ (exp‘(i · 𝑥)))‘(π / 3)) = (exp‘(i · (π / 3))))
14216, 141ax-mp 5 . . . . . . . 8 ((𝑥 ∈ (0[,](π / 3)) ↦ (exp‘(i · 𝑥)))‘(π / 3)) = (exp‘(i · (π / 3)))
143138, 142oveq12i 7460 . . . . . . 7 (((𝑥 ∈ (0[,](π / 3)) ↦ (exp‘(i · 𝑥)))‘0) − ((𝑥 ∈ (0[,](π / 3)) ↦ (exp‘(i · 𝑥)))‘(π / 3))) = (1 − (exp‘(i · (π / 3))))
14423recni 11304 . . . . . . . . . 10 (π / 3) ∈ ℂ
14534, 144mulcli 11297 . . . . . . . . 9 (i · (π / 3)) ∈ ℂ
146 efcl 16130 . . . . . . . . 9 ((i · (π / 3)) ∈ ℂ → (exp‘(i · (π / 3))) ∈ ℂ)
147145, 146ax-mp 5 . . . . . . . 8 (exp‘(i · (π / 3))) ∈ ℂ
148 negicn 11537 . . . . . . . . . 10 -i ∈ ℂ
149148, 144mulcli 11297 . . . . . . . . 9 (-i · (π / 3)) ∈ ℂ
150 efcl 16130 . . . . . . . . 9 ((-i · (π / 3)) ∈ ℂ → (exp‘(-i · (π / 3))) ∈ ℂ)
151149, 150ax-mp 5 . . . . . . . 8 (exp‘(-i · (π / 3))) ∈ ℂ
152 cosval 16171 . . . . . . . . . . 11 ((π / 3) ∈ ℂ → (cos‘(π / 3)) = (((exp‘(i · (π / 3))) + (exp‘(-i · (π / 3)))) / 2))
153144, 152ax-mp 5 . . . . . . . . . 10 (cos‘(π / 3)) = (((exp‘(i · (π / 3))) + (exp‘(-i · (π / 3)))) / 2)
154 sincos3rdpi 26577 . . . . . . . . . . 11 ((sin‘(π / 3)) = ((√‘3) / 2) ∧ (cos‘(π / 3)) = (1 / 2))
155154simpri 485 . . . . . . . . . 10 (cos‘(π / 3)) = (1 / 2)
156153, 155eqtr3i 2770 . . . . . . . . 9 (((exp‘(i · (π / 3))) + (exp‘(-i · (π / 3)))) / 2) = (1 / 2)
157147, 151addcli 11296 . . . . . . . . . 10 ((exp‘(i · (π / 3))) + (exp‘(-i · (π / 3)))) ∈ ℂ
158 2cn 12368 . . . . . . . . . 10 2 ∈ ℂ
159 2ne0 12397 . . . . . . . . . 10 2 ≠ 0
160157, 41, 158, 159div11i 12053 . . . . . . . . 9 ((((exp‘(i · (π / 3))) + (exp‘(-i · (π / 3)))) / 2) = (1 / 2) ↔ ((exp‘(i · (π / 3))) + (exp‘(-i · (π / 3)))) = 1)
161156, 160mpbi 230 . . . . . . . 8 ((exp‘(i · (π / 3))) + (exp‘(-i · (π / 3)))) = 1
16241, 147, 151, 161subaddrii 11625 . . . . . . 7 (1 − (exp‘(i · (π / 3)))) = (exp‘(-i · (π / 3)))
163 mulneg12 11728 . . . . . . . . 9 ((i ∈ ℂ ∧ (π / 3) ∈ ℂ) → (-i · (π / 3)) = (i · -(π / 3)))
16434, 144, 163mp2an 691 . . . . . . . 8 (-i · (π / 3)) = (i · -(π / 3))
165164fveq2i 6923 . . . . . . 7 (exp‘(-i · (π / 3))) = (exp‘(i · -(π / 3)))
166143, 162, 1653eqtri 2772 . . . . . 6 (((𝑥 ∈ (0[,](π / 3)) ↦ (exp‘(i · 𝑥)))‘0) − ((𝑥 ∈ (0[,](π / 3)) ↦ (exp‘(i · 𝑥)))‘(π / 3))) = (exp‘(i · -(π / 3)))
167166fveq2i 6923 . . . . 5 (abs‘(((𝑥 ∈ (0[,](π / 3)) ↦ (exp‘(i · 𝑥)))‘0) − ((𝑥 ∈ (0[,](π / 3)) ↦ (exp‘(i · 𝑥)))‘(π / 3)))) = (abs‘(exp‘(i · -(π / 3))))
168144absnegi 15449 . . . . . . . 8 (abs‘-(π / 3)) = (abs‘(π / 3))
169 df-neg 11523 . . . . . . . . 9 -(π / 3) = (0 − (π / 3))
170169fveq2i 6923 . . . . . . . 8 (abs‘-(π / 3)) = (abs‘(0 − (π / 3)))
171168, 170eqtr3i 2770 . . . . . . 7 (abs‘(π / 3)) = (abs‘(0 − (π / 3)))
172 rprege0 13072 . . . . . . . 8 ((π / 3) ∈ ℝ+ → ((π / 3) ∈ ℝ ∧ 0 ≤ (π / 3)))
173 absid 15345 . . . . . . . 8 (((π / 3) ∈ ℝ ∧ 0 ≤ (π / 3)) → (abs‘(π / 3)) = (π / 3))
1748, 172, 173mp2b 10 . . . . . . 7 (abs‘(π / 3)) = (π / 3)
175171, 174eqtr3i 2770 . . . . . 6 (abs‘(0 − (π / 3))) = (π / 3)
176175oveq2i 7459 . . . . 5 (1 · (abs‘(0 − (π / 3)))) = (1 · (π / 3))
177128, 167, 1763brtr3i 5195 . . . 4 (abs‘(exp‘(i · -(π / 3)))) ≤ (1 · (π / 3))
17823renegcli 11597 . . . . 5 -(π / 3) ∈ ℝ
179 absefi 16244 . . . . 5 (-(π / 3) ∈ ℝ → (abs‘(exp‘(i · -(π / 3)))) = 1)
180178, 179ax-mp 5 . . . 4 (abs‘(exp‘(i · -(π / 3)))) = 1
181144mullidi 11295 . . . 4 (1 · (π / 3)) = (π / 3)
182177, 180, 1813brtr3i 5195 . . 3 1 ≤ (π / 3)
183 3pos 12398 . . . . 5 0 < 3
18421, 183pm3.2i 470 . . . 4 (3 ∈ ℝ ∧ 0 < 3)
185 lemuldiv 12175 . . . 4 ((1 ∈ ℝ ∧ π ∈ ℝ ∧ (3 ∈ ℝ ∧ 0 < 3)) → ((1 · 3) ≤ π ↔ 1 ≤ (π / 3)))
18698, 20, 184, 185mp3an 1461 . . 3 ((1 · 3) ≤ π ↔ 1 ≤ (π / 3))
187182, 186mpbir 231 . 2 (1 · 3) ≤ π
1882, 187eqbrtrri 5189 1 3 ≤ π
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395   = wceq 1537  wtru 1538  wcel 2108  cin 3975  wss 3976  {cpr 4650   class class class wbr 5166  cmpt 5249  dom cdm 5700  ran crn 5701  cres 5702  wf 6569  cfv 6573  (class class class)co 7448  cc 11182  cr 11183  0cc0 11184  1c1 11185  ici 11186   + caddc 11187   · cmul 11189  *cxr 11323   < clt 11324  cle 11325  cmin 11520  -cneg 11521   / cdiv 11947  2c2 12348  3c3 12349  +crp 13057  (,)cioo 13407  [,]cicc 13410  csqrt 15282  abscabs 15283  expce 16109  sincsin 16111  cosccos 16112  πcpi 16114  TopOpenctopn 17481  topGenctg 17497  fldccnfld 21387  TopOnctopon 22937  intcnt 23046  cnccncf 24921   D cdv 25918
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-inf2 9710  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261  ax-pre-sup 11262  ax-addf 11263
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-tp 4653  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-iin 5018  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-se 5653  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-isom 6582  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-of 7714  df-om 7904  df-1st 8030  df-2nd 8031  df-supp 8202  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-2o 8523  df-er 8763  df-map 8886  df-pm 8887  df-ixp 8956  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-fsupp 9432  df-fi 9480  df-sup 9511  df-inf 9512  df-oi 9579  df-card 10008  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-div 11948  df-nn 12294  df-2 12356  df-3 12357  df-4 12358  df-5 12359  df-6 12360  df-7 12361  df-8 12362  df-9 12363  df-n0 12554  df-z 12640  df-dec 12759  df-uz 12904  df-q 13014  df-rp 13058  df-xneg 13175  df-xadd 13176  df-xmul 13177  df-ioo 13411  df-ioc 13412  df-ico 13413  df-icc 13414  df-fz 13568  df-fzo 13712  df-fl 13843  df-seq 14053  df-exp 14113  df-fac 14323  df-bc 14352  df-hash 14380  df-shft 15116  df-cj 15148  df-re 15149  df-im 15150  df-sqrt 15284  df-abs 15285  df-limsup 15517  df-clim 15534  df-rlim 15535  df-sum 15735  df-ef 16115  df-sin 16117  df-cos 16118  df-pi 16120  df-struct 17194  df-sets 17211  df-slot 17229  df-ndx 17241  df-base 17259  df-ress 17288  df-plusg 17324  df-mulr 17325  df-starv 17326  df-sca 17327  df-vsca 17328  df-ip 17329  df-tset 17330  df-ple 17331  df-ds 17333  df-unif 17334  df-hom 17335  df-cco 17336  df-rest 17482  df-topn 17483  df-0g 17501  df-gsum 17502  df-topgen 17503  df-pt 17504  df-prds 17507  df-xrs 17562  df-qtop 17567  df-imas 17568  df-xps 17570  df-mre 17644  df-mrc 17645  df-acs 17647  df-mgm 18678  df-sgrp 18757  df-mnd 18773  df-submnd 18819  df-mulg 19108  df-cntz 19357  df-cmn 19824  df-psmet 21379  df-xmet 21380  df-met 21381  df-bl 21382  df-mopn 21383  df-fbas 21384  df-fg 21385  df-cnfld 21388  df-top 22921  df-topon 22938  df-topsp 22960  df-bases 22974  df-cld 23048  df-ntr 23049  df-cls 23050  df-nei 23127  df-lp 23165  df-perf 23166  df-cn 23256  df-cnp 23257  df-haus 23344  df-cmp 23416  df-tx 23591  df-hmeo 23784  df-fil 23875  df-fm 23967  df-flim 23968  df-flf 23969  df-xms 24351  df-ms 24352  df-tms 24353  df-cncf 24923  df-limc 25921  df-dv 25922
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator