MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pige3ALT Structured version   Visualization version   GIF version

Theorem pige3ALT 26021
Description: Alternate proof of pige3 26020. This proof is based on the geometric observation that a hexagon of unit side length has perimeter 6, which is less than the unit-radius circumcircle, of perimeter 2Ο€. We translate this to algebra by looking at the function e↑(iπ‘₯) as π‘₯ goes from 0 to Ο€ / 3; it moves at unit speed and travels distance 1, hence 1 ≀ Ο€ / 3. (Contributed by Mario Carneiro, 21-May-2016.) (New usage is discouraged.) (Proof modification is discouraged.)
Assertion
Ref Expression
pige3ALT 3 ≀ Ο€

Proof of Theorem pige3ALT
Dummy variables π‘₯ 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 3cn 12290 . . 3 3 ∈ β„‚
21mullidi 11216 . 2 (1 Β· 3) = 3
3 tru 1546 . . . . . 6 ⊀
4 0xr 11258 . . . . . . . 8 0 ∈ ℝ*
5 pirp 25963 . . . . . . . . . 10 Ο€ ∈ ℝ+
6 3rp 12977 . . . . . . . . . 10 3 ∈ ℝ+
7 rpdivcl 12996 . . . . . . . . . 10 ((Ο€ ∈ ℝ+ ∧ 3 ∈ ℝ+) β†’ (Ο€ / 3) ∈ ℝ+)
85, 6, 7mp2an 691 . . . . . . . . 9 (Ο€ / 3) ∈ ℝ+
9 rpxr 12980 . . . . . . . . 9 ((Ο€ / 3) ∈ ℝ+ β†’ (Ο€ / 3) ∈ ℝ*)
108, 9ax-mp 5 . . . . . . . 8 (Ο€ / 3) ∈ ℝ*
11 rpge0 12984 . . . . . . . . 9 ((Ο€ / 3) ∈ ℝ+ β†’ 0 ≀ (Ο€ / 3))
128, 11ax-mp 5 . . . . . . . 8 0 ≀ (Ο€ / 3)
13 lbicc2 13438 . . . . . . . 8 ((0 ∈ ℝ* ∧ (Ο€ / 3) ∈ ℝ* ∧ 0 ≀ (Ο€ / 3)) β†’ 0 ∈ (0[,](Ο€ / 3)))
144, 10, 12, 13mp3an 1462 . . . . . . 7 0 ∈ (0[,](Ο€ / 3))
15 ubicc2 13439 . . . . . . . 8 ((0 ∈ ℝ* ∧ (Ο€ / 3) ∈ ℝ* ∧ 0 ≀ (Ο€ / 3)) β†’ (Ο€ / 3) ∈ (0[,](Ο€ / 3)))
164, 10, 12, 15mp3an 1462 . . . . . . 7 (Ο€ / 3) ∈ (0[,](Ο€ / 3))
1714, 16pm3.2i 472 . . . . . 6 (0 ∈ (0[,](Ο€ / 3)) ∧ (Ο€ / 3) ∈ (0[,](Ο€ / 3)))
18 0re 11213 . . . . . . . 8 0 ∈ ℝ
1918a1i 11 . . . . . . 7 (⊀ β†’ 0 ∈ ℝ)
20 pire 25960 . . . . . . . . 9 Ο€ ∈ ℝ
21 3re 12289 . . . . . . . . 9 3 ∈ ℝ
22 3ne0 12315 . . . . . . . . 9 3 β‰  0
2320, 21, 22redivcli 11978 . . . . . . . 8 (Ο€ / 3) ∈ ℝ
2423a1i 11 . . . . . . 7 (⊀ β†’ (Ο€ / 3) ∈ ℝ)
25 efcn 25947 . . . . . . . . 9 exp ∈ (ℂ–cnβ†’β„‚)
2625a1i 11 . . . . . . . 8 (⊀ β†’ exp ∈ (ℂ–cnβ†’β„‚))
27 iccssre 13403 . . . . . . . . . . . 12 ((0 ∈ ℝ ∧ (Ο€ / 3) ∈ ℝ) β†’ (0[,](Ο€ / 3)) βŠ† ℝ)
2818, 23, 27mp2an 691 . . . . . . . . . . 11 (0[,](Ο€ / 3)) βŠ† ℝ
29 ax-resscn 11164 . . . . . . . . . . 11 ℝ βŠ† β„‚
3028, 29sstri 3991 . . . . . . . . . 10 (0[,](Ο€ / 3)) βŠ† β„‚
31 resmpt 6036 . . . . . . . . . 10 ((0[,](Ο€ / 3)) βŠ† β„‚ β†’ ((π‘₯ ∈ β„‚ ↦ (i Β· π‘₯)) β†Ύ (0[,](Ο€ / 3))) = (π‘₯ ∈ (0[,](Ο€ / 3)) ↦ (i Β· π‘₯)))
3230, 31mp1i 13 . . . . . . . . 9 (⊀ β†’ ((π‘₯ ∈ β„‚ ↦ (i Β· π‘₯)) β†Ύ (0[,](Ο€ / 3))) = (π‘₯ ∈ (0[,](Ο€ / 3)) ↦ (i Β· π‘₯)))
33 ssidd 4005 . . . . . . . . . . 11 (⊀ β†’ β„‚ βŠ† β„‚)
34 ax-icn 11166 . . . . . . . . . . . . 13 i ∈ β„‚
35 simpr 486 . . . . . . . . . . . . 13 ((⊀ ∧ π‘₯ ∈ β„‚) β†’ π‘₯ ∈ β„‚)
36 mulcl 11191 . . . . . . . . . . . . 13 ((i ∈ β„‚ ∧ π‘₯ ∈ β„‚) β†’ (i Β· π‘₯) ∈ β„‚)
3734, 35, 36sylancr 588 . . . . . . . . . . . 12 ((⊀ ∧ π‘₯ ∈ β„‚) β†’ (i Β· π‘₯) ∈ β„‚)
3837fmpttd 7112 . . . . . . . . . . 11 (⊀ β†’ (π‘₯ ∈ β„‚ ↦ (i Β· π‘₯)):β„‚βŸΆβ„‚)
39 cnelprrecn 11200 . . . . . . . . . . . . . . . 16 β„‚ ∈ {ℝ, β„‚}
4039a1i 11 . . . . . . . . . . . . . . 15 (⊀ β†’ β„‚ ∈ {ℝ, β„‚})
41 ax-1cn 11165 . . . . . . . . . . . . . . . 16 1 ∈ β„‚
4241a1i 11 . . . . . . . . . . . . . . 15 ((⊀ ∧ π‘₯ ∈ β„‚) β†’ 1 ∈ β„‚)
4340dvmptid 25466 . . . . . . . . . . . . . . 15 (⊀ β†’ (β„‚ D (π‘₯ ∈ β„‚ ↦ π‘₯)) = (π‘₯ ∈ β„‚ ↦ 1))
4434a1i 11 . . . . . . . . . . . . . . 15 (⊀ β†’ i ∈ β„‚)
4540, 35, 42, 43, 44dvmptcmul 25473 . . . . . . . . . . . . . 14 (⊀ β†’ (β„‚ D (π‘₯ ∈ β„‚ ↦ (i Β· π‘₯))) = (π‘₯ ∈ β„‚ ↦ (i Β· 1)))
4634mulridi 11215 . . . . . . . . . . . . . . 15 (i Β· 1) = i
4746mpteq2i 5253 . . . . . . . . . . . . . 14 (π‘₯ ∈ β„‚ ↦ (i Β· 1)) = (π‘₯ ∈ β„‚ ↦ i)
4845, 47eqtrdi 2789 . . . . . . . . . . . . 13 (⊀ β†’ (β„‚ D (π‘₯ ∈ β„‚ ↦ (i Β· π‘₯))) = (π‘₯ ∈ β„‚ ↦ i))
4948dmeqd 5904 . . . . . . . . . . . 12 (⊀ β†’ dom (β„‚ D (π‘₯ ∈ β„‚ ↦ (i Β· π‘₯))) = dom (π‘₯ ∈ β„‚ ↦ i))
5034elexi 3494 . . . . . . . . . . . . 13 i ∈ V
51 eqid 2733 . . . . . . . . . . . . 13 (π‘₯ ∈ β„‚ ↦ i) = (π‘₯ ∈ β„‚ ↦ i)
5250, 51dmmpti 6692 . . . . . . . . . . . 12 dom (π‘₯ ∈ β„‚ ↦ i) = β„‚
5349, 52eqtrdi 2789 . . . . . . . . . . 11 (⊀ β†’ dom (β„‚ D (π‘₯ ∈ β„‚ ↦ (i Β· π‘₯))) = β„‚)
54 dvcn 25430 . . . . . . . . . . 11 (((β„‚ βŠ† β„‚ ∧ (π‘₯ ∈ β„‚ ↦ (i Β· π‘₯)):β„‚βŸΆβ„‚ ∧ β„‚ βŠ† β„‚) ∧ dom (β„‚ D (π‘₯ ∈ β„‚ ↦ (i Β· π‘₯))) = β„‚) β†’ (π‘₯ ∈ β„‚ ↦ (i Β· π‘₯)) ∈ (ℂ–cnβ†’β„‚))
5533, 38, 33, 53, 54syl31anc 1374 . . . . . . . . . 10 (⊀ β†’ (π‘₯ ∈ β„‚ ↦ (i Β· π‘₯)) ∈ (ℂ–cnβ†’β„‚))
56 rescncf 24405 . . . . . . . . . 10 ((0[,](Ο€ / 3)) βŠ† β„‚ β†’ ((π‘₯ ∈ β„‚ ↦ (i Β· π‘₯)) ∈ (ℂ–cnβ†’β„‚) β†’ ((π‘₯ ∈ β„‚ ↦ (i Β· π‘₯)) β†Ύ (0[,](Ο€ / 3))) ∈ ((0[,](Ο€ / 3))–cnβ†’β„‚)))
5730, 55, 56mpsyl 68 . . . . . . . . 9 (⊀ β†’ ((π‘₯ ∈ β„‚ ↦ (i Β· π‘₯)) β†Ύ (0[,](Ο€ / 3))) ∈ ((0[,](Ο€ / 3))–cnβ†’β„‚))
5832, 57eqeltrrd 2835 . . . . . . . 8 (⊀ β†’ (π‘₯ ∈ (0[,](Ο€ / 3)) ↦ (i Β· π‘₯)) ∈ ((0[,](Ο€ / 3))–cnβ†’β„‚))
5926, 58cncfmpt1f 24422 . . . . . . 7 (⊀ β†’ (π‘₯ ∈ (0[,](Ο€ / 3)) ↦ (expβ€˜(i Β· π‘₯))) ∈ ((0[,](Ο€ / 3))–cnβ†’β„‚))
60 reelprrecn 11199 . . . . . . . . . . 11 ℝ ∈ {ℝ, β„‚}
6160a1i 11 . . . . . . . . . 10 (⊀ β†’ ℝ ∈ {ℝ, β„‚})
62 recn 11197 . . . . . . . . . . 11 (π‘₯ ∈ ℝ β†’ π‘₯ ∈ β„‚)
63 efcl 16023 . . . . . . . . . . . 12 ((i Β· π‘₯) ∈ β„‚ β†’ (expβ€˜(i Β· π‘₯)) ∈ β„‚)
6437, 63syl 17 . . . . . . . . . . 11 ((⊀ ∧ π‘₯ ∈ β„‚) β†’ (expβ€˜(i Β· π‘₯)) ∈ β„‚)
6562, 64sylan2 594 . . . . . . . . . 10 ((⊀ ∧ π‘₯ ∈ ℝ) β†’ (expβ€˜(i Β· π‘₯)) ∈ β„‚)
66 mulcl 11191 . . . . . . . . . . . 12 (((expβ€˜(i Β· π‘₯)) ∈ β„‚ ∧ i ∈ β„‚) β†’ ((expβ€˜(i Β· π‘₯)) Β· i) ∈ β„‚)
6764, 34, 66sylancl 587 . . . . . . . . . . 11 ((⊀ ∧ π‘₯ ∈ β„‚) β†’ ((expβ€˜(i Β· π‘₯)) Β· i) ∈ β„‚)
6862, 67sylan2 594 . . . . . . . . . 10 ((⊀ ∧ π‘₯ ∈ ℝ) β†’ ((expβ€˜(i Β· π‘₯)) Β· i) ∈ β„‚)
69 eqid 2733 . . . . . . . . . . 11 (TopOpenβ€˜β„‚fld) = (TopOpenβ€˜β„‚fld)
7069cnfldtopon 24291 . . . . . . . . . . . 12 (TopOpenβ€˜β„‚fld) ∈ (TopOnβ€˜β„‚)
71 toponmax 22420 . . . . . . . . . . . 12 ((TopOpenβ€˜β„‚fld) ∈ (TopOnβ€˜β„‚) β†’ β„‚ ∈ (TopOpenβ€˜β„‚fld))
7270, 71mp1i 13 . . . . . . . . . . 11 (⊀ β†’ β„‚ ∈ (TopOpenβ€˜β„‚fld))
7329a1i 11 . . . . . . . . . . . 12 (⊀ β†’ ℝ βŠ† β„‚)
74 df-ss 3965 . . . . . . . . . . . 12 (ℝ βŠ† β„‚ ↔ (ℝ ∩ β„‚) = ℝ)
7573, 74sylib 217 . . . . . . . . . . 11 (⊀ β†’ (ℝ ∩ β„‚) = ℝ)
7634a1i 11 . . . . . . . . . . . 12 ((⊀ ∧ π‘₯ ∈ β„‚) β†’ i ∈ β„‚)
77 efcl 16023 . . . . . . . . . . . . 13 (𝑦 ∈ β„‚ β†’ (expβ€˜π‘¦) ∈ β„‚)
7877adantl 483 . . . . . . . . . . . 12 ((⊀ ∧ 𝑦 ∈ β„‚) β†’ (expβ€˜π‘¦) ∈ β„‚)
79 dvef 25489 . . . . . . . . . . . . 13 (β„‚ D exp) = exp
80 eff 16022 . . . . . . . . . . . . . . . 16 exp:β„‚βŸΆβ„‚
8180a1i 11 . . . . . . . . . . . . . . 15 (⊀ β†’ exp:β„‚βŸΆβ„‚)
8281feqmptd 6958 . . . . . . . . . . . . . 14 (⊀ β†’ exp = (𝑦 ∈ β„‚ ↦ (expβ€˜π‘¦)))
8382oveq2d 7422 . . . . . . . . . . . . 13 (⊀ β†’ (β„‚ D exp) = (β„‚ D (𝑦 ∈ β„‚ ↦ (expβ€˜π‘¦))))
8479, 83, 823eqtr3a 2797 . . . . . . . . . . . 12 (⊀ β†’ (β„‚ D (𝑦 ∈ β„‚ ↦ (expβ€˜π‘¦))) = (𝑦 ∈ β„‚ ↦ (expβ€˜π‘¦)))
85 fveq2 6889 . . . . . . . . . . . 12 (𝑦 = (i Β· π‘₯) β†’ (expβ€˜π‘¦) = (expβ€˜(i Β· π‘₯)))
8640, 40, 37, 76, 78, 78, 48, 84, 85, 85dvmptco 25481 . . . . . . . . . . 11 (⊀ β†’ (β„‚ D (π‘₯ ∈ β„‚ ↦ (expβ€˜(i Β· π‘₯)))) = (π‘₯ ∈ β„‚ ↦ ((expβ€˜(i Β· π‘₯)) Β· i)))
8769, 61, 72, 75, 64, 67, 86dvmptres3 25465 . . . . . . . . . 10 (⊀ β†’ (ℝ D (π‘₯ ∈ ℝ ↦ (expβ€˜(i Β· π‘₯)))) = (π‘₯ ∈ ℝ ↦ ((expβ€˜(i Β· π‘₯)) Β· i)))
8828a1i 11 . . . . . . . . . 10 (⊀ β†’ (0[,](Ο€ / 3)) βŠ† ℝ)
8969tgioo2 24311 . . . . . . . . . 10 (topGenβ€˜ran (,)) = ((TopOpenβ€˜β„‚fld) β†Ύt ℝ)
90 iccntr 24329 . . . . . . . . . . 11 ((0 ∈ ℝ ∧ (Ο€ / 3) ∈ ℝ) β†’ ((intβ€˜(topGenβ€˜ran (,)))β€˜(0[,](Ο€ / 3))) = (0(,)(Ο€ / 3)))
9118, 24, 90sylancr 588 . . . . . . . . . 10 (⊀ β†’ ((intβ€˜(topGenβ€˜ran (,)))β€˜(0[,](Ο€ / 3))) = (0(,)(Ο€ / 3)))
9261, 65, 68, 87, 88, 89, 69, 91dvmptres2 25471 . . . . . . . . 9 (⊀ β†’ (ℝ D (π‘₯ ∈ (0[,](Ο€ / 3)) ↦ (expβ€˜(i Β· π‘₯)))) = (π‘₯ ∈ (0(,)(Ο€ / 3)) ↦ ((expβ€˜(i Β· π‘₯)) Β· i)))
9392dmeqd 5904 . . . . . . . 8 (⊀ β†’ dom (ℝ D (π‘₯ ∈ (0[,](Ο€ / 3)) ↦ (expβ€˜(i Β· π‘₯)))) = dom (π‘₯ ∈ (0(,)(Ο€ / 3)) ↦ ((expβ€˜(i Β· π‘₯)) Β· i)))
94 ovex 7439 . . . . . . . . 9 ((expβ€˜(i Β· π‘₯)) Β· i) ∈ V
95 eqid 2733 . . . . . . . . 9 (π‘₯ ∈ (0(,)(Ο€ / 3)) ↦ ((expβ€˜(i Β· π‘₯)) Β· i)) = (π‘₯ ∈ (0(,)(Ο€ / 3)) ↦ ((expβ€˜(i Β· π‘₯)) Β· i))
9694, 95dmmpti 6692 . . . . . . . 8 dom (π‘₯ ∈ (0(,)(Ο€ / 3)) ↦ ((expβ€˜(i Β· π‘₯)) Β· i)) = (0(,)(Ο€ / 3))
9793, 96eqtrdi 2789 . . . . . . 7 (⊀ β†’ dom (ℝ D (π‘₯ ∈ (0[,](Ο€ / 3)) ↦ (expβ€˜(i Β· π‘₯)))) = (0(,)(Ο€ / 3)))
98 1re 11211 . . . . . . . 8 1 ∈ ℝ
9998a1i 11 . . . . . . 7 (⊀ β†’ 1 ∈ ℝ)
10092fveq1d 6891 . . . . . . . . . . 11 (⊀ β†’ ((ℝ D (π‘₯ ∈ (0[,](Ο€ / 3)) ↦ (expβ€˜(i Β· π‘₯))))β€˜π‘¦) = ((π‘₯ ∈ (0(,)(Ο€ / 3)) ↦ ((expβ€˜(i Β· π‘₯)) Β· i))β€˜π‘¦))
101 oveq2 7414 . . . . . . . . . . . . . 14 (π‘₯ = 𝑦 β†’ (i Β· π‘₯) = (i Β· 𝑦))
102101fveq2d 6893 . . . . . . . . . . . . 13 (π‘₯ = 𝑦 β†’ (expβ€˜(i Β· π‘₯)) = (expβ€˜(i Β· 𝑦)))
103102oveq1d 7421 . . . . . . . . . . . 12 (π‘₯ = 𝑦 β†’ ((expβ€˜(i Β· π‘₯)) Β· i) = ((expβ€˜(i Β· 𝑦)) Β· i))
104103, 95, 94fvmpt3i 7001 . . . . . . . . . . 11 (𝑦 ∈ (0(,)(Ο€ / 3)) β†’ ((π‘₯ ∈ (0(,)(Ο€ / 3)) ↦ ((expβ€˜(i Β· π‘₯)) Β· i))β€˜π‘¦) = ((expβ€˜(i Β· 𝑦)) Β· i))
105100, 104sylan9eq 2793 . . . . . . . . . 10 ((⊀ ∧ 𝑦 ∈ (0(,)(Ο€ / 3))) β†’ ((ℝ D (π‘₯ ∈ (0[,](Ο€ / 3)) ↦ (expβ€˜(i Β· π‘₯))))β€˜π‘¦) = ((expβ€˜(i Β· 𝑦)) Β· i))
106105fveq2d 6893 . . . . . . . . 9 ((⊀ ∧ 𝑦 ∈ (0(,)(Ο€ / 3))) β†’ (absβ€˜((ℝ D (π‘₯ ∈ (0[,](Ο€ / 3)) ↦ (expβ€˜(i Β· π‘₯))))β€˜π‘¦)) = (absβ€˜((expβ€˜(i Β· 𝑦)) Β· i)))
107 ioossre 13382 . . . . . . . . . . . . . . 15 (0(,)(Ο€ / 3)) βŠ† ℝ
108107a1i 11 . . . . . . . . . . . . . 14 (⊀ β†’ (0(,)(Ο€ / 3)) βŠ† ℝ)
109108sselda 3982 . . . . . . . . . . . . 13 ((⊀ ∧ 𝑦 ∈ (0(,)(Ο€ / 3))) β†’ 𝑦 ∈ ℝ)
110109recnd 11239 . . . . . . . . . . . 12 ((⊀ ∧ 𝑦 ∈ (0(,)(Ο€ / 3))) β†’ 𝑦 ∈ β„‚)
111 mulcl 11191 . . . . . . . . . . . 12 ((i ∈ β„‚ ∧ 𝑦 ∈ β„‚) β†’ (i Β· 𝑦) ∈ β„‚)
11234, 110, 111sylancr 588 . . . . . . . . . . 11 ((⊀ ∧ 𝑦 ∈ (0(,)(Ο€ / 3))) β†’ (i Β· 𝑦) ∈ β„‚)
113 efcl 16023 . . . . . . . . . . 11 ((i Β· 𝑦) ∈ β„‚ β†’ (expβ€˜(i Β· 𝑦)) ∈ β„‚)
114112, 113syl 17 . . . . . . . . . 10 ((⊀ ∧ 𝑦 ∈ (0(,)(Ο€ / 3))) β†’ (expβ€˜(i Β· 𝑦)) ∈ β„‚)
115 absmul 15238 . . . . . . . . . 10 (((expβ€˜(i Β· 𝑦)) ∈ β„‚ ∧ i ∈ β„‚) β†’ (absβ€˜((expβ€˜(i Β· 𝑦)) Β· i)) = ((absβ€˜(expβ€˜(i Β· 𝑦))) Β· (absβ€˜i)))
116114, 34, 115sylancl 587 . . . . . . . . 9 ((⊀ ∧ 𝑦 ∈ (0(,)(Ο€ / 3))) β†’ (absβ€˜((expβ€˜(i Β· 𝑦)) Β· i)) = ((absβ€˜(expβ€˜(i Β· 𝑦))) Β· (absβ€˜i)))
117 absefi 16136 . . . . . . . . . . . 12 (𝑦 ∈ ℝ β†’ (absβ€˜(expβ€˜(i Β· 𝑦))) = 1)
118109, 117syl 17 . . . . . . . . . . 11 ((⊀ ∧ 𝑦 ∈ (0(,)(Ο€ / 3))) β†’ (absβ€˜(expβ€˜(i Β· 𝑦))) = 1)
119 absi 15230 . . . . . . . . . . . 12 (absβ€˜i) = 1
120119a1i 11 . . . . . . . . . . 11 ((⊀ ∧ 𝑦 ∈ (0(,)(Ο€ / 3))) β†’ (absβ€˜i) = 1)
121118, 120oveq12d 7424 . . . . . . . . . 10 ((⊀ ∧ 𝑦 ∈ (0(,)(Ο€ / 3))) β†’ ((absβ€˜(expβ€˜(i Β· 𝑦))) Β· (absβ€˜i)) = (1 Β· 1))
12241mulridi 11215 . . . . . . . . . 10 (1 Β· 1) = 1
123121, 122eqtrdi 2789 . . . . . . . . 9 ((⊀ ∧ 𝑦 ∈ (0(,)(Ο€ / 3))) β†’ ((absβ€˜(expβ€˜(i Β· 𝑦))) Β· (absβ€˜i)) = 1)
124106, 116, 1233eqtrd 2777 . . . . . . . 8 ((⊀ ∧ 𝑦 ∈ (0(,)(Ο€ / 3))) β†’ (absβ€˜((ℝ D (π‘₯ ∈ (0[,](Ο€ / 3)) ↦ (expβ€˜(i Β· π‘₯))))β€˜π‘¦)) = 1)
125 1le1 11839 . . . . . . . 8 1 ≀ 1
126124, 125eqbrtrdi 5187 . . . . . . 7 ((⊀ ∧ 𝑦 ∈ (0(,)(Ο€ / 3))) β†’ (absβ€˜((ℝ D (π‘₯ ∈ (0[,](Ο€ / 3)) ↦ (expβ€˜(i Β· π‘₯))))β€˜π‘¦)) ≀ 1)
12719, 24, 59, 97, 99, 126dvlip 25502 . . . . . 6 ((⊀ ∧ (0 ∈ (0[,](Ο€ / 3)) ∧ (Ο€ / 3) ∈ (0[,](Ο€ / 3)))) β†’ (absβ€˜(((π‘₯ ∈ (0[,](Ο€ / 3)) ↦ (expβ€˜(i Β· π‘₯)))β€˜0) βˆ’ ((π‘₯ ∈ (0[,](Ο€ / 3)) ↦ (expβ€˜(i Β· π‘₯)))β€˜(Ο€ / 3)))) ≀ (1 Β· (absβ€˜(0 βˆ’ (Ο€ / 3)))))
1283, 17, 127mp2an 691 . . . . 5 (absβ€˜(((π‘₯ ∈ (0[,](Ο€ / 3)) ↦ (expβ€˜(i Β· π‘₯)))β€˜0) βˆ’ ((π‘₯ ∈ (0[,](Ο€ / 3)) ↦ (expβ€˜(i Β· π‘₯)))β€˜(Ο€ / 3)))) ≀ (1 Β· (absβ€˜(0 βˆ’ (Ο€ / 3))))
129 oveq2 7414 . . . . . . . . . . . . 13 (π‘₯ = 0 β†’ (i Β· π‘₯) = (i Β· 0))
130 it0e0 12431 . . . . . . . . . . . . 13 (i Β· 0) = 0
131129, 130eqtrdi 2789 . . . . . . . . . . . 12 (π‘₯ = 0 β†’ (i Β· π‘₯) = 0)
132131fveq2d 6893 . . . . . . . . . . 11 (π‘₯ = 0 β†’ (expβ€˜(i Β· π‘₯)) = (expβ€˜0))
133 ef0 16031 . . . . . . . . . . 11 (expβ€˜0) = 1
134132, 133eqtrdi 2789 . . . . . . . . . 10 (π‘₯ = 0 β†’ (expβ€˜(i Β· π‘₯)) = 1)
135 eqid 2733 . . . . . . . . . 10 (π‘₯ ∈ (0[,](Ο€ / 3)) ↦ (expβ€˜(i Β· π‘₯))) = (π‘₯ ∈ (0[,](Ο€ / 3)) ↦ (expβ€˜(i Β· π‘₯)))
136 fvex 6902 . . . . . . . . . 10 (expβ€˜(i Β· π‘₯)) ∈ V
137134, 135, 136fvmpt3i 7001 . . . . . . . . 9 (0 ∈ (0[,](Ο€ / 3)) β†’ ((π‘₯ ∈ (0[,](Ο€ / 3)) ↦ (expβ€˜(i Β· π‘₯)))β€˜0) = 1)
13814, 137ax-mp 5 . . . . . . . 8 ((π‘₯ ∈ (0[,](Ο€ / 3)) ↦ (expβ€˜(i Β· π‘₯)))β€˜0) = 1
139 oveq2 7414 . . . . . . . . . . 11 (π‘₯ = (Ο€ / 3) β†’ (i Β· π‘₯) = (i Β· (Ο€ / 3)))
140139fveq2d 6893 . . . . . . . . . 10 (π‘₯ = (Ο€ / 3) β†’ (expβ€˜(i Β· π‘₯)) = (expβ€˜(i Β· (Ο€ / 3))))
141140, 135, 136fvmpt3i 7001 . . . . . . . . 9 ((Ο€ / 3) ∈ (0[,](Ο€ / 3)) β†’ ((π‘₯ ∈ (0[,](Ο€ / 3)) ↦ (expβ€˜(i Β· π‘₯)))β€˜(Ο€ / 3)) = (expβ€˜(i Β· (Ο€ / 3))))
14216, 141ax-mp 5 . . . . . . . 8 ((π‘₯ ∈ (0[,](Ο€ / 3)) ↦ (expβ€˜(i Β· π‘₯)))β€˜(Ο€ / 3)) = (expβ€˜(i Β· (Ο€ / 3)))
143138, 142oveq12i 7418 . . . . . . 7 (((π‘₯ ∈ (0[,](Ο€ / 3)) ↦ (expβ€˜(i Β· π‘₯)))β€˜0) βˆ’ ((π‘₯ ∈ (0[,](Ο€ / 3)) ↦ (expβ€˜(i Β· π‘₯)))β€˜(Ο€ / 3))) = (1 βˆ’ (expβ€˜(i Β· (Ο€ / 3))))
14423recni 11225 . . . . . . . . . 10 (Ο€ / 3) ∈ β„‚
14534, 144mulcli 11218 . . . . . . . . 9 (i Β· (Ο€ / 3)) ∈ β„‚
146 efcl 16023 . . . . . . . . 9 ((i Β· (Ο€ / 3)) ∈ β„‚ β†’ (expβ€˜(i Β· (Ο€ / 3))) ∈ β„‚)
147145, 146ax-mp 5 . . . . . . . 8 (expβ€˜(i Β· (Ο€ / 3))) ∈ β„‚
148 negicn 11458 . . . . . . . . . 10 -i ∈ β„‚
149148, 144mulcli 11218 . . . . . . . . 9 (-i Β· (Ο€ / 3)) ∈ β„‚
150 efcl 16023 . . . . . . . . 9 ((-i Β· (Ο€ / 3)) ∈ β„‚ β†’ (expβ€˜(-i Β· (Ο€ / 3))) ∈ β„‚)
151149, 150ax-mp 5 . . . . . . . 8 (expβ€˜(-i Β· (Ο€ / 3))) ∈ β„‚
152 cosval 16063 . . . . . . . . . . 11 ((Ο€ / 3) ∈ β„‚ β†’ (cosβ€˜(Ο€ / 3)) = (((expβ€˜(i Β· (Ο€ / 3))) + (expβ€˜(-i Β· (Ο€ / 3)))) / 2))
153144, 152ax-mp 5 . . . . . . . . . 10 (cosβ€˜(Ο€ / 3)) = (((expβ€˜(i Β· (Ο€ / 3))) + (expβ€˜(-i Β· (Ο€ / 3)))) / 2)
154 sincos3rdpi 26018 . . . . . . . . . . 11 ((sinβ€˜(Ο€ / 3)) = ((βˆšβ€˜3) / 2) ∧ (cosβ€˜(Ο€ / 3)) = (1 / 2))
155154simpri 487 . . . . . . . . . 10 (cosβ€˜(Ο€ / 3)) = (1 / 2)
156153, 155eqtr3i 2763 . . . . . . . . 9 (((expβ€˜(i Β· (Ο€ / 3))) + (expβ€˜(-i Β· (Ο€ / 3)))) / 2) = (1 / 2)
157147, 151addcli 11217 . . . . . . . . . 10 ((expβ€˜(i Β· (Ο€ / 3))) + (expβ€˜(-i Β· (Ο€ / 3)))) ∈ β„‚
158 2cn 12284 . . . . . . . . . 10 2 ∈ β„‚
159 2ne0 12313 . . . . . . . . . 10 2 β‰  0
160157, 41, 158, 159div11i 11970 . . . . . . . . 9 ((((expβ€˜(i Β· (Ο€ / 3))) + (expβ€˜(-i Β· (Ο€ / 3)))) / 2) = (1 / 2) ↔ ((expβ€˜(i Β· (Ο€ / 3))) + (expβ€˜(-i Β· (Ο€ / 3)))) = 1)
161156, 160mpbi 229 . . . . . . . 8 ((expβ€˜(i Β· (Ο€ / 3))) + (expβ€˜(-i Β· (Ο€ / 3)))) = 1
16241, 147, 151, 161subaddrii 11546 . . . . . . 7 (1 βˆ’ (expβ€˜(i Β· (Ο€ / 3)))) = (expβ€˜(-i Β· (Ο€ / 3)))
163 mulneg12 11649 . . . . . . . . 9 ((i ∈ β„‚ ∧ (Ο€ / 3) ∈ β„‚) β†’ (-i Β· (Ο€ / 3)) = (i Β· -(Ο€ / 3)))
16434, 144, 163mp2an 691 . . . . . . . 8 (-i Β· (Ο€ / 3)) = (i Β· -(Ο€ / 3))
165164fveq2i 6892 . . . . . . 7 (expβ€˜(-i Β· (Ο€ / 3))) = (expβ€˜(i Β· -(Ο€ / 3)))
166143, 162, 1653eqtri 2765 . . . . . 6 (((π‘₯ ∈ (0[,](Ο€ / 3)) ↦ (expβ€˜(i Β· π‘₯)))β€˜0) βˆ’ ((π‘₯ ∈ (0[,](Ο€ / 3)) ↦ (expβ€˜(i Β· π‘₯)))β€˜(Ο€ / 3))) = (expβ€˜(i Β· -(Ο€ / 3)))
167166fveq2i 6892 . . . . 5 (absβ€˜(((π‘₯ ∈ (0[,](Ο€ / 3)) ↦ (expβ€˜(i Β· π‘₯)))β€˜0) βˆ’ ((π‘₯ ∈ (0[,](Ο€ / 3)) ↦ (expβ€˜(i Β· π‘₯)))β€˜(Ο€ / 3)))) = (absβ€˜(expβ€˜(i Β· -(Ο€ / 3))))
168144absnegi 15344 . . . . . . . 8 (absβ€˜-(Ο€ / 3)) = (absβ€˜(Ο€ / 3))
169 df-neg 11444 . . . . . . . . 9 -(Ο€ / 3) = (0 βˆ’ (Ο€ / 3))
170169fveq2i 6892 . . . . . . . 8 (absβ€˜-(Ο€ / 3)) = (absβ€˜(0 βˆ’ (Ο€ / 3)))
171168, 170eqtr3i 2763 . . . . . . 7 (absβ€˜(Ο€ / 3)) = (absβ€˜(0 βˆ’ (Ο€ / 3)))
172 rprege0 12986 . . . . . . . 8 ((Ο€ / 3) ∈ ℝ+ β†’ ((Ο€ / 3) ∈ ℝ ∧ 0 ≀ (Ο€ / 3)))
173 absid 15240 . . . . . . . 8 (((Ο€ / 3) ∈ ℝ ∧ 0 ≀ (Ο€ / 3)) β†’ (absβ€˜(Ο€ / 3)) = (Ο€ / 3))
1748, 172, 173mp2b 10 . . . . . . 7 (absβ€˜(Ο€ / 3)) = (Ο€ / 3)
175171, 174eqtr3i 2763 . . . . . 6 (absβ€˜(0 βˆ’ (Ο€ / 3))) = (Ο€ / 3)
176175oveq2i 7417 . . . . 5 (1 Β· (absβ€˜(0 βˆ’ (Ο€ / 3)))) = (1 Β· (Ο€ / 3))
177128, 167, 1763brtr3i 5177 . . . 4 (absβ€˜(expβ€˜(i Β· -(Ο€ / 3)))) ≀ (1 Β· (Ο€ / 3))
17823renegcli 11518 . . . . 5 -(Ο€ / 3) ∈ ℝ
179 absefi 16136 . . . . 5 (-(Ο€ / 3) ∈ ℝ β†’ (absβ€˜(expβ€˜(i Β· -(Ο€ / 3)))) = 1)
180178, 179ax-mp 5 . . . 4 (absβ€˜(expβ€˜(i Β· -(Ο€ / 3)))) = 1
181144mullidi 11216 . . . 4 (1 Β· (Ο€ / 3)) = (Ο€ / 3)
182177, 180, 1813brtr3i 5177 . . 3 1 ≀ (Ο€ / 3)
183 3pos 12314 . . . . 5 0 < 3
18421, 183pm3.2i 472 . . . 4 (3 ∈ ℝ ∧ 0 < 3)
185 lemuldiv 12091 . . . 4 ((1 ∈ ℝ ∧ Ο€ ∈ ℝ ∧ (3 ∈ ℝ ∧ 0 < 3)) β†’ ((1 Β· 3) ≀ Ο€ ↔ 1 ≀ (Ο€ / 3)))
18698, 20, 184, 185mp3an 1462 . . 3 ((1 Β· 3) ≀ Ο€ ↔ 1 ≀ (Ο€ / 3))
187182, 186mpbir 230 . 2 (1 Β· 3) ≀ Ο€
1882, 187eqbrtrri 5171 1 3 ≀ Ο€
Colors of variables: wff setvar class
Syntax hints:   ↔ wb 205   ∧ wa 397   = wceq 1542  βŠ€wtru 1543   ∈ wcel 2107   ∩ cin 3947   βŠ† wss 3948  {cpr 4630   class class class wbr 5148   ↦ cmpt 5231  dom cdm 5676  ran crn 5677   β†Ύ cres 5678  βŸΆwf 6537  β€˜cfv 6541  (class class class)co 7406  β„‚cc 11105  β„cr 11106  0cc0 11107  1c1 11108  ici 11109   + caddc 11110   Β· cmul 11112  β„*cxr 11244   < clt 11245   ≀ cle 11246   βˆ’ cmin 11441  -cneg 11442   / cdiv 11868  2c2 12264  3c3 12265  β„+crp 12971  (,)cioo 13321  [,]cicc 13324  βˆšcsqrt 15177  abscabs 15178  expce 16002  sincsin 16004  cosccos 16005  Ο€cpi 16007  TopOpenctopn 17364  topGenctg 17380  β„‚fldccnfld 20937  TopOnctopon 22404  intcnt 22513  β€“cnβ†’ccncf 24384   D cdv 25372
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7722  ax-inf2 9633  ax-cnex 11163  ax-resscn 11164  ax-1cn 11165  ax-icn 11166  ax-addcl 11167  ax-addrcl 11168  ax-mulcl 11169  ax-mulrcl 11170  ax-mulcom 11171  ax-addass 11172  ax-mulass 11173  ax-distr 11174  ax-i2m1 11175  ax-1ne0 11176  ax-1rid 11177  ax-rnegex 11178  ax-rrecex 11179  ax-cnre 11180  ax-pre-lttri 11181  ax-pre-lttrn 11182  ax-pre-ltadd 11183  ax-pre-mulgt0 11184  ax-pre-sup 11185  ax-addf 11186  ax-mulf 11187
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-rmo 3377  df-reu 3378  df-rab 3434  df-v 3477  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-pss 3967  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-tp 4633  df-op 4635  df-uni 4909  df-int 4951  df-iun 4999  df-iin 5000  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5574  df-eprel 5580  df-po 5588  df-so 5589  df-fr 5631  df-se 5632  df-we 5633  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-pred 6298  df-ord 6365  df-on 6366  df-lim 6367  df-suc 6368  df-iota 6493  df-fun 6543  df-fn 6544  df-f 6545  df-f1 6546  df-fo 6547  df-f1o 6548  df-fv 6549  df-isom 6550  df-riota 7362  df-ov 7409  df-oprab 7410  df-mpo 7411  df-of 7667  df-om 7853  df-1st 7972  df-2nd 7973  df-supp 8144  df-frecs 8263  df-wrecs 8294  df-recs 8368  df-rdg 8407  df-1o 8463  df-2o 8464  df-er 8700  df-map 8819  df-pm 8820  df-ixp 8889  df-en 8937  df-dom 8938  df-sdom 8939  df-fin 8940  df-fsupp 9359  df-fi 9403  df-sup 9434  df-inf 9435  df-oi 9502  df-card 9931  df-pnf 11247  df-mnf 11248  df-xr 11249  df-ltxr 11250  df-le 11251  df-sub 11443  df-neg 11444  df-div 11869  df-nn 12210  df-2 12272  df-3 12273  df-4 12274  df-5 12275  df-6 12276  df-7 12277  df-8 12278  df-9 12279  df-n0 12470  df-z 12556  df-dec 12675  df-uz 12820  df-q 12930  df-rp 12972  df-xneg 13089  df-xadd 13090  df-xmul 13091  df-ioo 13325  df-ioc 13326  df-ico 13327  df-icc 13328  df-fz 13482  df-fzo 13625  df-fl 13754  df-seq 13964  df-exp 14025  df-fac 14231  df-bc 14260  df-hash 14288  df-shft 15011  df-cj 15043  df-re 15044  df-im 15045  df-sqrt 15179  df-abs 15180  df-limsup 15412  df-clim 15429  df-rlim 15430  df-sum 15630  df-ef 16008  df-sin 16010  df-cos 16011  df-pi 16013  df-struct 17077  df-sets 17094  df-slot 17112  df-ndx 17124  df-base 17142  df-ress 17171  df-plusg 17207  df-mulr 17208  df-starv 17209  df-sca 17210  df-vsca 17211  df-ip 17212  df-tset 17213  df-ple 17214  df-ds 17216  df-unif 17217  df-hom 17218  df-cco 17219  df-rest 17365  df-topn 17366  df-0g 17384  df-gsum 17385  df-topgen 17386  df-pt 17387  df-prds 17390  df-xrs 17445  df-qtop 17450  df-imas 17451  df-xps 17453  df-mre 17527  df-mrc 17528  df-acs 17530  df-mgm 18558  df-sgrp 18607  df-mnd 18623  df-submnd 18669  df-mulg 18946  df-cntz 19176  df-cmn 19645  df-psmet 20929  df-xmet 20930  df-met 20931  df-bl 20932  df-mopn 20933  df-fbas 20934  df-fg 20935  df-cnfld 20938  df-top 22388  df-topon 22405  df-topsp 22427  df-bases 22441  df-cld 22515  df-ntr 22516  df-cls 22517  df-nei 22594  df-lp 22632  df-perf 22633  df-cn 22723  df-cnp 22724  df-haus 22811  df-cmp 22883  df-tx 23058  df-hmeo 23251  df-fil 23342  df-fm 23434  df-flim 23435  df-flf 23436  df-xms 23818  df-ms 23819  df-tms 23820  df-cncf 24386  df-limc 25375  df-dv 25376
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator