Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > eqbrtrri | Structured version Visualization version GIF version |
Description: Substitution of equal classes into a binary relation. (Contributed by NM, 1-Aug-1999.) |
Ref | Expression |
---|---|
eqbrtrr.1 | ⊢ 𝐴 = 𝐵 |
eqbrtrr.2 | ⊢ 𝐴𝑅𝐶 |
Ref | Expression |
---|---|
eqbrtrri | ⊢ 𝐵𝑅𝐶 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqbrtrr.1 | . . 3 ⊢ 𝐴 = 𝐵 | |
2 | 1 | eqcomi 2747 | . 2 ⊢ 𝐵 = 𝐴 |
3 | eqbrtrr.2 | . 2 ⊢ 𝐴𝑅𝐶 | |
4 | 2, 3 | eqbrtri 5091 | 1 ⊢ 𝐵𝑅𝐶 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1539 class class class wbr 5070 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-br 5071 |
This theorem is referenced by: 3brtr3i 5099 expnass 13852 faclbnd4lem1 13935 sqrt2gt1lt2 14914 cos1bnd 15824 cos2bnd 15825 2strstr1OLD 16864 prdsvalstr 17080 ovolre 24594 pigt3 25579 pige3ALT 25581 atan1 25983 log2ublem1 26001 sqrtlim 26027 bposlem8 26344 chebbnd1 26525 norm-ii-i 29400 nmopadji 30353 unierri 30367 ballotlem2 32355 hgt750lemd 32528 hgt750lem 32531 stoweidlem26 43457 wallispilem5 43500 |
Copyright terms: Public domain | W3C validator |