| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > eqbrtrri | Structured version Visualization version GIF version | ||
| Description: Substitution of equal classes into a binary relation. (Contributed by NM, 1-Aug-1999.) |
| Ref | Expression |
|---|---|
| eqbrtrr.1 | ⊢ 𝐴 = 𝐵 |
| eqbrtrr.2 | ⊢ 𝐴𝑅𝐶 |
| Ref | Expression |
|---|---|
| eqbrtrri | ⊢ 𝐵𝑅𝐶 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqbrtrr.1 | . . 3 ⊢ 𝐴 = 𝐵 | |
| 2 | 1 | eqcomi 2738 | . 2 ⊢ 𝐵 = 𝐴 |
| 3 | eqbrtrr.2 | . 2 ⊢ 𝐴𝑅𝐶 | |
| 4 | 2, 3 | eqbrtri 5116 | 1 ⊢ 𝐵𝑅𝐶 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 class class class wbr 5095 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-rab 3397 df-v 3440 df-dif 3908 df-un 3910 df-ss 3922 df-nul 4287 df-if 4479 df-sn 4580 df-pr 4582 df-op 4586 df-br 5096 |
| This theorem is referenced by: 3brtr3i 5124 expnass 14134 faclbnd4lem1 14219 sqrt2gt1lt2 15200 cos1bnd 16115 cos2bnd 16116 prdsvalstr 17375 ovolre 25443 pigt3 26444 pige3ALT 26446 atan1 26855 log2ublem1 26873 sqrtlim 26900 bposlem8 27219 chebbnd1 27400 norm-ii-i 31100 nmopadji 32053 unierri 32067 chnub 32973 ballotlem2 34476 hgt750lemd 34635 hgt750lem 34638 stoweidlem26 46027 wallispilem5 46070 |
| Copyright terms: Public domain | W3C validator |