MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eqbrtrri Structured version   Visualization version   GIF version

Theorem eqbrtrri 5170
Description: Substitution of equal classes into a binary relation. (Contributed by NM, 1-Aug-1999.)
Hypotheses
Ref Expression
eqbrtrr.1 𝐴 = 𝐵
eqbrtrr.2 𝐴𝑅𝐶
Assertion
Ref Expression
eqbrtrri 𝐵𝑅𝐶

Proof of Theorem eqbrtrri
StepHypRef Expression
1 eqbrtrr.1 . . 3 𝐴 = 𝐵
21eqcomi 2739 . 2 𝐵 = 𝐴
3 eqbrtrr.2 . 2 𝐴𝑅𝐶
42, 3eqbrtri 5168 1 𝐵𝑅𝐶
Colors of variables: wff setvar class
Syntax hints:   = wceq 1539   class class class wbr 5147
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-ext 2701
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2722  df-clel 2808  df-rab 3431  df-v 3474  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4322  df-if 4528  df-sn 4628  df-pr 4630  df-op 4634  df-br 5148
This theorem is referenced by:  3brtr3i  5176  expnass  14176  faclbnd4lem1  14257  sqrt2gt1lt2  15225  cos1bnd  16134  cos2bnd  16135  2strstr1OLD  17174  prdsvalstr  17402  ovolre  25274  pigt3  26263  pige3ALT  26265  atan1  26669  log2ublem1  26687  sqrtlim  26713  bposlem8  27030  chebbnd1  27211  norm-ii-i  30657  nmopadji  31610  unierri  31624  ballotlem2  33785  hgt750lemd  33958  hgt750lem  33961  stoweidlem26  45040  wallispilem5  45083
  Copyright terms: Public domain W3C validator