| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > eqbrtrri | Structured version Visualization version GIF version | ||
| Description: Substitution of equal classes into a binary relation. (Contributed by NM, 1-Aug-1999.) |
| Ref | Expression |
|---|---|
| eqbrtrr.1 | ⊢ 𝐴 = 𝐵 |
| eqbrtrr.2 | ⊢ 𝐴𝑅𝐶 |
| Ref | Expression |
|---|---|
| eqbrtrri | ⊢ 𝐵𝑅𝐶 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqbrtrr.1 | . . 3 ⊢ 𝐴 = 𝐵 | |
| 2 | 1 | eqcomi 2738 | . 2 ⊢ 𝐵 = 𝐴 |
| 3 | eqbrtrr.2 | . 2 ⊢ 𝐴𝑅𝐶 | |
| 4 | 2, 3 | eqbrtri 5128 | 1 ⊢ 𝐵𝑅𝐶 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 class class class wbr 5107 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-br 5108 |
| This theorem is referenced by: 3brtr3i 5136 expnass 14173 faclbnd4lem1 14258 sqrt2gt1lt2 15240 cos1bnd 16155 cos2bnd 16156 prdsvalstr 17415 ovolre 25426 pigt3 26427 pige3ALT 26429 atan1 26838 log2ublem1 26856 sqrtlim 26883 bposlem8 27202 chebbnd1 27383 norm-ii-i 31066 nmopadji 32019 unierri 32033 chnub 32938 ballotlem2 34480 hgt750lemd 34639 hgt750lem 34642 stoweidlem26 46024 wallispilem5 46067 |
| Copyright terms: Public domain | W3C validator |