MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eqbrtrri Structured version   Visualization version   GIF version

Theorem eqbrtrri 5133
Description: Substitution of equal classes into a binary relation. (Contributed by NM, 1-Aug-1999.)
Hypotheses
Ref Expression
eqbrtrr.1 𝐴 = 𝐵
eqbrtrr.2 𝐴𝑅𝐶
Assertion
Ref Expression
eqbrtrri 𝐵𝑅𝐶

Proof of Theorem eqbrtrri
StepHypRef Expression
1 eqbrtrr.1 . . 3 𝐴 = 𝐵
21eqcomi 2739 . 2 𝐵 = 𝐴
3 eqbrtrr.2 . 2 𝐴𝑅𝐶
42, 3eqbrtri 5131 1 𝐵𝑅𝐶
Colors of variables: wff setvar class
Syntax hints:   = wceq 1540   class class class wbr 5110
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2702
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2709  df-cleq 2722  df-clel 2804  df-rab 3409  df-v 3452  df-dif 3920  df-un 3922  df-ss 3934  df-nul 4300  df-if 4492  df-sn 4593  df-pr 4595  df-op 4599  df-br 5111
This theorem is referenced by:  3brtr3i  5139  expnass  14180  faclbnd4lem1  14265  sqrt2gt1lt2  15247  cos1bnd  16162  cos2bnd  16163  prdsvalstr  17422  ovolre  25433  pigt3  26434  pige3ALT  26436  atan1  26845  log2ublem1  26863  sqrtlim  26890  bposlem8  27209  chebbnd1  27390  norm-ii-i  31073  nmopadji  32026  unierri  32040  chnub  32945  ballotlem2  34487  hgt750lemd  34646  hgt750lem  34649  stoweidlem26  46031  wallispilem5  46074
  Copyright terms: Public domain W3C validator