MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eqbrtrri Structured version   Visualization version   GIF version

Theorem eqbrtrri 5118
Description: Substitution of equal classes into a binary relation. (Contributed by NM, 1-Aug-1999.)
Hypotheses
Ref Expression
eqbrtrr.1 𝐴 = 𝐵
eqbrtrr.2 𝐴𝑅𝐶
Assertion
Ref Expression
eqbrtrri 𝐵𝑅𝐶

Proof of Theorem eqbrtrri
StepHypRef Expression
1 eqbrtrr.1 . . 3 𝐴 = 𝐵
21eqcomi 2742 . 2 𝐵 = 𝐴
3 eqbrtrr.2 . 2 𝐴𝑅𝐶
42, 3eqbrtri 5116 1 𝐵𝑅𝐶
Colors of variables: wff setvar class
Syntax hints:   = wceq 1541   class class class wbr 5095
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-ext 2705
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2712  df-cleq 2725  df-clel 2808  df-rab 3397  df-v 3439  df-dif 3901  df-un 3903  df-ss 3915  df-nul 4283  df-if 4477  df-sn 4578  df-pr 4580  df-op 4584  df-br 5096
This theorem is referenced by:  3brtr3i  5124  expnass  14122  faclbnd4lem1  14207  sqrt2gt1lt2  15188  cos1bnd  16103  cos2bnd  16104  prdsvalstr  17363  chnub  18536  ovolre  25473  pigt3  26474  pige3ALT  26476  atan1  26885  log2ublem1  26903  sqrtlim  26930  bposlem8  27249  chebbnd1  27430  norm-ii-i  31138  nmopadji  32091  unierri  32105  ballotlem2  34574  hgt750lemd  34733  hgt750lem  34736  stoweidlem26  46186  wallispilem5  46229
  Copyright terms: Public domain W3C validator