| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > eqbrtrri | Structured version Visualization version GIF version | ||
| Description: Substitution of equal classes into a binary relation. (Contributed by NM, 1-Aug-1999.) |
| Ref | Expression |
|---|---|
| eqbrtrr.1 | ⊢ 𝐴 = 𝐵 |
| eqbrtrr.2 | ⊢ 𝐴𝑅𝐶 |
| Ref | Expression |
|---|---|
| eqbrtrri | ⊢ 𝐵𝑅𝐶 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqbrtrr.1 | . . 3 ⊢ 𝐴 = 𝐵 | |
| 2 | 1 | eqcomi 2740 | . 2 ⊢ 𝐵 = 𝐴 |
| 3 | eqbrtrr.2 | . 2 ⊢ 𝐴𝑅𝐶 | |
| 4 | 2, 3 | eqbrtri 5107 | 1 ⊢ 𝐵𝑅𝐶 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1541 class class class wbr 5086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-ss 3914 df-nul 4279 df-if 4471 df-sn 4572 df-pr 4574 df-op 4578 df-br 5087 |
| This theorem is referenced by: 3brtr3i 5115 expnass 14110 faclbnd4lem1 14195 sqrt2gt1lt2 15176 cos1bnd 16091 cos2bnd 16092 prdsvalstr 17351 chnub 18523 ovolre 25448 pigt3 26449 pige3ALT 26451 atan1 26860 log2ublem1 26878 sqrtlim 26905 bposlem8 27224 chebbnd1 27405 norm-ii-i 31109 nmopadji 32062 unierri 32076 ballotlem2 34494 hgt750lemd 34653 hgt750lem 34656 stoweidlem26 46064 wallispilem5 46107 |
| Copyright terms: Public domain | W3C validator |