Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > eqbrtrri | Structured version Visualization version GIF version |
Description: Substitution of equal classes into a binary relation. (Contributed by NM, 1-Aug-1999.) |
Ref | Expression |
---|---|
eqbrtrr.1 | ⊢ 𝐴 = 𝐵 |
eqbrtrr.2 | ⊢ 𝐴𝑅𝐶 |
Ref | Expression |
---|---|
eqbrtrri | ⊢ 𝐵𝑅𝐶 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqbrtrr.1 | . . 3 ⊢ 𝐴 = 𝐵 | |
2 | 1 | eqcomi 2747 | . 2 ⊢ 𝐵 = 𝐴 |
3 | eqbrtrr.2 | . 2 ⊢ 𝐴𝑅𝐶 | |
4 | 2, 3 | eqbrtri 5095 | 1 ⊢ 𝐵𝑅𝐶 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1539 class class class wbr 5074 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-br 5075 |
This theorem is referenced by: 3brtr3i 5103 expnass 13924 faclbnd4lem1 14007 sqrt2gt1lt2 14986 cos1bnd 15896 cos2bnd 15897 2strstr1OLD 16938 prdsvalstr 17163 ovolre 24689 pigt3 25674 pige3ALT 25676 atan1 26078 log2ublem1 26096 sqrtlim 26122 bposlem8 26439 chebbnd1 26620 norm-ii-i 29499 nmopadji 30452 unierri 30466 ballotlem2 32455 hgt750lemd 32628 hgt750lem 32631 stoweidlem26 43567 wallispilem5 43610 |
Copyright terms: Public domain | W3C validator |