MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eqbrtrri Structured version   Visualization version   GIF version

Theorem eqbrtrri 5170
Description: Substitution of equal classes into a binary relation. (Contributed by NM, 1-Aug-1999.)
Hypotheses
Ref Expression
eqbrtrr.1 𝐴 = 𝐵
eqbrtrr.2 𝐴𝑅𝐶
Assertion
Ref Expression
eqbrtrri 𝐵𝑅𝐶

Proof of Theorem eqbrtrri
StepHypRef Expression
1 eqbrtrr.1 . . 3 𝐴 = 𝐵
21eqcomi 2743 . 2 𝐵 = 𝐴
3 eqbrtrr.2 . 2 𝐴𝑅𝐶
42, 3eqbrtri 5168 1 𝐵𝑅𝐶
Colors of variables: wff setvar class
Syntax hints:   = wceq 1536   class class class wbr 5147
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1791  ax-4 1805  ax-5 1907  ax-6 1964  ax-7 2004  ax-8 2107  ax-9 2115  ax-ext 2705
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1539  df-fal 1549  df-ex 1776  df-sb 2062  df-clab 2712  df-cleq 2726  df-clel 2813  df-rab 3433  df-v 3479  df-dif 3965  df-un 3967  df-ss 3979  df-nul 4339  df-if 4531  df-sn 4631  df-pr 4633  df-op 4637  df-br 5148
This theorem is referenced by:  3brtr3i  5176  expnass  14243  faclbnd4lem1  14328  sqrt2gt1lt2  15309  cos1bnd  16219  cos2bnd  16220  2strstr1OLD  17270  prdsvalstr  17498  ovolre  25573  pigt3  26574  pige3ALT  26576  atan1  26985  log2ublem1  27003  sqrtlim  27030  bposlem8  27349  chebbnd1  27530  nohalf  28421  norm-ii-i  31165  nmopadji  32118  unierri  32132  chnub  32985  ballotlem2  34469  hgt750lemd  34641  hgt750lem  34644  stoweidlem26  45981  wallispilem5  46024
  Copyright terms: Public domain W3C validator