![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > eqbrtrri | Structured version Visualization version GIF version |
Description: Substitution of equal classes into a binary relation. (Contributed by NM, 1-Aug-1999.) |
Ref | Expression |
---|---|
eqbrtrr.1 | ⊢ 𝐴 = 𝐵 |
eqbrtrr.2 | ⊢ 𝐴𝑅𝐶 |
Ref | Expression |
---|---|
eqbrtrri | ⊢ 𝐵𝑅𝐶 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqbrtrr.1 | . . 3 ⊢ 𝐴 = 𝐵 | |
2 | 1 | eqcomi 2743 | . 2 ⊢ 𝐵 = 𝐴 |
3 | eqbrtrr.2 | . 2 ⊢ 𝐴𝑅𝐶 | |
4 | 2, 3 | eqbrtri 5168 | 1 ⊢ 𝐵𝑅𝐶 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1536 class class class wbr 5147 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 ax-5 1907 ax-6 1964 ax-7 2004 ax-8 2107 ax-9 2115 ax-ext 2705 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1539 df-fal 1549 df-ex 1776 df-sb 2062 df-clab 2712 df-cleq 2726 df-clel 2813 df-rab 3433 df-v 3479 df-dif 3965 df-un 3967 df-ss 3979 df-nul 4339 df-if 4531 df-sn 4631 df-pr 4633 df-op 4637 df-br 5148 |
This theorem is referenced by: 3brtr3i 5176 expnass 14243 faclbnd4lem1 14328 sqrt2gt1lt2 15309 cos1bnd 16219 cos2bnd 16220 2strstr1OLD 17270 prdsvalstr 17498 ovolre 25573 pigt3 26574 pige3ALT 26576 atan1 26985 log2ublem1 27003 sqrtlim 27030 bposlem8 27349 chebbnd1 27530 nohalf 28421 norm-ii-i 31165 nmopadji 32118 unierri 32132 chnub 32985 ballotlem2 34469 hgt750lemd 34641 hgt750lem 34644 stoweidlem26 45981 wallispilem5 46024 |
Copyright terms: Public domain | W3C validator |