![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > eqbrtrri | Structured version Visualization version GIF version |
Description: Substitution of equal classes into a binary relation. (Contributed by NM, 1-Aug-1999.) |
Ref | Expression |
---|---|
eqbrtrr.1 | ⊢ 𝐴 = 𝐵 |
eqbrtrr.2 | ⊢ 𝐴𝑅𝐶 |
Ref | Expression |
---|---|
eqbrtrri | ⊢ 𝐵𝑅𝐶 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqbrtrr.1 | . . 3 ⊢ 𝐴 = 𝐵 | |
2 | 1 | eqcomi 2806 | . 2 ⊢ 𝐵 = 𝐴 |
3 | eqbrtrr.2 | . 2 ⊢ 𝐴𝑅𝐶 | |
4 | 2, 3 | eqbrtri 4989 | 1 ⊢ 𝐵𝑅𝐶 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1525 class class class wbr 4968 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1781 ax-4 1795 ax-5 1892 ax-6 1951 ax-7 1996 ax-8 2085 ax-9 2093 ax-10 2114 ax-11 2128 ax-12 2143 ax-ext 2771 |
This theorem depends on definitions: df-bi 208 df-an 397 df-or 843 df-3an 1082 df-tru 1528 df-ex 1766 df-nf 1770 df-sb 2045 df-clab 2778 df-cleq 2790 df-clel 2865 df-nfc 2937 df-rab 3116 df-v 3442 df-dif 3868 df-un 3870 df-in 3872 df-ss 3880 df-nul 4218 df-if 4388 df-sn 4479 df-pr 4481 df-op 4485 df-br 4969 |
This theorem is referenced by: 3brtr3i 4997 expnass 13424 faclbnd4lem1 13507 sqrt2gt1lt2 14472 cos1bnd 15377 cos2bnd 15378 2strstr1 16438 prdsvalstr 16559 ovolre 23813 pigt3 24790 pige3ALT 24792 atan1 25191 log2ublem1 25210 sqrtlim 25236 bposlem8 25553 chebbnd1 25734 norm-ii-i 28601 nmopadji 29554 unierri 29568 ballotlem2 31359 hgt750lemd 31532 hgt750lem 31535 stoweidlem26 41875 wallispilem5 41918 |
Copyright terms: Public domain | W3C validator |