| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > eqbrtrri | Structured version Visualization version GIF version | ||
| Description: Substitution of equal classes into a binary relation. (Contributed by NM, 1-Aug-1999.) |
| Ref | Expression |
|---|---|
| eqbrtrr.1 | ⊢ 𝐴 = 𝐵 |
| eqbrtrr.2 | ⊢ 𝐴𝑅𝐶 |
| Ref | Expression |
|---|---|
| eqbrtrri | ⊢ 𝐵𝑅𝐶 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqbrtrr.1 | . . 3 ⊢ 𝐴 = 𝐵 | |
| 2 | 1 | eqcomi 2739 | . 2 ⊢ 𝐵 = 𝐴 |
| 3 | eqbrtrr.2 | . 2 ⊢ 𝐴𝑅𝐶 | |
| 4 | 2, 3 | eqbrtri 5131 | 1 ⊢ 𝐵𝑅𝐶 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 class class class wbr 5110 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-ss 3934 df-nul 4300 df-if 4492 df-sn 4593 df-pr 4595 df-op 4599 df-br 5111 |
| This theorem is referenced by: 3brtr3i 5139 expnass 14180 faclbnd4lem1 14265 sqrt2gt1lt2 15247 cos1bnd 16162 cos2bnd 16163 prdsvalstr 17422 ovolre 25433 pigt3 26434 pige3ALT 26436 atan1 26845 log2ublem1 26863 sqrtlim 26890 bposlem8 27209 chebbnd1 27390 norm-ii-i 31073 nmopadji 32026 unierri 32040 chnub 32945 ballotlem2 34487 hgt750lemd 34646 hgt750lem 34649 stoweidlem26 46031 wallispilem5 46074 |
| Copyright terms: Public domain | W3C validator |