MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ef01bndlem Structured version   Visualization version   GIF version

Theorem ef01bndlem 16095
Description: Lemma for sin01bnd 16096 and cos01bnd 16097. (Contributed by Paul Chapman, 19-Jan-2008.)
Hypothesis
Ref Expression
ef01bnd.1 𝐹 = (𝑛 ∈ ℕ0 ↦ (((i · 𝐴)↑𝑛) / (!‘𝑛)))
Assertion
Ref Expression
ef01bndlem (𝐴 ∈ (0(,]1) → (abs‘Σ𝑘 ∈ (ℤ‘4)(𝐹𝑘)) < ((𝐴↑4) / 6))
Distinct variable groups:   𝑘,𝑛,𝐴   𝑘,𝐹
Allowed substitution hint:   𝐹(𝑛)

Proof of Theorem ef01bndlem
StepHypRef Expression
1 ax-icn 11072 . . . . 5 i ∈ ℂ
2 0xr 11166 . . . . . . . 8 0 ∈ ℝ*
3 1re 11119 . . . . . . . 8 1 ∈ ℝ
4 elioc2 13311 . . . . . . . 8 ((0 ∈ ℝ* ∧ 1 ∈ ℝ) → (𝐴 ∈ (0(,]1) ↔ (𝐴 ∈ ℝ ∧ 0 < 𝐴𝐴 ≤ 1)))
52, 3, 4mp2an 692 . . . . . . 7 (𝐴 ∈ (0(,]1) ↔ (𝐴 ∈ ℝ ∧ 0 < 𝐴𝐴 ≤ 1))
65simp1bi 1145 . . . . . 6 (𝐴 ∈ (0(,]1) → 𝐴 ∈ ℝ)
76recnd 11147 . . . . 5 (𝐴 ∈ (0(,]1) → 𝐴 ∈ ℂ)
8 mulcl 11097 . . . . 5 ((i ∈ ℂ ∧ 𝐴 ∈ ℂ) → (i · 𝐴) ∈ ℂ)
91, 7, 8sylancr 587 . . . 4 (𝐴 ∈ (0(,]1) → (i · 𝐴) ∈ ℂ)
10 4nn0 12407 . . . 4 4 ∈ ℕ0
11 ef01bnd.1 . . . . 5 𝐹 = (𝑛 ∈ ℕ0 ↦ (((i · 𝐴)↑𝑛) / (!‘𝑛)))
1211eftlcl 16018 . . . 4 (((i · 𝐴) ∈ ℂ ∧ 4 ∈ ℕ0) → Σ𝑘 ∈ (ℤ‘4)(𝐹𝑘) ∈ ℂ)
139, 10, 12sylancl 586 . . 3 (𝐴 ∈ (0(,]1) → Σ𝑘 ∈ (ℤ‘4)(𝐹𝑘) ∈ ℂ)
1413abscld 15348 . 2 (𝐴 ∈ (0(,]1) → (abs‘Σ𝑘 ∈ (ℤ‘4)(𝐹𝑘)) ∈ ℝ)
15 reexpcl 13987 . . . 4 ((𝐴 ∈ ℝ ∧ 4 ∈ ℕ0) → (𝐴↑4) ∈ ℝ)
166, 10, 15sylancl 586 . . 3 (𝐴 ∈ (0(,]1) → (𝐴↑4) ∈ ℝ)
17 4re 12216 . . . . 5 4 ∈ ℝ
1817, 3readdcli 11134 . . . 4 (4 + 1) ∈ ℝ
19 faccl 14192 . . . . . 6 (4 ∈ ℕ0 → (!‘4) ∈ ℕ)
2010, 19ax-mp 5 . . . . 5 (!‘4) ∈ ℕ
21 4nn 12215 . . . . 5 4 ∈ ℕ
2220, 21nnmulcli 12157 . . . 4 ((!‘4) · 4) ∈ ℕ
23 nndivre 12173 . . . 4 (((4 + 1) ∈ ℝ ∧ ((!‘4) · 4) ∈ ℕ) → ((4 + 1) / ((!‘4) · 4)) ∈ ℝ)
2418, 22, 23mp2an 692 . . 3 ((4 + 1) / ((!‘4) · 4)) ∈ ℝ
25 remulcl 11098 . . 3 (((𝐴↑4) ∈ ℝ ∧ ((4 + 1) / ((!‘4) · 4)) ∈ ℝ) → ((𝐴↑4) · ((4 + 1) / ((!‘4) · 4))) ∈ ℝ)
2616, 24, 25sylancl 586 . 2 (𝐴 ∈ (0(,]1) → ((𝐴↑4) · ((4 + 1) / ((!‘4) · 4))) ∈ ℝ)
27 6nn 12221 . . 3 6 ∈ ℕ
28 nndivre 12173 . . 3 (((𝐴↑4) ∈ ℝ ∧ 6 ∈ ℕ) → ((𝐴↑4) / 6) ∈ ℝ)
2916, 27, 28sylancl 586 . 2 (𝐴 ∈ (0(,]1) → ((𝐴↑4) / 6) ∈ ℝ)
30 eqid 2733 . . . 4 (𝑛 ∈ ℕ0 ↦ (((abs‘(i · 𝐴))↑𝑛) / (!‘𝑛))) = (𝑛 ∈ ℕ0 ↦ (((abs‘(i · 𝐴))↑𝑛) / (!‘𝑛)))
31 eqid 2733 . . . 4 (𝑛 ∈ ℕ0 ↦ ((((abs‘(i · 𝐴))↑4) / (!‘4)) · ((1 / (4 + 1))↑𝑛))) = (𝑛 ∈ ℕ0 ↦ ((((abs‘(i · 𝐴))↑4) / (!‘4)) · ((1 / (4 + 1))↑𝑛)))
3221a1i 11 . . . 4 (𝐴 ∈ (0(,]1) → 4 ∈ ℕ)
33 absmul 15203 . . . . . . 7 ((i ∈ ℂ ∧ 𝐴 ∈ ℂ) → (abs‘(i · 𝐴)) = ((abs‘i) · (abs‘𝐴)))
341, 7, 33sylancr 587 . . . . . 6 (𝐴 ∈ (0(,]1) → (abs‘(i · 𝐴)) = ((abs‘i) · (abs‘𝐴)))
35 absi 15195 . . . . . . . 8 (abs‘i) = 1
3635oveq1i 7362 . . . . . . 7 ((abs‘i) · (abs‘𝐴)) = (1 · (abs‘𝐴))
375simp2bi 1146 . . . . . . . . . 10 (𝐴 ∈ (0(,]1) → 0 < 𝐴)
386, 37elrpd 12933 . . . . . . . . 9 (𝐴 ∈ (0(,]1) → 𝐴 ∈ ℝ+)
39 rpre 12901 . . . . . . . . . 10 (𝐴 ∈ ℝ+𝐴 ∈ ℝ)
40 rpge0 12906 . . . . . . . . . 10 (𝐴 ∈ ℝ+ → 0 ≤ 𝐴)
4139, 40absidd 15332 . . . . . . . . 9 (𝐴 ∈ ℝ+ → (abs‘𝐴) = 𝐴)
4238, 41syl 17 . . . . . . . 8 (𝐴 ∈ (0(,]1) → (abs‘𝐴) = 𝐴)
4342oveq2d 7368 . . . . . . 7 (𝐴 ∈ (0(,]1) → (1 · (abs‘𝐴)) = (1 · 𝐴))
4436, 43eqtrid 2780 . . . . . 6 (𝐴 ∈ (0(,]1) → ((abs‘i) · (abs‘𝐴)) = (1 · 𝐴))
457mullidd 11137 . . . . . 6 (𝐴 ∈ (0(,]1) → (1 · 𝐴) = 𝐴)
4634, 44, 453eqtrd 2772 . . . . 5 (𝐴 ∈ (0(,]1) → (abs‘(i · 𝐴)) = 𝐴)
475simp3bi 1147 . . . . 5 (𝐴 ∈ (0(,]1) → 𝐴 ≤ 1)
4846, 47eqbrtrd 5115 . . . 4 (𝐴 ∈ (0(,]1) → (abs‘(i · 𝐴)) ≤ 1)
4911, 30, 31, 32, 9, 48eftlub 16020 . . 3 (𝐴 ∈ (0(,]1) → (abs‘Σ𝑘 ∈ (ℤ‘4)(𝐹𝑘)) ≤ (((abs‘(i · 𝐴))↑4) · ((4 + 1) / ((!‘4) · 4))))
5046oveq1d 7367 . . . 4 (𝐴 ∈ (0(,]1) → ((abs‘(i · 𝐴))↑4) = (𝐴↑4))
5150oveq1d 7367 . . 3 (𝐴 ∈ (0(,]1) → (((abs‘(i · 𝐴))↑4) · ((4 + 1) / ((!‘4) · 4))) = ((𝐴↑4) · ((4 + 1) / ((!‘4) · 4))))
5249, 51breqtrd 5119 . 2 (𝐴 ∈ (0(,]1) → (abs‘Σ𝑘 ∈ (ℤ‘4)(𝐹𝑘)) ≤ ((𝐴↑4) · ((4 + 1) / ((!‘4) · 4))))
53 3pos 12237 . . . . . . . . 9 0 < 3
54 0re 11121 . . . . . . . . . 10 0 ∈ ℝ
55 3re 12212 . . . . . . . . . 10 3 ∈ ℝ
56 5re 12219 . . . . . . . . . 10 5 ∈ ℝ
5754, 55, 56ltadd1i 11678 . . . . . . . . 9 (0 < 3 ↔ (0 + 5) < (3 + 5))
5853, 57mpbi 230 . . . . . . . 8 (0 + 5) < (3 + 5)
59 5cn 12220 . . . . . . . . 9 5 ∈ ℂ
6059addlidi 11308 . . . . . . . 8 (0 + 5) = 5
61 cu2 14109 . . . . . . . . 9 (2↑3) = 8
62 5p3e8 12284 . . . . . . . . 9 (5 + 3) = 8
63 3cn 12213 . . . . . . . . . 10 3 ∈ ℂ
6459, 63addcomi 11311 . . . . . . . . 9 (5 + 3) = (3 + 5)
6561, 62, 643eqtr2ri 2763 . . . . . . . 8 (3 + 5) = (2↑3)
6658, 60, 653brtr3i 5122 . . . . . . 7 5 < (2↑3)
67 2re 12206 . . . . . . . 8 2 ∈ ℝ
68 1le2 12336 . . . . . . . 8 1 ≤ 2
69 4z 12512 . . . . . . . . 9 4 ∈ ℤ
70 3lt4 12301 . . . . . . . . . 10 3 < 4
7155, 17, 70ltleii 11243 . . . . . . . . 9 3 ≤ 4
72 3z 12511 . . . . . . . . . 10 3 ∈ ℤ
7372eluz1i 12746 . . . . . . . . 9 (4 ∈ (ℤ‘3) ↔ (4 ∈ ℤ ∧ 3 ≤ 4))
7469, 71, 73mpbir2an 711 . . . . . . . 8 4 ∈ (ℤ‘3)
75 leexp2a 14081 . . . . . . . 8 ((2 ∈ ℝ ∧ 1 ≤ 2 ∧ 4 ∈ (ℤ‘3)) → (2↑3) ≤ (2↑4))
7667, 68, 74, 75mp3an 1463 . . . . . . 7 (2↑3) ≤ (2↑4)
77 8re 12228 . . . . . . . . 9 8 ∈ ℝ
7861, 77eqeltri 2829 . . . . . . . 8 (2↑3) ∈ ℝ
79 2nn 12205 . . . . . . . . . 10 2 ∈ ℕ
80 nnexpcl 13983 . . . . . . . . . 10 ((2 ∈ ℕ ∧ 4 ∈ ℕ0) → (2↑4) ∈ ℕ)
8179, 10, 80mp2an 692 . . . . . . . . 9 (2↑4) ∈ ℕ
8281nnrei 12141 . . . . . . . 8 (2↑4) ∈ ℝ
8356, 78, 82ltletri 11248 . . . . . . 7 ((5 < (2↑3) ∧ (2↑3) ≤ (2↑4)) → 5 < (2↑4))
8466, 76, 83mp2an 692 . . . . . 6 5 < (2↑4)
85 6re 12222 . . . . . . . 8 6 ∈ ℝ
8685, 82remulcli 11135 . . . . . . 7 (6 · (2↑4)) ∈ ℝ
87 6pos 12242 . . . . . . . 8 0 < 6
8881nngt0i 12171 . . . . . . . 8 0 < (2↑4)
8985, 82, 87, 88mulgt0ii 11253 . . . . . . 7 0 < (6 · (2↑4))
9056, 82, 86, 89ltdiv1ii 12058 . . . . . 6 (5 < (2↑4) ↔ (5 / (6 · (2↑4))) < ((2↑4) / (6 · (2↑4))))
9184, 90mpbi 230 . . . . 5 (5 / (6 · (2↑4))) < ((2↑4) / (6 · (2↑4)))
92 df-5 12198 . . . . . 6 5 = (4 + 1)
93 df-4 12197 . . . . . . . . . . 11 4 = (3 + 1)
9493fveq2i 6831 . . . . . . . . . 10 (!‘4) = (!‘(3 + 1))
95 3nn0 12406 . . . . . . . . . . 11 3 ∈ ℕ0
96 facp1 14187 . . . . . . . . . . 11 (3 ∈ ℕ0 → (!‘(3 + 1)) = ((!‘3) · (3 + 1)))
9795, 96ax-mp 5 . . . . . . . . . 10 (!‘(3 + 1)) = ((!‘3) · (3 + 1))
98 sq2 14106 . . . . . . . . . . . 12 (2↑2) = 4
9998, 93eqtr2i 2757 . . . . . . . . . . 11 (3 + 1) = (2↑2)
10099oveq2i 7363 . . . . . . . . . 10 ((!‘3) · (3 + 1)) = ((!‘3) · (2↑2))
10194, 97, 1003eqtri 2760 . . . . . . . . 9 (!‘4) = ((!‘3) · (2↑2))
102101oveq1i 7362 . . . . . . . 8 ((!‘4) · (2↑2)) = (((!‘3) · (2↑2)) · (2↑2))
10398oveq2i 7363 . . . . . . . 8 ((!‘4) · (2↑2)) = ((!‘4) · 4)
104 fac3 14189 . . . . . . . . . 10 (!‘3) = 6
105 6cn 12223 . . . . . . . . . 10 6 ∈ ℂ
106104, 105eqeltri 2829 . . . . . . . . 9 (!‘3) ∈ ℂ
10717recni 11133 . . . . . . . . . 10 4 ∈ ℂ
10898, 107eqeltri 2829 . . . . . . . . 9 (2↑2) ∈ ℂ
109106, 108, 108mulassi 11130 . . . . . . . 8 (((!‘3) · (2↑2)) · (2↑2)) = ((!‘3) · ((2↑2) · (2↑2)))
110102, 103, 1093eqtr3i 2764 . . . . . . 7 ((!‘4) · 4) = ((!‘3) · ((2↑2) · (2↑2)))
111 2p2e4 12262 . . . . . . . . . 10 (2 + 2) = 4
112111oveq2i 7363 . . . . . . . . 9 (2↑(2 + 2)) = (2↑4)
113 2cn 12207 . . . . . . . . . 10 2 ∈ ℂ
114 2nn0 12405 . . . . . . . . . 10 2 ∈ ℕ0
115 expadd 14013 . . . . . . . . . 10 ((2 ∈ ℂ ∧ 2 ∈ ℕ0 ∧ 2 ∈ ℕ0) → (2↑(2 + 2)) = ((2↑2) · (2↑2)))
116113, 114, 114, 115mp3an 1463 . . . . . . . . 9 (2↑(2 + 2)) = ((2↑2) · (2↑2))
117112, 116eqtr3i 2758 . . . . . . . 8 (2↑4) = ((2↑2) · (2↑2))
118117oveq2i 7363 . . . . . . 7 ((!‘3) · (2↑4)) = ((!‘3) · ((2↑2) · (2↑2)))
119104oveq1i 7362 . . . . . . 7 ((!‘3) · (2↑4)) = (6 · (2↑4))
120110, 118, 1193eqtr2ri 2763 . . . . . 6 (6 · (2↑4)) = ((!‘4) · 4)
12192, 120oveq12i 7364 . . . . 5 (5 / (6 · (2↑4))) = ((4 + 1) / ((!‘4) · 4))
12281nncni 12142 . . . . . . . 8 (2↑4) ∈ ℂ
123122mullidi 11124 . . . . . . 7 (1 · (2↑4)) = (2↑4)
124123oveq1i 7362 . . . . . 6 ((1 · (2↑4)) / (6 · (2↑4))) = ((2↑4) / (6 · (2↑4)))
12581nnne0i 12172 . . . . . . . . 9 (2↑4) ≠ 0
126122, 125dividi 11861 . . . . . . . 8 ((2↑4) / (2↑4)) = 1
127126oveq2i 7363 . . . . . . 7 ((1 / 6) · ((2↑4) / (2↑4))) = ((1 / 6) · 1)
128 ax-1cn 11071 . . . . . . . 8 1 ∈ ℂ
12985, 87gt0ne0ii 11660 . . . . . . . 8 6 ≠ 0
130128, 105, 122, 122, 129, 125divmuldivi 11888 . . . . . . 7 ((1 / 6) · ((2↑4) / (2↑4))) = ((1 · (2↑4)) / (6 · (2↑4)))
13185, 129rereccli 11893 . . . . . . . . 9 (1 / 6) ∈ ℝ
132131recni 11133 . . . . . . . 8 (1 / 6) ∈ ℂ
133132mulridi 11123 . . . . . . 7 ((1 / 6) · 1) = (1 / 6)
134127, 130, 1333eqtr3i 2764 . . . . . 6 ((1 · (2↑4)) / (6 · (2↑4))) = (1 / 6)
135124, 134eqtr3i 2758 . . . . 5 ((2↑4) / (6 · (2↑4))) = (1 / 6)
13691, 121, 1353brtr3i 5122 . . . 4 ((4 + 1) / ((!‘4) · 4)) < (1 / 6)
137 rpexpcl 13989 . . . . . 6 ((𝐴 ∈ ℝ+ ∧ 4 ∈ ℤ) → (𝐴↑4) ∈ ℝ+)
13838, 69, 137sylancl 586 . . . . 5 (𝐴 ∈ (0(,]1) → (𝐴↑4) ∈ ℝ+)
139 elrp 12894 . . . . . 6 ((𝐴↑4) ∈ ℝ+ ↔ ((𝐴↑4) ∈ ℝ ∧ 0 < (𝐴↑4)))
140 ltmul2 11979 . . . . . . 7 ((((4 + 1) / ((!‘4) · 4)) ∈ ℝ ∧ (1 / 6) ∈ ℝ ∧ ((𝐴↑4) ∈ ℝ ∧ 0 < (𝐴↑4))) → (((4 + 1) / ((!‘4) · 4)) < (1 / 6) ↔ ((𝐴↑4) · ((4 + 1) / ((!‘4) · 4))) < ((𝐴↑4) · (1 / 6))))
14124, 131, 140mp3an12 1453 . . . . . 6 (((𝐴↑4) ∈ ℝ ∧ 0 < (𝐴↑4)) → (((4 + 1) / ((!‘4) · 4)) < (1 / 6) ↔ ((𝐴↑4) · ((4 + 1) / ((!‘4) · 4))) < ((𝐴↑4) · (1 / 6))))
142139, 141sylbi 217 . . . . 5 ((𝐴↑4) ∈ ℝ+ → (((4 + 1) / ((!‘4) · 4)) < (1 / 6) ↔ ((𝐴↑4) · ((4 + 1) / ((!‘4) · 4))) < ((𝐴↑4) · (1 / 6))))
143138, 142syl 17 . . . 4 (𝐴 ∈ (0(,]1) → (((4 + 1) / ((!‘4) · 4)) < (1 / 6) ↔ ((𝐴↑4) · ((4 + 1) / ((!‘4) · 4))) < ((𝐴↑4) · (1 / 6))))
144136, 143mpbii 233 . . 3 (𝐴 ∈ (0(,]1) → ((𝐴↑4) · ((4 + 1) / ((!‘4) · 4))) < ((𝐴↑4) · (1 / 6)))
14516recnd 11147 . . . 4 (𝐴 ∈ (0(,]1) → (𝐴↑4) ∈ ℂ)
146 divrec 11799 . . . . 5 (((𝐴↑4) ∈ ℂ ∧ 6 ∈ ℂ ∧ 6 ≠ 0) → ((𝐴↑4) / 6) = ((𝐴↑4) · (1 / 6)))
147105, 129, 146mp3an23 1455 . . . 4 ((𝐴↑4) ∈ ℂ → ((𝐴↑4) / 6) = ((𝐴↑4) · (1 / 6)))
148145, 147syl 17 . . 3 (𝐴 ∈ (0(,]1) → ((𝐴↑4) / 6) = ((𝐴↑4) · (1 / 6)))
149144, 148breqtrrd 5121 . 2 (𝐴 ∈ (0(,]1) → ((𝐴↑4) · ((4 + 1) / ((!‘4) · 4))) < ((𝐴↑4) / 6))
15014, 26, 29, 52, 149lelttrd 11278 1 (𝐴 ∈ (0(,]1) → (abs‘Σ𝑘 ∈ (ℤ‘4)(𝐹𝑘)) < ((𝐴↑4) / 6))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1541  wcel 2113  wne 2929   class class class wbr 5093  cmpt 5174  cfv 6486  (class class class)co 7352  cc 11011  cr 11012  0cc0 11013  1c1 11014  ici 11015   + caddc 11016   · cmul 11018  *cxr 11152   < clt 11153  cle 11154   / cdiv 11781  cn 12132  2c2 12187  3c3 12188  4c4 12189  5c5 12190  6c6 12191  8c8 12193  0cn0 12388  cz 12475  cuz 12738  +crp 12892  (,]cioc 13248  cexp 13970  !cfa 14182  abscabs 15143  Σcsu 15595
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5219  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372  ax-un 7674  ax-inf2 9538  ax-cnex 11069  ax-resscn 11070  ax-1cn 11071  ax-icn 11072  ax-addcl 11073  ax-addrcl 11074  ax-mulcl 11075  ax-mulrcl 11076  ax-mulcom 11077  ax-addass 11078  ax-mulass 11079  ax-distr 11080  ax-i2m1 11081  ax-1ne0 11082  ax-1rid 11083  ax-rnegex 11084  ax-rrecex 11085  ax-cnre 11086  ax-pre-lttri 11087  ax-pre-lttrn 11088  ax-pre-ltadd 11089  ax-pre-mulgt0 11090  ax-pre-sup 11091
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-nel 3034  df-ral 3049  df-rex 3058  df-rmo 3347  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-int 4898  df-iun 4943  df-br 5094  df-opab 5156  df-mpt 5175  df-tr 5201  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-se 5573  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-isom 6495  df-riota 7309  df-ov 7355  df-oprab 7356  df-mpo 7357  df-om 7803  df-1st 7927  df-2nd 7928  df-frecs 8217  df-wrecs 8248  df-recs 8297  df-rdg 8335  df-1o 8391  df-er 8628  df-pm 8759  df-en 8876  df-dom 8877  df-sdom 8878  df-fin 8879  df-sup 9333  df-inf 9334  df-oi 9403  df-card 9839  df-pnf 11155  df-mnf 11156  df-xr 11157  df-ltxr 11158  df-le 11159  df-sub 11353  df-neg 11354  df-div 11782  df-nn 12133  df-2 12195  df-3 12196  df-4 12197  df-5 12198  df-6 12199  df-7 12200  df-8 12201  df-n0 12389  df-z 12476  df-uz 12739  df-rp 12893  df-ioc 13252  df-ico 13253  df-fz 13410  df-fzo 13557  df-fl 13698  df-seq 13911  df-exp 13971  df-fac 14183  df-hash 14240  df-shft 14976  df-cj 15008  df-re 15009  df-im 15010  df-sqrt 15144  df-abs 15145  df-limsup 15380  df-clim 15397  df-rlim 15398  df-sum 15596
This theorem is referenced by:  sin01bnd  16096  cos01bnd  16097
  Copyright terms: Public domain W3C validator