MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  log2ublem1 Structured version   Visualization version   GIF version

Theorem log2ublem1 26451
Description: Lemma for log2ub 26454. The proof of log2ub 26454, which is simply the evaluation of log2tlbnd 26450 for 𝑁 = 4, takes the form of the addition of five fractions and showing this is less than another fraction. We could just perform exact arithmetic on these fractions, get a large rational number, and just multiply everything to verify the claim, but as anyone who uses decimal numbers for this task knows, it is often better to pick a common denominator 𝑑 (usually a large power of 10) and work with the closest approximations of the form 𝑛 / 𝑑 for some integer 𝑛 instead. It turns out that for our purposes it is sufficient to take 𝑑 = (3↑7) · 5 · 7, which is also nice because it shares many factors in common with the fractions in question. (Contributed by Mario Carneiro, 17-Apr-2015.)
Hypotheses
Ref Expression
log2ublem1.1 (((3↑7) · (5 · 7)) · 𝐴) ≤ 𝐵
log2ublem1.2 𝐴 ∈ ℝ
log2ublem1.3 𝐷 ∈ ℕ0
log2ublem1.4 𝐸 ∈ ℕ
log2ublem1.5 𝐵 ∈ ℕ0
log2ublem1.6 𝐹 ∈ ℕ0
log2ublem1.7 𝐶 = (𝐴 + (𝐷 / 𝐸))
log2ublem1.8 (𝐵 + 𝐹) = 𝐺
log2ublem1.9 (((3↑7) · (5 · 7)) · 𝐷) ≤ (𝐸 · 𝐹)
Assertion
Ref Expression
log2ublem1 (((3↑7) · (5 · 7)) · 𝐶) ≤ 𝐺

Proof of Theorem log2ublem1
StepHypRef Expression
1 log2ublem1.1 . . 3 (((3↑7) · (5 · 7)) · 𝐴) ≤ 𝐵
2 3nn 12291 . . . . . . . 8 3 ∈ ℕ
3 7nn0 12494 . . . . . . . 8 7 ∈ ℕ0
4 nnexpcl 14040 . . . . . . . 8 ((3 ∈ ℕ ∧ 7 ∈ ℕ0) → (3↑7) ∈ ℕ)
52, 3, 4mp2an 691 . . . . . . 7 (3↑7) ∈ ℕ
6 5nn 12298 . . . . . . . 8 5 ∈ ℕ
7 7nn 12304 . . . . . . . 8 7 ∈ ℕ
86, 7nnmulcli 12237 . . . . . . 7 (5 · 7) ∈ ℕ
95, 8nnmulcli 12237 . . . . . 6 ((3↑7) · (5 · 7)) ∈ ℕ
109nncni 12222 . . . . 5 ((3↑7) · (5 · 7)) ∈ ℂ
11 log2ublem1.3 . . . . . 6 𝐷 ∈ ℕ0
1211nn0cni 12484 . . . . 5 𝐷 ∈ ℂ
13 log2ublem1.4 . . . . . 6 𝐸 ∈ ℕ
1413nncni 12222 . . . . 5 𝐸 ∈ ℂ
1513nnne0i 12252 . . . . 5 𝐸 ≠ 0
1610, 12, 14, 15divassi 11970 . . . 4 ((((3↑7) · (5 · 7)) · 𝐷) / 𝐸) = (((3↑7) · (5 · 7)) · (𝐷 / 𝐸))
17 log2ublem1.9 . . . . 5 (((3↑7) · (5 · 7)) · 𝐷) ≤ (𝐸 · 𝐹)
18 3nn0 12490 . . . . . . . . . 10 3 ∈ ℕ0
1918, 3nn0expcli 14054 . . . . . . . . 9 (3↑7) ∈ ℕ0
20 5nn0 12492 . . . . . . . . . 10 5 ∈ ℕ0
2120, 3nn0mulcli 12510 . . . . . . . . 9 (5 · 7) ∈ ℕ0
2219, 21nn0mulcli 12510 . . . . . . . 8 ((3↑7) · (5 · 7)) ∈ ℕ0
2322, 11nn0mulcli 12510 . . . . . . 7 (((3↑7) · (5 · 7)) · 𝐷) ∈ ℕ0
2423nn0rei 12483 . . . . . 6 (((3↑7) · (5 · 7)) · 𝐷) ∈ ℝ
25 log2ublem1.6 . . . . . . 7 𝐹 ∈ ℕ0
2625nn0rei 12483 . . . . . 6 𝐹 ∈ ℝ
2713nnrei 12221 . . . . . . 7 𝐸 ∈ ℝ
2813nngt0i 12251 . . . . . . 7 0 < 𝐸
2927, 28pm3.2i 472 . . . . . 6 (𝐸 ∈ ℝ ∧ 0 < 𝐸)
30 ledivmul 12090 . . . . . 6 (((((3↑7) · (5 · 7)) · 𝐷) ∈ ℝ ∧ 𝐹 ∈ ℝ ∧ (𝐸 ∈ ℝ ∧ 0 < 𝐸)) → (((((3↑7) · (5 · 7)) · 𝐷) / 𝐸) ≤ 𝐹 ↔ (((3↑7) · (5 · 7)) · 𝐷) ≤ (𝐸 · 𝐹)))
3124, 26, 29, 30mp3an 1462 . . . . 5 (((((3↑7) · (5 · 7)) · 𝐷) / 𝐸) ≤ 𝐹 ↔ (((3↑7) · (5 · 7)) · 𝐷) ≤ (𝐸 · 𝐹))
3217, 31mpbir 230 . . . 4 ((((3↑7) · (5 · 7)) · 𝐷) / 𝐸) ≤ 𝐹
3316, 32eqbrtrri 5172 . . 3 (((3↑7) · (5 · 7)) · (𝐷 / 𝐸)) ≤ 𝐹
349nnrei 12221 . . . . 5 ((3↑7) · (5 · 7)) ∈ ℝ
35 log2ublem1.2 . . . . 5 𝐴 ∈ ℝ
3634, 35remulcli 11230 . . . 4 (((3↑7) · (5 · 7)) · 𝐴) ∈ ℝ
3711nn0rei 12483 . . . . . 6 𝐷 ∈ ℝ
38 nndivre 12253 . . . . . 6 ((𝐷 ∈ ℝ ∧ 𝐸 ∈ ℕ) → (𝐷 / 𝐸) ∈ ℝ)
3937, 13, 38mp2an 691 . . . . 5 (𝐷 / 𝐸) ∈ ℝ
4034, 39remulcli 11230 . . . 4 (((3↑7) · (5 · 7)) · (𝐷 / 𝐸)) ∈ ℝ
41 log2ublem1.5 . . . . 5 𝐵 ∈ ℕ0
4241nn0rei 12483 . . . 4 𝐵 ∈ ℝ
4336, 40, 42, 26le2addi 11777 . . 3 (((((3↑7) · (5 · 7)) · 𝐴) ≤ 𝐵 ∧ (((3↑7) · (5 · 7)) · (𝐷 / 𝐸)) ≤ 𝐹) → ((((3↑7) · (5 · 7)) · 𝐴) + (((3↑7) · (5 · 7)) · (𝐷 / 𝐸))) ≤ (𝐵 + 𝐹))
441, 33, 43mp2an 691 . 2 ((((3↑7) · (5 · 7)) · 𝐴) + (((3↑7) · (5 · 7)) · (𝐷 / 𝐸))) ≤ (𝐵 + 𝐹)
45 log2ublem1.7 . . . 4 𝐶 = (𝐴 + (𝐷 / 𝐸))
4645oveq2i 7420 . . 3 (((3↑7) · (5 · 7)) · 𝐶) = (((3↑7) · (5 · 7)) · (𝐴 + (𝐷 / 𝐸)))
4735recni 11228 . . . 4 𝐴 ∈ ℂ
4839recni 11228 . . . 4 (𝐷 / 𝐸) ∈ ℂ
4910, 47, 48adddii 11226 . . 3 (((3↑7) · (5 · 7)) · (𝐴 + (𝐷 / 𝐸))) = ((((3↑7) · (5 · 7)) · 𝐴) + (((3↑7) · (5 · 7)) · (𝐷 / 𝐸)))
5046, 49eqtr2i 2762 . 2 ((((3↑7) · (5 · 7)) · 𝐴) + (((3↑7) · (5 · 7)) · (𝐷 / 𝐸))) = (((3↑7) · (5 · 7)) · 𝐶)
51 log2ublem1.8 . 2 (𝐵 + 𝐹) = 𝐺
5244, 50, 513brtr3i 5178 1 (((3↑7) · (5 · 7)) · 𝐶) ≤ 𝐺
Colors of variables: wff setvar class
Syntax hints:  wb 205  wa 397   = wceq 1542  wcel 2107   class class class wbr 5149  (class class class)co 7409  cr 11109  0cc0 11110   + caddc 11113   · cmul 11115   < clt 11248  cle 11249   / cdiv 11871  cn 12212  3c3 12268  5c5 12270  7c7 12272  0cn0 12472  cexp 14027
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-sep 5300  ax-nul 5307  ax-pow 5364  ax-pr 5428  ax-un 7725  ax-cnex 11166  ax-resscn 11167  ax-1cn 11168  ax-icn 11169  ax-addcl 11170  ax-addrcl 11171  ax-mulcl 11172  ax-mulrcl 11173  ax-mulcom 11174  ax-addass 11175  ax-mulass 11176  ax-distr 11177  ax-i2m1 11178  ax-1ne0 11179  ax-1rid 11180  ax-rnegex 11181  ax-rrecex 11182  ax-cnre 11183  ax-pre-lttri 11184  ax-pre-lttrn 11185  ax-pre-ltadd 11186  ax-pre-mulgt0 11187
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-rmo 3377  df-reu 3378  df-rab 3434  df-v 3477  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-pss 3968  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-iun 5000  df-br 5150  df-opab 5212  df-mpt 5233  df-tr 5267  df-id 5575  df-eprel 5581  df-po 5589  df-so 5590  df-fr 5632  df-we 5634  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-pred 6301  df-ord 6368  df-on 6369  df-lim 6370  df-suc 6371  df-iota 6496  df-fun 6546  df-fn 6547  df-f 6548  df-f1 6549  df-fo 6550  df-f1o 6551  df-fv 6552  df-riota 7365  df-ov 7412  df-oprab 7413  df-mpo 7414  df-om 7856  df-2nd 7976  df-frecs 8266  df-wrecs 8297  df-recs 8371  df-rdg 8410  df-er 8703  df-en 8940  df-dom 8941  df-sdom 8942  df-pnf 11250  df-mnf 11251  df-xr 11252  df-ltxr 11253  df-le 11254  df-sub 11446  df-neg 11447  df-div 11872  df-nn 12213  df-2 12275  df-3 12276  df-4 12277  df-5 12278  df-6 12279  df-7 12280  df-n0 12473  df-z 12559  df-uz 12823  df-seq 13967  df-exp 14028
This theorem is referenced by:  log2ublem2  26452  log2ub  26454
  Copyright terms: Public domain W3C validator