MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  log2ublem1 Structured version   Visualization version   GIF version

Theorem log2ublem1 27007
Description: Lemma for log2ub 27010. The proof of log2ub 27010, which is simply the evaluation of log2tlbnd 27006 for 𝑁 = 4, takes the form of the addition of five fractions and showing this is less than another fraction. We could just perform exact arithmetic on these fractions, get a large rational number, and just multiply everything to verify the claim, but as anyone who uses decimal numbers for this task knows, it is often better to pick a common denominator 𝑑 (usually a large power of 10) and work with the closest approximations of the form 𝑛 / 𝑑 for some integer 𝑛 instead. It turns out that for our purposes it is sufficient to take 𝑑 = (3↑7) · 5 · 7, which is also nice because it shares many factors in common with the fractions in question. (Contributed by Mario Carneiro, 17-Apr-2015.)
Hypotheses
Ref Expression
log2ublem1.1 (((3↑7) · (5 · 7)) · 𝐴) ≤ 𝐵
log2ublem1.2 𝐴 ∈ ℝ
log2ublem1.3 𝐷 ∈ ℕ0
log2ublem1.4 𝐸 ∈ ℕ
log2ublem1.5 𝐵 ∈ ℕ0
log2ublem1.6 𝐹 ∈ ℕ0
log2ublem1.7 𝐶 = (𝐴 + (𝐷 / 𝐸))
log2ublem1.8 (𝐵 + 𝐹) = 𝐺
log2ublem1.9 (((3↑7) · (5 · 7)) · 𝐷) ≤ (𝐸 · 𝐹)
Assertion
Ref Expression
log2ublem1 (((3↑7) · (5 · 7)) · 𝐶) ≤ 𝐺

Proof of Theorem log2ublem1
StepHypRef Expression
1 log2ublem1.1 . . 3 (((3↑7) · (5 · 7)) · 𝐴) ≤ 𝐵
2 3nn 12372 . . . . . . . 8 3 ∈ ℕ
3 7nn0 12575 . . . . . . . 8 7 ∈ ℕ0
4 nnexpcl 14125 . . . . . . . 8 ((3 ∈ ℕ ∧ 7 ∈ ℕ0) → (3↑7) ∈ ℕ)
52, 3, 4mp2an 691 . . . . . . 7 (3↑7) ∈ ℕ
6 5nn 12379 . . . . . . . 8 5 ∈ ℕ
7 7nn 12385 . . . . . . . 8 7 ∈ ℕ
86, 7nnmulcli 12318 . . . . . . 7 (5 · 7) ∈ ℕ
95, 8nnmulcli 12318 . . . . . 6 ((3↑7) · (5 · 7)) ∈ ℕ
109nncni 12303 . . . . 5 ((3↑7) · (5 · 7)) ∈ ℂ
11 log2ublem1.3 . . . . . 6 𝐷 ∈ ℕ0
1211nn0cni 12565 . . . . 5 𝐷 ∈ ℂ
13 log2ublem1.4 . . . . . 6 𝐸 ∈ ℕ
1413nncni 12303 . . . . 5 𝐸 ∈ ℂ
1513nnne0i 12333 . . . . 5 𝐸 ≠ 0
1610, 12, 14, 15divassi 12050 . . . 4 ((((3↑7) · (5 · 7)) · 𝐷) / 𝐸) = (((3↑7) · (5 · 7)) · (𝐷 / 𝐸))
17 log2ublem1.9 . . . . 5 (((3↑7) · (5 · 7)) · 𝐷) ≤ (𝐸 · 𝐹)
18 3nn0 12571 . . . . . . . . . 10 3 ∈ ℕ0
1918, 3nn0expcli 14139 . . . . . . . . 9 (3↑7) ∈ ℕ0
20 5nn0 12573 . . . . . . . . . 10 5 ∈ ℕ0
2120, 3nn0mulcli 12591 . . . . . . . . 9 (5 · 7) ∈ ℕ0
2219, 21nn0mulcli 12591 . . . . . . . 8 ((3↑7) · (5 · 7)) ∈ ℕ0
2322, 11nn0mulcli 12591 . . . . . . 7 (((3↑7) · (5 · 7)) · 𝐷) ∈ ℕ0
2423nn0rei 12564 . . . . . 6 (((3↑7) · (5 · 7)) · 𝐷) ∈ ℝ
25 log2ublem1.6 . . . . . . 7 𝐹 ∈ ℕ0
2625nn0rei 12564 . . . . . 6 𝐹 ∈ ℝ
2713nnrei 12302 . . . . . . 7 𝐸 ∈ ℝ
2813nngt0i 12332 . . . . . . 7 0 < 𝐸
2927, 28pm3.2i 470 . . . . . 6 (𝐸 ∈ ℝ ∧ 0 < 𝐸)
30 ledivmul 12171 . . . . . 6 (((((3↑7) · (5 · 7)) · 𝐷) ∈ ℝ ∧ 𝐹 ∈ ℝ ∧ (𝐸 ∈ ℝ ∧ 0 < 𝐸)) → (((((3↑7) · (5 · 7)) · 𝐷) / 𝐸) ≤ 𝐹 ↔ (((3↑7) · (5 · 7)) · 𝐷) ≤ (𝐸 · 𝐹)))
3124, 26, 29, 30mp3an 1461 . . . . 5 (((((3↑7) · (5 · 7)) · 𝐷) / 𝐸) ≤ 𝐹 ↔ (((3↑7) · (5 · 7)) · 𝐷) ≤ (𝐸 · 𝐹))
3217, 31mpbir 231 . . . 4 ((((3↑7) · (5 · 7)) · 𝐷) / 𝐸) ≤ 𝐹
3316, 32eqbrtrri 5189 . . 3 (((3↑7) · (5 · 7)) · (𝐷 / 𝐸)) ≤ 𝐹
349nnrei 12302 . . . . 5 ((3↑7) · (5 · 7)) ∈ ℝ
35 log2ublem1.2 . . . . 5 𝐴 ∈ ℝ
3634, 35remulcli 11306 . . . 4 (((3↑7) · (5 · 7)) · 𝐴) ∈ ℝ
3711nn0rei 12564 . . . . . 6 𝐷 ∈ ℝ
38 nndivre 12334 . . . . . 6 ((𝐷 ∈ ℝ ∧ 𝐸 ∈ ℕ) → (𝐷 / 𝐸) ∈ ℝ)
3937, 13, 38mp2an 691 . . . . 5 (𝐷 / 𝐸) ∈ ℝ
4034, 39remulcli 11306 . . . 4 (((3↑7) · (5 · 7)) · (𝐷 / 𝐸)) ∈ ℝ
41 log2ublem1.5 . . . . 5 𝐵 ∈ ℕ0
4241nn0rei 12564 . . . 4 𝐵 ∈ ℝ
4336, 40, 42, 26le2addi 11853 . . 3 (((((3↑7) · (5 · 7)) · 𝐴) ≤ 𝐵 ∧ (((3↑7) · (5 · 7)) · (𝐷 / 𝐸)) ≤ 𝐹) → ((((3↑7) · (5 · 7)) · 𝐴) + (((3↑7) · (5 · 7)) · (𝐷 / 𝐸))) ≤ (𝐵 + 𝐹))
441, 33, 43mp2an 691 . 2 ((((3↑7) · (5 · 7)) · 𝐴) + (((3↑7) · (5 · 7)) · (𝐷 / 𝐸))) ≤ (𝐵 + 𝐹)
45 log2ublem1.7 . . . 4 𝐶 = (𝐴 + (𝐷 / 𝐸))
4645oveq2i 7459 . . 3 (((3↑7) · (5 · 7)) · 𝐶) = (((3↑7) · (5 · 7)) · (𝐴 + (𝐷 / 𝐸)))
4735recni 11304 . . . 4 𝐴 ∈ ℂ
4839recni 11304 . . . 4 (𝐷 / 𝐸) ∈ ℂ
4910, 47, 48adddii 11302 . . 3 (((3↑7) · (5 · 7)) · (𝐴 + (𝐷 / 𝐸))) = ((((3↑7) · (5 · 7)) · 𝐴) + (((3↑7) · (5 · 7)) · (𝐷 / 𝐸)))
5046, 49eqtr2i 2769 . 2 ((((3↑7) · (5 · 7)) · 𝐴) + (((3↑7) · (5 · 7)) · (𝐷 / 𝐸))) = (((3↑7) · (5 · 7)) · 𝐶)
51 log2ublem1.8 . 2 (𝐵 + 𝐹) = 𝐺
5244, 50, 513brtr3i 5195 1 (((3↑7) · (5 · 7)) · 𝐶) ≤ 𝐺
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395   = wceq 1537  wcel 2108   class class class wbr 5166  (class class class)co 7448  cr 11183  0cc0 11184   + caddc 11187   · cmul 11189   < clt 11324  cle 11325   / cdiv 11947  cn 12293  3c3 12349  5c5 12351  7c7 12353  0cn0 12553  cexp 14112
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-er 8763  df-en 9004  df-dom 9005  df-sdom 9006  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-div 11948  df-nn 12294  df-2 12356  df-3 12357  df-4 12358  df-5 12359  df-6 12360  df-7 12361  df-n0 12554  df-z 12640  df-uz 12904  df-seq 14053  df-exp 14113
This theorem is referenced by:  log2ublem2  27008  log2ub  27010
  Copyright terms: Public domain W3C validator