![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > log2ublem1 | Structured version Visualization version GIF version |
Description: Lemma for log2ub 27007. The proof of log2ub 27007, which is simply the evaluation of log2tlbnd 27003 for 𝑁 = 4, takes the form of the addition of five fractions and showing this is less than another fraction. We could just perform exact arithmetic on these fractions, get a large rational number, and just multiply everything to verify the claim, but as anyone who uses decimal numbers for this task knows, it is often better to pick a common denominator 𝑑 (usually a large power of 10) and work with the closest approximations of the form 𝑛 / 𝑑 for some integer 𝑛 instead. It turns out that for our purposes it is sufficient to take 𝑑 = (3↑7) · 5 · 7, which is also nice because it shares many factors in common with the fractions in question. (Contributed by Mario Carneiro, 17-Apr-2015.) |
Ref | Expression |
---|---|
log2ublem1.1 | ⊢ (((3↑7) · (5 · 7)) · 𝐴) ≤ 𝐵 |
log2ublem1.2 | ⊢ 𝐴 ∈ ℝ |
log2ublem1.3 | ⊢ 𝐷 ∈ ℕ0 |
log2ublem1.4 | ⊢ 𝐸 ∈ ℕ |
log2ublem1.5 | ⊢ 𝐵 ∈ ℕ0 |
log2ublem1.6 | ⊢ 𝐹 ∈ ℕ0 |
log2ublem1.7 | ⊢ 𝐶 = (𝐴 + (𝐷 / 𝐸)) |
log2ublem1.8 | ⊢ (𝐵 + 𝐹) = 𝐺 |
log2ublem1.9 | ⊢ (((3↑7) · (5 · 7)) · 𝐷) ≤ (𝐸 · 𝐹) |
Ref | Expression |
---|---|
log2ublem1 | ⊢ (((3↑7) · (5 · 7)) · 𝐶) ≤ 𝐺 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | log2ublem1.1 | . . 3 ⊢ (((3↑7) · (5 · 7)) · 𝐴) ≤ 𝐵 | |
2 | 3nn 12343 | . . . . . . . 8 ⊢ 3 ∈ ℕ | |
3 | 7nn0 12546 | . . . . . . . 8 ⊢ 7 ∈ ℕ0 | |
4 | nnexpcl 14112 | . . . . . . . 8 ⊢ ((3 ∈ ℕ ∧ 7 ∈ ℕ0) → (3↑7) ∈ ℕ) | |
5 | 2, 3, 4 | mp2an 692 | . . . . . . 7 ⊢ (3↑7) ∈ ℕ |
6 | 5nn 12350 | . . . . . . . 8 ⊢ 5 ∈ ℕ | |
7 | 7nn 12356 | . . . . . . . 8 ⊢ 7 ∈ ℕ | |
8 | 6, 7 | nnmulcli 12289 | . . . . . . 7 ⊢ (5 · 7) ∈ ℕ |
9 | 5, 8 | nnmulcli 12289 | . . . . . 6 ⊢ ((3↑7) · (5 · 7)) ∈ ℕ |
10 | 9 | nncni 12274 | . . . . 5 ⊢ ((3↑7) · (5 · 7)) ∈ ℂ |
11 | log2ublem1.3 | . . . . . 6 ⊢ 𝐷 ∈ ℕ0 | |
12 | 11 | nn0cni 12536 | . . . . 5 ⊢ 𝐷 ∈ ℂ |
13 | log2ublem1.4 | . . . . . 6 ⊢ 𝐸 ∈ ℕ | |
14 | 13 | nncni 12274 | . . . . 5 ⊢ 𝐸 ∈ ℂ |
15 | 13 | nnne0i 12304 | . . . . 5 ⊢ 𝐸 ≠ 0 |
16 | 10, 12, 14, 15 | divassi 12021 | . . . 4 ⊢ ((((3↑7) · (5 · 7)) · 𝐷) / 𝐸) = (((3↑7) · (5 · 7)) · (𝐷 / 𝐸)) |
17 | log2ublem1.9 | . . . . 5 ⊢ (((3↑7) · (5 · 7)) · 𝐷) ≤ (𝐸 · 𝐹) | |
18 | 3nn0 12542 | . . . . . . . . . 10 ⊢ 3 ∈ ℕ0 | |
19 | 18, 3 | nn0expcli 14126 | . . . . . . . . 9 ⊢ (3↑7) ∈ ℕ0 |
20 | 5nn0 12544 | . . . . . . . . . 10 ⊢ 5 ∈ ℕ0 | |
21 | 20, 3 | nn0mulcli 12562 | . . . . . . . . 9 ⊢ (5 · 7) ∈ ℕ0 |
22 | 19, 21 | nn0mulcli 12562 | . . . . . . . 8 ⊢ ((3↑7) · (5 · 7)) ∈ ℕ0 |
23 | 22, 11 | nn0mulcli 12562 | . . . . . . 7 ⊢ (((3↑7) · (5 · 7)) · 𝐷) ∈ ℕ0 |
24 | 23 | nn0rei 12535 | . . . . . 6 ⊢ (((3↑7) · (5 · 7)) · 𝐷) ∈ ℝ |
25 | log2ublem1.6 | . . . . . . 7 ⊢ 𝐹 ∈ ℕ0 | |
26 | 25 | nn0rei 12535 | . . . . . 6 ⊢ 𝐹 ∈ ℝ |
27 | 13 | nnrei 12273 | . . . . . . 7 ⊢ 𝐸 ∈ ℝ |
28 | 13 | nngt0i 12303 | . . . . . . 7 ⊢ 0 < 𝐸 |
29 | 27, 28 | pm3.2i 470 | . . . . . 6 ⊢ (𝐸 ∈ ℝ ∧ 0 < 𝐸) |
30 | ledivmul 12142 | . . . . . 6 ⊢ (((((3↑7) · (5 · 7)) · 𝐷) ∈ ℝ ∧ 𝐹 ∈ ℝ ∧ (𝐸 ∈ ℝ ∧ 0 < 𝐸)) → (((((3↑7) · (5 · 7)) · 𝐷) / 𝐸) ≤ 𝐹 ↔ (((3↑7) · (5 · 7)) · 𝐷) ≤ (𝐸 · 𝐹))) | |
31 | 24, 26, 29, 30 | mp3an 1460 | . . . . 5 ⊢ (((((3↑7) · (5 · 7)) · 𝐷) / 𝐸) ≤ 𝐹 ↔ (((3↑7) · (5 · 7)) · 𝐷) ≤ (𝐸 · 𝐹)) |
32 | 17, 31 | mpbir 231 | . . . 4 ⊢ ((((3↑7) · (5 · 7)) · 𝐷) / 𝐸) ≤ 𝐹 |
33 | 16, 32 | eqbrtrri 5171 | . . 3 ⊢ (((3↑7) · (5 · 7)) · (𝐷 / 𝐸)) ≤ 𝐹 |
34 | 9 | nnrei 12273 | . . . . 5 ⊢ ((3↑7) · (5 · 7)) ∈ ℝ |
35 | log2ublem1.2 | . . . . 5 ⊢ 𝐴 ∈ ℝ | |
36 | 34, 35 | remulcli 11275 | . . . 4 ⊢ (((3↑7) · (5 · 7)) · 𝐴) ∈ ℝ |
37 | 11 | nn0rei 12535 | . . . . . 6 ⊢ 𝐷 ∈ ℝ |
38 | nndivre 12305 | . . . . . 6 ⊢ ((𝐷 ∈ ℝ ∧ 𝐸 ∈ ℕ) → (𝐷 / 𝐸) ∈ ℝ) | |
39 | 37, 13, 38 | mp2an 692 | . . . . 5 ⊢ (𝐷 / 𝐸) ∈ ℝ |
40 | 34, 39 | remulcli 11275 | . . . 4 ⊢ (((3↑7) · (5 · 7)) · (𝐷 / 𝐸)) ∈ ℝ |
41 | log2ublem1.5 | . . . . 5 ⊢ 𝐵 ∈ ℕ0 | |
42 | 41 | nn0rei 12535 | . . . 4 ⊢ 𝐵 ∈ ℝ |
43 | 36, 40, 42, 26 | le2addi 11824 | . . 3 ⊢ (((((3↑7) · (5 · 7)) · 𝐴) ≤ 𝐵 ∧ (((3↑7) · (5 · 7)) · (𝐷 / 𝐸)) ≤ 𝐹) → ((((3↑7) · (5 · 7)) · 𝐴) + (((3↑7) · (5 · 7)) · (𝐷 / 𝐸))) ≤ (𝐵 + 𝐹)) |
44 | 1, 33, 43 | mp2an 692 | . 2 ⊢ ((((3↑7) · (5 · 7)) · 𝐴) + (((3↑7) · (5 · 7)) · (𝐷 / 𝐸))) ≤ (𝐵 + 𝐹) |
45 | log2ublem1.7 | . . . 4 ⊢ 𝐶 = (𝐴 + (𝐷 / 𝐸)) | |
46 | 45 | oveq2i 7442 | . . 3 ⊢ (((3↑7) · (5 · 7)) · 𝐶) = (((3↑7) · (5 · 7)) · (𝐴 + (𝐷 / 𝐸))) |
47 | 35 | recni 11273 | . . . 4 ⊢ 𝐴 ∈ ℂ |
48 | 39 | recni 11273 | . . . 4 ⊢ (𝐷 / 𝐸) ∈ ℂ |
49 | 10, 47, 48 | adddii 11271 | . . 3 ⊢ (((3↑7) · (5 · 7)) · (𝐴 + (𝐷 / 𝐸))) = ((((3↑7) · (5 · 7)) · 𝐴) + (((3↑7) · (5 · 7)) · (𝐷 / 𝐸))) |
50 | 46, 49 | eqtr2i 2764 | . 2 ⊢ ((((3↑7) · (5 · 7)) · 𝐴) + (((3↑7) · (5 · 7)) · (𝐷 / 𝐸))) = (((3↑7) · (5 · 7)) · 𝐶) |
51 | log2ublem1.8 | . 2 ⊢ (𝐵 + 𝐹) = 𝐺 | |
52 | 44, 50, 51 | 3brtr3i 5177 | 1 ⊢ (((3↑7) · (5 · 7)) · 𝐶) ≤ 𝐺 |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 206 ∧ wa 395 = wceq 1537 ∈ wcel 2106 class class class wbr 5148 (class class class)co 7431 ℝcr 11152 0cc0 11153 + caddc 11156 · cmul 11158 < clt 11293 ≤ cle 11294 / cdiv 11918 ℕcn 12264 3c3 12320 5c5 12322 7c7 12324 ℕ0cn0 12524 ↑cexp 14099 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 ax-cnex 11209 ax-resscn 11210 ax-1cn 11211 ax-icn 11212 ax-addcl 11213 ax-addrcl 11214 ax-mulcl 11215 ax-mulrcl 11216 ax-mulcom 11217 ax-addass 11218 ax-mulass 11219 ax-distr 11220 ax-i2m1 11221 ax-1ne0 11222 ax-1rid 11223 ax-rnegex 11224 ax-rrecex 11225 ax-cnre 11226 ax-pre-lttri 11227 ax-pre-lttrn 11228 ax-pre-ltadd 11229 ax-pre-mulgt0 11230 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-nel 3045 df-ral 3060 df-rex 3069 df-rmo 3378 df-reu 3379 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-pss 3983 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5583 df-eprel 5589 df-po 5597 df-so 5598 df-fr 5641 df-we 5643 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-pred 6323 df-ord 6389 df-on 6390 df-lim 6391 df-suc 6392 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-f1 6568 df-fo 6569 df-f1o 6570 df-fv 6571 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-om 7888 df-2nd 8014 df-frecs 8305 df-wrecs 8336 df-recs 8410 df-rdg 8449 df-er 8744 df-en 8985 df-dom 8986 df-sdom 8987 df-pnf 11295 df-mnf 11296 df-xr 11297 df-ltxr 11298 df-le 11299 df-sub 11492 df-neg 11493 df-div 11919 df-nn 12265 df-2 12327 df-3 12328 df-4 12329 df-5 12330 df-6 12331 df-7 12332 df-n0 12525 df-z 12612 df-uz 12877 df-seq 14040 df-exp 14100 |
This theorem is referenced by: log2ublem2 27005 log2ub 27007 |
Copyright terms: Public domain | W3C validator |