Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > log2ublem1 | Structured version Visualization version GIF version |
Description: Lemma for log2ub 26004. The proof of log2ub 26004, which is simply the evaluation of log2tlbnd 26000 for 𝑁 = 4, takes the form of the addition of five fractions and showing this is less than another fraction. We could just perform exact arithmetic on these fractions, get a large rational number, and just multiply everything to verify the claim, but as anyone who uses decimal numbers for this task knows, it is often better to pick a common denominator 𝑑 (usually a large power of 10) and work with the closest approximations of the form 𝑛 / 𝑑 for some integer 𝑛 instead. It turns out that for our purposes it is sufficient to take 𝑑 = (3↑7) · 5 · 7, which is also nice because it shares many factors in common with the fractions in question. (Contributed by Mario Carneiro, 17-Apr-2015.) |
Ref | Expression |
---|---|
log2ublem1.1 | ⊢ (((3↑7) · (5 · 7)) · 𝐴) ≤ 𝐵 |
log2ublem1.2 | ⊢ 𝐴 ∈ ℝ |
log2ublem1.3 | ⊢ 𝐷 ∈ ℕ0 |
log2ublem1.4 | ⊢ 𝐸 ∈ ℕ |
log2ublem1.5 | ⊢ 𝐵 ∈ ℕ0 |
log2ublem1.6 | ⊢ 𝐹 ∈ ℕ0 |
log2ublem1.7 | ⊢ 𝐶 = (𝐴 + (𝐷 / 𝐸)) |
log2ublem1.8 | ⊢ (𝐵 + 𝐹) = 𝐺 |
log2ublem1.9 | ⊢ (((3↑7) · (5 · 7)) · 𝐷) ≤ (𝐸 · 𝐹) |
Ref | Expression |
---|---|
log2ublem1 | ⊢ (((3↑7) · (5 · 7)) · 𝐶) ≤ 𝐺 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | log2ublem1.1 | . . 3 ⊢ (((3↑7) · (5 · 7)) · 𝐴) ≤ 𝐵 | |
2 | 3nn 11982 | . . . . . . . 8 ⊢ 3 ∈ ℕ | |
3 | 7nn0 12185 | . . . . . . . 8 ⊢ 7 ∈ ℕ0 | |
4 | nnexpcl 13723 | . . . . . . . 8 ⊢ ((3 ∈ ℕ ∧ 7 ∈ ℕ0) → (3↑7) ∈ ℕ) | |
5 | 2, 3, 4 | mp2an 688 | . . . . . . 7 ⊢ (3↑7) ∈ ℕ |
6 | 5nn 11989 | . . . . . . . 8 ⊢ 5 ∈ ℕ | |
7 | 7nn 11995 | . . . . . . . 8 ⊢ 7 ∈ ℕ | |
8 | 6, 7 | nnmulcli 11928 | . . . . . . 7 ⊢ (5 · 7) ∈ ℕ |
9 | 5, 8 | nnmulcli 11928 | . . . . . 6 ⊢ ((3↑7) · (5 · 7)) ∈ ℕ |
10 | 9 | nncni 11913 | . . . . 5 ⊢ ((3↑7) · (5 · 7)) ∈ ℂ |
11 | log2ublem1.3 | . . . . . 6 ⊢ 𝐷 ∈ ℕ0 | |
12 | 11 | nn0cni 12175 | . . . . 5 ⊢ 𝐷 ∈ ℂ |
13 | log2ublem1.4 | . . . . . 6 ⊢ 𝐸 ∈ ℕ | |
14 | 13 | nncni 11913 | . . . . 5 ⊢ 𝐸 ∈ ℂ |
15 | 13 | nnne0i 11943 | . . . . 5 ⊢ 𝐸 ≠ 0 |
16 | 10, 12, 14, 15 | divassi 11661 | . . . 4 ⊢ ((((3↑7) · (5 · 7)) · 𝐷) / 𝐸) = (((3↑7) · (5 · 7)) · (𝐷 / 𝐸)) |
17 | log2ublem1.9 | . . . . 5 ⊢ (((3↑7) · (5 · 7)) · 𝐷) ≤ (𝐸 · 𝐹) | |
18 | 3nn0 12181 | . . . . . . . . . 10 ⊢ 3 ∈ ℕ0 | |
19 | 18, 3 | nn0expcli 13737 | . . . . . . . . 9 ⊢ (3↑7) ∈ ℕ0 |
20 | 5nn0 12183 | . . . . . . . . . 10 ⊢ 5 ∈ ℕ0 | |
21 | 20, 3 | nn0mulcli 12201 | . . . . . . . . 9 ⊢ (5 · 7) ∈ ℕ0 |
22 | 19, 21 | nn0mulcli 12201 | . . . . . . . 8 ⊢ ((3↑7) · (5 · 7)) ∈ ℕ0 |
23 | 22, 11 | nn0mulcli 12201 | . . . . . . 7 ⊢ (((3↑7) · (5 · 7)) · 𝐷) ∈ ℕ0 |
24 | 23 | nn0rei 12174 | . . . . . 6 ⊢ (((3↑7) · (5 · 7)) · 𝐷) ∈ ℝ |
25 | log2ublem1.6 | . . . . . . 7 ⊢ 𝐹 ∈ ℕ0 | |
26 | 25 | nn0rei 12174 | . . . . . 6 ⊢ 𝐹 ∈ ℝ |
27 | 13 | nnrei 11912 | . . . . . . 7 ⊢ 𝐸 ∈ ℝ |
28 | 13 | nngt0i 11942 | . . . . . . 7 ⊢ 0 < 𝐸 |
29 | 27, 28 | pm3.2i 470 | . . . . . 6 ⊢ (𝐸 ∈ ℝ ∧ 0 < 𝐸) |
30 | ledivmul 11781 | . . . . . 6 ⊢ (((((3↑7) · (5 · 7)) · 𝐷) ∈ ℝ ∧ 𝐹 ∈ ℝ ∧ (𝐸 ∈ ℝ ∧ 0 < 𝐸)) → (((((3↑7) · (5 · 7)) · 𝐷) / 𝐸) ≤ 𝐹 ↔ (((3↑7) · (5 · 7)) · 𝐷) ≤ (𝐸 · 𝐹))) | |
31 | 24, 26, 29, 30 | mp3an 1459 | . . . . 5 ⊢ (((((3↑7) · (5 · 7)) · 𝐷) / 𝐸) ≤ 𝐹 ↔ (((3↑7) · (5 · 7)) · 𝐷) ≤ (𝐸 · 𝐹)) |
32 | 17, 31 | mpbir 230 | . . . 4 ⊢ ((((3↑7) · (5 · 7)) · 𝐷) / 𝐸) ≤ 𝐹 |
33 | 16, 32 | eqbrtrri 5093 | . . 3 ⊢ (((3↑7) · (5 · 7)) · (𝐷 / 𝐸)) ≤ 𝐹 |
34 | 9 | nnrei 11912 | . . . . 5 ⊢ ((3↑7) · (5 · 7)) ∈ ℝ |
35 | log2ublem1.2 | . . . . 5 ⊢ 𝐴 ∈ ℝ | |
36 | 34, 35 | remulcli 10922 | . . . 4 ⊢ (((3↑7) · (5 · 7)) · 𝐴) ∈ ℝ |
37 | 11 | nn0rei 12174 | . . . . . 6 ⊢ 𝐷 ∈ ℝ |
38 | nndivre 11944 | . . . . . 6 ⊢ ((𝐷 ∈ ℝ ∧ 𝐸 ∈ ℕ) → (𝐷 / 𝐸) ∈ ℝ) | |
39 | 37, 13, 38 | mp2an 688 | . . . . 5 ⊢ (𝐷 / 𝐸) ∈ ℝ |
40 | 34, 39 | remulcli 10922 | . . . 4 ⊢ (((3↑7) · (5 · 7)) · (𝐷 / 𝐸)) ∈ ℝ |
41 | log2ublem1.5 | . . . . 5 ⊢ 𝐵 ∈ ℕ0 | |
42 | 41 | nn0rei 12174 | . . . 4 ⊢ 𝐵 ∈ ℝ |
43 | 36, 40, 42, 26 | le2addi 11468 | . . 3 ⊢ (((((3↑7) · (5 · 7)) · 𝐴) ≤ 𝐵 ∧ (((3↑7) · (5 · 7)) · (𝐷 / 𝐸)) ≤ 𝐹) → ((((3↑7) · (5 · 7)) · 𝐴) + (((3↑7) · (5 · 7)) · (𝐷 / 𝐸))) ≤ (𝐵 + 𝐹)) |
44 | 1, 33, 43 | mp2an 688 | . 2 ⊢ ((((3↑7) · (5 · 7)) · 𝐴) + (((3↑7) · (5 · 7)) · (𝐷 / 𝐸))) ≤ (𝐵 + 𝐹) |
45 | log2ublem1.7 | . . . 4 ⊢ 𝐶 = (𝐴 + (𝐷 / 𝐸)) | |
46 | 45 | oveq2i 7266 | . . 3 ⊢ (((3↑7) · (5 · 7)) · 𝐶) = (((3↑7) · (5 · 7)) · (𝐴 + (𝐷 / 𝐸))) |
47 | 35 | recni 10920 | . . . 4 ⊢ 𝐴 ∈ ℂ |
48 | 39 | recni 10920 | . . . 4 ⊢ (𝐷 / 𝐸) ∈ ℂ |
49 | 10, 47, 48 | adddii 10918 | . . 3 ⊢ (((3↑7) · (5 · 7)) · (𝐴 + (𝐷 / 𝐸))) = ((((3↑7) · (5 · 7)) · 𝐴) + (((3↑7) · (5 · 7)) · (𝐷 / 𝐸))) |
50 | 46, 49 | eqtr2i 2767 | . 2 ⊢ ((((3↑7) · (5 · 7)) · 𝐴) + (((3↑7) · (5 · 7)) · (𝐷 / 𝐸))) = (((3↑7) · (5 · 7)) · 𝐶) |
51 | log2ublem1.8 | . 2 ⊢ (𝐵 + 𝐹) = 𝐺 | |
52 | 44, 50, 51 | 3brtr3i 5099 | 1 ⊢ (((3↑7) · (5 · 7)) · 𝐶) ≤ 𝐺 |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 395 = wceq 1539 ∈ wcel 2108 class class class wbr 5070 (class class class)co 7255 ℝcr 10801 0cc0 10802 + caddc 10805 · cmul 10807 < clt 10940 ≤ cle 10941 / cdiv 11562 ℕcn 11903 3c3 11959 5c5 11961 7c7 11963 ℕ0cn0 12163 ↑cexp 13710 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rmo 3071 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-om 7688 df-2nd 7805 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-er 8456 df-en 8692 df-dom 8693 df-sdom 8694 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-div 11563 df-nn 11904 df-2 11966 df-3 11967 df-4 11968 df-5 11969 df-6 11970 df-7 11971 df-n0 12164 df-z 12250 df-uz 12512 df-seq 13650 df-exp 13711 |
This theorem is referenced by: log2ublem2 26002 log2ub 26004 |
Copyright terms: Public domain | W3C validator |