MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  log2ublem1 Structured version   Visualization version   GIF version

Theorem log2ublem1 25129
Description: Lemma for log2ub 25132. The proof of log2ub 25132, which is simply the evaluation of log2tlbnd 25128 for 𝑁 = 4, takes the form of the addition of five fractions and showing this is less than another fraction. We could just perform exact arithmetic on these fractions, get a large rational number, and just multiply everything to verify the claim, but as anyone who uses decimal numbers for this task knows, it is often better to pick a common denominator 𝑑 (usually a large power of 10) and work with the closest approximations of the form 𝑛 / 𝑑 for some integer 𝑛 instead. It turns out that for our purposes it is sufficient to take 𝑑 = (3↑7) · 5 · 7, which is also nice because it shares many factors in common with the fractions in question. (Contributed by Mario Carneiro, 17-Apr-2015.)
Hypotheses
Ref Expression
log2ublem1.1 (((3↑7) · (5 · 7)) · 𝐴) ≤ 𝐵
log2ublem1.2 𝐴 ∈ ℝ
log2ublem1.3 𝐷 ∈ ℕ0
log2ublem1.4 𝐸 ∈ ℕ
log2ublem1.5 𝐵 ∈ ℕ0
log2ublem1.6 𝐹 ∈ ℕ0
log2ublem1.7 𝐶 = (𝐴 + (𝐷 / 𝐸))
log2ublem1.8 (𝐵 + 𝐹) = 𝐺
log2ublem1.9 (((3↑7) · (5 · 7)) · 𝐷) ≤ (𝐸 · 𝐹)
Assertion
Ref Expression
log2ublem1 (((3↑7) · (5 · 7)) · 𝐶) ≤ 𝐺

Proof of Theorem log2ublem1
StepHypRef Expression
1 log2ublem1.1 . . 3 (((3↑7) · (5 · 7)) · 𝐴) ≤ 𝐵
2 3nn 11458 . . . . . . . 8 3 ∈ ℕ
3 7nn0 11670 . . . . . . . 8 7 ∈ ℕ0
4 nnexpcl 13195 . . . . . . . 8 ((3 ∈ ℕ ∧ 7 ∈ ℕ0) → (3↑7) ∈ ℕ)
52, 3, 4mp2an 682 . . . . . . 7 (3↑7) ∈ ℕ
6 5nn 11467 . . . . . . . 8 5 ∈ ℕ
7 7nn 11475 . . . . . . . 8 7 ∈ ℕ
86, 7nnmulcli 11405 . . . . . . 7 (5 · 7) ∈ ℕ
95, 8nnmulcli 11405 . . . . . 6 ((3↑7) · (5 · 7)) ∈ ℕ
109nncni 11389 . . . . 5 ((3↑7) · (5 · 7)) ∈ ℂ
11 log2ublem1.3 . . . . . 6 𝐷 ∈ ℕ0
1211nn0cni 11659 . . . . 5 𝐷 ∈ ℂ
13 log2ublem1.4 . . . . . 6 𝐸 ∈ ℕ
1413nncni 11389 . . . . 5 𝐸 ∈ ℂ
1513nnne0i 11419 . . . . 5 𝐸 ≠ 0
1610, 12, 14, 15divassi 11133 . . . 4 ((((3↑7) · (5 · 7)) · 𝐷) / 𝐸) = (((3↑7) · (5 · 7)) · (𝐷 / 𝐸))
17 log2ublem1.9 . . . . 5 (((3↑7) · (5 · 7)) · 𝐷) ≤ (𝐸 · 𝐹)
18 3nn0 11666 . . . . . . . . . 10 3 ∈ ℕ0
1918, 3nn0expcli 13208 . . . . . . . . 9 (3↑7) ∈ ℕ0
20 5nn0 11668 . . . . . . . . . 10 5 ∈ ℕ0
2120, 3nn0mulcli 11686 . . . . . . . . 9 (5 · 7) ∈ ℕ0
2219, 21nn0mulcli 11686 . . . . . . . 8 ((3↑7) · (5 · 7)) ∈ ℕ0
2322, 11nn0mulcli 11686 . . . . . . 7 (((3↑7) · (5 · 7)) · 𝐷) ∈ ℕ0
2423nn0rei 11658 . . . . . 6 (((3↑7) · (5 · 7)) · 𝐷) ∈ ℝ
25 log2ublem1.6 . . . . . . 7 𝐹 ∈ ℕ0
2625nn0rei 11658 . . . . . 6 𝐹 ∈ ℝ
2713nnrei 11388 . . . . . . 7 𝐸 ∈ ℝ
2813nngt0i 11418 . . . . . . 7 0 < 𝐸
2927, 28pm3.2i 464 . . . . . 6 (𝐸 ∈ ℝ ∧ 0 < 𝐸)
30 ledivmul 11255 . . . . . 6 (((((3↑7) · (5 · 7)) · 𝐷) ∈ ℝ ∧ 𝐹 ∈ ℝ ∧ (𝐸 ∈ ℝ ∧ 0 < 𝐸)) → (((((3↑7) · (5 · 7)) · 𝐷) / 𝐸) ≤ 𝐹 ↔ (((3↑7) · (5 · 7)) · 𝐷) ≤ (𝐸 · 𝐹)))
3124, 26, 29, 30mp3an 1534 . . . . 5 (((((3↑7) · (5 · 7)) · 𝐷) / 𝐸) ≤ 𝐹 ↔ (((3↑7) · (5 · 7)) · 𝐷) ≤ (𝐸 · 𝐹))
3217, 31mpbir 223 . . . 4 ((((3↑7) · (5 · 7)) · 𝐷) / 𝐸) ≤ 𝐹
3316, 32eqbrtrri 4911 . . 3 (((3↑7) · (5 · 7)) · (𝐷 / 𝐸)) ≤ 𝐹
349nnrei 11388 . . . . 5 ((3↑7) · (5 · 7)) ∈ ℝ
35 log2ublem1.2 . . . . 5 𝐴 ∈ ℝ
3634, 35remulcli 10395 . . . 4 (((3↑7) · (5 · 7)) · 𝐴) ∈ ℝ
3711nn0rei 11658 . . . . . 6 𝐷 ∈ ℝ
38 nndivre 11420 . . . . . 6 ((𝐷 ∈ ℝ ∧ 𝐸 ∈ ℕ) → (𝐷 / 𝐸) ∈ ℝ)
3937, 13, 38mp2an 682 . . . . 5 (𝐷 / 𝐸) ∈ ℝ
4034, 39remulcli 10395 . . . 4 (((3↑7) · (5 · 7)) · (𝐷 / 𝐸)) ∈ ℝ
41 log2ublem1.5 . . . . 5 𝐵 ∈ ℕ0
4241nn0rei 11658 . . . 4 𝐵 ∈ ℝ
4336, 40, 42, 26le2addi 10940 . . 3 (((((3↑7) · (5 · 7)) · 𝐴) ≤ 𝐵 ∧ (((3↑7) · (5 · 7)) · (𝐷 / 𝐸)) ≤ 𝐹) → ((((3↑7) · (5 · 7)) · 𝐴) + (((3↑7) · (5 · 7)) · (𝐷 / 𝐸))) ≤ (𝐵 + 𝐹))
441, 33, 43mp2an 682 . 2 ((((3↑7) · (5 · 7)) · 𝐴) + (((3↑7) · (5 · 7)) · (𝐷 / 𝐸))) ≤ (𝐵 + 𝐹)
45 log2ublem1.7 . . . 4 𝐶 = (𝐴 + (𝐷 / 𝐸))
4645oveq2i 6935 . . 3 (((3↑7) · (5 · 7)) · 𝐶) = (((3↑7) · (5 · 7)) · (𝐴 + (𝐷 / 𝐸)))
4735recni 10393 . . . 4 𝐴 ∈ ℂ
4839recni 10393 . . . 4 (𝐷 / 𝐸) ∈ ℂ
4910, 47, 48adddii 10391 . . 3 (((3↑7) · (5 · 7)) · (𝐴 + (𝐷 / 𝐸))) = ((((3↑7) · (5 · 7)) · 𝐴) + (((3↑7) · (5 · 7)) · (𝐷 / 𝐸)))
5046, 49eqtr2i 2803 . 2 ((((3↑7) · (5 · 7)) · 𝐴) + (((3↑7) · (5 · 7)) · (𝐷 / 𝐸))) = (((3↑7) · (5 · 7)) · 𝐶)
51 log2ublem1.8 . 2 (𝐵 + 𝐹) = 𝐺
5244, 50, 513brtr3i 4917 1 (((3↑7) · (5 · 7)) · 𝐶) ≤ 𝐺
Colors of variables: wff setvar class
Syntax hints:  wb 198  wa 386   = wceq 1601  wcel 2107   class class class wbr 4888  (class class class)co 6924  cr 10273  0cc0 10274   + caddc 10277   · cmul 10279   < clt 10413  cle 10414   / cdiv 11034  cn 11378  3c3 11435  5c5 11437  7c7 11439  0cn0 11646  cexp 13182
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1839  ax-4 1853  ax-5 1953  ax-6 2021  ax-7 2055  ax-8 2109  ax-9 2116  ax-10 2135  ax-11 2150  ax-12 2163  ax-13 2334  ax-ext 2754  ax-sep 5019  ax-nul 5027  ax-pow 5079  ax-pr 5140  ax-un 7228  ax-cnex 10330  ax-resscn 10331  ax-1cn 10332  ax-icn 10333  ax-addcl 10334  ax-addrcl 10335  ax-mulcl 10336  ax-mulrcl 10337  ax-mulcom 10338  ax-addass 10339  ax-mulass 10340  ax-distr 10341  ax-i2m1 10342  ax-1ne0 10343  ax-1rid 10344  ax-rnegex 10345  ax-rrecex 10346  ax-cnre 10347  ax-pre-lttri 10348  ax-pre-lttrn 10349  ax-pre-ltadd 10350  ax-pre-mulgt0 10351
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 837  df-3or 1072  df-3an 1073  df-tru 1605  df-ex 1824  df-nf 1828  df-sb 2012  df-mo 2551  df-eu 2587  df-clab 2764  df-cleq 2770  df-clel 2774  df-nfc 2921  df-ne 2970  df-nel 3076  df-ral 3095  df-rex 3096  df-reu 3097  df-rmo 3098  df-rab 3099  df-v 3400  df-sbc 3653  df-csb 3752  df-dif 3795  df-un 3797  df-in 3799  df-ss 3806  df-pss 3808  df-nul 4142  df-if 4308  df-pw 4381  df-sn 4399  df-pr 4401  df-tp 4403  df-op 4405  df-uni 4674  df-iun 4757  df-br 4889  df-opab 4951  df-mpt 4968  df-tr 4990  df-id 5263  df-eprel 5268  df-po 5276  df-so 5277  df-fr 5316  df-we 5318  df-xp 5363  df-rel 5364  df-cnv 5365  df-co 5366  df-dm 5367  df-rn 5368  df-res 5369  df-ima 5370  df-pred 5935  df-ord 5981  df-on 5982  df-lim 5983  df-suc 5984  df-iota 6101  df-fun 6139  df-fn 6140  df-f 6141  df-f1 6142  df-fo 6143  df-f1o 6144  df-fv 6145  df-riota 6885  df-ov 6927  df-oprab 6928  df-mpt2 6929  df-om 7346  df-2nd 7448  df-wrecs 7691  df-recs 7753  df-rdg 7791  df-er 8028  df-en 8244  df-dom 8245  df-sdom 8246  df-pnf 10415  df-mnf 10416  df-xr 10417  df-ltxr 10418  df-le 10419  df-sub 10610  df-neg 10611  df-div 11035  df-nn 11379  df-2 11442  df-3 11443  df-4 11444  df-5 11445  df-6 11446  df-7 11447  df-n0 11647  df-z 11733  df-uz 11997  df-seq 13124  df-exp 13183
This theorem is referenced by:  log2ublem2  25130  log2ub  25132
  Copyright terms: Public domain W3C validator