Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > log2ublem1 | Structured version Visualization version GIF version |
Description: Lemma for log2ub 26099. The proof of log2ub 26099, which is simply the evaluation of log2tlbnd 26095 for 𝑁 = 4, takes the form of the addition of five fractions and showing this is less than another fraction. We could just perform exact arithmetic on these fractions, get a large rational number, and just multiply everything to verify the claim, but as anyone who uses decimal numbers for this task knows, it is often better to pick a common denominator 𝑑 (usually a large power of 10) and work with the closest approximations of the form 𝑛 / 𝑑 for some integer 𝑛 instead. It turns out that for our purposes it is sufficient to take 𝑑 = (3↑7) · 5 · 7, which is also nice because it shares many factors in common with the fractions in question. (Contributed by Mario Carneiro, 17-Apr-2015.) |
Ref | Expression |
---|---|
log2ublem1.1 | ⊢ (((3↑7) · (5 · 7)) · 𝐴) ≤ 𝐵 |
log2ublem1.2 | ⊢ 𝐴 ∈ ℝ |
log2ublem1.3 | ⊢ 𝐷 ∈ ℕ0 |
log2ublem1.4 | ⊢ 𝐸 ∈ ℕ |
log2ublem1.5 | ⊢ 𝐵 ∈ ℕ0 |
log2ublem1.6 | ⊢ 𝐹 ∈ ℕ0 |
log2ublem1.7 | ⊢ 𝐶 = (𝐴 + (𝐷 / 𝐸)) |
log2ublem1.8 | ⊢ (𝐵 + 𝐹) = 𝐺 |
log2ublem1.9 | ⊢ (((3↑7) · (5 · 7)) · 𝐷) ≤ (𝐸 · 𝐹) |
Ref | Expression |
---|---|
log2ublem1 | ⊢ (((3↑7) · (5 · 7)) · 𝐶) ≤ 𝐺 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | log2ublem1.1 | . . 3 ⊢ (((3↑7) · (5 · 7)) · 𝐴) ≤ 𝐵 | |
2 | 3nn 12052 | . . . . . . . 8 ⊢ 3 ∈ ℕ | |
3 | 7nn0 12255 | . . . . . . . 8 ⊢ 7 ∈ ℕ0 | |
4 | nnexpcl 13795 | . . . . . . . 8 ⊢ ((3 ∈ ℕ ∧ 7 ∈ ℕ0) → (3↑7) ∈ ℕ) | |
5 | 2, 3, 4 | mp2an 689 | . . . . . . 7 ⊢ (3↑7) ∈ ℕ |
6 | 5nn 12059 | . . . . . . . 8 ⊢ 5 ∈ ℕ | |
7 | 7nn 12065 | . . . . . . . 8 ⊢ 7 ∈ ℕ | |
8 | 6, 7 | nnmulcli 11998 | . . . . . . 7 ⊢ (5 · 7) ∈ ℕ |
9 | 5, 8 | nnmulcli 11998 | . . . . . 6 ⊢ ((3↑7) · (5 · 7)) ∈ ℕ |
10 | 9 | nncni 11983 | . . . . 5 ⊢ ((3↑7) · (5 · 7)) ∈ ℂ |
11 | log2ublem1.3 | . . . . . 6 ⊢ 𝐷 ∈ ℕ0 | |
12 | 11 | nn0cni 12245 | . . . . 5 ⊢ 𝐷 ∈ ℂ |
13 | log2ublem1.4 | . . . . . 6 ⊢ 𝐸 ∈ ℕ | |
14 | 13 | nncni 11983 | . . . . 5 ⊢ 𝐸 ∈ ℂ |
15 | 13 | nnne0i 12013 | . . . . 5 ⊢ 𝐸 ≠ 0 |
16 | 10, 12, 14, 15 | divassi 11731 | . . . 4 ⊢ ((((3↑7) · (5 · 7)) · 𝐷) / 𝐸) = (((3↑7) · (5 · 7)) · (𝐷 / 𝐸)) |
17 | log2ublem1.9 | . . . . 5 ⊢ (((3↑7) · (5 · 7)) · 𝐷) ≤ (𝐸 · 𝐹) | |
18 | 3nn0 12251 | . . . . . . . . . 10 ⊢ 3 ∈ ℕ0 | |
19 | 18, 3 | nn0expcli 13809 | . . . . . . . . 9 ⊢ (3↑7) ∈ ℕ0 |
20 | 5nn0 12253 | . . . . . . . . . 10 ⊢ 5 ∈ ℕ0 | |
21 | 20, 3 | nn0mulcli 12271 | . . . . . . . . 9 ⊢ (5 · 7) ∈ ℕ0 |
22 | 19, 21 | nn0mulcli 12271 | . . . . . . . 8 ⊢ ((3↑7) · (5 · 7)) ∈ ℕ0 |
23 | 22, 11 | nn0mulcli 12271 | . . . . . . 7 ⊢ (((3↑7) · (5 · 7)) · 𝐷) ∈ ℕ0 |
24 | 23 | nn0rei 12244 | . . . . . 6 ⊢ (((3↑7) · (5 · 7)) · 𝐷) ∈ ℝ |
25 | log2ublem1.6 | . . . . . . 7 ⊢ 𝐹 ∈ ℕ0 | |
26 | 25 | nn0rei 12244 | . . . . . 6 ⊢ 𝐹 ∈ ℝ |
27 | 13 | nnrei 11982 | . . . . . . 7 ⊢ 𝐸 ∈ ℝ |
28 | 13 | nngt0i 12012 | . . . . . . 7 ⊢ 0 < 𝐸 |
29 | 27, 28 | pm3.2i 471 | . . . . . 6 ⊢ (𝐸 ∈ ℝ ∧ 0 < 𝐸) |
30 | ledivmul 11851 | . . . . . 6 ⊢ (((((3↑7) · (5 · 7)) · 𝐷) ∈ ℝ ∧ 𝐹 ∈ ℝ ∧ (𝐸 ∈ ℝ ∧ 0 < 𝐸)) → (((((3↑7) · (5 · 7)) · 𝐷) / 𝐸) ≤ 𝐹 ↔ (((3↑7) · (5 · 7)) · 𝐷) ≤ (𝐸 · 𝐹))) | |
31 | 24, 26, 29, 30 | mp3an 1460 | . . . . 5 ⊢ (((((3↑7) · (5 · 7)) · 𝐷) / 𝐸) ≤ 𝐹 ↔ (((3↑7) · (5 · 7)) · 𝐷) ≤ (𝐸 · 𝐹)) |
32 | 17, 31 | mpbir 230 | . . . 4 ⊢ ((((3↑7) · (5 · 7)) · 𝐷) / 𝐸) ≤ 𝐹 |
33 | 16, 32 | eqbrtrri 5097 | . . 3 ⊢ (((3↑7) · (5 · 7)) · (𝐷 / 𝐸)) ≤ 𝐹 |
34 | 9 | nnrei 11982 | . . . . 5 ⊢ ((3↑7) · (5 · 7)) ∈ ℝ |
35 | log2ublem1.2 | . . . . 5 ⊢ 𝐴 ∈ ℝ | |
36 | 34, 35 | remulcli 10991 | . . . 4 ⊢ (((3↑7) · (5 · 7)) · 𝐴) ∈ ℝ |
37 | 11 | nn0rei 12244 | . . . . . 6 ⊢ 𝐷 ∈ ℝ |
38 | nndivre 12014 | . . . . . 6 ⊢ ((𝐷 ∈ ℝ ∧ 𝐸 ∈ ℕ) → (𝐷 / 𝐸) ∈ ℝ) | |
39 | 37, 13, 38 | mp2an 689 | . . . . 5 ⊢ (𝐷 / 𝐸) ∈ ℝ |
40 | 34, 39 | remulcli 10991 | . . . 4 ⊢ (((3↑7) · (5 · 7)) · (𝐷 / 𝐸)) ∈ ℝ |
41 | log2ublem1.5 | . . . . 5 ⊢ 𝐵 ∈ ℕ0 | |
42 | 41 | nn0rei 12244 | . . . 4 ⊢ 𝐵 ∈ ℝ |
43 | 36, 40, 42, 26 | le2addi 11538 | . . 3 ⊢ (((((3↑7) · (5 · 7)) · 𝐴) ≤ 𝐵 ∧ (((3↑7) · (5 · 7)) · (𝐷 / 𝐸)) ≤ 𝐹) → ((((3↑7) · (5 · 7)) · 𝐴) + (((3↑7) · (5 · 7)) · (𝐷 / 𝐸))) ≤ (𝐵 + 𝐹)) |
44 | 1, 33, 43 | mp2an 689 | . 2 ⊢ ((((3↑7) · (5 · 7)) · 𝐴) + (((3↑7) · (5 · 7)) · (𝐷 / 𝐸))) ≤ (𝐵 + 𝐹) |
45 | log2ublem1.7 | . . . 4 ⊢ 𝐶 = (𝐴 + (𝐷 / 𝐸)) | |
46 | 45 | oveq2i 7286 | . . 3 ⊢ (((3↑7) · (5 · 7)) · 𝐶) = (((3↑7) · (5 · 7)) · (𝐴 + (𝐷 / 𝐸))) |
47 | 35 | recni 10989 | . . . 4 ⊢ 𝐴 ∈ ℂ |
48 | 39 | recni 10989 | . . . 4 ⊢ (𝐷 / 𝐸) ∈ ℂ |
49 | 10, 47, 48 | adddii 10987 | . . 3 ⊢ (((3↑7) · (5 · 7)) · (𝐴 + (𝐷 / 𝐸))) = ((((3↑7) · (5 · 7)) · 𝐴) + (((3↑7) · (5 · 7)) · (𝐷 / 𝐸))) |
50 | 46, 49 | eqtr2i 2767 | . 2 ⊢ ((((3↑7) · (5 · 7)) · 𝐴) + (((3↑7) · (5 · 7)) · (𝐷 / 𝐸))) = (((3↑7) · (5 · 7)) · 𝐶) |
51 | log2ublem1.8 | . 2 ⊢ (𝐵 + 𝐹) = 𝐺 | |
52 | 44, 50, 51 | 3brtr3i 5103 | 1 ⊢ (((3↑7) · (5 · 7)) · 𝐶) ≤ 𝐺 |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 396 = wceq 1539 ∈ wcel 2106 class class class wbr 5074 (class class class)co 7275 ℝcr 10870 0cc0 10871 + caddc 10874 · cmul 10876 < clt 11009 ≤ cle 11010 / cdiv 11632 ℕcn 11973 3c3 12029 5c5 12031 7c7 12033 ℕ0cn0 12233 ↑cexp 13782 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 ax-cnex 10927 ax-resscn 10928 ax-1cn 10929 ax-icn 10930 ax-addcl 10931 ax-addrcl 10932 ax-mulcl 10933 ax-mulrcl 10934 ax-mulcom 10935 ax-addass 10936 ax-mulass 10937 ax-distr 10938 ax-i2m1 10939 ax-1ne0 10940 ax-1rid 10941 ax-rnegex 10942 ax-rrecex 10943 ax-cnre 10944 ax-pre-lttri 10945 ax-pre-lttrn 10946 ax-pre-ltadd 10947 ax-pre-mulgt0 10948 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-rmo 3071 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-tr 5192 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-pred 6202 df-ord 6269 df-on 6270 df-lim 6271 df-suc 6272 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-riota 7232 df-ov 7278 df-oprab 7279 df-mpo 7280 df-om 7713 df-2nd 7832 df-frecs 8097 df-wrecs 8128 df-recs 8202 df-rdg 8241 df-er 8498 df-en 8734 df-dom 8735 df-sdom 8736 df-pnf 11011 df-mnf 11012 df-xr 11013 df-ltxr 11014 df-le 11015 df-sub 11207 df-neg 11208 df-div 11633 df-nn 11974 df-2 12036 df-3 12037 df-4 12038 df-5 12039 df-6 12040 df-7 12041 df-n0 12234 df-z 12320 df-uz 12583 df-seq 13722 df-exp 13783 |
This theorem is referenced by: log2ublem2 26097 log2ub 26099 |
Copyright terms: Public domain | W3C validator |