| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > log2ublem1 | Structured version Visualization version GIF version | ||
| Description: Lemma for log2ub 26887. The proof of log2ub 26887, which is simply the evaluation of log2tlbnd 26883 for 𝑁 = 4, takes the form of the addition of five fractions and showing this is less than another fraction. We could just perform exact arithmetic on these fractions, get a large rational number, and just multiply everything to verify the claim, but as anyone who uses decimal numbers for this task knows, it is often better to pick a common denominator 𝑑 (usually a large power of 10) and work with the closest approximations of the form 𝑛 / 𝑑 for some integer 𝑛 instead. It turns out that for our purposes it is sufficient to take 𝑑 = (3↑7) · 5 · 7, which is also nice because it shares many factors in common with the fractions in question. (Contributed by Mario Carneiro, 17-Apr-2015.) |
| Ref | Expression |
|---|---|
| log2ublem1.1 | ⊢ (((3↑7) · (5 · 7)) · 𝐴) ≤ 𝐵 |
| log2ublem1.2 | ⊢ 𝐴 ∈ ℝ |
| log2ublem1.3 | ⊢ 𝐷 ∈ ℕ0 |
| log2ublem1.4 | ⊢ 𝐸 ∈ ℕ |
| log2ublem1.5 | ⊢ 𝐵 ∈ ℕ0 |
| log2ublem1.6 | ⊢ 𝐹 ∈ ℕ0 |
| log2ublem1.7 | ⊢ 𝐶 = (𝐴 + (𝐷 / 𝐸)) |
| log2ublem1.8 | ⊢ (𝐵 + 𝐹) = 𝐺 |
| log2ublem1.9 | ⊢ (((3↑7) · (5 · 7)) · 𝐷) ≤ (𝐸 · 𝐹) |
| Ref | Expression |
|---|---|
| log2ublem1 | ⊢ (((3↑7) · (5 · 7)) · 𝐶) ≤ 𝐺 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | log2ublem1.1 | . . 3 ⊢ (((3↑7) · (5 · 7)) · 𝐴) ≤ 𝐵 | |
| 2 | 3nn 12211 | . . . . . . . 8 ⊢ 3 ∈ ℕ | |
| 3 | 7nn0 12410 | . . . . . . . 8 ⊢ 7 ∈ ℕ0 | |
| 4 | nnexpcl 13983 | . . . . . . . 8 ⊢ ((3 ∈ ℕ ∧ 7 ∈ ℕ0) → (3↑7) ∈ ℕ) | |
| 5 | 2, 3, 4 | mp2an 692 | . . . . . . 7 ⊢ (3↑7) ∈ ℕ |
| 6 | 5nn 12218 | . . . . . . . 8 ⊢ 5 ∈ ℕ | |
| 7 | 7nn 12224 | . . . . . . . 8 ⊢ 7 ∈ ℕ | |
| 8 | 6, 7 | nnmulcli 12157 | . . . . . . 7 ⊢ (5 · 7) ∈ ℕ |
| 9 | 5, 8 | nnmulcli 12157 | . . . . . 6 ⊢ ((3↑7) · (5 · 7)) ∈ ℕ |
| 10 | 9 | nncni 12142 | . . . . 5 ⊢ ((3↑7) · (5 · 7)) ∈ ℂ |
| 11 | log2ublem1.3 | . . . . . 6 ⊢ 𝐷 ∈ ℕ0 | |
| 12 | 11 | nn0cni 12400 | . . . . 5 ⊢ 𝐷 ∈ ℂ |
| 13 | log2ublem1.4 | . . . . . 6 ⊢ 𝐸 ∈ ℕ | |
| 14 | 13 | nncni 12142 | . . . . 5 ⊢ 𝐸 ∈ ℂ |
| 15 | 13 | nnne0i 12172 | . . . . 5 ⊢ 𝐸 ≠ 0 |
| 16 | 10, 12, 14, 15 | divassi 11884 | . . . 4 ⊢ ((((3↑7) · (5 · 7)) · 𝐷) / 𝐸) = (((3↑7) · (5 · 7)) · (𝐷 / 𝐸)) |
| 17 | log2ublem1.9 | . . . . 5 ⊢ (((3↑7) · (5 · 7)) · 𝐷) ≤ (𝐸 · 𝐹) | |
| 18 | 3nn0 12406 | . . . . . . . . . 10 ⊢ 3 ∈ ℕ0 | |
| 19 | 18, 3 | nn0expcli 13997 | . . . . . . . . 9 ⊢ (3↑7) ∈ ℕ0 |
| 20 | 5nn0 12408 | . . . . . . . . . 10 ⊢ 5 ∈ ℕ0 | |
| 21 | 20, 3 | nn0mulcli 12426 | . . . . . . . . 9 ⊢ (5 · 7) ∈ ℕ0 |
| 22 | 19, 21 | nn0mulcli 12426 | . . . . . . . 8 ⊢ ((3↑7) · (5 · 7)) ∈ ℕ0 |
| 23 | 22, 11 | nn0mulcli 12426 | . . . . . . 7 ⊢ (((3↑7) · (5 · 7)) · 𝐷) ∈ ℕ0 |
| 24 | 23 | nn0rei 12399 | . . . . . 6 ⊢ (((3↑7) · (5 · 7)) · 𝐷) ∈ ℝ |
| 25 | log2ublem1.6 | . . . . . . 7 ⊢ 𝐹 ∈ ℕ0 | |
| 26 | 25 | nn0rei 12399 | . . . . . 6 ⊢ 𝐹 ∈ ℝ |
| 27 | 13 | nnrei 12141 | . . . . . . 7 ⊢ 𝐸 ∈ ℝ |
| 28 | 13 | nngt0i 12171 | . . . . . . 7 ⊢ 0 < 𝐸 |
| 29 | 27, 28 | pm3.2i 470 | . . . . . 6 ⊢ (𝐸 ∈ ℝ ∧ 0 < 𝐸) |
| 30 | ledivmul 12005 | . . . . . 6 ⊢ (((((3↑7) · (5 · 7)) · 𝐷) ∈ ℝ ∧ 𝐹 ∈ ℝ ∧ (𝐸 ∈ ℝ ∧ 0 < 𝐸)) → (((((3↑7) · (5 · 7)) · 𝐷) / 𝐸) ≤ 𝐹 ↔ (((3↑7) · (5 · 7)) · 𝐷) ≤ (𝐸 · 𝐹))) | |
| 31 | 24, 26, 29, 30 | mp3an 1463 | . . . . 5 ⊢ (((((3↑7) · (5 · 7)) · 𝐷) / 𝐸) ≤ 𝐹 ↔ (((3↑7) · (5 · 7)) · 𝐷) ≤ (𝐸 · 𝐹)) |
| 32 | 17, 31 | mpbir 231 | . . . 4 ⊢ ((((3↑7) · (5 · 7)) · 𝐷) / 𝐸) ≤ 𝐹 |
| 33 | 16, 32 | eqbrtrri 5116 | . . 3 ⊢ (((3↑7) · (5 · 7)) · (𝐷 / 𝐸)) ≤ 𝐹 |
| 34 | 9 | nnrei 12141 | . . . . 5 ⊢ ((3↑7) · (5 · 7)) ∈ ℝ |
| 35 | log2ublem1.2 | . . . . 5 ⊢ 𝐴 ∈ ℝ | |
| 36 | 34, 35 | remulcli 11135 | . . . 4 ⊢ (((3↑7) · (5 · 7)) · 𝐴) ∈ ℝ |
| 37 | 11 | nn0rei 12399 | . . . . . 6 ⊢ 𝐷 ∈ ℝ |
| 38 | nndivre 12173 | . . . . . 6 ⊢ ((𝐷 ∈ ℝ ∧ 𝐸 ∈ ℕ) → (𝐷 / 𝐸) ∈ ℝ) | |
| 39 | 37, 13, 38 | mp2an 692 | . . . . 5 ⊢ (𝐷 / 𝐸) ∈ ℝ |
| 40 | 34, 39 | remulcli 11135 | . . . 4 ⊢ (((3↑7) · (5 · 7)) · (𝐷 / 𝐸)) ∈ ℝ |
| 41 | log2ublem1.5 | . . . . 5 ⊢ 𝐵 ∈ ℕ0 | |
| 42 | 41 | nn0rei 12399 | . . . 4 ⊢ 𝐵 ∈ ℝ |
| 43 | 36, 40, 42, 26 | le2addi 11687 | . . 3 ⊢ (((((3↑7) · (5 · 7)) · 𝐴) ≤ 𝐵 ∧ (((3↑7) · (5 · 7)) · (𝐷 / 𝐸)) ≤ 𝐹) → ((((3↑7) · (5 · 7)) · 𝐴) + (((3↑7) · (5 · 7)) · (𝐷 / 𝐸))) ≤ (𝐵 + 𝐹)) |
| 44 | 1, 33, 43 | mp2an 692 | . 2 ⊢ ((((3↑7) · (5 · 7)) · 𝐴) + (((3↑7) · (5 · 7)) · (𝐷 / 𝐸))) ≤ (𝐵 + 𝐹) |
| 45 | log2ublem1.7 | . . . 4 ⊢ 𝐶 = (𝐴 + (𝐷 / 𝐸)) | |
| 46 | 45 | oveq2i 7363 | . . 3 ⊢ (((3↑7) · (5 · 7)) · 𝐶) = (((3↑7) · (5 · 7)) · (𝐴 + (𝐷 / 𝐸))) |
| 47 | 35 | recni 11133 | . . . 4 ⊢ 𝐴 ∈ ℂ |
| 48 | 39 | recni 11133 | . . . 4 ⊢ (𝐷 / 𝐸) ∈ ℂ |
| 49 | 10, 47, 48 | adddii 11131 | . . 3 ⊢ (((3↑7) · (5 · 7)) · (𝐴 + (𝐷 / 𝐸))) = ((((3↑7) · (5 · 7)) · 𝐴) + (((3↑7) · (5 · 7)) · (𝐷 / 𝐸))) |
| 50 | 46, 49 | eqtr2i 2757 | . 2 ⊢ ((((3↑7) · (5 · 7)) · 𝐴) + (((3↑7) · (5 · 7)) · (𝐷 / 𝐸))) = (((3↑7) · (5 · 7)) · 𝐶) |
| 51 | log2ublem1.8 | . 2 ⊢ (𝐵 + 𝐹) = 𝐺 | |
| 52 | 44, 50, 51 | 3brtr3i 5122 | 1 ⊢ (((3↑7) · (5 · 7)) · 𝐶) ≤ 𝐺 |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 = wceq 1541 ∈ wcel 2113 class class class wbr 5093 (class class class)co 7352 ℝcr 11012 0cc0 11013 + caddc 11016 · cmul 11018 < clt 11153 ≤ cle 11154 / cdiv 11781 ℕcn 12132 3c3 12188 5c5 12190 7c7 12192 ℕ0cn0 12388 ↑cexp 13970 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5236 ax-nul 5246 ax-pow 5305 ax-pr 5372 ax-un 7674 ax-cnex 11069 ax-resscn 11070 ax-1cn 11071 ax-icn 11072 ax-addcl 11073 ax-addrcl 11074 ax-mulcl 11075 ax-mulrcl 11076 ax-mulcom 11077 ax-addass 11078 ax-mulass 11079 ax-distr 11080 ax-i2m1 11081 ax-1ne0 11082 ax-1rid 11083 ax-rnegex 11084 ax-rrecex 11085 ax-cnre 11086 ax-pre-lttri 11087 ax-pre-lttrn 11088 ax-pre-ltadd 11089 ax-pre-mulgt0 11090 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-nel 3034 df-ral 3049 df-rex 3058 df-rmo 3347 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-iun 4943 df-br 5094 df-opab 5156 df-mpt 5175 df-tr 5201 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-riota 7309 df-ov 7355 df-oprab 7356 df-mpo 7357 df-om 7803 df-2nd 7928 df-frecs 8217 df-wrecs 8248 df-recs 8297 df-rdg 8335 df-er 8628 df-en 8876 df-dom 8877 df-sdom 8878 df-pnf 11155 df-mnf 11156 df-xr 11157 df-ltxr 11158 df-le 11159 df-sub 11353 df-neg 11354 df-div 11782 df-nn 12133 df-2 12195 df-3 12196 df-4 12197 df-5 12198 df-6 12199 df-7 12200 df-n0 12389 df-z 12476 df-uz 12739 df-seq 13911 df-exp 13971 |
| This theorem is referenced by: log2ublem2 26885 log2ub 26887 |
| Copyright terms: Public domain | W3C validator |