![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > log2ublem1 | Structured version Visualization version GIF version |
Description: Lemma for log2ub 26315. The proof of log2ub 26315, which is simply the evaluation of log2tlbnd 26311 for 𝑁 = 4, takes the form of the addition of five fractions and showing this is less than another fraction. We could just perform exact arithmetic on these fractions, get a large rational number, and just multiply everything to verify the claim, but as anyone who uses decimal numbers for this task knows, it is often better to pick a common denominator 𝑑 (usually a large power of 10) and work with the closest approximations of the form 𝑛 / 𝑑 for some integer 𝑛 instead. It turns out that for our purposes it is sufficient to take 𝑑 = (3↑7) · 5 · 7, which is also nice because it shares many factors in common with the fractions in question. (Contributed by Mario Carneiro, 17-Apr-2015.) |
Ref | Expression |
---|---|
log2ublem1.1 | ⊢ (((3↑7) · (5 · 7)) · 𝐴) ≤ 𝐵 |
log2ublem1.2 | ⊢ 𝐴 ∈ ℝ |
log2ublem1.3 | ⊢ 𝐷 ∈ ℕ0 |
log2ublem1.4 | ⊢ 𝐸 ∈ ℕ |
log2ublem1.5 | ⊢ 𝐵 ∈ ℕ0 |
log2ublem1.6 | ⊢ 𝐹 ∈ ℕ0 |
log2ublem1.7 | ⊢ 𝐶 = (𝐴 + (𝐷 / 𝐸)) |
log2ublem1.8 | ⊢ (𝐵 + 𝐹) = 𝐺 |
log2ublem1.9 | ⊢ (((3↑7) · (5 · 7)) · 𝐷) ≤ (𝐸 · 𝐹) |
Ref | Expression |
---|---|
log2ublem1 | ⊢ (((3↑7) · (5 · 7)) · 𝐶) ≤ 𝐺 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | log2ublem1.1 | . . 3 ⊢ (((3↑7) · (5 · 7)) · 𝐴) ≤ 𝐵 | |
2 | 3nn 12239 | . . . . . . . 8 ⊢ 3 ∈ ℕ | |
3 | 7nn0 12442 | . . . . . . . 8 ⊢ 7 ∈ ℕ0 | |
4 | nnexpcl 13987 | . . . . . . . 8 ⊢ ((3 ∈ ℕ ∧ 7 ∈ ℕ0) → (3↑7) ∈ ℕ) | |
5 | 2, 3, 4 | mp2an 691 | . . . . . . 7 ⊢ (3↑7) ∈ ℕ |
6 | 5nn 12246 | . . . . . . . 8 ⊢ 5 ∈ ℕ | |
7 | 7nn 12252 | . . . . . . . 8 ⊢ 7 ∈ ℕ | |
8 | 6, 7 | nnmulcli 12185 | . . . . . . 7 ⊢ (5 · 7) ∈ ℕ |
9 | 5, 8 | nnmulcli 12185 | . . . . . 6 ⊢ ((3↑7) · (5 · 7)) ∈ ℕ |
10 | 9 | nncni 12170 | . . . . 5 ⊢ ((3↑7) · (5 · 7)) ∈ ℂ |
11 | log2ublem1.3 | . . . . . 6 ⊢ 𝐷 ∈ ℕ0 | |
12 | 11 | nn0cni 12432 | . . . . 5 ⊢ 𝐷 ∈ ℂ |
13 | log2ublem1.4 | . . . . . 6 ⊢ 𝐸 ∈ ℕ | |
14 | 13 | nncni 12170 | . . . . 5 ⊢ 𝐸 ∈ ℂ |
15 | 13 | nnne0i 12200 | . . . . 5 ⊢ 𝐸 ≠ 0 |
16 | 10, 12, 14, 15 | divassi 11918 | . . . 4 ⊢ ((((3↑7) · (5 · 7)) · 𝐷) / 𝐸) = (((3↑7) · (5 · 7)) · (𝐷 / 𝐸)) |
17 | log2ublem1.9 | . . . . 5 ⊢ (((3↑7) · (5 · 7)) · 𝐷) ≤ (𝐸 · 𝐹) | |
18 | 3nn0 12438 | . . . . . . . . . 10 ⊢ 3 ∈ ℕ0 | |
19 | 18, 3 | nn0expcli 14001 | . . . . . . . . 9 ⊢ (3↑7) ∈ ℕ0 |
20 | 5nn0 12440 | . . . . . . . . . 10 ⊢ 5 ∈ ℕ0 | |
21 | 20, 3 | nn0mulcli 12458 | . . . . . . . . 9 ⊢ (5 · 7) ∈ ℕ0 |
22 | 19, 21 | nn0mulcli 12458 | . . . . . . . 8 ⊢ ((3↑7) · (5 · 7)) ∈ ℕ0 |
23 | 22, 11 | nn0mulcli 12458 | . . . . . . 7 ⊢ (((3↑7) · (5 · 7)) · 𝐷) ∈ ℕ0 |
24 | 23 | nn0rei 12431 | . . . . . 6 ⊢ (((3↑7) · (5 · 7)) · 𝐷) ∈ ℝ |
25 | log2ublem1.6 | . . . . . . 7 ⊢ 𝐹 ∈ ℕ0 | |
26 | 25 | nn0rei 12431 | . . . . . 6 ⊢ 𝐹 ∈ ℝ |
27 | 13 | nnrei 12169 | . . . . . . 7 ⊢ 𝐸 ∈ ℝ |
28 | 13 | nngt0i 12199 | . . . . . . 7 ⊢ 0 < 𝐸 |
29 | 27, 28 | pm3.2i 472 | . . . . . 6 ⊢ (𝐸 ∈ ℝ ∧ 0 < 𝐸) |
30 | ledivmul 12038 | . . . . . 6 ⊢ (((((3↑7) · (5 · 7)) · 𝐷) ∈ ℝ ∧ 𝐹 ∈ ℝ ∧ (𝐸 ∈ ℝ ∧ 0 < 𝐸)) → (((((3↑7) · (5 · 7)) · 𝐷) / 𝐸) ≤ 𝐹 ↔ (((3↑7) · (5 · 7)) · 𝐷) ≤ (𝐸 · 𝐹))) | |
31 | 24, 26, 29, 30 | mp3an 1462 | . . . . 5 ⊢ (((((3↑7) · (5 · 7)) · 𝐷) / 𝐸) ≤ 𝐹 ↔ (((3↑7) · (5 · 7)) · 𝐷) ≤ (𝐸 · 𝐹)) |
32 | 17, 31 | mpbir 230 | . . . 4 ⊢ ((((3↑7) · (5 · 7)) · 𝐷) / 𝐸) ≤ 𝐹 |
33 | 16, 32 | eqbrtrri 5133 | . . 3 ⊢ (((3↑7) · (5 · 7)) · (𝐷 / 𝐸)) ≤ 𝐹 |
34 | 9 | nnrei 12169 | . . . . 5 ⊢ ((3↑7) · (5 · 7)) ∈ ℝ |
35 | log2ublem1.2 | . . . . 5 ⊢ 𝐴 ∈ ℝ | |
36 | 34, 35 | remulcli 11178 | . . . 4 ⊢ (((3↑7) · (5 · 7)) · 𝐴) ∈ ℝ |
37 | 11 | nn0rei 12431 | . . . . . 6 ⊢ 𝐷 ∈ ℝ |
38 | nndivre 12201 | . . . . . 6 ⊢ ((𝐷 ∈ ℝ ∧ 𝐸 ∈ ℕ) → (𝐷 / 𝐸) ∈ ℝ) | |
39 | 37, 13, 38 | mp2an 691 | . . . . 5 ⊢ (𝐷 / 𝐸) ∈ ℝ |
40 | 34, 39 | remulcli 11178 | . . . 4 ⊢ (((3↑7) · (5 · 7)) · (𝐷 / 𝐸)) ∈ ℝ |
41 | log2ublem1.5 | . . . . 5 ⊢ 𝐵 ∈ ℕ0 | |
42 | 41 | nn0rei 12431 | . . . 4 ⊢ 𝐵 ∈ ℝ |
43 | 36, 40, 42, 26 | le2addi 11725 | . . 3 ⊢ (((((3↑7) · (5 · 7)) · 𝐴) ≤ 𝐵 ∧ (((3↑7) · (5 · 7)) · (𝐷 / 𝐸)) ≤ 𝐹) → ((((3↑7) · (5 · 7)) · 𝐴) + (((3↑7) · (5 · 7)) · (𝐷 / 𝐸))) ≤ (𝐵 + 𝐹)) |
44 | 1, 33, 43 | mp2an 691 | . 2 ⊢ ((((3↑7) · (5 · 7)) · 𝐴) + (((3↑7) · (5 · 7)) · (𝐷 / 𝐸))) ≤ (𝐵 + 𝐹) |
45 | log2ublem1.7 | . . . 4 ⊢ 𝐶 = (𝐴 + (𝐷 / 𝐸)) | |
46 | 45 | oveq2i 7373 | . . 3 ⊢ (((3↑7) · (5 · 7)) · 𝐶) = (((3↑7) · (5 · 7)) · (𝐴 + (𝐷 / 𝐸))) |
47 | 35 | recni 11176 | . . . 4 ⊢ 𝐴 ∈ ℂ |
48 | 39 | recni 11176 | . . . 4 ⊢ (𝐷 / 𝐸) ∈ ℂ |
49 | 10, 47, 48 | adddii 11174 | . . 3 ⊢ (((3↑7) · (5 · 7)) · (𝐴 + (𝐷 / 𝐸))) = ((((3↑7) · (5 · 7)) · 𝐴) + (((3↑7) · (5 · 7)) · (𝐷 / 𝐸))) |
50 | 46, 49 | eqtr2i 2766 | . 2 ⊢ ((((3↑7) · (5 · 7)) · 𝐴) + (((3↑7) · (5 · 7)) · (𝐷 / 𝐸))) = (((3↑7) · (5 · 7)) · 𝐶) |
51 | log2ublem1.8 | . 2 ⊢ (𝐵 + 𝐹) = 𝐺 | |
52 | 44, 50, 51 | 3brtr3i 5139 | 1 ⊢ (((3↑7) · (5 · 7)) · 𝐶) ≤ 𝐺 |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 397 = wceq 1542 ∈ wcel 2107 class class class wbr 5110 (class class class)co 7362 ℝcr 11057 0cc0 11058 + caddc 11061 · cmul 11063 < clt 11196 ≤ cle 11197 / cdiv 11819 ℕcn 12160 3c3 12216 5c5 12218 7c7 12220 ℕ0cn0 12420 ↑cexp 13974 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2708 ax-sep 5261 ax-nul 5268 ax-pow 5325 ax-pr 5389 ax-un 7677 ax-cnex 11114 ax-resscn 11115 ax-1cn 11116 ax-icn 11117 ax-addcl 11118 ax-addrcl 11119 ax-mulcl 11120 ax-mulrcl 11121 ax-mulcom 11122 ax-addass 11123 ax-mulass 11124 ax-distr 11125 ax-i2m1 11126 ax-1ne0 11127 ax-1rid 11128 ax-rnegex 11129 ax-rrecex 11130 ax-cnre 11131 ax-pre-lttri 11132 ax-pre-lttrn 11133 ax-pre-ltadd 11134 ax-pre-mulgt0 11135 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2890 df-ne 2945 df-nel 3051 df-ral 3066 df-rex 3075 df-rmo 3356 df-reu 3357 df-rab 3411 df-v 3450 df-sbc 3745 df-csb 3861 df-dif 3918 df-un 3920 df-in 3922 df-ss 3932 df-pss 3934 df-nul 4288 df-if 4492 df-pw 4567 df-sn 4592 df-pr 4594 df-op 4598 df-uni 4871 df-iun 4961 df-br 5111 df-opab 5173 df-mpt 5194 df-tr 5228 df-id 5536 df-eprel 5542 df-po 5550 df-so 5551 df-fr 5593 df-we 5595 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6258 df-ord 6325 df-on 6326 df-lim 6327 df-suc 6328 df-iota 6453 df-fun 6503 df-fn 6504 df-f 6505 df-f1 6506 df-fo 6507 df-f1o 6508 df-fv 6509 df-riota 7318 df-ov 7365 df-oprab 7366 df-mpo 7367 df-om 7808 df-2nd 7927 df-frecs 8217 df-wrecs 8248 df-recs 8322 df-rdg 8361 df-er 8655 df-en 8891 df-dom 8892 df-sdom 8893 df-pnf 11198 df-mnf 11199 df-xr 11200 df-ltxr 11201 df-le 11202 df-sub 11394 df-neg 11395 df-div 11820 df-nn 12161 df-2 12223 df-3 12224 df-4 12225 df-5 12226 df-6 12227 df-7 12228 df-n0 12421 df-z 12507 df-uz 12771 df-seq 13914 df-exp 13975 |
This theorem is referenced by: log2ublem2 26313 log2ub 26315 |
Copyright terms: Public domain | W3C validator |