MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ppiublem1 Structured version   Visualization version   GIF version

Theorem ppiublem1 25218
Description: Lemma for ppiub 25220. (Contributed by Mario Carneiro, 12-Mar-2014.)
Hypotheses
Ref Expression
ppiublem1.1 (𝑁 ≤ 6 ∧ ((𝑃 ∈ ℙ ∧ 4 ≤ 𝑃) → ((𝑃 mod 6) ∈ (𝑁...5) → (𝑃 mod 6) ∈ {1, 5})))
ppiublem1.2 𝑀 ∈ ℕ0
ppiublem1.3 𝑁 = (𝑀 + 1)
ppiublem1.4 (2 ∥ 𝑀 ∨ 3 ∥ 𝑀𝑀 ∈ {1, 5})
Assertion
Ref Expression
ppiublem1 (𝑀 ≤ 6 ∧ ((𝑃 ∈ ℙ ∧ 4 ≤ 𝑃) → ((𝑃 mod 6) ∈ (𝑀...5) → (𝑃 mod 6) ∈ {1, 5})))

Proof of Theorem ppiublem1
StepHypRef Expression
1 ppiublem1.1 . . . . . 6 (𝑁 ≤ 6 ∧ ((𝑃 ∈ ℙ ∧ 4 ≤ 𝑃) → ((𝑃 mod 6) ∈ (𝑁...5) → (𝑃 mod 6) ∈ {1, 5})))
21simpli 476 . . . . 5 𝑁 ≤ 6
3 ppiublem1.3 . . . . 5 𝑁 = (𝑀 + 1)
4 df-6 11339 . . . . 5 6 = (5 + 1)
52, 3, 43brtr3i 4838 . . . 4 (𝑀 + 1) ≤ (5 + 1)
6 ppiublem1.2 . . . . . 6 𝑀 ∈ ℕ0
76nn0rei 11550 . . . . 5 𝑀 ∈ ℝ
8 5re 11361 . . . . 5 5 ∈ ℝ
9 1re 10293 . . . . 5 1 ∈ ℝ
107, 8, 9leadd1i 10837 . . . 4 (𝑀 ≤ 5 ↔ (𝑀 + 1) ≤ (5 + 1))
115, 10mpbir 222 . . 3 𝑀 ≤ 5
12 6re 11365 . . . 4 6 ∈ ℝ
13 5lt6 11459 . . . 4 5 < 6
148, 12, 13ltleii 10414 . . 3 5 ≤ 6
157, 8, 12letri 10420 . . 3 ((𝑀 ≤ 5 ∧ 5 ≤ 6) → 𝑀 ≤ 6)
1611, 14, 15mp2an 683 . 2 𝑀 ≤ 6
176nn0zi 11649 . . . . 5 𝑀 ∈ ℤ
18 5nn 11360 . . . . . 6 5 ∈ ℕ
1918nnzi 11648 . . . . 5 5 ∈ ℤ
20 eluz2 11892 . . . . 5 (5 ∈ (ℤ𝑀) ↔ (𝑀 ∈ ℤ ∧ 5 ∈ ℤ ∧ 𝑀 ≤ 5))
2117, 19, 11, 20mpbir3an 1441 . . . 4 5 ∈ (ℤ𝑀)
22 elfzp12 12626 . . . 4 (5 ∈ (ℤ𝑀) → ((𝑃 mod 6) ∈ (𝑀...5) ↔ ((𝑃 mod 6) = 𝑀 ∨ (𝑃 mod 6) ∈ ((𝑀 + 1)...5))))
2321, 22ax-mp 5 . . 3 ((𝑃 mod 6) ∈ (𝑀...5) ↔ ((𝑃 mod 6) = 𝑀 ∨ (𝑃 mod 6) ∈ ((𝑀 + 1)...5)))
24 ppiublem1.4 . . . . 5 (2 ∥ 𝑀 ∨ 3 ∥ 𝑀𝑀 ∈ {1, 5})
25 prmz 15669 . . . . . . . . . . . 12 (𝑃 ∈ ℙ → 𝑃 ∈ ℤ)
2625adantr 472 . . . . . . . . . . 11 ((𝑃 ∈ ℙ ∧ 4 ≤ 𝑃) → 𝑃 ∈ ℤ)
27 2nn 11345 . . . . . . . . . . . 12 2 ∈ ℕ
28 6nn 11364 . . . . . . . . . . . 12 6 ∈ ℕ
29 3z 11657 . . . . . . . . . . . . . . 15 3 ∈ ℤ
30 2z 11656 . . . . . . . . . . . . . . 15 2 ∈ ℤ
31 dvdsmul2 15289 . . . . . . . . . . . . . . 15 ((3 ∈ ℤ ∧ 2 ∈ ℤ) → 2 ∥ (3 · 2))
3229, 30, 31mp2an 683 . . . . . . . . . . . . . 14 2 ∥ (3 · 2)
33 3t2e6 11444 . . . . . . . . . . . . . 14 (3 · 2) = 6
3432, 33breqtri 4834 . . . . . . . . . . . . 13 2 ∥ 6
35 dvdsmod 15335 . . . . . . . . . . . . 13 (((2 ∈ ℕ ∧ 6 ∈ ℕ ∧ 𝑃 ∈ ℤ) ∧ 2 ∥ 6) → (2 ∥ (𝑃 mod 6) ↔ 2 ∥ 𝑃))
3634, 35mpan2 682 . . . . . . . . . . . 12 ((2 ∈ ℕ ∧ 6 ∈ ℕ ∧ 𝑃 ∈ ℤ) → (2 ∥ (𝑃 mod 6) ↔ 2 ∥ 𝑃))
3727, 28, 36mp3an12 1575 . . . . . . . . . . 11 (𝑃 ∈ ℤ → (2 ∥ (𝑃 mod 6) ↔ 2 ∥ 𝑃))
3826, 37syl 17 . . . . . . . . . 10 ((𝑃 ∈ ℙ ∧ 4 ≤ 𝑃) → (2 ∥ (𝑃 mod 6) ↔ 2 ∥ 𝑃))
39 uzid 11901 . . . . . . . . . . . 12 (2 ∈ ℤ → 2 ∈ (ℤ‘2))
4030, 39ax-mp 5 . . . . . . . . . . 11 2 ∈ (ℤ‘2)
41 simpl 474 . . . . . . . . . . 11 ((𝑃 ∈ ℙ ∧ 4 ≤ 𝑃) → 𝑃 ∈ ℙ)
42 dvdsprm 15694 . . . . . . . . . . 11 ((2 ∈ (ℤ‘2) ∧ 𝑃 ∈ ℙ) → (2 ∥ 𝑃 ↔ 2 = 𝑃))
4340, 41, 42sylancr 581 . . . . . . . . . 10 ((𝑃 ∈ ℙ ∧ 4 ≤ 𝑃) → (2 ∥ 𝑃 ↔ 2 = 𝑃))
4438, 43bitrd 270 . . . . . . . . 9 ((𝑃 ∈ ℙ ∧ 4 ≤ 𝑃) → (2 ∥ (𝑃 mod 6) ↔ 2 = 𝑃))
45 simpr 477 . . . . . . . . . . 11 ((𝑃 ∈ ℙ ∧ 4 ≤ 𝑃) → 4 ≤ 𝑃)
46 breq2 4813 . . . . . . . . . . 11 (2 = 𝑃 → (4 ≤ 2 ↔ 4 ≤ 𝑃))
4745, 46syl5ibrcom 238 . . . . . . . . . 10 ((𝑃 ∈ ℙ ∧ 4 ≤ 𝑃) → (2 = 𝑃 → 4 ≤ 2))
48 2lt4 11453 . . . . . . . . . . . 12 2 < 4
49 2re 11346 . . . . . . . . . . . . 13 2 ∈ ℝ
50 4re 11357 . . . . . . . . . . . . 13 4 ∈ ℝ
5149, 50ltnlei 10412 . . . . . . . . . . . 12 (2 < 4 ↔ ¬ 4 ≤ 2)
5248, 51mpbi 221 . . . . . . . . . . 11 ¬ 4 ≤ 2
5352pm2.21i 117 . . . . . . . . . 10 (4 ≤ 2 → (𝑃 mod 6) ∈ {1, 5})
5447, 53syl6 35 . . . . . . . . 9 ((𝑃 ∈ ℙ ∧ 4 ≤ 𝑃) → (2 = 𝑃 → (𝑃 mod 6) ∈ {1, 5}))
5544, 54sylbid 231 . . . . . . . 8 ((𝑃 ∈ ℙ ∧ 4 ≤ 𝑃) → (2 ∥ (𝑃 mod 6) → (𝑃 mod 6) ∈ {1, 5}))
56 breq2 4813 . . . . . . . . 9 ((𝑃 mod 6) = 𝑀 → (2 ∥ (𝑃 mod 6) ↔ 2 ∥ 𝑀))
5756imbi1d 332 . . . . . . . 8 ((𝑃 mod 6) = 𝑀 → ((2 ∥ (𝑃 mod 6) → (𝑃 mod 6) ∈ {1, 5}) ↔ (2 ∥ 𝑀 → (𝑃 mod 6) ∈ {1, 5})))
5855, 57syl5ibcom 236 . . . . . . 7 ((𝑃 ∈ ℙ ∧ 4 ≤ 𝑃) → ((𝑃 mod 6) = 𝑀 → (2 ∥ 𝑀 → (𝑃 mod 6) ∈ {1, 5})))
5958com3r 87 . . . . . 6 (2 ∥ 𝑀 → ((𝑃 ∈ ℙ ∧ 4 ≤ 𝑃) → ((𝑃 mod 6) = 𝑀 → (𝑃 mod 6) ∈ {1, 5})))
60 3nn 11351 . . . . . . . . . . . 12 3 ∈ ℕ
61 dvdsmul1 15288 . . . . . . . . . . . . . . 15 ((3 ∈ ℤ ∧ 2 ∈ ℤ) → 3 ∥ (3 · 2))
6229, 30, 61mp2an 683 . . . . . . . . . . . . . 14 3 ∥ (3 · 2)
6362, 33breqtri 4834 . . . . . . . . . . . . 13 3 ∥ 6
64 dvdsmod 15335 . . . . . . . . . . . . 13 (((3 ∈ ℕ ∧ 6 ∈ ℕ ∧ 𝑃 ∈ ℤ) ∧ 3 ∥ 6) → (3 ∥ (𝑃 mod 6) ↔ 3 ∥ 𝑃))
6563, 64mpan2 682 . . . . . . . . . . . 12 ((3 ∈ ℕ ∧ 6 ∈ ℕ ∧ 𝑃 ∈ ℤ) → (3 ∥ (𝑃 mod 6) ↔ 3 ∥ 𝑃))
6660, 28, 65mp3an12 1575 . . . . . . . . . . 11 (𝑃 ∈ ℤ → (3 ∥ (𝑃 mod 6) ↔ 3 ∥ 𝑃))
6726, 66syl 17 . . . . . . . . . 10 ((𝑃 ∈ ℙ ∧ 4 ≤ 𝑃) → (3 ∥ (𝑃 mod 6) ↔ 3 ∥ 𝑃))
68 df-3 11336 . . . . . . . . . . . 12 3 = (2 + 1)
69 peano2uz 11941 . . . . . . . . . . . . 13 (2 ∈ (ℤ‘2) → (2 + 1) ∈ (ℤ‘2))
7040, 69ax-mp 5 . . . . . . . . . . . 12 (2 + 1) ∈ (ℤ‘2)
7168, 70eqeltri 2840 . . . . . . . . . . 11 3 ∈ (ℤ‘2)
72 dvdsprm 15694 . . . . . . . . . . 11 ((3 ∈ (ℤ‘2) ∧ 𝑃 ∈ ℙ) → (3 ∥ 𝑃 ↔ 3 = 𝑃))
7371, 41, 72sylancr 581 . . . . . . . . . 10 ((𝑃 ∈ ℙ ∧ 4 ≤ 𝑃) → (3 ∥ 𝑃 ↔ 3 = 𝑃))
7467, 73bitrd 270 . . . . . . . . 9 ((𝑃 ∈ ℙ ∧ 4 ≤ 𝑃) → (3 ∥ (𝑃 mod 6) ↔ 3 = 𝑃))
75 breq2 4813 . . . . . . . . . . 11 (3 = 𝑃 → (4 ≤ 3 ↔ 4 ≤ 𝑃))
7645, 75syl5ibrcom 238 . . . . . . . . . 10 ((𝑃 ∈ ℙ ∧ 4 ≤ 𝑃) → (3 = 𝑃 → 4 ≤ 3))
77 3lt4 11452 . . . . . . . . . . . 12 3 < 4
78 3re 11352 . . . . . . . . . . . . 13 3 ∈ ℝ
7978, 50ltnlei 10412 . . . . . . . . . . . 12 (3 < 4 ↔ ¬ 4 ≤ 3)
8077, 79mpbi 221 . . . . . . . . . . 11 ¬ 4 ≤ 3
8180pm2.21i 117 . . . . . . . . . 10 (4 ≤ 3 → (𝑃 mod 6) ∈ {1, 5})
8276, 81syl6 35 . . . . . . . . 9 ((𝑃 ∈ ℙ ∧ 4 ≤ 𝑃) → (3 = 𝑃 → (𝑃 mod 6) ∈ {1, 5}))
8374, 82sylbid 231 . . . . . . . 8 ((𝑃 ∈ ℙ ∧ 4 ≤ 𝑃) → (3 ∥ (𝑃 mod 6) → (𝑃 mod 6) ∈ {1, 5}))
84 breq2 4813 . . . . . . . . 9 ((𝑃 mod 6) = 𝑀 → (3 ∥ (𝑃 mod 6) ↔ 3 ∥ 𝑀))
8584imbi1d 332 . . . . . . . 8 ((𝑃 mod 6) = 𝑀 → ((3 ∥ (𝑃 mod 6) → (𝑃 mod 6) ∈ {1, 5}) ↔ (3 ∥ 𝑀 → (𝑃 mod 6) ∈ {1, 5})))
8683, 85syl5ibcom 236 . . . . . . 7 ((𝑃 ∈ ℙ ∧ 4 ≤ 𝑃) → ((𝑃 mod 6) = 𝑀 → (3 ∥ 𝑀 → (𝑃 mod 6) ∈ {1, 5})))
8786com3r 87 . . . . . 6 (3 ∥ 𝑀 → ((𝑃 ∈ ℙ ∧ 4 ≤ 𝑃) → ((𝑃 mod 6) = 𝑀 → (𝑃 mod 6) ∈ {1, 5})))
88 eleq1a 2839 . . . . . . 7 (𝑀 ∈ {1, 5} → ((𝑃 mod 6) = 𝑀 → (𝑃 mod 6) ∈ {1, 5}))
8988a1d 25 . . . . . 6 (𝑀 ∈ {1, 5} → ((𝑃 ∈ ℙ ∧ 4 ≤ 𝑃) → ((𝑃 mod 6) = 𝑀 → (𝑃 mod 6) ∈ {1, 5})))
9059, 87, 893jaoi 1552 . . . . 5 ((2 ∥ 𝑀 ∨ 3 ∥ 𝑀𝑀 ∈ {1, 5}) → ((𝑃 ∈ ℙ ∧ 4 ≤ 𝑃) → ((𝑃 mod 6) = 𝑀 → (𝑃 mod 6) ∈ {1, 5})))
9124, 90ax-mp 5 . . . 4 ((𝑃 ∈ ℙ ∧ 4 ≤ 𝑃) → ((𝑃 mod 6) = 𝑀 → (𝑃 mod 6) ∈ {1, 5}))
923oveq1i 6852 . . . . . 6 (𝑁...5) = ((𝑀 + 1)...5)
9392eleq2i 2836 . . . . 5 ((𝑃 mod 6) ∈ (𝑁...5) ↔ (𝑃 mod 6) ∈ ((𝑀 + 1)...5))
941simpri 479 . . . . 5 ((𝑃 ∈ ℙ ∧ 4 ≤ 𝑃) → ((𝑃 mod 6) ∈ (𝑁...5) → (𝑃 mod 6) ∈ {1, 5}))
9593, 94syl5bir 234 . . . 4 ((𝑃 ∈ ℙ ∧ 4 ≤ 𝑃) → ((𝑃 mod 6) ∈ ((𝑀 + 1)...5) → (𝑃 mod 6) ∈ {1, 5}))
9691, 95jaod 885 . . 3 ((𝑃 ∈ ℙ ∧ 4 ≤ 𝑃) → (((𝑃 mod 6) = 𝑀 ∨ (𝑃 mod 6) ∈ ((𝑀 + 1)...5)) → (𝑃 mod 6) ∈ {1, 5}))
9723, 96syl5bi 233 . 2 ((𝑃 ∈ ℙ ∧ 4 ≤ 𝑃) → ((𝑃 mod 6) ∈ (𝑀...5) → (𝑃 mod 6) ∈ {1, 5}))
9816, 97pm3.2i 462 1 (𝑀 ≤ 6 ∧ ((𝑃 ∈ ℙ ∧ 4 ≤ 𝑃) → ((𝑃 mod 6) ∈ (𝑀...5) → (𝑃 mod 6) ∈ {1, 5})))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 197  wa 384  wo 873  w3o 1106  w3a 1107   = wceq 1652  wcel 2155  {cpr 4336   class class class wbr 4809  cfv 6068  (class class class)co 6842  1c1 10190   + caddc 10192   · cmul 10194   < clt 10328  cle 10329  cn 11274  2c2 11327  3c3 11328  4c4 11329  5c5 11330  6c6 11331  0cn0 11538  cz 11624  cuz 11886  ...cfz 12533   mod cmo 12876  cdvds 15265  cprime 15665
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1890  ax-4 1904  ax-5 2005  ax-6 2070  ax-7 2105  ax-8 2157  ax-9 2164  ax-10 2183  ax-11 2198  ax-12 2211  ax-13 2352  ax-ext 2743  ax-sep 4941  ax-nul 4949  ax-pow 5001  ax-pr 5062  ax-un 7147  ax-cnex 10245  ax-resscn 10246  ax-1cn 10247  ax-icn 10248  ax-addcl 10249  ax-addrcl 10250  ax-mulcl 10251  ax-mulrcl 10252  ax-mulcom 10253  ax-addass 10254  ax-mulass 10255  ax-distr 10256  ax-i2m1 10257  ax-1ne0 10258  ax-1rid 10259  ax-rnegex 10260  ax-rrecex 10261  ax-cnre 10262  ax-pre-lttri 10263  ax-pre-lttrn 10264  ax-pre-ltadd 10265  ax-pre-mulgt0 10266  ax-pre-sup 10267
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 874  df-3or 1108  df-3an 1109  df-tru 1656  df-ex 1875  df-nf 1879  df-sb 2063  df-mo 2565  df-eu 2582  df-clab 2752  df-cleq 2758  df-clel 2761  df-nfc 2896  df-ne 2938  df-nel 3041  df-ral 3060  df-rex 3061  df-reu 3062  df-rmo 3063  df-rab 3064  df-v 3352  df-sbc 3597  df-csb 3692  df-dif 3735  df-un 3737  df-in 3739  df-ss 3746  df-pss 3748  df-nul 4080  df-if 4244  df-pw 4317  df-sn 4335  df-pr 4337  df-tp 4339  df-op 4341  df-uni 4595  df-iun 4678  df-br 4810  df-opab 4872  df-mpt 4889  df-tr 4912  df-id 5185  df-eprel 5190  df-po 5198  df-so 5199  df-fr 5236  df-we 5238  df-xp 5283  df-rel 5284  df-cnv 5285  df-co 5286  df-dm 5287  df-rn 5288  df-res 5289  df-ima 5290  df-pred 5865  df-ord 5911  df-on 5912  df-lim 5913  df-suc 5914  df-iota 6031  df-fun 6070  df-fn 6071  df-f 6072  df-f1 6073  df-fo 6074  df-f1o 6075  df-fv 6076  df-riota 6803  df-ov 6845  df-oprab 6846  df-mpt2 6847  df-om 7264  df-1st 7366  df-2nd 7367  df-wrecs 7610  df-recs 7672  df-rdg 7710  df-1o 7764  df-2o 7765  df-er 7947  df-en 8161  df-dom 8162  df-sdom 8163  df-fin 8164  df-sup 8555  df-inf 8556  df-pnf 10330  df-mnf 10331  df-xr 10332  df-ltxr 10333  df-le 10334  df-sub 10522  df-neg 10523  df-div 10939  df-nn 11275  df-2 11335  df-3 11336  df-4 11337  df-5 11338  df-6 11339  df-n0 11539  df-z 11625  df-uz 11887  df-rp 12029  df-fz 12534  df-fl 12801  df-mod 12877  df-seq 13009  df-exp 13068  df-cj 14124  df-re 14125  df-im 14126  df-sqrt 14260  df-abs 14261  df-dvds 15266  df-prm 15666
This theorem is referenced by:  ppiublem2  25219
  Copyright terms: Public domain W3C validator