Proof of Theorem ppiublem1
Step | Hyp | Ref
| Expression |
1 | | ppiublem1.1 |
. . . . . 6
⊢ (𝑁 ≤ 6 ∧ ((𝑃 ∈ ℙ ∧ 4 ≤
𝑃) → ((𝑃 mod 6) ∈ (𝑁...5) → (𝑃 mod 6) ∈ {1, 5}))) |
2 | 1 | simpli 483 |
. . . . 5
⊢ 𝑁 ≤ 6 |
3 | | ppiublem1.3 |
. . . . 5
⊢ 𝑁 = (𝑀 + 1) |
4 | | df-6 11970 |
. . . . 5
⊢ 6 = (5 +
1) |
5 | 2, 3, 4 | 3brtr3i 5099 |
. . . 4
⊢ (𝑀 + 1) ≤ (5 +
1) |
6 | | ppiublem1.2 |
. . . . . 6
⊢ 𝑀 ∈
ℕ0 |
7 | 6 | nn0rei 12174 |
. . . . 5
⊢ 𝑀 ∈ ℝ |
8 | | 5re 11990 |
. . . . 5
⊢ 5 ∈
ℝ |
9 | | 1re 10906 |
. . . . 5
⊢ 1 ∈
ℝ |
10 | 7, 8, 9 | leadd1i 11460 |
. . . 4
⊢ (𝑀 ≤ 5 ↔ (𝑀 + 1) ≤ (5 +
1)) |
11 | 5, 10 | mpbir 230 |
. . 3
⊢ 𝑀 ≤ 5 |
12 | | 6re 11993 |
. . . 4
⊢ 6 ∈
ℝ |
13 | | 5lt6 12084 |
. . . 4
⊢ 5 <
6 |
14 | 8, 12, 13 | ltleii 11028 |
. . 3
⊢ 5 ≤
6 |
15 | 7, 8, 12 | letri 11034 |
. . 3
⊢ ((𝑀 ≤ 5 ∧ 5 ≤ 6) →
𝑀 ≤ 6) |
16 | 11, 14, 15 | mp2an 688 |
. 2
⊢ 𝑀 ≤ 6 |
17 | 6 | nn0zi 12275 |
. . . . 5
⊢ 𝑀 ∈ ℤ |
18 | | 5nn 11989 |
. . . . . 6
⊢ 5 ∈
ℕ |
19 | 18 | nnzi 12274 |
. . . . 5
⊢ 5 ∈
ℤ |
20 | | eluz2 12517 |
. . . . 5
⊢ (5 ∈
(ℤ≥‘𝑀) ↔ (𝑀 ∈ ℤ ∧ 5 ∈ ℤ ∧
𝑀 ≤ 5)) |
21 | 17, 19, 11, 20 | mpbir3an 1339 |
. . . 4
⊢ 5 ∈
(ℤ≥‘𝑀) |
22 | | elfzp12 13264 |
. . . 4
⊢ (5 ∈
(ℤ≥‘𝑀) → ((𝑃 mod 6) ∈ (𝑀...5) ↔ ((𝑃 mod 6) = 𝑀 ∨ (𝑃 mod 6) ∈ ((𝑀 + 1)...5)))) |
23 | 21, 22 | ax-mp 5 |
. . 3
⊢ ((𝑃 mod 6) ∈ (𝑀...5) ↔ ((𝑃 mod 6) = 𝑀 ∨ (𝑃 mod 6) ∈ ((𝑀 + 1)...5))) |
24 | | ppiublem1.4 |
. . . . 5
⊢ (2
∥ 𝑀 ∨ 3 ∥
𝑀 ∨ 𝑀 ∈ {1, 5}) |
25 | | 2nn 11976 |
. . . . . . . . . . 11
⊢ 2 ∈
ℕ |
26 | | 6nn 11992 |
. . . . . . . . . . 11
⊢ 6 ∈
ℕ |
27 | | prmz 16308 |
. . . . . . . . . . . 12
⊢ (𝑃 ∈ ℙ → 𝑃 ∈
ℤ) |
28 | 27 | adantr 480 |
. . . . . . . . . . 11
⊢ ((𝑃 ∈ ℙ ∧ 4 ≤
𝑃) → 𝑃 ∈ ℤ) |
29 | | 3z 12283 |
. . . . . . . . . . . . . 14
⊢ 3 ∈
ℤ |
30 | | 2z 12282 |
. . . . . . . . . . . . . 14
⊢ 2 ∈
ℤ |
31 | | dvdsmul2 15916 |
. . . . . . . . . . . . . 14
⊢ ((3
∈ ℤ ∧ 2 ∈ ℤ) → 2 ∥ (3 ·
2)) |
32 | 29, 30, 31 | mp2an 688 |
. . . . . . . . . . . . 13
⊢ 2 ∥
(3 · 2) |
33 | | 3t2e6 12069 |
. . . . . . . . . . . . 13
⊢ (3
· 2) = 6 |
34 | 32, 33 | breqtri 5095 |
. . . . . . . . . . . 12
⊢ 2 ∥
6 |
35 | | dvdsmod 15966 |
. . . . . . . . . . . 12
⊢ (((2
∈ ℕ ∧ 6 ∈ ℕ ∧ 𝑃 ∈ ℤ) ∧ 2 ∥ 6) →
(2 ∥ (𝑃 mod 6) ↔
2 ∥ 𝑃)) |
36 | 34, 35 | mpan2 687 |
. . . . . . . . . . 11
⊢ ((2
∈ ℕ ∧ 6 ∈ ℕ ∧ 𝑃 ∈ ℤ) → (2 ∥ (𝑃 mod 6) ↔ 2 ∥ 𝑃)) |
37 | 25, 26, 28, 36 | mp3an12i 1463 |
. . . . . . . . . 10
⊢ ((𝑃 ∈ ℙ ∧ 4 ≤
𝑃) → (2 ∥ (𝑃 mod 6) ↔ 2 ∥ 𝑃)) |
38 | | uzid 12526 |
. . . . . . . . . . . 12
⊢ (2 ∈
ℤ → 2 ∈ (ℤ≥‘2)) |
39 | 30, 38 | ax-mp 5 |
. . . . . . . . . . 11
⊢ 2 ∈
(ℤ≥‘2) |
40 | | simpl 482 |
. . . . . . . . . . 11
⊢ ((𝑃 ∈ ℙ ∧ 4 ≤
𝑃) → 𝑃 ∈ ℙ) |
41 | | dvdsprm 16336 |
. . . . . . . . . . 11
⊢ ((2
∈ (ℤ≥‘2) ∧ 𝑃 ∈ ℙ) → (2 ∥ 𝑃 ↔ 2 = 𝑃)) |
42 | 39, 40, 41 | sylancr 586 |
. . . . . . . . . 10
⊢ ((𝑃 ∈ ℙ ∧ 4 ≤
𝑃) → (2 ∥ 𝑃 ↔ 2 = 𝑃)) |
43 | 37, 42 | bitrd 278 |
. . . . . . . . 9
⊢ ((𝑃 ∈ ℙ ∧ 4 ≤
𝑃) → (2 ∥ (𝑃 mod 6) ↔ 2 = 𝑃)) |
44 | | simpr 484 |
. . . . . . . . . . 11
⊢ ((𝑃 ∈ ℙ ∧ 4 ≤
𝑃) → 4 ≤ 𝑃) |
45 | | breq2 5074 |
. . . . . . . . . . 11
⊢ (2 =
𝑃 → (4 ≤ 2 ↔ 4
≤ 𝑃)) |
46 | 44, 45 | syl5ibrcom 246 |
. . . . . . . . . 10
⊢ ((𝑃 ∈ ℙ ∧ 4 ≤
𝑃) → (2 = 𝑃 → 4 ≤
2)) |
47 | | 2lt4 12078 |
. . . . . . . . . . . 12
⊢ 2 <
4 |
48 | | 2re 11977 |
. . . . . . . . . . . . 13
⊢ 2 ∈
ℝ |
49 | | 4re 11987 |
. . . . . . . . . . . . 13
⊢ 4 ∈
ℝ |
50 | 48, 49 | ltnlei 11026 |
. . . . . . . . . . . 12
⊢ (2 < 4
↔ ¬ 4 ≤ 2) |
51 | 47, 50 | mpbi 229 |
. . . . . . . . . . 11
⊢ ¬ 4
≤ 2 |
52 | 51 | pm2.21i 119 |
. . . . . . . . . 10
⊢ (4 ≤ 2
→ (𝑃 mod 6) ∈ {1,
5}) |
53 | 46, 52 | syl6 35 |
. . . . . . . . 9
⊢ ((𝑃 ∈ ℙ ∧ 4 ≤
𝑃) → (2 = 𝑃 → (𝑃 mod 6) ∈ {1, 5})) |
54 | 43, 53 | sylbid 239 |
. . . . . . . 8
⊢ ((𝑃 ∈ ℙ ∧ 4 ≤
𝑃) → (2 ∥ (𝑃 mod 6) → (𝑃 mod 6) ∈ {1,
5})) |
55 | | breq2 5074 |
. . . . . . . . 9
⊢ ((𝑃 mod 6) = 𝑀 → (2 ∥ (𝑃 mod 6) ↔ 2 ∥ 𝑀)) |
56 | 55 | imbi1d 341 |
. . . . . . . 8
⊢ ((𝑃 mod 6) = 𝑀 → ((2 ∥ (𝑃 mod 6) → (𝑃 mod 6) ∈ {1, 5}) ↔ (2 ∥
𝑀 → (𝑃 mod 6) ∈ {1, 5}))) |
57 | 54, 56 | syl5ibcom 244 |
. . . . . . 7
⊢ ((𝑃 ∈ ℙ ∧ 4 ≤
𝑃) → ((𝑃 mod 6) = 𝑀 → (2 ∥ 𝑀 → (𝑃 mod 6) ∈ {1, 5}))) |
58 | 57 | com3r 87 |
. . . . . 6
⊢ (2
∥ 𝑀 → ((𝑃 ∈ ℙ ∧ 4 ≤
𝑃) → ((𝑃 mod 6) = 𝑀 → (𝑃 mod 6) ∈ {1, 5}))) |
59 | | 3nn 11982 |
. . . . . . . . . . 11
⊢ 3 ∈
ℕ |
60 | | dvdsmul1 15915 |
. . . . . . . . . . . . . 14
⊢ ((3
∈ ℤ ∧ 2 ∈ ℤ) → 3 ∥ (3 ·
2)) |
61 | 29, 30, 60 | mp2an 688 |
. . . . . . . . . . . . 13
⊢ 3 ∥
(3 · 2) |
62 | 61, 33 | breqtri 5095 |
. . . . . . . . . . . 12
⊢ 3 ∥
6 |
63 | | dvdsmod 15966 |
. . . . . . . . . . . 12
⊢ (((3
∈ ℕ ∧ 6 ∈ ℕ ∧ 𝑃 ∈ ℤ) ∧ 3 ∥ 6) →
(3 ∥ (𝑃 mod 6) ↔
3 ∥ 𝑃)) |
64 | 62, 63 | mpan2 687 |
. . . . . . . . . . 11
⊢ ((3
∈ ℕ ∧ 6 ∈ ℕ ∧ 𝑃 ∈ ℤ) → (3 ∥ (𝑃 mod 6) ↔ 3 ∥ 𝑃)) |
65 | 59, 26, 28, 64 | mp3an12i 1463 |
. . . . . . . . . 10
⊢ ((𝑃 ∈ ℙ ∧ 4 ≤
𝑃) → (3 ∥ (𝑃 mod 6) ↔ 3 ∥ 𝑃)) |
66 | | df-3 11967 |
. . . . . . . . . . . 12
⊢ 3 = (2 +
1) |
67 | | peano2uz 12570 |
. . . . . . . . . . . . 13
⊢ (2 ∈
(ℤ≥‘2) → (2 + 1) ∈
(ℤ≥‘2)) |
68 | 39, 67 | ax-mp 5 |
. . . . . . . . . . . 12
⊢ (2 + 1)
∈ (ℤ≥‘2) |
69 | 66, 68 | eqeltri 2835 |
. . . . . . . . . . 11
⊢ 3 ∈
(ℤ≥‘2) |
70 | | dvdsprm 16336 |
. . . . . . . . . . 11
⊢ ((3
∈ (ℤ≥‘2) ∧ 𝑃 ∈ ℙ) → (3 ∥ 𝑃 ↔ 3 = 𝑃)) |
71 | 69, 40, 70 | sylancr 586 |
. . . . . . . . . 10
⊢ ((𝑃 ∈ ℙ ∧ 4 ≤
𝑃) → (3 ∥ 𝑃 ↔ 3 = 𝑃)) |
72 | 65, 71 | bitrd 278 |
. . . . . . . . 9
⊢ ((𝑃 ∈ ℙ ∧ 4 ≤
𝑃) → (3 ∥ (𝑃 mod 6) ↔ 3 = 𝑃)) |
73 | | breq2 5074 |
. . . . . . . . . . 11
⊢ (3 =
𝑃 → (4 ≤ 3 ↔ 4
≤ 𝑃)) |
74 | 44, 73 | syl5ibrcom 246 |
. . . . . . . . . 10
⊢ ((𝑃 ∈ ℙ ∧ 4 ≤
𝑃) → (3 = 𝑃 → 4 ≤
3)) |
75 | | 3lt4 12077 |
. . . . . . . . . . . 12
⊢ 3 <
4 |
76 | | 3re 11983 |
. . . . . . . . . . . . 13
⊢ 3 ∈
ℝ |
77 | 76, 49 | ltnlei 11026 |
. . . . . . . . . . . 12
⊢ (3 < 4
↔ ¬ 4 ≤ 3) |
78 | 75, 77 | mpbi 229 |
. . . . . . . . . . 11
⊢ ¬ 4
≤ 3 |
79 | 78 | pm2.21i 119 |
. . . . . . . . . 10
⊢ (4 ≤ 3
→ (𝑃 mod 6) ∈ {1,
5}) |
80 | 74, 79 | syl6 35 |
. . . . . . . . 9
⊢ ((𝑃 ∈ ℙ ∧ 4 ≤
𝑃) → (3 = 𝑃 → (𝑃 mod 6) ∈ {1, 5})) |
81 | 72, 80 | sylbid 239 |
. . . . . . . 8
⊢ ((𝑃 ∈ ℙ ∧ 4 ≤
𝑃) → (3 ∥ (𝑃 mod 6) → (𝑃 mod 6) ∈ {1,
5})) |
82 | | breq2 5074 |
. . . . . . . . 9
⊢ ((𝑃 mod 6) = 𝑀 → (3 ∥ (𝑃 mod 6) ↔ 3 ∥ 𝑀)) |
83 | 82 | imbi1d 341 |
. . . . . . . 8
⊢ ((𝑃 mod 6) = 𝑀 → ((3 ∥ (𝑃 mod 6) → (𝑃 mod 6) ∈ {1, 5}) ↔ (3 ∥
𝑀 → (𝑃 mod 6) ∈ {1, 5}))) |
84 | 81, 83 | syl5ibcom 244 |
. . . . . . 7
⊢ ((𝑃 ∈ ℙ ∧ 4 ≤
𝑃) → ((𝑃 mod 6) = 𝑀 → (3 ∥ 𝑀 → (𝑃 mod 6) ∈ {1, 5}))) |
85 | 84 | com3r 87 |
. . . . . 6
⊢ (3
∥ 𝑀 → ((𝑃 ∈ ℙ ∧ 4 ≤
𝑃) → ((𝑃 mod 6) = 𝑀 → (𝑃 mod 6) ∈ {1, 5}))) |
86 | | eleq1a 2834 |
. . . . . . 7
⊢ (𝑀 ∈ {1, 5} → ((𝑃 mod 6) = 𝑀 → (𝑃 mod 6) ∈ {1, 5})) |
87 | 86 | a1d 25 |
. . . . . 6
⊢ (𝑀 ∈ {1, 5} → ((𝑃 ∈ ℙ ∧ 4 ≤
𝑃) → ((𝑃 mod 6) = 𝑀 → (𝑃 mod 6) ∈ {1, 5}))) |
88 | 58, 85, 87 | 3jaoi 1425 |
. . . . 5
⊢ ((2
∥ 𝑀 ∨ 3 ∥
𝑀 ∨ 𝑀 ∈ {1, 5}) → ((𝑃 ∈ ℙ ∧ 4 ≤ 𝑃) → ((𝑃 mod 6) = 𝑀 → (𝑃 mod 6) ∈ {1, 5}))) |
89 | 24, 88 | ax-mp 5 |
. . . 4
⊢ ((𝑃 ∈ ℙ ∧ 4 ≤
𝑃) → ((𝑃 mod 6) = 𝑀 → (𝑃 mod 6) ∈ {1, 5})) |
90 | 3 | oveq1i 7265 |
. . . . . 6
⊢ (𝑁...5) = ((𝑀 + 1)...5) |
91 | 90 | eleq2i 2830 |
. . . . 5
⊢ ((𝑃 mod 6) ∈ (𝑁...5) ↔ (𝑃 mod 6) ∈ ((𝑀 + 1)...5)) |
92 | 1 | simpri 485 |
. . . . 5
⊢ ((𝑃 ∈ ℙ ∧ 4 ≤
𝑃) → ((𝑃 mod 6) ∈ (𝑁...5) → (𝑃 mod 6) ∈ {1, 5})) |
93 | 91, 92 | syl5bir 242 |
. . . 4
⊢ ((𝑃 ∈ ℙ ∧ 4 ≤
𝑃) → ((𝑃 mod 6) ∈ ((𝑀 + 1)...5) → (𝑃 mod 6) ∈ {1,
5})) |
94 | 89, 93 | jaod 855 |
. . 3
⊢ ((𝑃 ∈ ℙ ∧ 4 ≤
𝑃) → (((𝑃 mod 6) = 𝑀 ∨ (𝑃 mod 6) ∈ ((𝑀 + 1)...5)) → (𝑃 mod 6) ∈ {1, 5})) |
95 | 23, 94 | syl5bi 241 |
. 2
⊢ ((𝑃 ∈ ℙ ∧ 4 ≤
𝑃) → ((𝑃 mod 6) ∈ (𝑀...5) → (𝑃 mod 6) ∈ {1, 5})) |
96 | 16, 95 | pm3.2i 470 |
1
⊢ (𝑀 ≤ 6 ∧ ((𝑃 ∈ ℙ ∧ 4 ≤
𝑃) → ((𝑃 mod 6) ∈ (𝑀...5) → (𝑃 mod 6) ∈ {1, 5}))) |