MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ppiublem1 Structured version   Visualization version   GIF version

Theorem ppiublem1 27089
Description: Lemma for ppiub 27091. (Contributed by Mario Carneiro, 12-Mar-2014.)
Hypotheses
Ref Expression
ppiublem1.1 (𝑁 ≤ 6 ∧ ((𝑃 ∈ ℙ ∧ 4 ≤ 𝑃) → ((𝑃 mod 6) ∈ (𝑁...5) → (𝑃 mod 6) ∈ {1, 5})))
ppiublem1.2 𝑀 ∈ ℕ0
ppiublem1.3 𝑁 = (𝑀 + 1)
ppiublem1.4 (2 ∥ 𝑀 ∨ 3 ∥ 𝑀𝑀 ∈ {1, 5})
Assertion
Ref Expression
ppiublem1 (𝑀 ≤ 6 ∧ ((𝑃 ∈ ℙ ∧ 4 ≤ 𝑃) → ((𝑃 mod 6) ∈ (𝑀...5) → (𝑃 mod 6) ∈ {1, 5})))

Proof of Theorem ppiublem1
StepHypRef Expression
1 ppiublem1.1 . . . . . 6 (𝑁 ≤ 6 ∧ ((𝑃 ∈ ℙ ∧ 4 ≤ 𝑃) → ((𝑃 mod 6) ∈ (𝑁...5) → (𝑃 mod 6) ∈ {1, 5})))
21simpli 483 . . . . 5 𝑁 ≤ 6
3 ppiublem1.3 . . . . 5 𝑁 = (𝑀 + 1)
4 df-6 12229 . . . . 5 6 = (5 + 1)
52, 3, 43brtr3i 5131 . . . 4 (𝑀 + 1) ≤ (5 + 1)
6 ppiublem1.2 . . . . . 6 𝑀 ∈ ℕ0
76nn0rei 12429 . . . . 5 𝑀 ∈ ℝ
8 5re 12249 . . . . 5 5 ∈ ℝ
9 1re 11150 . . . . 5 1 ∈ ℝ
107, 8, 9leadd1i 11709 . . . 4 (𝑀 ≤ 5 ↔ (𝑀 + 1) ≤ (5 + 1))
115, 10mpbir 231 . . 3 𝑀 ≤ 5
12 6re 12252 . . . 4 6 ∈ ℝ
13 5lt6 12338 . . . 4 5 < 6
148, 12, 13ltleii 11273 . . 3 5 ≤ 6
157, 8, 12letri 11279 . . 3 ((𝑀 ≤ 5 ∧ 5 ≤ 6) → 𝑀 ≤ 6)
1611, 14, 15mp2an 692 . 2 𝑀 ≤ 6
176nn0zi 12534 . . . . 5 𝑀 ∈ ℤ
18 5nn 12248 . . . . . 6 5 ∈ ℕ
1918nnzi 12533 . . . . 5 5 ∈ ℤ
20 eluz2 12775 . . . . 5 (5 ∈ (ℤ𝑀) ↔ (𝑀 ∈ ℤ ∧ 5 ∈ ℤ ∧ 𝑀 ≤ 5))
2117, 19, 11, 20mpbir3an 1342 . . . 4 5 ∈ (ℤ𝑀)
22 elfzp12 13540 . . . 4 (5 ∈ (ℤ𝑀) → ((𝑃 mod 6) ∈ (𝑀...5) ↔ ((𝑃 mod 6) = 𝑀 ∨ (𝑃 mod 6) ∈ ((𝑀 + 1)...5))))
2321, 22ax-mp 5 . . 3 ((𝑃 mod 6) ∈ (𝑀...5) ↔ ((𝑃 mod 6) = 𝑀 ∨ (𝑃 mod 6) ∈ ((𝑀 + 1)...5)))
24 ppiublem1.4 . . . . 5 (2 ∥ 𝑀 ∨ 3 ∥ 𝑀𝑀 ∈ {1, 5})
25 2nn 12235 . . . . . . . . . . 11 2 ∈ ℕ
26 6nn 12251 . . . . . . . . . . 11 6 ∈ ℕ
27 prmz 16621 . . . . . . . . . . . 12 (𝑃 ∈ ℙ → 𝑃 ∈ ℤ)
2827adantr 480 . . . . . . . . . . 11 ((𝑃 ∈ ℙ ∧ 4 ≤ 𝑃) → 𝑃 ∈ ℤ)
29 3z 12542 . . . . . . . . . . . . . 14 3 ∈ ℤ
30 2z 12541 . . . . . . . . . . . . . 14 2 ∈ ℤ
31 dvdsmul2 16224 . . . . . . . . . . . . . 14 ((3 ∈ ℤ ∧ 2 ∈ ℤ) → 2 ∥ (3 · 2))
3229, 30, 31mp2an 692 . . . . . . . . . . . . 13 2 ∥ (3 · 2)
33 3t2e6 12323 . . . . . . . . . . . . 13 (3 · 2) = 6
3432, 33breqtri 5127 . . . . . . . . . . . 12 2 ∥ 6
35 dvdsmod 16275 . . . . . . . . . . . 12 (((2 ∈ ℕ ∧ 6 ∈ ℕ ∧ 𝑃 ∈ ℤ) ∧ 2 ∥ 6) → (2 ∥ (𝑃 mod 6) ↔ 2 ∥ 𝑃))
3634, 35mpan2 691 . . . . . . . . . . 11 ((2 ∈ ℕ ∧ 6 ∈ ℕ ∧ 𝑃 ∈ ℤ) → (2 ∥ (𝑃 mod 6) ↔ 2 ∥ 𝑃))
3725, 26, 28, 36mp3an12i 1467 . . . . . . . . . 10 ((𝑃 ∈ ℙ ∧ 4 ≤ 𝑃) → (2 ∥ (𝑃 mod 6) ↔ 2 ∥ 𝑃))
38 uzid 12784 . . . . . . . . . . . 12 (2 ∈ ℤ → 2 ∈ (ℤ‘2))
3930, 38ax-mp 5 . . . . . . . . . . 11 2 ∈ (ℤ‘2)
40 simpl 482 . . . . . . . . . . 11 ((𝑃 ∈ ℙ ∧ 4 ≤ 𝑃) → 𝑃 ∈ ℙ)
41 dvdsprm 16649 . . . . . . . . . . 11 ((2 ∈ (ℤ‘2) ∧ 𝑃 ∈ ℙ) → (2 ∥ 𝑃 ↔ 2 = 𝑃))
4239, 40, 41sylancr 587 . . . . . . . . . 10 ((𝑃 ∈ ℙ ∧ 4 ≤ 𝑃) → (2 ∥ 𝑃 ↔ 2 = 𝑃))
4337, 42bitrd 279 . . . . . . . . 9 ((𝑃 ∈ ℙ ∧ 4 ≤ 𝑃) → (2 ∥ (𝑃 mod 6) ↔ 2 = 𝑃))
44 simpr 484 . . . . . . . . . . 11 ((𝑃 ∈ ℙ ∧ 4 ≤ 𝑃) → 4 ≤ 𝑃)
45 breq2 5106 . . . . . . . . . . 11 (2 = 𝑃 → (4 ≤ 2 ↔ 4 ≤ 𝑃))
4644, 45syl5ibrcom 247 . . . . . . . . . 10 ((𝑃 ∈ ℙ ∧ 4 ≤ 𝑃) → (2 = 𝑃 → 4 ≤ 2))
47 2lt4 12332 . . . . . . . . . . . 12 2 < 4
48 2re 12236 . . . . . . . . . . . . 13 2 ∈ ℝ
49 4re 12246 . . . . . . . . . . . . 13 4 ∈ ℝ
5048, 49ltnlei 11271 . . . . . . . . . . . 12 (2 < 4 ↔ ¬ 4 ≤ 2)
5147, 50mpbi 230 . . . . . . . . . . 11 ¬ 4 ≤ 2
5251pm2.21i 119 . . . . . . . . . 10 (4 ≤ 2 → (𝑃 mod 6) ∈ {1, 5})
5346, 52syl6 35 . . . . . . . . 9 ((𝑃 ∈ ℙ ∧ 4 ≤ 𝑃) → (2 = 𝑃 → (𝑃 mod 6) ∈ {1, 5}))
5443, 53sylbid 240 . . . . . . . 8 ((𝑃 ∈ ℙ ∧ 4 ≤ 𝑃) → (2 ∥ (𝑃 mod 6) → (𝑃 mod 6) ∈ {1, 5}))
55 breq2 5106 . . . . . . . . 9 ((𝑃 mod 6) = 𝑀 → (2 ∥ (𝑃 mod 6) ↔ 2 ∥ 𝑀))
5655imbi1d 341 . . . . . . . 8 ((𝑃 mod 6) = 𝑀 → ((2 ∥ (𝑃 mod 6) → (𝑃 mod 6) ∈ {1, 5}) ↔ (2 ∥ 𝑀 → (𝑃 mod 6) ∈ {1, 5})))
5754, 56syl5ibcom 245 . . . . . . 7 ((𝑃 ∈ ℙ ∧ 4 ≤ 𝑃) → ((𝑃 mod 6) = 𝑀 → (2 ∥ 𝑀 → (𝑃 mod 6) ∈ {1, 5})))
5857com3r 87 . . . . . 6 (2 ∥ 𝑀 → ((𝑃 ∈ ℙ ∧ 4 ≤ 𝑃) → ((𝑃 mod 6) = 𝑀 → (𝑃 mod 6) ∈ {1, 5})))
59 3nn 12241 . . . . . . . . . . 11 3 ∈ ℕ
60 dvdsmul1 16223 . . . . . . . . . . . . . 14 ((3 ∈ ℤ ∧ 2 ∈ ℤ) → 3 ∥ (3 · 2))
6129, 30, 60mp2an 692 . . . . . . . . . . . . 13 3 ∥ (3 · 2)
6261, 33breqtri 5127 . . . . . . . . . . . 12 3 ∥ 6
63 dvdsmod 16275 . . . . . . . . . . . 12 (((3 ∈ ℕ ∧ 6 ∈ ℕ ∧ 𝑃 ∈ ℤ) ∧ 3 ∥ 6) → (3 ∥ (𝑃 mod 6) ↔ 3 ∥ 𝑃))
6462, 63mpan2 691 . . . . . . . . . . 11 ((3 ∈ ℕ ∧ 6 ∈ ℕ ∧ 𝑃 ∈ ℤ) → (3 ∥ (𝑃 mod 6) ↔ 3 ∥ 𝑃))
6559, 26, 28, 64mp3an12i 1467 . . . . . . . . . 10 ((𝑃 ∈ ℙ ∧ 4 ≤ 𝑃) → (3 ∥ (𝑃 mod 6) ↔ 3 ∥ 𝑃))
66 df-3 12226 . . . . . . . . . . . 12 3 = (2 + 1)
67 peano2uz 12836 . . . . . . . . . . . . 13 (2 ∈ (ℤ‘2) → (2 + 1) ∈ (ℤ‘2))
6839, 67ax-mp 5 . . . . . . . . . . . 12 (2 + 1) ∈ (ℤ‘2)
6966, 68eqeltri 2824 . . . . . . . . . . 11 3 ∈ (ℤ‘2)
70 dvdsprm 16649 . . . . . . . . . . 11 ((3 ∈ (ℤ‘2) ∧ 𝑃 ∈ ℙ) → (3 ∥ 𝑃 ↔ 3 = 𝑃))
7169, 40, 70sylancr 587 . . . . . . . . . 10 ((𝑃 ∈ ℙ ∧ 4 ≤ 𝑃) → (3 ∥ 𝑃 ↔ 3 = 𝑃))
7265, 71bitrd 279 . . . . . . . . 9 ((𝑃 ∈ ℙ ∧ 4 ≤ 𝑃) → (3 ∥ (𝑃 mod 6) ↔ 3 = 𝑃))
73 breq2 5106 . . . . . . . . . . 11 (3 = 𝑃 → (4 ≤ 3 ↔ 4 ≤ 𝑃))
7444, 73syl5ibrcom 247 . . . . . . . . . 10 ((𝑃 ∈ ℙ ∧ 4 ≤ 𝑃) → (3 = 𝑃 → 4 ≤ 3))
75 3lt4 12331 . . . . . . . . . . . 12 3 < 4
76 3re 12242 . . . . . . . . . . . . 13 3 ∈ ℝ
7776, 49ltnlei 11271 . . . . . . . . . . . 12 (3 < 4 ↔ ¬ 4 ≤ 3)
7875, 77mpbi 230 . . . . . . . . . . 11 ¬ 4 ≤ 3
7978pm2.21i 119 . . . . . . . . . 10 (4 ≤ 3 → (𝑃 mod 6) ∈ {1, 5})
8074, 79syl6 35 . . . . . . . . 9 ((𝑃 ∈ ℙ ∧ 4 ≤ 𝑃) → (3 = 𝑃 → (𝑃 mod 6) ∈ {1, 5}))
8172, 80sylbid 240 . . . . . . . 8 ((𝑃 ∈ ℙ ∧ 4 ≤ 𝑃) → (3 ∥ (𝑃 mod 6) → (𝑃 mod 6) ∈ {1, 5}))
82 breq2 5106 . . . . . . . . 9 ((𝑃 mod 6) = 𝑀 → (3 ∥ (𝑃 mod 6) ↔ 3 ∥ 𝑀))
8382imbi1d 341 . . . . . . . 8 ((𝑃 mod 6) = 𝑀 → ((3 ∥ (𝑃 mod 6) → (𝑃 mod 6) ∈ {1, 5}) ↔ (3 ∥ 𝑀 → (𝑃 mod 6) ∈ {1, 5})))
8481, 83syl5ibcom 245 . . . . . . 7 ((𝑃 ∈ ℙ ∧ 4 ≤ 𝑃) → ((𝑃 mod 6) = 𝑀 → (3 ∥ 𝑀 → (𝑃 mod 6) ∈ {1, 5})))
8584com3r 87 . . . . . 6 (3 ∥ 𝑀 → ((𝑃 ∈ ℙ ∧ 4 ≤ 𝑃) → ((𝑃 mod 6) = 𝑀 → (𝑃 mod 6) ∈ {1, 5})))
86 eleq1a 2823 . . . . . . 7 (𝑀 ∈ {1, 5} → ((𝑃 mod 6) = 𝑀 → (𝑃 mod 6) ∈ {1, 5}))
8786a1d 25 . . . . . 6 (𝑀 ∈ {1, 5} → ((𝑃 ∈ ℙ ∧ 4 ≤ 𝑃) → ((𝑃 mod 6) = 𝑀 → (𝑃 mod 6) ∈ {1, 5})))
8858, 85, 873jaoi 1430 . . . . 5 ((2 ∥ 𝑀 ∨ 3 ∥ 𝑀𝑀 ∈ {1, 5}) → ((𝑃 ∈ ℙ ∧ 4 ≤ 𝑃) → ((𝑃 mod 6) = 𝑀 → (𝑃 mod 6) ∈ {1, 5})))
8924, 88ax-mp 5 . . . 4 ((𝑃 ∈ ℙ ∧ 4 ≤ 𝑃) → ((𝑃 mod 6) = 𝑀 → (𝑃 mod 6) ∈ {1, 5}))
903oveq1i 7379 . . . . . 6 (𝑁...5) = ((𝑀 + 1)...5)
9190eleq2i 2820 . . . . 5 ((𝑃 mod 6) ∈ (𝑁...5) ↔ (𝑃 mod 6) ∈ ((𝑀 + 1)...5))
921simpri 485 . . . . 5 ((𝑃 ∈ ℙ ∧ 4 ≤ 𝑃) → ((𝑃 mod 6) ∈ (𝑁...5) → (𝑃 mod 6) ∈ {1, 5}))
9391, 92biimtrrid 243 . . . 4 ((𝑃 ∈ ℙ ∧ 4 ≤ 𝑃) → ((𝑃 mod 6) ∈ ((𝑀 + 1)...5) → (𝑃 mod 6) ∈ {1, 5}))
9489, 93jaod 859 . . 3 ((𝑃 ∈ ℙ ∧ 4 ≤ 𝑃) → (((𝑃 mod 6) = 𝑀 ∨ (𝑃 mod 6) ∈ ((𝑀 + 1)...5)) → (𝑃 mod 6) ∈ {1, 5}))
9523, 94biimtrid 242 . 2 ((𝑃 ∈ ℙ ∧ 4 ≤ 𝑃) → ((𝑃 mod 6) ∈ (𝑀...5) → (𝑃 mod 6) ∈ {1, 5}))
9616, 95pm3.2i 470 1 (𝑀 ≤ 6 ∧ ((𝑃 ∈ ℙ ∧ 4 ≤ 𝑃) → ((𝑃 mod 6) ∈ (𝑀...5) → (𝑃 mod 6) ∈ {1, 5})))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847  w3o 1085  w3a 1086   = wceq 1540  wcel 2109  {cpr 4587   class class class wbr 5102  cfv 6499  (class class class)co 7369  1c1 11045   + caddc 11047   · cmul 11049   < clt 11184  cle 11185  cn 12162  2c2 12217  3c3 12218  4c4 12219  5c5 12220  6c6 12221  0cn0 12418  cz 12505  cuz 12769  ...cfz 13444   mod cmo 13807  cdvds 16198  cprime 16617
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121  ax-pre-sup 11122
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-om 7823  df-1st 7947  df-2nd 7948  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-1o 8411  df-2o 8412  df-er 8648  df-en 8896  df-dom 8897  df-sdom 8898  df-fin 8899  df-sup 9369  df-inf 9370  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-div 11812  df-nn 12163  df-2 12225  df-3 12226  df-4 12227  df-5 12228  df-6 12229  df-n0 12419  df-z 12506  df-uz 12770  df-rp 12928  df-fz 13445  df-fl 13730  df-mod 13808  df-seq 13943  df-exp 14003  df-cj 15041  df-re 15042  df-im 15043  df-sqrt 15177  df-abs 15178  df-dvds 16199  df-prm 16618
This theorem is referenced by:  ppiublem2  27090
  Copyright terms: Public domain W3C validator