MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ppiublem1 Structured version   Visualization version   GIF version

Theorem ppiublem1 27148
Description: Lemma for ppiub 27150. (Contributed by Mario Carneiro, 12-Mar-2014.)
Hypotheses
Ref Expression
ppiublem1.1 (𝑁 ≤ 6 ∧ ((𝑃 ∈ ℙ ∧ 4 ≤ 𝑃) → ((𝑃 mod 6) ∈ (𝑁...5) → (𝑃 mod 6) ∈ {1, 5})))
ppiublem1.2 𝑀 ∈ ℕ0
ppiublem1.3 𝑁 = (𝑀 + 1)
ppiublem1.4 (2 ∥ 𝑀 ∨ 3 ∥ 𝑀𝑀 ∈ {1, 5})
Assertion
Ref Expression
ppiublem1 (𝑀 ≤ 6 ∧ ((𝑃 ∈ ℙ ∧ 4 ≤ 𝑃) → ((𝑃 mod 6) ∈ (𝑀...5) → (𝑃 mod 6) ∈ {1, 5})))

Proof of Theorem ppiublem1
StepHypRef Expression
1 ppiublem1.1 . . . . . 6 (𝑁 ≤ 6 ∧ ((𝑃 ∈ ℙ ∧ 4 ≤ 𝑃) → ((𝑃 mod 6) ∈ (𝑁...5) → (𝑃 mod 6) ∈ {1, 5})))
21simpli 483 . . . . 5 𝑁 ≤ 6
3 ppiublem1.3 . . . . 5 𝑁 = (𝑀 + 1)
4 df-6 12310 . . . . 5 6 = (5 + 1)
52, 3, 43brtr3i 5177 . . . 4 (𝑀 + 1) ≤ (5 + 1)
6 ppiublem1.2 . . . . . 6 𝑀 ∈ ℕ0
76nn0rei 12514 . . . . 5 𝑀 ∈ ℝ
8 5re 12330 . . . . 5 5 ∈ ℝ
9 1re 11245 . . . . 5 1 ∈ ℝ
107, 8, 9leadd1i 11800 . . . 4 (𝑀 ≤ 5 ↔ (𝑀 + 1) ≤ (5 + 1))
115, 10mpbir 230 . . 3 𝑀 ≤ 5
12 6re 12333 . . . 4 6 ∈ ℝ
13 5lt6 12424 . . . 4 5 < 6
148, 12, 13ltleii 11368 . . 3 5 ≤ 6
157, 8, 12letri 11374 . . 3 ((𝑀 ≤ 5 ∧ 5 ≤ 6) → 𝑀 ≤ 6)
1611, 14, 15mp2an 691 . 2 𝑀 ≤ 6
176nn0zi 12618 . . . . 5 𝑀 ∈ ℤ
18 5nn 12329 . . . . . 6 5 ∈ ℕ
1918nnzi 12617 . . . . 5 5 ∈ ℤ
20 eluz2 12859 . . . . 5 (5 ∈ (ℤ𝑀) ↔ (𝑀 ∈ ℤ ∧ 5 ∈ ℤ ∧ 𝑀 ≤ 5))
2117, 19, 11, 20mpbir3an 1339 . . . 4 5 ∈ (ℤ𝑀)
22 elfzp12 13613 . . . 4 (5 ∈ (ℤ𝑀) → ((𝑃 mod 6) ∈ (𝑀...5) ↔ ((𝑃 mod 6) = 𝑀 ∨ (𝑃 mod 6) ∈ ((𝑀 + 1)...5))))
2321, 22ax-mp 5 . . 3 ((𝑃 mod 6) ∈ (𝑀...5) ↔ ((𝑃 mod 6) = 𝑀 ∨ (𝑃 mod 6) ∈ ((𝑀 + 1)...5)))
24 ppiublem1.4 . . . . 5 (2 ∥ 𝑀 ∨ 3 ∥ 𝑀𝑀 ∈ {1, 5})
25 2nn 12316 . . . . . . . . . . 11 2 ∈ ℕ
26 6nn 12332 . . . . . . . . . . 11 6 ∈ ℕ
27 prmz 16646 . . . . . . . . . . . 12 (𝑃 ∈ ℙ → 𝑃 ∈ ℤ)
2827adantr 480 . . . . . . . . . . 11 ((𝑃 ∈ ℙ ∧ 4 ≤ 𝑃) → 𝑃 ∈ ℤ)
29 3z 12626 . . . . . . . . . . . . . 14 3 ∈ ℤ
30 2z 12625 . . . . . . . . . . . . . 14 2 ∈ ℤ
31 dvdsmul2 16256 . . . . . . . . . . . . . 14 ((3 ∈ ℤ ∧ 2 ∈ ℤ) → 2 ∥ (3 · 2))
3229, 30, 31mp2an 691 . . . . . . . . . . . . 13 2 ∥ (3 · 2)
33 3t2e6 12409 . . . . . . . . . . . . 13 (3 · 2) = 6
3432, 33breqtri 5173 . . . . . . . . . . . 12 2 ∥ 6
35 dvdsmod 16306 . . . . . . . . . . . 12 (((2 ∈ ℕ ∧ 6 ∈ ℕ ∧ 𝑃 ∈ ℤ) ∧ 2 ∥ 6) → (2 ∥ (𝑃 mod 6) ↔ 2 ∥ 𝑃))
3634, 35mpan2 690 . . . . . . . . . . 11 ((2 ∈ ℕ ∧ 6 ∈ ℕ ∧ 𝑃 ∈ ℤ) → (2 ∥ (𝑃 mod 6) ↔ 2 ∥ 𝑃))
3725, 26, 28, 36mp3an12i 1462 . . . . . . . . . 10 ((𝑃 ∈ ℙ ∧ 4 ≤ 𝑃) → (2 ∥ (𝑃 mod 6) ↔ 2 ∥ 𝑃))
38 uzid 12868 . . . . . . . . . . . 12 (2 ∈ ℤ → 2 ∈ (ℤ‘2))
3930, 38ax-mp 5 . . . . . . . . . . 11 2 ∈ (ℤ‘2)
40 simpl 482 . . . . . . . . . . 11 ((𝑃 ∈ ℙ ∧ 4 ≤ 𝑃) → 𝑃 ∈ ℙ)
41 dvdsprm 16674 . . . . . . . . . . 11 ((2 ∈ (ℤ‘2) ∧ 𝑃 ∈ ℙ) → (2 ∥ 𝑃 ↔ 2 = 𝑃))
4239, 40, 41sylancr 586 . . . . . . . . . 10 ((𝑃 ∈ ℙ ∧ 4 ≤ 𝑃) → (2 ∥ 𝑃 ↔ 2 = 𝑃))
4337, 42bitrd 279 . . . . . . . . 9 ((𝑃 ∈ ℙ ∧ 4 ≤ 𝑃) → (2 ∥ (𝑃 mod 6) ↔ 2 = 𝑃))
44 simpr 484 . . . . . . . . . . 11 ((𝑃 ∈ ℙ ∧ 4 ≤ 𝑃) → 4 ≤ 𝑃)
45 breq2 5152 . . . . . . . . . . 11 (2 = 𝑃 → (4 ≤ 2 ↔ 4 ≤ 𝑃))
4644, 45syl5ibrcom 246 . . . . . . . . . 10 ((𝑃 ∈ ℙ ∧ 4 ≤ 𝑃) → (2 = 𝑃 → 4 ≤ 2))
47 2lt4 12418 . . . . . . . . . . . 12 2 < 4
48 2re 12317 . . . . . . . . . . . . 13 2 ∈ ℝ
49 4re 12327 . . . . . . . . . . . . 13 4 ∈ ℝ
5048, 49ltnlei 11366 . . . . . . . . . . . 12 (2 < 4 ↔ ¬ 4 ≤ 2)
5147, 50mpbi 229 . . . . . . . . . . 11 ¬ 4 ≤ 2
5251pm2.21i 119 . . . . . . . . . 10 (4 ≤ 2 → (𝑃 mod 6) ∈ {1, 5})
5346, 52syl6 35 . . . . . . . . 9 ((𝑃 ∈ ℙ ∧ 4 ≤ 𝑃) → (2 = 𝑃 → (𝑃 mod 6) ∈ {1, 5}))
5443, 53sylbid 239 . . . . . . . 8 ((𝑃 ∈ ℙ ∧ 4 ≤ 𝑃) → (2 ∥ (𝑃 mod 6) → (𝑃 mod 6) ∈ {1, 5}))
55 breq2 5152 . . . . . . . . 9 ((𝑃 mod 6) = 𝑀 → (2 ∥ (𝑃 mod 6) ↔ 2 ∥ 𝑀))
5655imbi1d 341 . . . . . . . 8 ((𝑃 mod 6) = 𝑀 → ((2 ∥ (𝑃 mod 6) → (𝑃 mod 6) ∈ {1, 5}) ↔ (2 ∥ 𝑀 → (𝑃 mod 6) ∈ {1, 5})))
5754, 56syl5ibcom 244 . . . . . . 7 ((𝑃 ∈ ℙ ∧ 4 ≤ 𝑃) → ((𝑃 mod 6) = 𝑀 → (2 ∥ 𝑀 → (𝑃 mod 6) ∈ {1, 5})))
5857com3r 87 . . . . . 6 (2 ∥ 𝑀 → ((𝑃 ∈ ℙ ∧ 4 ≤ 𝑃) → ((𝑃 mod 6) = 𝑀 → (𝑃 mod 6) ∈ {1, 5})))
59 3nn 12322 . . . . . . . . . . 11 3 ∈ ℕ
60 dvdsmul1 16255 . . . . . . . . . . . . . 14 ((3 ∈ ℤ ∧ 2 ∈ ℤ) → 3 ∥ (3 · 2))
6129, 30, 60mp2an 691 . . . . . . . . . . . . 13 3 ∥ (3 · 2)
6261, 33breqtri 5173 . . . . . . . . . . . 12 3 ∥ 6
63 dvdsmod 16306 . . . . . . . . . . . 12 (((3 ∈ ℕ ∧ 6 ∈ ℕ ∧ 𝑃 ∈ ℤ) ∧ 3 ∥ 6) → (3 ∥ (𝑃 mod 6) ↔ 3 ∥ 𝑃))
6462, 63mpan2 690 . . . . . . . . . . 11 ((3 ∈ ℕ ∧ 6 ∈ ℕ ∧ 𝑃 ∈ ℤ) → (3 ∥ (𝑃 mod 6) ↔ 3 ∥ 𝑃))
6559, 26, 28, 64mp3an12i 1462 . . . . . . . . . 10 ((𝑃 ∈ ℙ ∧ 4 ≤ 𝑃) → (3 ∥ (𝑃 mod 6) ↔ 3 ∥ 𝑃))
66 df-3 12307 . . . . . . . . . . . 12 3 = (2 + 1)
67 peano2uz 12916 . . . . . . . . . . . . 13 (2 ∈ (ℤ‘2) → (2 + 1) ∈ (ℤ‘2))
6839, 67ax-mp 5 . . . . . . . . . . . 12 (2 + 1) ∈ (ℤ‘2)
6966, 68eqeltri 2825 . . . . . . . . . . 11 3 ∈ (ℤ‘2)
70 dvdsprm 16674 . . . . . . . . . . 11 ((3 ∈ (ℤ‘2) ∧ 𝑃 ∈ ℙ) → (3 ∥ 𝑃 ↔ 3 = 𝑃))
7169, 40, 70sylancr 586 . . . . . . . . . 10 ((𝑃 ∈ ℙ ∧ 4 ≤ 𝑃) → (3 ∥ 𝑃 ↔ 3 = 𝑃))
7265, 71bitrd 279 . . . . . . . . 9 ((𝑃 ∈ ℙ ∧ 4 ≤ 𝑃) → (3 ∥ (𝑃 mod 6) ↔ 3 = 𝑃))
73 breq2 5152 . . . . . . . . . . 11 (3 = 𝑃 → (4 ≤ 3 ↔ 4 ≤ 𝑃))
7444, 73syl5ibrcom 246 . . . . . . . . . 10 ((𝑃 ∈ ℙ ∧ 4 ≤ 𝑃) → (3 = 𝑃 → 4 ≤ 3))
75 3lt4 12417 . . . . . . . . . . . 12 3 < 4
76 3re 12323 . . . . . . . . . . . . 13 3 ∈ ℝ
7776, 49ltnlei 11366 . . . . . . . . . . . 12 (3 < 4 ↔ ¬ 4 ≤ 3)
7875, 77mpbi 229 . . . . . . . . . . 11 ¬ 4 ≤ 3
7978pm2.21i 119 . . . . . . . . . 10 (4 ≤ 3 → (𝑃 mod 6) ∈ {1, 5})
8074, 79syl6 35 . . . . . . . . 9 ((𝑃 ∈ ℙ ∧ 4 ≤ 𝑃) → (3 = 𝑃 → (𝑃 mod 6) ∈ {1, 5}))
8172, 80sylbid 239 . . . . . . . 8 ((𝑃 ∈ ℙ ∧ 4 ≤ 𝑃) → (3 ∥ (𝑃 mod 6) → (𝑃 mod 6) ∈ {1, 5}))
82 breq2 5152 . . . . . . . . 9 ((𝑃 mod 6) = 𝑀 → (3 ∥ (𝑃 mod 6) ↔ 3 ∥ 𝑀))
8382imbi1d 341 . . . . . . . 8 ((𝑃 mod 6) = 𝑀 → ((3 ∥ (𝑃 mod 6) → (𝑃 mod 6) ∈ {1, 5}) ↔ (3 ∥ 𝑀 → (𝑃 mod 6) ∈ {1, 5})))
8481, 83syl5ibcom 244 . . . . . . 7 ((𝑃 ∈ ℙ ∧ 4 ≤ 𝑃) → ((𝑃 mod 6) = 𝑀 → (3 ∥ 𝑀 → (𝑃 mod 6) ∈ {1, 5})))
8584com3r 87 . . . . . 6 (3 ∥ 𝑀 → ((𝑃 ∈ ℙ ∧ 4 ≤ 𝑃) → ((𝑃 mod 6) = 𝑀 → (𝑃 mod 6) ∈ {1, 5})))
86 eleq1a 2824 . . . . . . 7 (𝑀 ∈ {1, 5} → ((𝑃 mod 6) = 𝑀 → (𝑃 mod 6) ∈ {1, 5}))
8786a1d 25 . . . . . 6 (𝑀 ∈ {1, 5} → ((𝑃 ∈ ℙ ∧ 4 ≤ 𝑃) → ((𝑃 mod 6) = 𝑀 → (𝑃 mod 6) ∈ {1, 5})))
8858, 85, 873jaoi 1425 . . . . 5 ((2 ∥ 𝑀 ∨ 3 ∥ 𝑀𝑀 ∈ {1, 5}) → ((𝑃 ∈ ℙ ∧ 4 ≤ 𝑃) → ((𝑃 mod 6) = 𝑀 → (𝑃 mod 6) ∈ {1, 5})))
8924, 88ax-mp 5 . . . 4 ((𝑃 ∈ ℙ ∧ 4 ≤ 𝑃) → ((𝑃 mod 6) = 𝑀 → (𝑃 mod 6) ∈ {1, 5}))
903oveq1i 7430 . . . . . 6 (𝑁...5) = ((𝑀 + 1)...5)
9190eleq2i 2821 . . . . 5 ((𝑃 mod 6) ∈ (𝑁...5) ↔ (𝑃 mod 6) ∈ ((𝑀 + 1)...5))
921simpri 485 . . . . 5 ((𝑃 ∈ ℙ ∧ 4 ≤ 𝑃) → ((𝑃 mod 6) ∈ (𝑁...5) → (𝑃 mod 6) ∈ {1, 5}))
9391, 92biimtrrid 242 . . . 4 ((𝑃 ∈ ℙ ∧ 4 ≤ 𝑃) → ((𝑃 mod 6) ∈ ((𝑀 + 1)...5) → (𝑃 mod 6) ∈ {1, 5}))
9489, 93jaod 858 . . 3 ((𝑃 ∈ ℙ ∧ 4 ≤ 𝑃) → (((𝑃 mod 6) = 𝑀 ∨ (𝑃 mod 6) ∈ ((𝑀 + 1)...5)) → (𝑃 mod 6) ∈ {1, 5}))
9523, 94biimtrid 241 . 2 ((𝑃 ∈ ℙ ∧ 4 ≤ 𝑃) → ((𝑃 mod 6) ∈ (𝑀...5) → (𝑃 mod 6) ∈ {1, 5}))
9616, 95pm3.2i 470 1 (𝑀 ≤ 6 ∧ ((𝑃 ∈ ℙ ∧ 4 ≤ 𝑃) → ((𝑃 mod 6) ∈ (𝑀...5) → (𝑃 mod 6) ∈ {1, 5})))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 395  wo 846  w3o 1084  w3a 1085   = wceq 1534  wcel 2099  {cpr 4631   class class class wbr 5148  cfv 6548  (class class class)co 7420  1c1 11140   + caddc 11142   · cmul 11144   < clt 11279  cle 11280  cn 12243  2c2 12298  3c3 12299  4c4 12300  5c5 12301  6c6 12302  0cn0 12503  cz 12589  cuz 12853  ...cfz 13517   mod cmo 13867  cdvds 16231  cprime 16642
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2699  ax-sep 5299  ax-nul 5306  ax-pow 5365  ax-pr 5429  ax-un 7740  ax-cnex 11195  ax-resscn 11196  ax-1cn 11197  ax-icn 11198  ax-addcl 11199  ax-addrcl 11200  ax-mulcl 11201  ax-mulrcl 11202  ax-mulcom 11203  ax-addass 11204  ax-mulass 11205  ax-distr 11206  ax-i2m1 11207  ax-1ne0 11208  ax-1rid 11209  ax-rnegex 11210  ax-rrecex 11211  ax-cnre 11212  ax-pre-lttri 11213  ax-pre-lttrn 11214  ax-pre-ltadd 11215  ax-pre-mulgt0 11216  ax-pre-sup 11217
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3or 1086  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2530  df-eu 2559  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2938  df-nel 3044  df-ral 3059  df-rex 3068  df-rmo 3373  df-reu 3374  df-rab 3430  df-v 3473  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4909  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5576  df-eprel 5582  df-po 5590  df-so 5591  df-fr 5633  df-we 5635  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-dm 5688  df-rn 5689  df-res 5690  df-ima 5691  df-pred 6305  df-ord 6372  df-on 6373  df-lim 6374  df-suc 6375  df-iota 6500  df-fun 6550  df-fn 6551  df-f 6552  df-f1 6553  df-fo 6554  df-f1o 6555  df-fv 6556  df-riota 7376  df-ov 7423  df-oprab 7424  df-mpo 7425  df-om 7871  df-1st 7993  df-2nd 7994  df-frecs 8287  df-wrecs 8318  df-recs 8392  df-rdg 8431  df-1o 8487  df-2o 8488  df-er 8725  df-en 8965  df-dom 8966  df-sdom 8967  df-fin 8968  df-sup 9466  df-inf 9467  df-pnf 11281  df-mnf 11282  df-xr 11283  df-ltxr 11284  df-le 11285  df-sub 11477  df-neg 11478  df-div 11903  df-nn 12244  df-2 12306  df-3 12307  df-4 12308  df-5 12309  df-6 12310  df-n0 12504  df-z 12590  df-uz 12854  df-rp 13008  df-fz 13518  df-fl 13790  df-mod 13868  df-seq 14000  df-exp 14060  df-cj 15079  df-re 15080  df-im 15081  df-sqrt 15215  df-abs 15216  df-dvds 16232  df-prm 16643
This theorem is referenced by:  ppiublem2  27149
  Copyright terms: Public domain W3C validator