MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ppiublem1 Structured version   Visualization version   GIF version

Theorem ppiublem1 25786
Description: Lemma for ppiub 25788. (Contributed by Mario Carneiro, 12-Mar-2014.)
Hypotheses
Ref Expression
ppiublem1.1 (𝑁 ≤ 6 ∧ ((𝑃 ∈ ℙ ∧ 4 ≤ 𝑃) → ((𝑃 mod 6) ∈ (𝑁...5) → (𝑃 mod 6) ∈ {1, 5})))
ppiublem1.2 𝑀 ∈ ℕ0
ppiublem1.3 𝑁 = (𝑀 + 1)
ppiublem1.4 (2 ∥ 𝑀 ∨ 3 ∥ 𝑀𝑀 ∈ {1, 5})
Assertion
Ref Expression
ppiublem1 (𝑀 ≤ 6 ∧ ((𝑃 ∈ ℙ ∧ 4 ≤ 𝑃) → ((𝑃 mod 6) ∈ (𝑀...5) → (𝑃 mod 6) ∈ {1, 5})))

Proof of Theorem ppiublem1
StepHypRef Expression
1 ppiublem1.1 . . . . . 6 (𝑁 ≤ 6 ∧ ((𝑃 ∈ ℙ ∧ 4 ≤ 𝑃) → ((𝑃 mod 6) ∈ (𝑁...5) → (𝑃 mod 6) ∈ {1, 5})))
21simpli 487 . . . . 5 𝑁 ≤ 6
3 ppiublem1.3 . . . . 5 𝑁 = (𝑀 + 1)
4 df-6 11692 . . . . 5 6 = (5 + 1)
52, 3, 43brtr3i 5059 . . . 4 (𝑀 + 1) ≤ (5 + 1)
6 ppiublem1.2 . . . . . 6 𝑀 ∈ ℕ0
76nn0rei 11896 . . . . 5 𝑀 ∈ ℝ
8 5re 11712 . . . . 5 5 ∈ ℝ
9 1re 10630 . . . . 5 1 ∈ ℝ
107, 8, 9leadd1i 11184 . . . 4 (𝑀 ≤ 5 ↔ (𝑀 + 1) ≤ (5 + 1))
115, 10mpbir 234 . . 3 𝑀 ≤ 5
12 6re 11715 . . . 4 6 ∈ ℝ
13 5lt6 11806 . . . 4 5 < 6
148, 12, 13ltleii 10752 . . 3 5 ≤ 6
157, 8, 12letri 10758 . . 3 ((𝑀 ≤ 5 ∧ 5 ≤ 6) → 𝑀 ≤ 6)
1611, 14, 15mp2an 691 . 2 𝑀 ≤ 6
176nn0zi 11995 . . . . 5 𝑀 ∈ ℤ
18 5nn 11711 . . . . . 6 5 ∈ ℕ
1918nnzi 11994 . . . . 5 5 ∈ ℤ
20 eluz2 12237 . . . . 5 (5 ∈ (ℤ𝑀) ↔ (𝑀 ∈ ℤ ∧ 5 ∈ ℤ ∧ 𝑀 ≤ 5))
2117, 19, 11, 20mpbir3an 1338 . . . 4 5 ∈ (ℤ𝑀)
22 elfzp12 12981 . . . 4 (5 ∈ (ℤ𝑀) → ((𝑃 mod 6) ∈ (𝑀...5) ↔ ((𝑃 mod 6) = 𝑀 ∨ (𝑃 mod 6) ∈ ((𝑀 + 1)...5))))
2321, 22ax-mp 5 . . 3 ((𝑃 mod 6) ∈ (𝑀...5) ↔ ((𝑃 mod 6) = 𝑀 ∨ (𝑃 mod 6) ∈ ((𝑀 + 1)...5)))
24 ppiublem1.4 . . . . 5 (2 ∥ 𝑀 ∨ 3 ∥ 𝑀𝑀 ∈ {1, 5})
25 2nn 11698 . . . . . . . . . . 11 2 ∈ ℕ
26 6nn 11714 . . . . . . . . . . 11 6 ∈ ℕ
27 prmz 16009 . . . . . . . . . . . 12 (𝑃 ∈ ℙ → 𝑃 ∈ ℤ)
2827adantr 484 . . . . . . . . . . 11 ((𝑃 ∈ ℙ ∧ 4 ≤ 𝑃) → 𝑃 ∈ ℤ)
29 3z 12003 . . . . . . . . . . . . . 14 3 ∈ ℤ
30 2z 12002 . . . . . . . . . . . . . 14 2 ∈ ℤ
31 dvdsmul2 15624 . . . . . . . . . . . . . 14 ((3 ∈ ℤ ∧ 2 ∈ ℤ) → 2 ∥ (3 · 2))
3229, 30, 31mp2an 691 . . . . . . . . . . . . 13 2 ∥ (3 · 2)
33 3t2e6 11791 . . . . . . . . . . . . 13 (3 · 2) = 6
3432, 33breqtri 5055 . . . . . . . . . . . 12 2 ∥ 6
35 dvdsmod 15670 . . . . . . . . . . . 12 (((2 ∈ ℕ ∧ 6 ∈ ℕ ∧ 𝑃 ∈ ℤ) ∧ 2 ∥ 6) → (2 ∥ (𝑃 mod 6) ↔ 2 ∥ 𝑃))
3634, 35mpan2 690 . . . . . . . . . . 11 ((2 ∈ ℕ ∧ 6 ∈ ℕ ∧ 𝑃 ∈ ℤ) → (2 ∥ (𝑃 mod 6) ↔ 2 ∥ 𝑃))
3725, 26, 28, 36mp3an12i 1462 . . . . . . . . . 10 ((𝑃 ∈ ℙ ∧ 4 ≤ 𝑃) → (2 ∥ (𝑃 mod 6) ↔ 2 ∥ 𝑃))
38 uzid 12246 . . . . . . . . . . . 12 (2 ∈ ℤ → 2 ∈ (ℤ‘2))
3930, 38ax-mp 5 . . . . . . . . . . 11 2 ∈ (ℤ‘2)
40 simpl 486 . . . . . . . . . . 11 ((𝑃 ∈ ℙ ∧ 4 ≤ 𝑃) → 𝑃 ∈ ℙ)
41 dvdsprm 16037 . . . . . . . . . . 11 ((2 ∈ (ℤ‘2) ∧ 𝑃 ∈ ℙ) → (2 ∥ 𝑃 ↔ 2 = 𝑃))
4239, 40, 41sylancr 590 . . . . . . . . . 10 ((𝑃 ∈ ℙ ∧ 4 ≤ 𝑃) → (2 ∥ 𝑃 ↔ 2 = 𝑃))
4337, 42bitrd 282 . . . . . . . . 9 ((𝑃 ∈ ℙ ∧ 4 ≤ 𝑃) → (2 ∥ (𝑃 mod 6) ↔ 2 = 𝑃))
44 simpr 488 . . . . . . . . . . 11 ((𝑃 ∈ ℙ ∧ 4 ≤ 𝑃) → 4 ≤ 𝑃)
45 breq2 5034 . . . . . . . . . . 11 (2 = 𝑃 → (4 ≤ 2 ↔ 4 ≤ 𝑃))
4644, 45syl5ibrcom 250 . . . . . . . . . 10 ((𝑃 ∈ ℙ ∧ 4 ≤ 𝑃) → (2 = 𝑃 → 4 ≤ 2))
47 2lt4 11800 . . . . . . . . . . . 12 2 < 4
48 2re 11699 . . . . . . . . . . . . 13 2 ∈ ℝ
49 4re 11709 . . . . . . . . . . . . 13 4 ∈ ℝ
5048, 49ltnlei 10750 . . . . . . . . . . . 12 (2 < 4 ↔ ¬ 4 ≤ 2)
5147, 50mpbi 233 . . . . . . . . . . 11 ¬ 4 ≤ 2
5251pm2.21i 119 . . . . . . . . . 10 (4 ≤ 2 → (𝑃 mod 6) ∈ {1, 5})
5346, 52syl6 35 . . . . . . . . 9 ((𝑃 ∈ ℙ ∧ 4 ≤ 𝑃) → (2 = 𝑃 → (𝑃 mod 6) ∈ {1, 5}))
5443, 53sylbid 243 . . . . . . . 8 ((𝑃 ∈ ℙ ∧ 4 ≤ 𝑃) → (2 ∥ (𝑃 mod 6) → (𝑃 mod 6) ∈ {1, 5}))
55 breq2 5034 . . . . . . . . 9 ((𝑃 mod 6) = 𝑀 → (2 ∥ (𝑃 mod 6) ↔ 2 ∥ 𝑀))
5655imbi1d 345 . . . . . . . 8 ((𝑃 mod 6) = 𝑀 → ((2 ∥ (𝑃 mod 6) → (𝑃 mod 6) ∈ {1, 5}) ↔ (2 ∥ 𝑀 → (𝑃 mod 6) ∈ {1, 5})))
5754, 56syl5ibcom 248 . . . . . . 7 ((𝑃 ∈ ℙ ∧ 4 ≤ 𝑃) → ((𝑃 mod 6) = 𝑀 → (2 ∥ 𝑀 → (𝑃 mod 6) ∈ {1, 5})))
5857com3r 87 . . . . . 6 (2 ∥ 𝑀 → ((𝑃 ∈ ℙ ∧ 4 ≤ 𝑃) → ((𝑃 mod 6) = 𝑀 → (𝑃 mod 6) ∈ {1, 5})))
59 3nn 11704 . . . . . . . . . . 11 3 ∈ ℕ
60 dvdsmul1 15623 . . . . . . . . . . . . . 14 ((3 ∈ ℤ ∧ 2 ∈ ℤ) → 3 ∥ (3 · 2))
6129, 30, 60mp2an 691 . . . . . . . . . . . . 13 3 ∥ (3 · 2)
6261, 33breqtri 5055 . . . . . . . . . . . 12 3 ∥ 6
63 dvdsmod 15670 . . . . . . . . . . . 12 (((3 ∈ ℕ ∧ 6 ∈ ℕ ∧ 𝑃 ∈ ℤ) ∧ 3 ∥ 6) → (3 ∥ (𝑃 mod 6) ↔ 3 ∥ 𝑃))
6462, 63mpan2 690 . . . . . . . . . . 11 ((3 ∈ ℕ ∧ 6 ∈ ℕ ∧ 𝑃 ∈ ℤ) → (3 ∥ (𝑃 mod 6) ↔ 3 ∥ 𝑃))
6559, 26, 28, 64mp3an12i 1462 . . . . . . . . . 10 ((𝑃 ∈ ℙ ∧ 4 ≤ 𝑃) → (3 ∥ (𝑃 mod 6) ↔ 3 ∥ 𝑃))
66 df-3 11689 . . . . . . . . . . . 12 3 = (2 + 1)
67 peano2uz 12289 . . . . . . . . . . . . 13 (2 ∈ (ℤ‘2) → (2 + 1) ∈ (ℤ‘2))
6839, 67ax-mp 5 . . . . . . . . . . . 12 (2 + 1) ∈ (ℤ‘2)
6966, 68eqeltri 2886 . . . . . . . . . . 11 3 ∈ (ℤ‘2)
70 dvdsprm 16037 . . . . . . . . . . 11 ((3 ∈ (ℤ‘2) ∧ 𝑃 ∈ ℙ) → (3 ∥ 𝑃 ↔ 3 = 𝑃))
7169, 40, 70sylancr 590 . . . . . . . . . 10 ((𝑃 ∈ ℙ ∧ 4 ≤ 𝑃) → (3 ∥ 𝑃 ↔ 3 = 𝑃))
7265, 71bitrd 282 . . . . . . . . 9 ((𝑃 ∈ ℙ ∧ 4 ≤ 𝑃) → (3 ∥ (𝑃 mod 6) ↔ 3 = 𝑃))
73 breq2 5034 . . . . . . . . . . 11 (3 = 𝑃 → (4 ≤ 3 ↔ 4 ≤ 𝑃))
7444, 73syl5ibrcom 250 . . . . . . . . . 10 ((𝑃 ∈ ℙ ∧ 4 ≤ 𝑃) → (3 = 𝑃 → 4 ≤ 3))
75 3lt4 11799 . . . . . . . . . . . 12 3 < 4
76 3re 11705 . . . . . . . . . . . . 13 3 ∈ ℝ
7776, 49ltnlei 10750 . . . . . . . . . . . 12 (3 < 4 ↔ ¬ 4 ≤ 3)
7875, 77mpbi 233 . . . . . . . . . . 11 ¬ 4 ≤ 3
7978pm2.21i 119 . . . . . . . . . 10 (4 ≤ 3 → (𝑃 mod 6) ∈ {1, 5})
8074, 79syl6 35 . . . . . . . . 9 ((𝑃 ∈ ℙ ∧ 4 ≤ 𝑃) → (3 = 𝑃 → (𝑃 mod 6) ∈ {1, 5}))
8172, 80sylbid 243 . . . . . . . 8 ((𝑃 ∈ ℙ ∧ 4 ≤ 𝑃) → (3 ∥ (𝑃 mod 6) → (𝑃 mod 6) ∈ {1, 5}))
82 breq2 5034 . . . . . . . . 9 ((𝑃 mod 6) = 𝑀 → (3 ∥ (𝑃 mod 6) ↔ 3 ∥ 𝑀))
8382imbi1d 345 . . . . . . . 8 ((𝑃 mod 6) = 𝑀 → ((3 ∥ (𝑃 mod 6) → (𝑃 mod 6) ∈ {1, 5}) ↔ (3 ∥ 𝑀 → (𝑃 mod 6) ∈ {1, 5})))
8481, 83syl5ibcom 248 . . . . . . 7 ((𝑃 ∈ ℙ ∧ 4 ≤ 𝑃) → ((𝑃 mod 6) = 𝑀 → (3 ∥ 𝑀 → (𝑃 mod 6) ∈ {1, 5})))
8584com3r 87 . . . . . 6 (3 ∥ 𝑀 → ((𝑃 ∈ ℙ ∧ 4 ≤ 𝑃) → ((𝑃 mod 6) = 𝑀 → (𝑃 mod 6) ∈ {1, 5})))
86 eleq1a 2885 . . . . . . 7 (𝑀 ∈ {1, 5} → ((𝑃 mod 6) = 𝑀 → (𝑃 mod 6) ∈ {1, 5}))
8786a1d 25 . . . . . 6 (𝑀 ∈ {1, 5} → ((𝑃 ∈ ℙ ∧ 4 ≤ 𝑃) → ((𝑃 mod 6) = 𝑀 → (𝑃 mod 6) ∈ {1, 5})))
8858, 85, 873jaoi 1424 . . . . 5 ((2 ∥ 𝑀 ∨ 3 ∥ 𝑀𝑀 ∈ {1, 5}) → ((𝑃 ∈ ℙ ∧ 4 ≤ 𝑃) → ((𝑃 mod 6) = 𝑀 → (𝑃 mod 6) ∈ {1, 5})))
8924, 88ax-mp 5 . . . 4 ((𝑃 ∈ ℙ ∧ 4 ≤ 𝑃) → ((𝑃 mod 6) = 𝑀 → (𝑃 mod 6) ∈ {1, 5}))
903oveq1i 7145 . . . . . 6 (𝑁...5) = ((𝑀 + 1)...5)
9190eleq2i 2881 . . . . 5 ((𝑃 mod 6) ∈ (𝑁...5) ↔ (𝑃 mod 6) ∈ ((𝑀 + 1)...5))
921simpri 489 . . . . 5 ((𝑃 ∈ ℙ ∧ 4 ≤ 𝑃) → ((𝑃 mod 6) ∈ (𝑁...5) → (𝑃 mod 6) ∈ {1, 5}))
9391, 92syl5bir 246 . . . 4 ((𝑃 ∈ ℙ ∧ 4 ≤ 𝑃) → ((𝑃 mod 6) ∈ ((𝑀 + 1)...5) → (𝑃 mod 6) ∈ {1, 5}))
9489, 93jaod 856 . . 3 ((𝑃 ∈ ℙ ∧ 4 ≤ 𝑃) → (((𝑃 mod 6) = 𝑀 ∨ (𝑃 mod 6) ∈ ((𝑀 + 1)...5)) → (𝑃 mod 6) ∈ {1, 5}))
9523, 94syl5bi 245 . 2 ((𝑃 ∈ ℙ ∧ 4 ≤ 𝑃) → ((𝑃 mod 6) ∈ (𝑀...5) → (𝑃 mod 6) ∈ {1, 5}))
9616, 95pm3.2i 474 1 (𝑀 ≤ 6 ∧ ((𝑃 ∈ ℙ ∧ 4 ≤ 𝑃) → ((𝑃 mod 6) ∈ (𝑀...5) → (𝑃 mod 6) ∈ {1, 5})))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 209  wa 399  wo 844  w3o 1083  w3a 1084   = wceq 1538  wcel 2111  {cpr 4527   class class class wbr 5030  cfv 6324  (class class class)co 7135  1c1 10527   + caddc 10529   · cmul 10531   < clt 10664  cle 10665  cn 11625  2c2 11680  3c3 11681  4c4 11682  5c5 11683  6c6 11684  0cn0 11885  cz 11969  cuz 12231  ...cfz 12885   mod cmo 13232  cdvds 15599  cprime 16005
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603  ax-pre-sup 10604
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-om 7561  df-1st 7671  df-2nd 7672  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-1o 8085  df-2o 8086  df-er 8272  df-en 8493  df-dom 8494  df-sdom 8495  df-fin 8496  df-sup 8890  df-inf 8891  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-div 11287  df-nn 11626  df-2 11688  df-3 11689  df-4 11690  df-5 11691  df-6 11692  df-n0 11886  df-z 11970  df-uz 12232  df-rp 12378  df-fz 12886  df-fl 13157  df-mod 13233  df-seq 13365  df-exp 13426  df-cj 14450  df-re 14451  df-im 14452  df-sqrt 14586  df-abs 14587  df-dvds 15600  df-prm 16006
This theorem is referenced by:  ppiublem2  25787
  Copyright terms: Public domain W3C validator